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We consider a dark electroweak phase transition, during which a baryon asymmetry in the dark neutrons
and an equal lepton asymmetry in the dark Dirac neutrinos can be simultaneously induced by the
CP-violating reflection of the dark fermions off the expanding dark Higgs bubbles. The Yukawa couplings
for generating the ordinary Majorana neutrino masses can partially convert the dark lepton asymmetry to an
ordinary baryon asymmetry in association with the ordinary sphaleron processes. The dark neutron can
have a determined mass to serve as a dark matter particle. By further imposing a proper mirror symmetry,
the Majorana neutrino mass matrix can have the form of a linear seesaw, while its Dirac CP phase can

provide a unique source for the required CP violation.
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I. INTRODUCTION

To realize a baryogenesis mechanism for dynami-
cally generating the cosmic baryon asymmetry [1], a
CPT-invariant theory of particle interactions should
match the Sakharov conditions: baryon number non-
conservation, C and CP violation, and departure from
equilibrium [2]. Kuzmin, Rubakov, and Shaposhnikov [3]
pointed out the standard model (SM) could fulfill all
of these conditions. In principle, the SM can provide a
so-called electroweak baryogenesis mechanism [4]. This
SM electroweak baryogenesis depends only on the SM
parameters, in particular, the Kobayashi-Maskawa (KM)
[5] CP violation in the quark sector and the mass of the
Higgs boson [6]. Unfortunately, the KM CP violation is
highly suppressed by the Jarlskog determinant [7], while
the light Higgs boson mass for the strongly first-order
electroweak phase transition [6] has been ruled out
experimentally.

On the other hand, the discovery of neutrino oscillation
indicates that three flavors of neutrinos should be massive
and mixed, while the cosmological observations imply the
neutrino masses should be in a sub-eV range [1]. We can
resort to the famous seesaw mechanism [8—11] for naturally
understanding the small neutrino masses. Because of the
sphaleron processes [3], these seesaw models can also
accommodate a leptogenesis mechanism [12] to produce
the baryon asymmetry. Alternatively, others tried to con-
nect the baryon asymmetry and the neutrino mass by the
electroweak baryogenesis from the interactions involving
the neutrinos [13]. Although this attempt failed in some
simple models with heavy neutral fermions [13,14], it could
succeed in a late neutrino mass framework [15].
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The existence of dark matter (DM) poses another big
challenge to the SM. It is very intriguing that the dark and
baryonic matter contribute comparable energy densities in
our Universe although their properties are so different [1].
This coincidence can be elegantly explained if the DM relic
is due to a DM asymmetry and is related to the generation
of the baryon asymmetry [16-31]. For example, we can
consider a dark world parallel to our visible world and then
transplant the baryogenesis mechanism in the visible world
to the dark world. In the presence of a proper mirror
symmetry [31], the parameters in the dark world can be
stringently constrained by those in the visible world. So, the
dark and baryonic matter can have an equal number density,
and hence the DM mass can become predictive as the
nucleon mass is known. We can also construct some
models to produce the baryon asymmetry and the DM
asymmetry from the decays of same particles [29,30]. The
related interactions even can be fully responsible for the
neutrino mass generation [27].

In this paper, we shall propose a novel scenario to solve
the coincidence problem between the baryonic and dark
matter. Specifically, we shall consider a dark electroweak
symmetry breaking, during which the phase transition is
strongly first order so that the CP-violating reflection of the
dark fermions off the expanding dark Higgs bubbles can
simultaneously create a baryon asymmetry in the dark
neutrons and an equal lepton asymmetry in the dark Dirac
neutrinos. The Yukawa couplings for generating the ordi-
nary Majorana neutrino masses can participate in the
production of the dark baryon and lepton asymmetries
besides the conversion of the dark lepton asymmetry to an
ordinary lepton asymmetry. When we further impose a
proper mirror symmetry, the Majorana neutrino mass
matrix can have the form of a linear seesaw [32], while
its Dirac CP phase can give a unique source for the required
CP violation.
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II. THE MODEL

The fields including the Higgs scalars and the chiral
fermions are classified in an SU(3), x SU(2), x U(1)y
ordinary sector (OS), an SU(3). x SU(2), x U(1)}, dark
sector (DS), and a messenger sector (MS):

OS: ¢y(+1), u(=1), . (+3), h,(-3),

ba(
qr(0). dg(+1), ur(+1),1.(0), eg(+3);
DS: ¢y(=1). ¢u(+1). e (=3). . (+3).
qr(0). dp(=1). uj (=1). [x(0). €} (=3):
MS: £(0), x(+2), v.(=3). (1)

Here the numbers in the parentheses describe a Peccei-
Quinn symmetry U(1)pq [33-35] for an invisible axion
[36-39]. We also assume that the dark hypercharges and the
baryon or lepton numbers of the dark fields are opposite to
the ordinary ones, while the [SU(2), x SU(2)%]-bidoublet
Higgs scalar X, the gauge-singlet Higgs scalar y, and the
gauge-singlet fermions v, carry the lepton numbers +2,
+1, and —1, respectively. The relevant Lagrangian is

Ly D _)_’d‘_]L(}ddR = YuqrPuug — yeZLg;seeR - )_’JL%I/Z
— F,Grud;, — u@r ity — lediel — 3, Iepir),
— fILEl — (Bl + papicha + zbipu)x

— (U i+ 1o Ly WL = PR,
— P2 biE Py — p3hiEP), — s, + Hee., (2)

where the lepton number is only allowed to be softly
broken.

After the Higgs singlet y develops its vacuum expect-
ation value (VEV) for breaking the U(1)pg symmetry, we

can define the dark and ordinary Higgs doublets:

¢/ _ Zi:d,u.e,v <¢;>¢; _ Zi:d,u.e,u <¢l>¢l (3)
Zi:d,u,e,zx <¢:>2 Zi:d,u,e,y <¢i>2
and then get the terms for the fermion mass generation:
LD =y,qrpdg — ydrdug — yolpdeg — vl pv/s
— Yydxd'dy, = Vi@xd/u, = velgd' ey = yilpd'vy
— fl, 2l — pdp'=¢ +H.c. with vy, = r¥;,
Vi=ri¥. p=Y ritipe
ijk
_ (i) ;90

g Ty )

The other linear combinations of the ordinary Higgs
scalars are simply assumed heavy enough so that they
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can safely escape from the experimental constraints.
Note that the messenger Higgs bidoublet X can also acquire
a VEV because of the above p term. This Higgs bidoublet
indeed can be expressed by two ordinary doublets, i.e.
¥ = [610,] with (6;) =0 and (5,) = (X). We thus can
have the SM Higgs doublet H = ¢ cos  + o, sin  with
the rotation angle tanf = (X)/(¢) and the VEV (H) =

($)? + (Z)? =174 GeV.

While the ordinary and dark charged fermion masses are
produced in a usual way, the neutrino masses are sup-
pressed by a seesaw mechanism. Specifically, the dark
neutrinos v and the messenger fermions v/ form three
heavy dark Dirac neutrinos; meanwhile, the ordinary
neutrinos v; obtain a tiny Majorana mass term, i.e.

1 0 ) vl ][
LD - 5 o, 757, | f1(Z) 0 Vi) | | vk
Y@y i) 0 Vi

-+ H.c.
1_ , .
=5 pmyv; — UMy +H.c.  with
1 1 (H)?sin 2
M, =y (') > m, = |f v +y, o 1| 5
Y Y 2(¢')
(5)

Apparently, the Majorana neutrino masses can be sup-
pressed by the Yukawa couplings y, and/or the VEV ratio
(H)sin2f/(¢'). Alternatively, the Yukawa couplings f can
be very small, though this choice is quite arbitrary.

We can introduce a mirror symmetry to simplify the
parameter choice. Actually, the existence of our dark sector
can be well motivated by such a mirror symmetry. Here we
choose the mirror symmetry to be the CP under which the
gauge and Yukawa couplings are
f=f. (6

/ _ =/ o
G123 = 9123 Yauev = Yduev

The Majorana neutrino mass matrix in Eq. (5) then will be a
linear seesaw [32], i.e.

H)? si
m, — —p L sin2pr,
(@)
_ U*mydiag{e—ial , e—iag’ 1}UT’ (7)

where the unitary matrix U contains a Dirac CP phase.

ITII. DARK BARYON AND LEPTON NUMBERS

We require the dark electroweak symmetry breaking
before the ordinary electroweak symmetry breaking.
Moreover, the phase transition during the dark electroweak
symmetry breaking is required to be strongly first order
[40]. These two assumptions definitely can be achieved,
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since we have the flexibility to choose the proper param-
eters in the scalar potential. We will study the details
elsewhere.

During such a dark electroweak phase transition, the
bubbles of the true ground state of the dark Higgs scalar ¢’
will nucleate and expand until they fill the Universe.
Outside the bubbles where the dark electroweak symmetry
is unbroken, the right- and left-handed dark fermions can
have distinct thermal masses and hence different momenta
perpendicular to the bubble wall. Furthermore, the dark
SU(2)% sphaleron reactions can keep very fast outside the
bubbles, though they are highly suppressed inside the
bubbles. As a dark Higgs bubble expands, the dark
fermions from the unbroken phase will be reflected off
the bubble wall back into the unbroken phase. If the CP is
not conserved, we can expect a difference between the
reflection probabilities for the dark quarks and antiquarks
with a given chirality. We hence can obtain a net baryon
number outside the bubbles and an opposite baryon number
inside the bubbles. Subsequently, the baryon number out-
side the bubbles, other than the baryon number inside the
bubbles, will be converted to a lepton number and a baryon
number by the dark sphaleron processes. The final baryon
number thus should be a sum of the baryon number inside
the bubbles and the baryon number outside the bubbles.
This means that the dark baryon asymmetry must equal the
dark lepton asymmetry. Similarly, we can consider the CP-
violating reflection of the dark leptons and antileptons off
the dark Higgs bubbles.

The above scenario is just an application of the SM
electroweak baryogenesis mechanism in our dark sector.
Note that the KM-type CP violation of the dark quarks or
leptons can be as large as the order of one because of the
free Yukawa couplings yﬁwyw and f. As an example, we
consider the lepton number from the reflection of the dark
leptons and antileptons off the dark Higgs bubbles [41]:

Ak- Uw

= [ o)1 =n(@) 25 @) +OR). (8

Here  is the energy, ng(w) = 1/(e®/” + 1) is the Fermi-
Dirac distribution, Ak is the difference between the right-
and left-handed dark lepton momenta perpendicular to the
bubble wall, A(w) is the reflection asymmetry between the
dark leptons and antileptons, and vy, is the advancing wall
velocity. The reflected leptons and antileptons can diffuse
before the bubble wall catches up. The typical distance
from the advancing bubble wall to the reflected dark
leptons and antileptons is /Dyt — vyt with D; being a
diffusion constant [42,43]. We have known in the SM the
strong interactions dominate the quark diffusion constant
Dy ~ 6/T, while the weak interactions dominate the lepton
diffusion constant D; ~ 100/T [44,45]. In our model, the
Yukawa couplings involving the dark leptons can be larger
than the strong coupling and hence can dominate the lepton
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diffusion. So we can simply estimate the lepton diffusion
constant DL ~cp /T with 1 <¢; £6. Within the time
tp ~ Dy /v%, the dark sphalerons can partially convert
the lepton number 7} to a baryon number np. The remnant
lepton number outside the bubbles and the lepton number
inside the bubbles can give a net lepton number n;. By
solving the diffusion equations, the baryon and lepton
numbers inside the expanded bubbles should be [42,43]

n; ng OCson Dy nj 33g21<c ny

e 0

3,2 DAL
s s T° vy s 2'm s

(47)T* is the dark sphaleron rate per
volume with « = 20 being a coefficient [46], while s =
2n%g, /45 is the one-dimensional entropy density [41] with
g, = 250.75 being the relativistic degrees of freedom.
We now consider the mirror symmetry (6) to quantita-
tively analyze the dark lepton and baryon numbers (9). The
thermal masses of the related quasiparticles can be denoted

where 'y, = 6k[¢/3

by T = Q — y°(2iy) with [44,45,47-49]
S g +UfU*+1 L
e — 8 492 4gl 2ye 2y1/y1/
T? . T?
@ =g (+¥), Q) =i,

T 1
}/l/ N37 |:992+691+Uf UT+2(ye+yVyl’):|’

T - T
Ve, ~ 352 (1201430, 7 ~ 35— (UF0)- (10)

Because the Yukawa couplings y, have a totally unknown
structure, we shall assume y, < f, y, to conveniently
ignore y, from the calculations. We shall also consider
a quasidegenerate neutrino spectrum, i.e. 6}2 j’z j”z <
fl >3, and take 392/4+g%/4+f3 > y2/2. Under these
assumptions, we can perform

— 0 ol o_ T /3
QI;—QZ/R +Qy s sz _F 492+ 92+f3’
T (UsFUT +132
g~ _T_(USPPU +450) Q= R+
I 4\/_ L 2\/7
192 491+f
o 10,
l;( e 1 0
90: 5 —, 5p:—395,), Ak:3(Q§k)_Qe2)a
o tre
=S e (9gz+18gl+f3) (11)

When the perturbation condition 2Qy . > Ly (¢') is

satisfied, the reflection asymmetry A(w) can be analytically
solved by [41]
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Tr((reye(#'))*. 6p] ® — Q7]

Alw) = i 2731059 1+ Ty
2979 'S g’f[ (w—QO)Z]—6 (<¢/>>6

Gos+ 491 + 132963 + 1843 + J3)°

my, —m;,
x H ( ) H <T>JCP7 (12)
>t 1>%,2.3 v3

with JCP:%sin2912sin29230052913sin913 sindcp. Clearly,

the above formula depends on the product (mZ, — m? ) x
(m2, —m?)) so that it will not be sensitive to the normal
or inverted hierarchy of the neutrino mass matrix For
the known parameters mZ —mZ =2.45x 107 eV,
my, —m; =753 x 107 eV?, sin 912—0 304, sin® 6,3 =
0.51, sin? 613 =0.0219, m, = 1.78 GeV, m,, = 106 MeV,
m, = 511 keV, g, = 0.653, and g; = 0.358 [1], we can
input 73 = 4z, $, = V/4x, and ¥, = 1/+/2 to estimate an
upper bound of the dark baryon and lepton numbers:

\\ 6
LB o755 1078 x () (<2 (21 (12
s s 20 1 Uy T
" (O.l eV)6<sinécp)‘ (13)
m,, 1
It should be noted that the result (13) is based on the
assumptions y, < f, v,; 6% = J* — f3 < JAC%,2,3’ 3g5/4 +

a4+ 13> 322 2Qp o > 7.y.(¢'). For other parameter

choices, a numerical calculatlon will be necessary and will
not be considered here.

IV. ORDINARY BARYON NUMBER

The dark baryon asymmetry is expected to account
for the DM relic density. We also expect that the dark
lepton asymmetry can be transferred to an ordinary lepton
asymmetry and hence can participate in the ordinary
SU(2), sphaleron processes. If the dark baryon asymmetry
is stored in the dark protons, the dark lepton asymmetry
should be stored in the dark electrons as a result of the
neutrality of the dark electric charge. Through the Yukawa
couplings, —f1; 6,e% + H.c., the ordinary lepton doublets
[; and the scalar doublet o; can inherit this dark lepton
asymmetry. So the neutral component of the o; scalar can
keep stable to have a significant number density. However,
this is not experimentally allowed, because the o scalar has
the ordinary electroweak gauge interactions. Fortunately,
we can consider another scenario that the dark baryon
asymmetry is stored in the dark neutrons while the dark
lepton asymmetry is stored in the dark neutrinos. The
conversion between the dark and ordinary lepton asymme-
tries depends on the following terms:
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—p(¢)$'o, +He.
(14)

LD —}’JLQWZ - f7L52V;e - M, tRt)

Note the above two Yukawa terms will wash out the lepton
asymmetry if they are both strong enough. We hence
require one of them to keep departure from equilibrium
until the ordinary sphalerons stop working at the temper-
ature Ty, ~ 100 GeV [3]. For example, we can easily
estimate y, SO(1077) < f < O(1) or f<O(107) <«
v, S O(1) in the limiting case where the ordinary Higgs
doublets ¢ and o, are both near the ordinary electroweak
scale.

We now derive the relation between the ordinary baryon
asymmetry and the dark lepton and baryon asymmetries. At
the crucial temperature Ty, the SM Yukawa interactions
and the SU(2), and SU(3), sphalerons as well as the
vanishing U(1), hypercharge can yield some relations
among the chemical potentials y, 4, .y of the SM fields
qr, dgr, ug, l;, er, H [50-52]. Specifically, all chemical
potentials can be expressed in terms of a single chemical

potential For example we read p, = —%/41, Uy = —%,ul,

My = 5H1s e =3up, and pp = —%p; [50]. The lepton

number then can be described by L =3(2u; + u,) +
51+22N, 51-22N

Ny (py, + py ) =25y for f3>y, or L= Ly

for f < y,.Here N, = 0, 1, 2, 3 denotes the number of the
relativistic dark neutrinos, while Hy,, are their chemical

potentials determined by Wy, =y, = + 41 5 Ly, for f>y,

or py =y, = -4 = for f <y, The ordinary baryon
number thus should be
3 {79+2282N, (B-L); = 79+22N By for f>y,
f =
79—2221@/ (B—L); = =5, 22N By for f <y,
(15)

Here (B— L), = B;—L; is the difference between the
initial values of the ordinary baryon and lepton numbers
and now is just the lepton number in the dark neutrinos,
equivalent to the baryon number in the dark neutrons, i.e.
Bi =0 and (B - L)i = _Lu’ = _Bn"

V. PREDICTIONS AND IMPLICATIONS

By inputting the cosmological observations Qyh*> =
0.02226 and Qg,,h*> = 0.1186 [1], the dark neutron should
have a determined mass to serve as the DM particle, i.e.

B Qg 149
by _ m
"B, Quh® |19 +£22N,| F

(16)

my =m

After fixing N, =(0,1,2,3), we can easily read
m,y = (1.89,1.48,1.21,1.03)m, for f>y, or m, =
(1.89,2.61,4.26, 11.5)m, for f <y,
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Our model contains a massless dark photon y’, which
should be consistent with the big bang nucleosynthesis. Now
the annihilations between the dark nucleons and antinu-
cleons into the dark pions are very fast. Actually, the cross
section is much larger than the typical value 1 pb for the
usual thermally produced DM. This means the dark neutron-
antineutron annihilation can be frozen out at a temperature
around Ty ~m, /30 [53], and then the dark pions can
immediately decay into the dark photons. So, the dark
photon can go out of equilibrium at the temperature
T, ~m,/30. For example, we can have T, ~30 MeV
form, = 1.03m, or T, ~ 60 MeV for m,, = 1.89m,,. The
contribution of the dark photon to the additional neutrino
number is AN, = 3[10.75/4,(T,)|* with g,(T,) being the
relativistic degrees of freedom at the temperature 7',,. For
m, = 1.89m, with T, ~ 60 MeV, weknow g, (60MeV) =
60 [53] and hence read AN, = 0.11. Actually AN, < 1 for
T, > 20 MeV [53]. Our dark photon may be probed by
more precise measurements in the future.

The messenger Higgs bidoublet X can result in a mass
mixing between the ordinary Z boson and the dark Z’
boson. Furthermore, we can have a U(1), x U(1)} kinetic
mixing at tree and loop level. This kinetic mixing will
mediate the couplings of the ordinary fermions to the dark
y' and Z’ bosons. Note that it is unnecessary to impose the
mirror symmetry (6). So, the dark electroweak symmetry
can be spontaneously broken near the electroweak scale. In
this case, the dark Z’ boson may be found at the colliders.
Through the Z' exchange, the scattering of the dark
neutrons off the ordinary nucleons can leave a distinct
signal in the DM direct detection experiments [54,55],
since the dark neutron has a determined mass.
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If the mirror symmetry (6) is introduced, the dark Z’ boson
should be far above the electroweak scale. Accordingly, the
dark neutron cannot be directly detected. However, we can get
other interesting predictions and implications. Remarkably,
we can take f >y, to predict —sindcp > 0.01 by using
Egs. (13) and (15). This prediction may be verified by the
neutrino oscillation experiments. Moreover, the messenger
Higgs bidoublet X may help to test the linear seesaw at the
colliders as it is allowed a TeV mass and a sizable VEV.

VI. CONCLUSION

We have demonstrated that a strongly first-order dark
electroweak phase transition with the CP-violating reflec-
tion of the dark fermions off the dark Higgs bubbles can
solve the coincidence problem between the baryonic and
dark matter, in association with the ordinary sphaleron
processes. Remarkably, the Yukawa couplings for the
neutrino mass generation can play an essential role in
the production of the dark baryon and lepton numbers,
besides the conversion of the dark lepton number to the
ordinary lepton number. Our model may be tested by the
running and planning colliders, cosmological observations,
DM detections, or neutrino oscillations.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No. 11675100, the
Recruitment Program for Young Professionals under
Grant No. 157127060004, the Shanghai Jiao Tong
University under Grant No. WF220407201, the Shanghai
Laboratory for Particle Physics and Cosmology, and the
Key Laboratory for Particle Physics, Astrophysics and
Cosmology, Ministry of Education.

[1] C. Patrignani et al. (Particle Data Group Collaboration),
Chin. Phys. C 40, 100001 (2016).

[2] A.D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. §, 32 (1967)
[JETP Lett. 5, 24 (1967)]; Usp. Fiz. Nauk 161, 61 (1991)
[Sov. Phys. Usp. 34, 392 (1991)].

[3] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov,
Phys. Lett. 155B, 36 (1985).

[4] For a review, A. G. Cohen, D. B. Kaplan, and A. E. Nelson,
Annu. Rev. Nucl. Part. Sci. 43, 27 (1993).

[5] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652
(1973).

[6] M. E. Shaposhnikov, Nucl. Phys. B287, 757 (1987).

[7]1 C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).

[8] P. Minkowski, Phys. Lett. 67B, 421 (1977).

[9] T. Yanagida, in Proceedings: Workshop on the Unified
Theories and the Baryon Number in the Universe, edited by

0. Sawada and A. Sugamoto (National Lab for High Energy
Physics, Tsukuba, Japan, 1979), p. 109.

[10] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity,
edited by F. van Nieuwenhuizen and D. Freedman
(North-Holland, Amsterdam, 1979).

[11] R.N. Mohapatra and G. Senjanovi¢, Phys. Rev. Lett. 44,
912 (1980).

[12] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45
(1986).

[13] A.G. Cohen, D. B. Kaplan, and A. E. Nelson, Phys. Lett. B
245, 561 (1990).

[14] P. Hernandez and N. Rius, Nucl. Phys. B495, 57 (1997).

[15] L.J. Hall, H. Murayama, and G. Perez, Phys. Rev. Lett. 95,
111301 (2005).

[16] D.B. Kaplan, Phys. Rev. Lett. 68, 741 (1992).

[17] R. Kitano and I. Low, Phys. Rev. D 71, 023510 (2005).

055038-5


https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1070/PU1991v034n05ABEH002497
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1146/annurev.ns.43.120193.000331
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1016/0550-3213(87)90127-1
https://doi.org/10.1103/PhysRevLett.55.1039
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/0370-2693(90)90690-8
https://doi.org/10.1016/0370-2693(90)90690-8
https://doi.org/10.1016/S0550-3213(97)00193-4
https://doi.org/10.1103/PhysRevLett.95.111301
https://doi.org/10.1103/PhysRevLett.95.111301
https://doi.org/10.1103/PhysRevLett.68.741
https://doi.org/10.1103/PhysRevD.71.023510

PEI-HONG GU

[18] K. Agashe and G. Servant, J. Cosmol. Astropart. Phys. 02
(2005) 002.

[19] N. Cosme, L. Lopez Honorez, and M. H. G. Tytgat, Phys.
Rev. D 72, 043505 (2005).

[20] D.E. Kaplan, M. A. Luty, and K. M. Zurek, Phys. Rev. D
79, 115016 (2009).

[21] P. H. Gu, U. Sarkar, and X. Zhang, Phys. Rev. D 80, 076003
(2009).

[22] P.H. Gu and U. Sarkar, Phys. Rev. D 81, 033001
(2010).

[23] H. An, S.L. Chen, R. N. Mohapatra, and Y. Zhang, J. High
Energy Phys. 03 (2010) 124.

[24] B. Dutta and J. Kumar, Phys. Lett. B 699, 364 (2011).

[25] K. Petraki, M. Trodden, and R.R. Volkas, J. Cosmol.
Astropart. Phys. 02 (2012) 044.

[26] M. Cirelli, P. Panci, G. Servant, and G. Zaharijas, J. Cosmol.
Astropart. Phys. 03 (2012) 015.

[27] P. H. Gu, Nucl. Phys. B872, 38 (2013).

[28] For a review, H. Davoudiasl and R. N. Mohapatra, New J.
Phys. 14, 095011 (2012).

[29] For a review, K. Petraki and R. R. Volkas, Int. J. Mod. Phys.
A 28, 1330028 (2013).

[30] For a review, K. M. Zurek, Phys. Rep. 537, 91 (2014).

[31] For a review, R. Foot, Int. J. Mod. Phys. A 29, 1430013
(2014).

[32] S. M. Barr, Phys. Rev. Lett. 92, 101601 (2004).

[33] R.D. Peccei and H.R. Quinn, Phys. Rev. Lett. 38, 1440
(1977).

[34] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[35] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[36] J.E. Kim, Phys. Rev. Lett. 43, 103 (1979).

[37] M. A. Shifman, A.I. Vainshtein, and V. 1. Zakharov, Nucl.
Phys. B166, 493 (1980).

PHYSICAL REVIEW D 96, 055038 (2017)

[38] A.R. Zhitnitsky, Yad. Fiz. 31, 497 (1980) [Sov. J. Nucl.
Phys. 31, 260 (1980)].

[39] M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 104B,
199 (1981).

[40] For a review, D. E. Morrissey and M. J. Ramsey-Musolf,
New J. Phys. 14, 125003 (2012).

[41] P. Huet and E. Sather, Phys. Rev. D 51, 379 (1995).

[42] G.R. Farrar and M. E. Shaposhnikov, Phys. Rev. Lett. 70,
2833 (1993).

[43] G.R. Farrar and M. E. Shaposhnikov, Phys. Rev. D 50, 774
(1994).

[44] M. Joyce, T. Prokopec, and N. Turok, Phys. Rev. D 53,2930
(1996).

[45] M. Joyce, T. Prokopec, and N. Turok, Phys. Rev. D 53,2958
(1996).

[46] D. Bodeker, G. D. Moore, and K. Rummukainen, Phys. Rev.
D 61, 056003 (2000).

[47] H. A. Weldon, Phys. Rev. D 26, 1394 (1982).

[48] H. A. Weldon, Phys. Rev. D 26, 2789 (1982).

[49] J.C. D’Olivo and J.F. Nieves, Phys. Rev. D 52, 2987
(1995).

[50] J. A. Harvey and M.S. Turner, Phys. Rev. D 42, 3344
(1990).

[51] R.N. Mohapatra and X. Zhang, Phys. Rev. D 45, 2699
(1992).

[52] G.F. Giudice and M. E. Shaposhnikov, Phys. Lett. B 326,
118 (1994).

[53] E. W. Kolb and M. S. Turner, The Early Universe (Addison-
Wesley, New York, 1990).

[54] A. Tan et al. (PandaX-II Collaboration), Phys. Rev. Lett.
117, 121303 (2016).

[55] D.S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett.
118, 021303 (2017).

055038-6


https://doi.org/10.1088/1475-7516/2005/02/002
https://doi.org/10.1088/1475-7516/2005/02/002
https://doi.org/10.1103/PhysRevD.72.043505
https://doi.org/10.1103/PhysRevD.72.043505
https://doi.org/10.1103/PhysRevD.79.115016
https://doi.org/10.1103/PhysRevD.79.115016
https://doi.org/10.1103/PhysRevD.80.076003
https://doi.org/10.1103/PhysRevD.80.076003
https://doi.org/10.1103/PhysRevD.81.033001
https://doi.org/10.1103/PhysRevD.81.033001
https://doi.org/10.1007/JHEP03(2010)124
https://doi.org/10.1007/JHEP03(2010)124
https://doi.org/10.1016/j.physletb.2011.04.036
https://doi.org/10.1088/1475-7516/2012/02/044
https://doi.org/10.1088/1475-7516/2012/02/044
https://doi.org/10.1088/1475-7516/2012/03/015
https://doi.org/10.1088/1475-7516/2012/03/015
https://doi.org/10.1016/j.nuclphysb.2013.03.014
https://doi.org/10.1088/1367-2630/14/9/095011
https://doi.org/10.1088/1367-2630/14/9/095011
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1016/j.physrep.2013.12.001
https://doi.org/10.1142/S0217751X14300130
https://doi.org/10.1142/S0217751X14300130
https://doi.org/10.1103/PhysRevLett.92.101601
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1088/1367-2630/14/12/125003
https://doi.org/10.1103/PhysRevD.51.379
https://doi.org/10.1103/PhysRevLett.70.2833
https://doi.org/10.1103/PhysRevLett.70.2833
https://doi.org/10.1103/PhysRevD.50.774
https://doi.org/10.1103/PhysRevD.50.774
https://doi.org/10.1103/PhysRevD.53.2930
https://doi.org/10.1103/PhysRevD.53.2930
https://doi.org/10.1103/PhysRevD.53.2958
https://doi.org/10.1103/PhysRevD.53.2958
https://doi.org/10.1103/PhysRevD.61.056003
https://doi.org/10.1103/PhysRevD.61.056003
https://doi.org/10.1103/PhysRevD.26.1394
https://doi.org/10.1103/PhysRevD.26.2789
https://doi.org/10.1103/PhysRevD.52.2987
https://doi.org/10.1103/PhysRevD.52.2987
https://doi.org/10.1103/PhysRevD.42.3344
https://doi.org/10.1103/PhysRevD.42.3344
https://doi.org/10.1103/PhysRevD.45.2699
https://doi.org/10.1103/PhysRevD.45.2699
https://doi.org/10.1016/0370-2693(94)91202-5
https://doi.org/10.1016/0370-2693(94)91202-5
https://doi.org/10.1103/PhysRevLett.117.121303
https://doi.org/10.1103/PhysRevLett.117.121303
https://doi.org/10.1103/PhysRevLett.118.021303
https://doi.org/10.1103/PhysRevLett.118.021303

