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The μ-τ reflection symmetry ðνe; νμ; ντÞ → ðν̄e; ν̄τ; ν̄μÞ and the TM1 mixing (a Pontecorvo–
Maki–Nakagawa–Sakata matrix with the first column fixed to the tribimaximal form) are both well
compatible with experiments. If both approaches are simultaneously assumed, all lepton mixing parameters
except for θ13 are predicted. In particular, one expects maximal CP violation (jδj ¼ 90°), maximal
atmospheric mixing (θ23 ¼ 45°), a slightly less-than-tribimaximal solar mixing angle (θ12 ≈ 34°), as well as
values of 0 or π for the two Majorana phases. We study the renormalization stability of this highly
predictive framework when neutrino mass is described by an effective Weinberg operator and by the type I
seesaw mechanism, both in the standard model and with supersymmetry.
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I. INTRODUCTION

The structure of neutrino mixing, the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix, is considered as an
important clue for possible underlying symmetries of the
three generations of fermions in the standard model (SM).
Many discrete flavor symmetries have been proposed in
trying to understand the observed mixing—see, e.g., the
reviews [1–5]. In particular, it had long been speculated that
the neutrino mixing could be tribimaximal (TBM) [6–10],
which could originate from non-Abelian discrete sym-
metries such as A4 and S4. However, the TBM mixing
predicts zero θ13 which has been excluded by reactor
neutrino experiments [11–13].
It is well understood that θ13 ¼ 0 in TBM is attributed to

μ-τ symmetry [14], which is defined as the invariance of the
neutrino mass terms under the interchange of νμ and ντ.
Therefore in the light of nonzero θ13, breaking the μ-τ
symmetry has been considered and extensively studied in
many references in the past. However, there is a variation of
the μ-τ symmetry which does not require any breaking and
is still well compatible with experiments. It is called μ-τ
reflection symmetry [9,15–18], which attaches the CP
transformation to the interchange of νμ and ντ,

νe → νe; νμ → ντ; ντ → νμ: ð1Þ

The μ-τ reflection symmetry allows nonzero θ13 and
predicts θ23 ¼ 45° and δ ¼ �90°. Consequently it has
aroused a lot of interest recently [19–33]. To generate
TBM mixing the μ-τ symmetry determines the third
column of this mixing matrix and there is another Z2

symmetry that is responsible for the first or second column
[34–36]. Those Z2 symmetries are assumed to be “residual
symmetries”, after the full flavor group is broken. They
could be accidental or subgroups of the full flavor group. If
the μ-τ symmetry is replaced with μ-τ reflection symmetry,
then we get a variation of TBM with its first or second

column fixed and at the same time we will have nonzero
θ13, θ23 ¼ 45°, and δ ¼ �90°. We study the consequences
of this assumption in this paper. General deviations of the
TBM mixing with some part being fixed have been
discussed in many references [37–46] and the case that
the first/second column is fixed is usually referred to as
TM1/TM2 mixing, respectively [40]. In the TBM mixing,
θ12 ¼ sin−1 1ffiffi

3
p ≈ 35.3° is a little higher than the global best-

fit value θexp12 ¼ 33.56þ0.77
−0.75 [47], while in TM1 or TM2 it

deviates from 35.3° with a lower or a higher value,
respectively [40]:

θTM1
12 ¼ cos−1

� ffiffiffi
2

p
ffiffiffi
3

p
cos θ13

�
≈ 34.2°;

θTM2
12 ¼ sin−1

�
1ffiffiffi

3
p

cos θ13

�
≈ 35.8°: ð2Þ

Since θTM1
12 is well compatible with θexp12 while θTM2

12 is
disfavored at about 3σ, in this paper we will consider
TM1 only.
When the TM1 symmetry.1 and μ-τ reflection symmetry

are imposed on the neutrino mass terms simultaneously, all
the PMNS parameters except for θ13 are predicted (in
addition to the predictions mentioned above, the two
Majorana phases are 0 or π). In the near future, this
framework can be tested not only by a precision measure-
ment of θ12 and θ23, but also by the confirmation of a
maximal Dirac CP phase jδj ¼ π=2, for which hints have
recently appeared in T2K [48,49]. Besides, its predictions
on Majorana phases could be verified in neutrinoless
double beta decay (0νββ) experiments [50].
Note that both the TM1 symmetry and μ-τ reflection

symmetry may be residual symmetries of a larger flavor

1For simplicity, we will refer to the symmetry responsible for
the TM1 mixing as the TM1 symmetry in this paper.
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symmetry broken at a high energy scale. Since μ-τ
reflection symmetry is essentially a generalized CP sym-
metry, looking for a horizontal flavor symmetry that
contains it as a subsymmetry is more interesting and
also more complicated. This is an active subject of on-
going research and some non-Abelian discrete groups in
semidirect product form, such as A4⋊ZCP

2 , S4⋊ZCP
2 ,

Δð6n2Þ⋊ZCP
2 can be the origin of the mixing scheme that

we study here [51–54].
It is most likely that the predictions of TM1 and μ-τ

reflection symmetries are exact only at the scale where the
horizontal flavor symmetry breaks into these residual
symmetries. When going to lower energy scales these
predictions will unavoidably receive corrections from
renormalization group (RG) running [55]. Therefore in
this paper, we will also study the RG corrections on the
predictions from the joined TM1 and μ-τ reflection sym-
metry. We consider the case in which neutrino mass is
described by the effective Weinberg operator, as well as by
the most popular realization of this operator, the type I
seesaw [56–59]. Both the SM and the (minimal super-
symmetric standard model) MSSM are assumed.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the TM1 symmetry and the μ-τ
reflection symmetry, and study the phenomenology if both
are simultaneously present. Then we study the RG running
effects on the PMNS parameters in the cases we mentioned
above, presented in Sec. III. Finally we summarize our
result and conclude in Sec. IV.

II. TRIMAXIMAL μ-τ REFLECTION SYMMETRY

The TM1 mixing and its symmetry as well as model-
building aspects have been studied in many references (see
e.g., [40,44–46,60–62]). In the following we denote the
TM1 symmetry as ZTM1

2 . The μ-τ reflection symmetry was
originally proposed in Refs. [9,15–18] and later extensively
studied in, e.g., [19–23,25–33]. It can be regarded as a
generalized CP symmetry [63,64] so we use ZCP

2 to denote
it.2 Although both symmetries as well as their phenom-
enology have been extensive studied in the literature, their
combination which provides a very effective description of
the neutrino mixing data with only one free parameter, has
attracted much less attention. Therefore in this section, we
will discuss the theoretical and phenomenological aspects
of this combination.
The explicit transformations of ZTM1

2 and ZCP
2 in the

flavor basis are given as

ZTM1
2 ∶ ν → RTM1ν; ð3Þ
ZCP

2 ∶ ν → Rμτν; ð4Þ

where ν≡ ðνe; νμ; ντÞT and the two matrices RTM1 and Rμτ

are

RTM1 ≡ −
1

3

0
B@

1 2 2

2 −2 1

2 1 −2

1
CA; ð5Þ

Rμτ ≡
0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð6Þ

The matrix RTM1 has been derived in, e.g., Ref. [35] while
the form of Rμτ is obvious according to the meaning of
interchanging the μ and τ flavor. Since the μ-τ reflection
symmetry is essentially a generalized CP symmetry, it is
necessary to check the consistency condition of flavor
symmetry and CP symmetry [65]:

RTM1Rμτ ¼ RμτðRTM1Þ�: ð7Þ

The neutrino mass terms

L ⊃ −ναMν
αβνβ þ H:c:; ð8Þ

should be invariant under the transformations in Eqs. (3)
and (4). Therefore, the mass matrix Mν should satisfy

ðRTM1ÞTMνRTM1 ¼ Mν; ð9Þ

ðRμτÞTMνRμτ ¼ ðMνÞ�: ð10Þ

The above two equations can be broken down into
equations in terms of the entries of Mν, so one can obtain
explicit constraints on those:

Mν
11;M

ν
23 ¼ real; ð11Þ

Mν
12 ¼ðMν

13Þ�; ð12Þ

Mν
22 ¼ðMν

33Þ�; ð13Þ

ImðMν
22Þ ¼ 2ImðMν

23Þ; ð14Þ

Mν
11 ¼

X
i

ReðMν
i2Þ: ð15Þ

The above equations are equivalent to Eqs. (9) and (10),
which means they are sufficient and necessary conditions
for Eq. (8) being invariant under the transformations. With
the above constraints, Mν can be parametrized by four real
parameters r, x1;2, and y:

2We prefer the symbol ZCP
2 to Zμτ

2 for the μ-τ reflection
symmetry because the latter is widely used for the μ-τ symmetry
without CP transformation.
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Mν ¼

0
B@

rþ x1 þ x2 x1 x1
x1 x2 r

x1 r x2

1
CAþ iy

0
B@

0 1 −1
1 −2 0

−1 0 2

1
CA:

ð16Þ

As one can check, Eq. (16) is the most general mass matrix
that satisfied Eqs. (9) and (10). The mass matrix contains
only four real parameters; those are the three neutrinos
masses and one degree of freedom for the PMNS matrix.
As we will show later, this degree of freedom is just θ13.
Therefore, the mass matrix with the form in Eq. (16) is
highly predictive. It predicts all the parameters except
for θ13 in the PMNS matrix, including two mixing
angles ðθ12; θ23Þ, one Dirac phase δ and two Majorana
phases ðα21; α31Þ.
The mass matrix is diagonalized by

ðUνÞTMνUν ¼ diagðm0
1; m

0
2; m

0
3Þ: ð17Þ

For Mν in Eq. (16), due to the residual symmetries, Uν can
be analytically solved:

Uν ¼ 1ffiffiffi
6

p

0
B@

2
ffiffiffi
2

p
c

ffiffiffi
2

p
s

1 −
ffiffiffi
2

p
c − i

ffiffiffi
3

p
s i

ffiffiffi
3

p
c −

ffiffiffi
2

p
s

1 −
ffiffiffi
2

p
cþ i

ffiffiffi
3

p
s −i

ffiffiffi
3

p
c −

ffiffiffi
2

p
s

1
CA; ð18Þ

where ðs; cÞ ¼ ðsin θ; cos θÞ are given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δþ x1 − 2x2

2Δ

r
; c ¼ signðyÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

x1 − 2x2 þ Δ
2Δ

r
;

ð19Þ

and

ðm0
1; m

0
2; m

0
3Þ ¼

�
rþ 2x1 þ x2; rþ

Δ
2
−
x1
2
; r −

Δ
2
−
x1
2

�
;

ð20Þ

Δ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24y2 þ ðx1 − 2x2Þ2

q
: ð21Þ

Here signðyÞ implies that we have taken c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
for

positive y and c ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
for negative y. Note that

ðm0
1; m

0
2; m

0
3Þ computed from Eq. (20) are not necessarily

positive (but always real), so they may be different from the
neutrino masses by some minus signs.
Comparing the above result to the standard parametriza-

tion of the PMNS matrix

UPMNS ¼ Udiagð1; eiα21=2; eiα31=2Þ; ð22Þ

U ¼

0
B@

c12c13 c13s12 e−iδs13
−c23s12 − eiδc12s13s23 c12c23 − eiδs12s13s23 c13s23
−eiδc12c23s13 þ s12s23 −eiδc23s12s13 − c12s23 c13c23

1
CA; ð23Þ

we can extract the predictions on all the PMNS parameters. It turns out that the predictions differ for positive and negative y.
Next we will discuss both cases:

(i) Positive y (y > 0)
If y > 0, then c ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
is positive. We extract some phases from Uν so that

diagð1;−eiβ; e−iβÞUν ¼

0
BBBBB@

ffiffi
2
3

q ffiffiffiffiffiffiffi
1−s2

p ffiffi
3

p isffiffi
3

p

2i
ffiffi
3

p
s−3

ffiffiffiffiffiffiffiffiffi
2−2s2

p

6
ffiffiffiffiffiffiffi
3−s2

p 6þis
ffiffiffiffiffiffiffiffiffi
6−6s2

p

6
ffiffiffiffiffiffiffi
3−s2

p
ffiffiffiffiffiffiffi
3−s2

p ffiffi
6

p

2i
ffiffi
3

p
sþ3

ffiffiffiffiffiffiffiffiffi
2−2s2

p

6
ffiffiffiffiffiffiffi
3−s2

p −6þis
ffiffiffiffiffiffiffiffiffi
6−6s2

p

6
ffiffiffiffiffiffiffi
3−s2

p
ffiffiffiffiffiffiffi
3−s2

p ffiffi
6

p

1
CCCCCA
diagð1; 1;−iÞ; ð24Þ

has the same phase convention as the standard parametrization, which requires

β ¼ argð
ffiffiffi
3

p
c − i

ffiffiffi
2

p
sÞ: ð25Þ

Comparing Eq. (24) to Eqs. (23) and (22), we get

θ23 ¼ 45°; δ ¼ −90°; c12 ¼
ffiffiffi
2

3

r
1

c13
: ð26Þ
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If m0
1;2;3 ≥ 0, then the Majorana phases should be

ð1; eiα21=2; eiα31=2Þ ¼ ð1; 1;−iÞ. However, m0
1;2;3

could be negative, which can be converted to
positive by further adding some phases to the
right-hand side of Eq. (24). Therefore the actual
Majorana phases depend on the signs of m0

1;2;3:

ð1; eiα21=2; eiα31=2Þ
¼

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðm0

2=m
0
1Þ

q
;−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðm0

3=m
0
1Þ

q �
:

ð27Þ
(ii) Negative y (y < 0)

If y < 0, then c ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
is negative so we

need to remove the minus sign of the 12-entry of
(18). Therefore Eqs. (24) and (25) are modified to

diagð1;−eiβ; e−iβÞUν

¼

0
BBBBB@

ffiffi
2
3

q ffiffiffiffiffiffiffi
1−s2

p ffiffi
3

p − isffiffi
3

p

−2i
ffiffi
3

p
s−3

ffiffiffiffiffiffiffiffiffi
2−2s2

p

6
ffiffiffiffiffiffiffi
3−s2

p 6−is
ffiffiffiffiffiffiffiffiffi
6−6s2

p

6
ffiffiffiffiffiffiffi
3−s2

p
ffiffiffiffiffiffiffi
3−s2

p ffiffi
6

p

−2i
ffiffi
3

p
sþ3

ffiffiffiffiffiffiffiffiffi
2−2s2

p

6
ffiffiffiffiffiffiffi
3−s2

p −6−is
ffiffiffiffiffiffiffiffiffi
6−6s2

p

6
ffiffiffiffiffiffiffi
3−s2

p
ffiffiffiffiffiffiffi
3−s2

p ffiffi
6

p

1
CCCCCA

× diagð1;−1; iÞ; ð28Þ
where now

β ¼ argð−
ffiffiffi
3

p
cþ i

ffiffiffi
2

p
sÞ: ð29Þ

In this case, comparing with the standard para-
metrization of the PMNS matrix we have

θ23 ¼ 45°; δ ¼ 90°; c12 ¼
ffiffiffi
2

3

r
1

c13
; ð30Þ

and the Majorana phases are

ð1; eiα21=2; eiα31=2Þ
¼

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðm0

2=m
0
1Þ

q
; i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
signðm0

3=m
0
1Þ

q �
:

As a summary, we have

θ23 ¼ 45°; θ12 ¼ cos−1
� ffiffiffi

2

3

r
1

c13

�
≈ 34.2°; ð31Þ

if the experimental value θ13 ≈ 9° is taken as an input, and

δ ¼ �90°; α21 ¼
π

2
� π

2
; α31 ¼

π

2
� π

2
; ð32Þ

where the positive/negative signs depending on the signs of
y and ðm0

1; m
0
2; m

0
3Þ computed from Eq. (20). Here the

Majorana phases are predicted to be either 0 or π. There
have been many studies [66–74] on the option to measure

the Majorana phases with upcoming neutrinoless double
beta decay (0νββ) experiments. It was demonstrated in
particular that expected nuclear and experimental uncer-
tainties allow us in principle to measure the phases, or at
least constrain them nontrivially. The actual physical
observable for 0νββ is the effective mass jMeej, which
has significant dependence on the Majorana phases. For the
inverted mass ordering, jMeej is always nonzero, which
necessarily leads to 0νββ at some level. For the normal
mass ordering, it is well known that jMeej can be zero for
very small neutrino mass; however, jMeej ¼ 0 does not
mean that 0νββ experiments tell us nothing about the
Majorana phases. As it has been noticed in Refs. [67,75],
this case still gives some constraints on the Majorana
phases. In the scenario of this work, the relation between
jMeej and the Majorana phases is more explicit because all
the neutrino parameters except for the lightest neutrino
mass mL have been determined by symmetries or by
experiments, enabling us to compute jMeej explicitly, as
shown in Fig. 1. Note that in this scenario, jMeej <
10−3 eV is possible only if α21 ¼ π. So if the future
experiments push the upper bound of jMeej down to
10−3 eV and still do not observe 0νββ decay, then we
can draw the conclusion that α21 ¼ π.
We can confront the predictions of the mixing scheme

with current data [47]. First we study the predictions of
TM1 mixing, namely the first column of the PMNS matrix

being
� ffiffi

2
3

q
;

ffiffi
1
6

q
;

ffiffi
1
6

q �
T
. The χ2-function is defined as

χ2 ¼
X ðxi − x0i Þ2

σ2i
; ð33Þ

where x0i represents the data of the ith experimental
observable, σi the corresponding 1σ absolute error, and

N

I

N

I

N

I

N

I

10 5 10 4 10 3 10 2 10 1

10 3

10 2

10 1

mL eV

M
ee

eV

FIG. 1. Prediction on the effective mass jMeej, according to
Eqs. (31) and (32). In the notation N�� (I��), N=I standards for
normal/inverted mass ordering respectively and the subscripts are
the signs of two Majorana phases eiα21 and eiα31 (α21, α31 are
always 0 or π in this model). The light green region is the bound
from the global fit, taken from [76].
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xi the prediction of the model. For the normal ordering,
TM1 has a χ2-minimum of 1.14ð¼0.063þ0.000þ1.058þ
0.0223Þ at the values θ13¼ 8.5° and θ23 ¼ 41.6°. The
numbers in brackets denote the contributions of θ13, θ23,
θ12, and δ to the total value. In case of an inverted ordering,
the χ2-minimum is 1.20ð¼ 0.006þ0.000þ1.056þ0.143Þ
at the values θ13 ¼ 8.5° and θ23 ¼ 50.0°. Note that TM1
has two free parameters. Combining TM1 with μ-τ reflec-
tion symmetry, which in total has only one free
parameter, gives for the normal ordering a χ2-minimum
of 3.88ð¼ 0.063þ 2.730þ 1.058þ 0.0308Þ at the value
θ13 ¼ 8.5°. In the inverted ordering, the χ2-minimum
is 5.76ð¼ 0.006þ 4.672þ 1.056þ 0.0234Þ at the value
θ13 ¼ 8.5°.

III. RG CORRECTIONS

The residual symmetries we discussed in the previous
section may appear at a very high energy scale, which we
refer to as the flavor symmetry scale. Due to radiative
corrections, the predictions at the flavor symmetry scale
may be modified at the low energy scale, at which they are
confronted with experimental measurements. If there is no
new physics between the two scales, the corrections can be
computed without many unknown parameters involved.
However, it is also possible that some new physics appear
in the middle so that the RG corrections would depend on
more unknown parameters. For example, in the type I
seesaw mechanism, the masses of right-handed neutrinos
could be below the flavor symmetry scale; in this case the
RG corrections would also depend on the masses of right-
handed neutrinos.

A. RG running based on the Weinberg operator

To avoid the dependence on too many parameters, we
will first focus on the case that all other new physics scales
are above the flavor symmetry scale. In this case, the
calculation will be based on the RGE of the SM extended
by the Weinberg operator,

L ⊃
1

4
καβð ~H†LαÞð ~H†LβÞ þ H:c:; ð34Þ

where L is the lepton doublet and H the Higgs doublet.
After electroweak symmetry breaking h ~Hi ¼ ðv= ffiffiffi

2
p

; 0ÞT ,
the neutrino mass matrix is given by

Mν
αβ ¼ −

v2

4
καβ: ð35Þ

Constrained by the residual symmetries, Mν depends on
four parameters ðr; x1; x2; yÞ in Eq. (16). Those parameters
are actually highly constrained by neutrino oscillation
measurements on the two mass-squared differences

δm2 ≡m2
2 −m2

1; Δm2 ≡m2
3 −

m2
1 þm2

2

2
; ð36Þ

and sin θ13. In this section we will fix them at the best-fit
values [47,77] as the result of our calculation varies very
little within experimental uncertainties. If the lightest
neutrino mass mL is also known, then ðr; x1; x2; yÞ can
be determined by ðθ13; δm2;Δm2; mLÞ. In Sec. II we have
demonstrated how to compute ðθ13; δm2;Δm2; mLÞ for
given values of ðr; x1; x2; yÞ. Determining ðr; x1; x2; yÞ
from experimental values of ðθ13; δm2;Δm2; mLÞ is then
of course also possible.
However there are some positive/negative signs one

needs to choose in determining ðr; x1; x2; yÞ. The first
one is the sign of Δm2, known as the neutrino mass
ordering. Both the normal (NO, Δm2 > 0) and the inverted
ordering (IO, Δm2 < 0) should be taken into consideration.
The next one is the sign of the Dirac phase δ. The μ-τ
reflection symmetry only predicts jδj ¼ 90° but both þ90°
and −90° are possible. Besides, as summarized in Eq. (32),
the two Majorana phases take values of π

2
� π

2
, where we

have to choose between the positive/negative signs.
Therefore, there are four positive/negative signs (and

thus 16 physically inequivalent cases) relevant in determin-
ing ðr; x1; x2; yÞ. However, as it can be seen from the mass
matrix, for δ ¼ þ90° and −90°, the mass matrix in one case
is simply the complex conjugate of the other, so we only
need to study one of the two cases. Actually, the result of
RG running of both cases shows that the radiative correc-
tions on both cases are the same except that for δ it differs
by a minus sign. This reduces the 16 cases to 8 cases in our
analysis. In addition, the case of positive δ ¼ þ90° is
disfavored by current global fits. For simplicity, we refer to
the 8 cases as N�� and I�� where N=I stands for the
normal/inverted ordering and the two � stand for the signs
of eiα21 and eiα31 , respectively.
We solve the RGEs using the code REAP [78] and compute

the RG corrections. The results are presented in Fig. 2 for
Nþþ and Fig. 3 for all the 8 cases. We set the flavor
symmetry scale at Λ ¼ 1014 GeV. Actually as shown in
Fig. 2 the RG corrections depend linearly on logΛ, so if Λ is
changed to another value Λ0, the RG corrections can be
evaluated correspondingly by simply multiplying a factor
of logΛ0= logΛ. Another parameter that may have signifi-
cant effect is the lightest neutrino mass mL. In Fig. 3 we
show the RG corrections for different values ofmL by green,
yellow, orange, and red points, corresponding to mL ¼
ð1; 20; 40; 60Þ meV respectively3 We assume here that
strong limits on the neutrino mass scale from cosmology
are valid [79] and simply note that the effect of running
roughly scales with mL for values larger than 60 meV.
As shown in Fig. 3, typically the corrections to θ12, θ13,

θ23, δ, α21, α31 are about 0.1, 0.001, 0.005, 0.1, 0.05,
0.1 degrees respectively, except for some cases where due

3We do not take mL ¼ 0 here because for mL ¼ 0, the RG
corrections are almost the same as mL ¼ 1 meV except for the
Majorana phases which are not well defined when mL ¼ 0.
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to some cancellations the RG corrections are suppressed.
To understand the cancellation, we take θ12 as example, for
which the analytic expression reads [80]

dθ12
d ln μ

¼ −
y2τ

32π2
sin 2θ12s223

jm1 þm2eiα21 j2
δm2

þOðθ13Þ:

ð37Þ

Here yτ is the tau-lepton Yukawa coupling. The plot for θ12
in Fig. 3 shows that the corrections in the four cases N−�
and I−� are suppressed, which can be understood from
Eq. (37): the correction is proportional to jm1 þm2eiα21 j2,
which can be small if eiα21 ¼ −1 and m1 ≈m2. The latter
always happens in the inverted ordering and in the normal
ordering when the smallest mass m1 approaches
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FIG. 3. RG corrections for all the 8 cases, N=I for normal/inverted hierarchy and “þ=−” for eiα ¼ þ1= − 1where α stands for the two
Majorana phases. The result depends on the lightest neutrino mass, which is set at (1,20,40,60) meV for points colored from green to red.
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Except for some cases with cancellations, the RG
corrections generally increases when mL increases. This
behavior is very common regarding small perturbations to
the mass matrix, which has been studied in Ref. [81] from a
more general point of view. The reason is because for larger
mL, the mass spectrum is closer to the quasidegenerate
situation, where the PMNS mixing becomes unstable when
the mass matrix suffers perturbations. Besides, among the
three mixing angles, θ12 generally receives the largest
correction (except for cancellations); this is because the
gap betweenm1 andm2 is much smaller than that ofm1 and
m3 or m2 and m3.
Since all the corrections are at the order of or even

lower than 0.1°, we can draw the usual conclusion that
in the context of the SM with the Weinberg operator
only, the RG corrections are negligible when compared
with current and near future experimental measurements.
As is well known, if we replace the SM with the
MSSM, then according to Ref. [80] the RG corrections
to the neutrino mixing would be amplified by a factor of
tan2 β. To illustrate this effect, we compute the RG
corrections again in the context of the MSSM with
tan β ¼ 20, and the result is shown in Fig. 4. As one can
see, the RG corrections in the MSSM with large tan β

are significantly enhanced to measurable values com-
pared to Fig. 3.

B. RG running based on type I seesaw

In this section, we consider new physics that appears
below the flavor symmetry scale. The Weinberg operator
itself is UV incomplete and is usually believed to be a low-
energy effective operator. Here we consider the type I
seesaw realization of this operator only. Heavy right-
handed neutrinos Ni (i ¼ 1; 2;…) are integrated out to
generate the Weinberg operator. We consider the scenario
that the right-handed neutrino masses (or the seesaw scale)
are lower than the flavor symmetry scale. So at the flavor
symmetry scale, we should consider the symmetry of the
following Lagrangian instead of the Weinberg operator,

L ⊃ −yijNi
~H†Lj −

1

2
NiMijNj þ H:c: ð38Þ

Next we need to specify the transformation rules ofZTM1
2

and ZCP
2 for the right-handed neutrinos. This depends on

how we assign the right-handed neutrinos to the represen-
tations of the flavor symmetry, which is rather model-
dependent. For simplicity, we assume that the number of
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FIG. 4. Same as Fig. 3 except that the SM is replaced with the MSSM for tan β ¼ 20.
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right-handed neutrinos is three and that they have the same
transformation rule as the left-handed neutrinos. As a
result, both the Dirac mass matrix mD and the heavy
Majorana matrix M will be in the form of Eq. (16). As one
can check explicitly, if both mD and M are in the form of
Eq. (16), then the light-neutrino mass matrix

Mν ¼ −mT
DM

−1mD ð39Þ

is also of the form in Eq. (16). As we have discussed,
each matrix of the form (16) contains four real parameters

thus in the Lagrangian (38) we have 8 free parameters.
The tree-level predictions in Eqs. (31) and (32) are
independent of the values of these parameters.
However, the RG corrections inevitably depend on these
parameters. As we have argued, when some new physics
such as the right-handed neutrinos appears below the
flavor symmetry scale, the RG corrections would usually
depend on many unknown parameters, which makes it
difficult to evaluate the RG corrections exactly. To under-
stand generally how large the RG corrections would be,
we adopt random scattering in the allowed parameter
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FIG. 5. The distributions of RG correction in the SM extended by the type I seesaw.
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space rather than focus on some specific parameter
settings.
We randomly generate 1000 samples with right-handed

neutrino masses M1, M2, M3 distributed from 106 GeV to
1013 GeV and the lightest neutrino massmL from 1 meV to
60 meV. Rectangular distributions are used for logM1;2;3

and mL. The positive/negative signs of Δm2 and Dirac/
Majorana phases are also chosen randomly. The Yukawa
couplings can be computed once ðM1;M2;M3Þ and
ðm1; m2; m3Þ have been set. We again use the code REAP

[78], which automatically integrates out the heavy right-
handed neutrinos when the energy scale goes below their
masses.
The results are presented in Fig. 5, where we can see

most RG corrections are distributed in small ranges, e.g.,
Δθ12, Δθ23, and Δθ13 are most likely less than 0.05°, 0.01°,
and 0.005° respectively. So generally, the deviations are
similar to the results in Fig. 3 where right-handed neutrinos
are not introduced. However, large corrections are also
possible. We do not find any significant cutoff of the
deviations when the number of samples are increased,
though the distributions above remain almost the same.
This implies the RG corrections could be very large, but
would require fine-tuning in the parameter space. For
example, when the number of samples is increased to
104, we find only two samples with jΔθ23j > 3°. Therefore,
we can draw the conclusion that generally the RG correc-
tions in the type I seesaw scenario are of similar magnitude
as with the Weinberg operator only.
Again, the RG corrections can be significantly amplified

within supersymmetric scenarios. We compute the RG
corrections in the MSSM extended by the type I seesaw
with tan β ¼ 20. The result is shown in Fig. 6 where we can
see that compared to Fig. 5, the RG corrections in the
MSSM with large tan β are significantly enhanced by up to
two orders of magnitude to measurable values.

IV. CONCLUSION

Combining μ-τ reflection and TM1 symmetry leads to a
very predictive framework. We have shown in Sec. II that it

not only can accommodate nonzero θ13 but also predicts all
other PMNS parameters, including all CP phases
(δ ¼ �π=2 and the Majorana phases are 0 or π).
With these symmetries, the neutrino mass matrix can

be constrained to the form (16) containing only four real
parameters. Given the experimental values of θ13, δm2,
and Δm2 as input, the mass matrix can be exactly
reconstructed for a fixed value of the smallest mass
mL and several choices of positive/negative signs.
Therefore, for the SM extended by the Weinberg oper-
ator, the RG corrections can be exactly evaluated as the
only free parameter is mL.
We have computed the RG corrections to the scenario,

which are in agreement with known results, namely that in
the SM they are typically small, but can be enhanced to
measurable values within supersymmetric scenarios and
within explicit multiscale scenarios such as the type I
seesaw mechanism.
In summary, the mixing scheme we propose here is

very well compatible with data and addresses the close-
ness of δ with −π=2, of θ23 with π=4 and that sin2 θ12 is
slightly less than 1=3. If future data confirms those
special values of the mixing parameters, the proposed
scheme seems an attractive approach to the description of
lepton mixing. On the other hand, some deviations could
occur in the future, which could either be explained by
RG corrections if the deviations are small, or exclude this
mixing scheme if they are large. One particularly note-
worthy example is the deviation of θ23 from 45°, which
was recently hinted by the NOVA measurement [82]
θ23 ¼ 39.5°þ1.7

−1.3 or 52.2°þ1.3
−1.8. Such a large deviation ð≳5°Þ

if confirmed by future data, would exclude this mixing
scheme embedded in the simple scenarios considered in
this paper.

ACKNOWLEDGMENTS

We thank Stefan Bruenner and Ludwig Rauch for helpful
discussions. W. R. is supported by the DFG with Grant
No. RO 2516/6-1 in the Heisenberg program.

[1] R. N. Mohapatra and A. Y. Smirnov, Annu. Rev. Nucl. Part.
Sci. 56, 569 (2006).

[2] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701
(2010).

[3] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada,
and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010).

[4] S. F. King and C. Luhn, Rep. Prog. Phys. 76, 056201
(2013).

[5] F. Feruglio, Eur. Phys. J. C 75, 373 (2015).

[6] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B
530, 167 (2002).

[7] P. F. Harrison and W. G. Scott, Phys. Lett. B 535, 163
(2002).

[8] Z.-z. Xing, Phys. Lett. B 533, 85 (2002).
[9] P. F. Harrison and W. G. Scott, Phys. Lett. B 547, 219

(2002).
[10] P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76

(2003).

TRIMAXIMAL μ-τ REFLECTION SYMMETRY PHYSICAL REVIEW D 96, 055039 (2017)

055039-9

https://doi.org/10.1146/annurev.nucl.56.080805.140534
https://doi.org/10.1146/annurev.nucl.56.080805.140534
https://doi.org/10.1103/RevModPhys.82.2701
https://doi.org/10.1103/RevModPhys.82.2701
https://doi.org/10.1143/PTPS.183.1
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1140/epjc/s10052-015-3576-5
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1016/S0370-2693(02)01753-7
https://doi.org/10.1016/S0370-2693(02)01753-7
https://doi.org/10.1016/S0370-2693(02)01649-0
https://doi.org/10.1016/S0370-2693(02)02772-7
https://doi.org/10.1016/S0370-2693(02)02772-7
https://doi.org/10.1016/S0370-2693(03)00183-7
https://doi.org/10.1016/S0370-2693(03)00183-7


[11] Y. Abe et al. (Double Chooz), Phys. Rev. Lett. 108, 131801
(2012).

[12] F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803
(2012).

[13] J. K. Ahn et al. (RENO), Phys. Rev. Lett. 108, 191802
(2012).

[14] Z.-z. Xing and Z.-h. Zhao, Rep. Prog. Phys. 79, 076201
(2016).

[15] E. Ma, Phys. Rev. D 66, 117301 (2002).
[16] K. Babu, E. Ma, and J. Valle, Phys. Lett. B 552, 207 (2003).
[17] E. Ma, Mod. Phys. Lett. A 17, 2361 (2002).
[18] W. Grimus and L. Lavoura, Phys. Lett. B 579, 113 (2004).
[19] C. C. Nishi, Phys. Rev. D 88, 033010 (2013).
[20] E. Ma, Phys. Rev. Lett. 112, 091801 (2014).
[21] S. Fraser, E. Ma, and O. Popov, Phys. Lett. B 737, 280

(2014).
[22] G.-N. Li and X.-G. He, Phys. Lett. B 750, 620 (2015).
[23] E. Ma, A. Natale, and O. Popov, Phys. Lett. B 746, 114

(2015).
[24] C.-C. Li and G.-J. Ding, J. High Energy Phys. 05 (2015)

100.
[25] A. Di Iura, C. Hagedorn, and D. Meloni, J. High Energy

Phys. 08 (2015) 037.
[26] R. N. Mohapatra and C. C. Nishi, J. High Energy Phys. 08

(2015) 092.
[27] Y.-L. Zhou, arXiv:1409.8600.
[28] A. S. Joshipura and K.M. Patel, Phys. Lett. B 749, 159

(2015).
[29] H.-J. He, W. Rodejohann, and X.-J. Xu, Phys. Lett. B 751,

586 (2015).
[30] Z.-h. Zhao, J. High Energy Phys. 09 (2017) 023.
[31] C. C. Nishi and B. L. Sanchez-Vega, J. High Energy Phys.

01 (2017) 068.
[32] P. Chen, G.-J. Ding, F. Gonzalez-Canales, and J. W. F. Valle,

Phys. Lett. B 753, 644 (2016).
[33] T. Fukuyama, Prog. Theor. Exp. Phys. 2017, 033B11

(2017).
[34] C. Lam, Phys. Rev. Lett. 101, 121602 (2008).
[35] C. Lam, Phys. Rev. D 78, 073015 (2008).
[36] C. Lam, Phys. Rev. D 83, 113002 (2011).
[37] J. D. Bjorken, P. F. Harrison, and W. G. Scott, Phys. Rev. D

74, 073012 (2006).
[38] Z.-z. Xing and S. Zhou, Phys. Lett. B 653, 278 (2007).
[39] X.-G. He and A. Zee, Phys. Lett. B 645, 427 (2007).
[40] C. H. Albright and W. Rodejohann, Eur. Phys. J. C 62, 599

(2009).
[41] C. H. Albright, A. Dueck, and W. Rodejohann, Eur. Phys. J.

C 70, 1099 (2010).
[42] S. Antusch, S. F. King, C. Luhn, and M. Spinrath, Nucl.

Phys. B856, 328 (2012).
[43] X.-G. He and A. Zee, Phys. Rev. D 84, 053004 (2011).
[44] I. de Medeiros Varzielas and L. Lavoura, J. Phys. G 40,

085002 (2013).
[45] C. Luhn, Nucl. Phys. B875, 80 (2013).
[46] C.-C. Li and G.-J. Ding, Nucl. Phys. B881, 206 (2014).
[47] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-

Soler, and T. Schwetz, J. High Energy Phys. 01 (2017) 087.

[48] K. Abe et al. (T2K), Phys. Rev. Lett. 112, 061802 (2014).
[49] K. Abe et al. (T2K), Phys. Rev. Lett. 118, 151801 (2017).
[50] W. Rodejohann, Int. J. Mod. Phys. E 20, 1833 (2011).
[51] F. Feruglio, C. Hagedorn, and R. Ziegler, J. High Energy

Phys. 07 (2013) 027.
[52] F. Feruglio, C. Hagedorn, and R. Ziegler, Eur. Phys. J. C 74,

2753 (2014).
[53] G.-J. Ding, S. F. King, and T. Neder, J. High Energy Phys.

12 (2014) 007.
[54] C.-C. Li, J.-N. Lu, and G.-J. Ding, Nucl. Phys. B913, 110

(2016).
[55] T. Ohlsson and S. Zhou, Nat. Commun. 5, 5153 (2014).
[56] P. Minkowski, Phys. Lett. 67B, 421 (1977).
[57] T. Yanagida, KEK Report 79-18, 95, 1979.
[58] S. Glashow, Study Inst. Ser. B Phys. 59, 687 (1979).
[59] R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912

(1980).
[60] W. Rodejohann and H. Zhang, Phys. Rev. D 86, 093008

(2012).
[61] Y. Shimizu, M. Tanimoto, and K. Yamamoto, Mod. Phys.

Lett. A 30, 1550002 (2015).
[62] P. Ballett, S. F. King, S. Pascoli, N. W. Prouse, and T. Wang,

J. High Energy Phys. 03 (2017) 110.
[63] H. Neufeld, W. Grimus, and G. Ecker, Int. J. Mod. Phys. A

03, 603 (1988).
[64] W. Grimus and M. N. Rebelo, Phys. Rep. 281, 239

(1997).
[65] M. Holthausen, M. Lindner, and M. A. Schmidt, J. High

Energy Phys. 04 (2013) 122.
[66] W. Rodejohann, Nucl. Phys. B597, 110 (2001).
[67] S.-F. Ge and M. Lindner, Phys. Rev. D 95, 033003 (2017).
[68] S. M. Bilenky, S. Pascoli, and S. T. Petcov, Phys. Rev. D 64,

053010 (2001).
[69] S. Pascoli, S. T. Petcov, and W. Rodejohann, Phys. Lett. B

549, 177 (2002).
[70] H. Minakata, H. Nunokawa, and A. A. Quiroga, Prog.

Theor. Exp. Phys. 2015, 33B03 (2015).
[71] F. Simkovic, S. M. Bilenky, A. Faessler, and T. Gutsche,

Phys. Rev. D 87, 073002 (2013).
[72] A. Joniec and M. Zralek, Phys. Rev. D 73, 033001 (2006).
[73] W. Rodejohann, arXiv:hep-ph/0203214.
[74] G. Benato, Eur. Phys. J. C 75, 563 (2015).
[75] Z.-z. Xing, Phys. Rev. D 68, 053002 (2003).
[76] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40,

100001 (2016).
[77] F. Capozzi, E. Lisi, A. Marrone, D. Montanino, and A.

Palazzo, Nucl. Phys. B908, 218 (2016).
[78] S. Antusch, J. Kersten, M. Lindner, M. Ratz, and M. A.

Schmidt, J. High Energy Phys. 03 (2005) 024.
[79] M. Archidiacono, T. Brinckmann, J. Lesgourgues, and V.

Poulin, J. Cosmol. Astropart. Phys. 02 (2017) 052.
[80] S. Antusch, J. Kersten, M. Lindner, and M. Ratz, Nucl.

Phys. B674, 401 (2003).
[81] W. Rodejohann and X.-J. Xu, Nucl. Phys. B899, 463

(2015).
[82] P. Adamson et al. (NOvA), Phys. Rev. Lett. 118, 151802

(2017).

WERNER RODEJOHANN and XUN-JIE XU PHYSICAL REVIEW D 96, 055039 (2017)

055039-10

https://doi.org/10.1103/PhysRevLett.108.131801
https://doi.org/10.1103/PhysRevLett.108.131801
https://doi.org/10.1103/PhysRevLett.108.171803
https://doi.org/10.1103/PhysRevLett.108.171803
https://doi.org/10.1103/PhysRevLett.108.191802
https://doi.org/10.1103/PhysRevLett.108.191802
https://doi.org/10.1088/0034-4885/79/7/076201
https://doi.org/10.1088/0034-4885/79/7/076201
https://doi.org/10.1103/PhysRevD.66.117301
https://doi.org/10.1016/S0370-2693(02)03153-2
https://doi.org/10.1142/S021773230200909X
https://doi.org/10.1016/j.physletb.2003.10.075
https://doi.org/10.1103/PhysRevD.88.033010
https://doi.org/10.1103/PhysRevLett.112.091801
https://doi.org/10.1016/j.physletb.2014.08.069
https://doi.org/10.1016/j.physletb.2014.08.069
https://doi.org/10.1016/j.physletb.2015.09.061
https://doi.org/10.1016/j.physletb.2015.04.064
https://doi.org/10.1016/j.physletb.2015.04.064
https://doi.org/10.1007/JHEP05(2015)100
https://doi.org/10.1007/JHEP05(2015)100
https://doi.org/10.1007/JHEP08(2015)037
https://doi.org/10.1007/JHEP08(2015)037
https://doi.org/10.1007/JHEP08(2015)092
https://doi.org/10.1007/JHEP08(2015)092
http://arXiv.org/abs/1409.8600
https://doi.org/10.1016/j.physletb.2015.07.062
https://doi.org/10.1016/j.physletb.2015.07.062
https://doi.org/10.1016/j.physletb.2015.10.066
https://doi.org/10.1016/j.physletb.2015.10.066
https://doi.org/10.1007/JHEP09(2017)023
https://doi.org/10.1007/JHEP01(2017)068
https://doi.org/10.1007/JHEP01(2017)068
https://doi.org/10.1016/j.physletb.2015.12.069
https://doi.org/10.1093/ptep/ptx032
https://doi.org/10.1093/ptep/ptx032
https://doi.org/10.1103/PhysRevLett.101.121602
https://doi.org/10.1103/PhysRevD.78.073015
https://doi.org/10.1103/PhysRevD.83.113002
https://doi.org/10.1103/PhysRevD.74.073012
https://doi.org/10.1103/PhysRevD.74.073012
https://doi.org/10.1016/j.physletb.2007.08.009
https://doi.org/10.1016/j.physletb.2006.11.055
https://doi.org/10.1140/epjc/s10052-009-1074-3
https://doi.org/10.1140/epjc/s10052-009-1074-3
https://doi.org/10.1140/epjc/s10052-010-1492-2
https://doi.org/10.1140/epjc/s10052-010-1492-2
https://doi.org/10.1016/j.nuclphysb.2011.11.009
https://doi.org/10.1016/j.nuclphysb.2011.11.009
https://doi.org/10.1103/PhysRevD.84.053004
https://doi.org/10.1088/0954-3899/40/8/085002
https://doi.org/10.1088/0954-3899/40/8/085002
https://doi.org/10.1016/j.nuclphysb.2013.07.003
https://doi.org/10.1016/j.nuclphysb.2014.02.002
https://doi.org/10.1007/JHEP01(2017)087
https://doi.org/10.1103/PhysRevLett.112.061802
https://doi.org/10.1103/PhysRevLett.118.151801
https://doi.org/10.1142/S0218301311020186
https://doi.org/10.1007/JHEP07(2013)027
https://doi.org/10.1007/JHEP07(2013)027
https://doi.org/10.1140/epjc/s10052-014-2753-2
https://doi.org/10.1140/epjc/s10052-014-2753-2
https://doi.org/10.1007/JHEP12(2014)007
https://doi.org/10.1007/JHEP12(2014)007
https://doi.org/10.1016/j.nuclphysb.2016.09.005
https://doi.org/10.1016/j.nuclphysb.2016.09.005
https://doi.org/10.1038/ncomms6153
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevD.86.093008
https://doi.org/10.1103/PhysRevD.86.093008
https://doi.org/10.1142/S0217732315500029
https://doi.org/10.1142/S0217732315500029
https://doi.org/10.1007/JHEP03(2017)110
https://doi.org/10.1142/S0217751X88000254
https://doi.org/10.1142/S0217751X88000254
https://doi.org/10.1016/S0370-1573(96)00030-0
https://doi.org/10.1016/S0370-1573(96)00030-0
https://doi.org/10.1007/JHEP04(2013)122
https://doi.org/10.1007/JHEP04(2013)122
https://doi.org/10.1016/S0550-3213(00)00728-8
https://doi.org/10.1103/PhysRevD.95.033003
https://doi.org/10.1103/PhysRevD.64.053010
https://doi.org/10.1103/PhysRevD.64.053010
https://doi.org/10.1016/S0370-2693(02)02852-6
https://doi.org/10.1016/S0370-2693(02)02852-6
https://doi.org/10.1093/ptep/ptv010
https://doi.org/10.1093/ptep/ptv010
https://doi.org/10.1103/PhysRevD.87.073002
https://doi.org/10.1103/PhysRevD.73.033001
http://arXiv.org/abs/hep-ph/0203214
https://doi.org/10.1140/epjc/s10052-015-3802-1
https://doi.org/10.1103/PhysRevD.68.053002
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1016/j.nuclphysb.2016.02.016
https://doi.org/10.1088/1126-6708/2005/03/024
https://doi.org/10.1088/1475-7516/2017/02/052
https://doi.org/10.1016/j.nuclphysb.2003.09.050
https://doi.org/10.1016/j.nuclphysb.2003.09.050
https://doi.org/10.1016/j.nuclphysb.2015.08.014
https://doi.org/10.1016/j.nuclphysb.2015.08.014
https://doi.org/10.1103/PhysRevLett.118.151802
https://doi.org/10.1103/PhysRevLett.118.151802

