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The strong nature of composite Higgs models manifests at high energies through the growing behavior
of the scattering amplitudes of longitudinally polarized weak bosons that leads to the formation of
composite resonances as well as nonresonant strong effects. In this work the unitarity of these scattering
amplitudes is used as a tool to assess the profile of the composite spectrum of the theory, including
nonresonant enhancements, vector resonances and the CP-even scalar excitation. These three signatures
are then studied in realistic scattering processes at hadron colliders, aiming to estimate the potential to
exclude dynamically motivated scenarios of composite Higgs models.
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I. INTRODUCTION

The mechanism that spontaneously breaks electroweak
(EW) symmetry has yet to be unveiled. With the discovery
of the Brout-Englert-Higgs (BEH) boson [1,2] in 2012 by
the ATLAS and CMS Collaborations [3–5], a new key
piece of the puzzle came into play, with nonetheless no
completion of a greater picture on the horizon. What is
missing is a natural explanation for the generation of the
Higgs potential, without enormous fine-tuning and prefer-
ably from a dynamical origin without ad hoc terms as in the
Standard Model (SM). Both the longitudinal weak bosons
and the BEH boson are part of the spontaneous EW
symmetry breaking sector; thus, their thorough investiga-
tion at the Large Hadron Collider (LHC) and future
colliders will eventually shed more light on the topic.
Composite Higgs (CH) models are among the most

promising candidates to address some of SM weaknesses,
dynamically generating the EW scale through a vacuum
condensate and at the same time explaining the mass gap
between the Higgs boson and the other composite states by
the identification of the Higgs with one of the pseudo-
Nambu-Goldstone boson (NGB) of the underlying global
symmetry breaking [6–8].1 In CH models the fermionic
condensate generating the EW scale is misaligned with
respect to the vacuum that breaks the EW group; thus, the
acquisition of a vacuum expectation value (VEV) by the
fermionic condensate creates a hierarchy between the NGB
decay constant f and the EW scale v, in the form

v ¼ f sin θ; ð1Þ
where θ is the misalignment angle.
A striking evidence of new strong dynamics at high

scales is the presence of strong vector boson scattering

(VBS) [11–16], or more generally strong Goldstone boson
scattering (GBS), including physical pseudo-NGBs (the
Higgs boson itself and others in nonminimal CH realiza-
tions) and longitudinal VBS, which are related to the GBS
by the Goldstone boson equivalence theorem [17]. The
strong nature of the NGBs in CH models manifests itself
in GBS through the miscancellation of Feynman diagrams
and the divergent behavior of the scattering amplitudes
according to the low-energy theorems (LETs) [18]

Aðππ → ππÞ ∼ s
f2

¼ s
v2

sin2θ; ð2Þ

with π a NGB and s the Mandelstam variable. This is in
contrast to the well-behaved amplitudes of the SM. The
growing behavior of GBS amplitudes must be eventually
controlled by strong effects at high energies, either in the
form of broad continuum enhancements or in the form of
composite resonances, saturating unitarity similar to what
happens in hadron physics. In this case the possibility of
probing such high scales at the LHC remains to be
quantified, or whether a higher-energy machine, such as
the Future Circular Collider (FCC) 100 TeV collider, will
be necessary.
To tackle this problem the first question that arises is how

to estimate the actual scale of resonance formation or strong
continuum effects. The unitarity of 2 → 2 GBS amplitudes
computed at fixed order in perturbation theory has been
used as a tool to set limits on the scale of new physics
or strong interactions and on the mass of a heavy Higgs
boson [14,19,20]. We will pursue this idea in the context of
CH models.
Through the analysis of the GBS amplitudes and under

the guidance of unitarity principles we will set limits on the
scale of resonance formation, in particular in the scalar
channel which is only poorly described by lattice calcu-
lations. We will show that near the scale of leading-order
(LO) unitarity violation the continuum of LET dominates
the scattering amplitudes and prevents the formation of
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Breit-Wigner resonances. We will also argue that we can
not only set constraints on the masses of resonances, but
also on their couplings, if we assume basic criteria of
saturation of unitarity and analyticity provided by the
inverse amplitude method (IAM) of unitarization.
Following our assessment of resonance profiles via the

study of unitarization of GBS amplitudes, we will estimate
the potential to observe strong effects in realistic observ-
ables, regardless of whether resonances or strong con-
tinuum effects dominate the amplitudes. We will analyze
the production cross sections of heavy vector resonances
through weak boson fusion (VBF) and Drell-Yan (DY)
mechanism and nonresonant and scalar-resonant scenarios
of strong VBS in pp → jjZZ → jj4l channel.
Although our results are general and can be extended to

other scenarios, we will use as template the fundamental
minimal CH model (FMCHM) [21,22], whose description
and effective construction will be given in Sec. II. After the
description of our CH template we present in Sec. III a
detailed analysis of the GBS amplitudes, their unitarity
constraints, and implications for the spectrum of composite
states. In the light of the results from Sec. III, we will study
in Sec. IV the possibility of observing signals of strong
VBS and heavy vector production at the LHC and a future
100 TeV collider.

II. FMCHM

The FMCHM is based on the coset SU(4)/Sp(4), which
has been studied in several previous works [23–26], and is
the simplest global symmetry breaking pattern which can
be realized in terms of an underlying fermionic gauge
theory.2 The simplest underlying theory realizing this
symmetry breaking is based on the SU(2) gauge theory
with two Dirac fermions transforming according to the
fundamental representation of the gauge group [21,22,28].
This UV completion has been studied as a CH model in
Ref. [21], and unified in a pure Technicolor scenario, in
which the Higgs boson is identified with a scalar excitation
techni-σ in Ref. [22].
In SU(4)/Sp(4) a general parametrization of the vacuum

is given by

Σ0 ¼ cos θΣB þ sin θΣH; ð3Þ

where we can choose to embed the EW group SUð2Þ ×
Uð1Þ in such a way that ΣH fully breaks EW symmetry
while ΣB does not. The interactions between the strong
sector and the top quark tend to favor the vacuum that fully
breaks EW symmetry [29], but other forces, such as gauge
interactions and explicit techni-quark masses, play a role in
stabilizing the potential in an intermediate value of the
misalignment angle θ.

The mechanism to generate the top-quark mass origi-
nates also from these interactions with the strong sector. In
the extended technicolor (ETC) description the top mass is
generated via 4-fermion operators bilinear in the top quark,
discussed for the SU(4)/Sp(4) coset in Refs. [21,22]. These
bilinear 4-fermion interactions may arise from the
exchange of heavy spin-1 bosons [30,31] or heavy scalars
[32] external to the strongly interacting sector considered
here. A recent explicit example employing a chiral gauge
theory is provided in [33].
Another possibility is provided by fermion partial com-

positeness [34], a mechanism that requires the presence of
fermionic bound states that mix linearly to the elementary
fermion fields. Partial compositeness has been explored for
SUð4Þ=Spð4Þ coset in [35–37]. In this case, at least another
pair of techni-fermions charged under the QCD gauge group
must be incorporated to allow the formation of a composite
state with the same quantum numbers of the top quark. The
top partner may be important to stabilize the Higgs potential;
in that case it is expected to be parametrically lighter than the
typical resonance scale [38], but other spurions like mass
terms for the underlying fermions can be used as a stabilizer,
and the top partner may be heavy and irrelevant for the
phenomenology presented here. Other NGBs are also
expected to pop up in this configuration; however, a
Dirac mass term to the new fermions is allowed and avoids
these additional states in the spectrum [36].
In both mechanisms mentioned above, the model may be

constrained by flavor observables, especially in the form
of flavor-changing neutral currents (FCNCs) induced by
4-fermion operators at the flavor scale. One way under
consideration to avoid such constraints relies on the presence
of a conformal theory in the UV, which generates large
anomalous dimensions to enhance the condensate as
opposed to SM 4-fermion interactions and FCNCs.
Unfortunately, recent results indicate that obtaining large
anomalous dimensions is challenging, both for scalar oper-
ators [39–41], needed for ETC-like masses, as well as for
fermionic ones, needed in partial compositeness [42,43].
A full solution to the flavor hierarchy is thus still missing.
Independently of the specific mechanism to generate top

mass, the terms of the effective potential originate from the
same strong sector and have the same mass scale. Typically
this fact implies that sin θ is a good parametrization of
fine-tuning in the model [22,37] and θ is thus naturally not
so small. On the other hand, large angles are not favored
by data due to deviations of the Higgs couplings from the
SM predictions; these upset EW precision observables
(EWPOs)3 resulting in an upper bound [44]

2The minimal CH model, SO(5)/SO(4), can be realized with
the inclusion of 4-fermion operators [27].

3This limit depends mildly on the fermion content and
dynamics of the underlying theory but is dominated by Higgs
coupling modification. It can also be alleviated by cancellations
from other composite states [45].
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sin θ ≲ 0.2 ðEWPOÞ: ð4Þ

We use the Callan-Coleman-Wess-Zumino (CCWZ)
construction [46,47] to write the effective Lagrangian.
The lowest-dimension (d ¼ 2) term is given by

L2 ¼
1

2
f2hxμxμi; ð5Þ

where xμ is the projection of the Maurer-Cartan form and
contains the five NGBs (see Appendix A for conventions
and more details). hAi is the trace of the matrix A.
In order to analyze unitarity it is imperative to include

higher-order terms due to the strong relation between
perturbativity and unitarity. Since the CCWZ Lagrangian
is an effective nonrenormalizable theory, each order in
the perturbation expansion has to be accompanied by a
tower of higher-dimension operators in order to carry out
the renormalization program. The d ¼ 4 Lagrangian is
given by

L4 ¼ L0hxμxνxμxνi þ L1hxμxμihxνxνi
þ L2hxμxνihxμxνi þ L3hxμxμxνxνi: ð6Þ

A. Vector resonances

The composite vector resonances in the FMCHM have
been studied in Ref. [45] making use of the hidden local
symmetry (HLS) approach [48]. In the FMCHM a vast
spectrum of 15 heavy composite vector resonances is
expected, with very peculiar phenomenology. They can
be associated with the broken generators Ya and the
unbroken ones Va,

F μ ¼ Vμ þAμ ¼
X10
a¼1

Va
μVa þ

X5
a¼1

Aa
μYa; ð7Þ

forming a 10 and a 5 multiplet of Spð4Þ. The lowest-
dimension Lagrangian is given by (see Appendix A for
details and conventions)

Lv ¼ −
1

2~g2
hF μνF

μνi þ 1

2
f20hx0μxμ0i þ

1

2
f21hx1μxμ1i

þ rf21hx0μKxμ1K†i þ 1

2
f2KhDμKDμK†i: ð8Þ

F μν is the field strength tensor of F μ. The EW VEV is

v2 ¼ ðf20 − r2f21Þ sin2 θ ¼ f2π sin2 θ; ð9Þ

where fπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 − r2f21

p
. We neglect possible direct cou-

plings of F μ to fermions, which are generated in our setup
only through the mixing with EW gauge bosons.

The masses of Vμ andAμ (without EW interactions) are
given, respectively, by

MV ≡ ~gfKffiffiffi
2

p and MA ≡ ~gf1ffiffiffi
2

p : ð10Þ

These masses have been estimated with lattice
calculations for the FMCHM SU(2) gauge theory with
two Dirac fermions, MV ¼ 3.2ð5Þ TeV= sin θ and
MA ¼ 3.6ð9Þ TeV=sin θ [49].
Once the masses are fixed there are two extra free

parameters which were not computed from first principles:
~g and r. These parameters basically determine the branch-
ing ratios into fermions or bosons. If r ¼ 1 the fermion
decays dominate; once jr − 1j≳ 0.1 the diboson decays
dominate.
We evaluate now the trilinear couplings between heavy

vectors and the Goldstone bosons, which will be important
for our analysis of GBS. They come from the fK term in
Eq. (8). Only couplings to Vμ are generated, which can be
expressed as

πaðp1Þπbðp2ÞVc
μ∶

2~gf2Kð1 − r2Þ
f2

TrðYaYbVcÞðp1 − p2Þ

¼ igVðp1 − p2ÞΞabc; ð11Þ

where

gV ¼ −
MV

2f
aV ¼ −

M2
Vð1 − r2Þffiffiffi
2

p
~gf2

; ð12Þ

and Ξabc ¼ 1 for ðc; a; bÞ ¼ ð1; 3; 2Þ, (2,3,1), (3,1,2),
(4,1,4), (5,2,4), (6,3,4), (7,5,3), (8,5,4), (9,5,1), (10,2,5),
Ξabc ¼ −1 by interchanging a ↔ b above and Ξabc ¼ 0
otherwise. The couplings in terms of charge eigenstates are
shown in Eqs. (A17)–(A23).

B. Scalar isosinglet σ

Additional scalars are a common feature in composite
extensions of the SM, see e.g. [37,50]. The scalar singlet σ
can be incorporated in a simple general way

Lσ ¼
1

2
κðσ=fÞf2hxμxμi þ

1

2
∂μσ∂μσ −

1

2
M2

σσ
2; ð13Þ

with κðσ=fÞ ¼ 1þ κ0σ=f þ κ00σ2=ð2f2Þ þ � � �. The poten-
tial (which must be added to Lσ) generates a tadpole term
that drives the VEV to σ. In addition, it also generates a
mixing term with the Higgs boson, h. These effects are,
however, small when a very heavy scalar is considered.
Mixing between h and σ is, for small θ, approximately

α ∼ 2m2
h

m2
σ
[44]. For aMσ ≳ 5 TeV, α≲ 0.00125 is very small

and will be neglected in the following analysis.
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The relevant parameters are here Mσ and κ0. The lattice
prediction for the SU(2) gauge theory with two Dirac
fermions has large uncertainty, Mσ ¼ 4.7ð2.6Þ TeV= sin θ
[49]. We will see that unitarity of VBS provides more
stringent limits on the parameters of this state. The trilinear
couplings between σ and the NGBs read

σπaðp1Þπbðp2Þ∶ − 2i
gσ
f
p1 · p2δab ð14Þ

with gσ ¼ κ0=2.

III. UNITARITY IMPLICATIONS

In this section we will analyze the 2 → 2 scattering of
NGBs, and by requiring the fulfillment of unitarity con-
dition we will make predictions for the model parameters
and spectra discussed above. We use the FMCHM as
template but our results can be easily generalized.
Let us consider a ππ → ππ elastic scalar scattering

amplitude, Aðs; tÞ, with s and t the Mandelstam variables,
and expand it in partial waves,

Aðs; tÞ ¼ 32π
X∞
J¼0

aJðsÞð2J þ 1ÞPJðcos θÞ;

aJðsÞ ¼
1

32πs

Z
0

−s
dtAðs; tÞPJðxÞ; ð15Þ

where x is the cosine of the scattering angle and PJðxÞ are
the Legendre polynomials. In this basis elastic partial wave
unitarity condition reads

ImaJðsÞ ¼ jaJðsÞj2: ð16Þ

In order to force elasticity in the NGB sector it is
customary to expand the amplitudes in definite conserved
quantum numbers before expanding them in partial
waves. In the chiral Lagrangian of pions the ππ scattering
amplitudes can be expanded in the usual definite isospin I.
For SUð4Þ=Spð4Þ, just like the isospin, we expect that
especially at high energies Spð4Þ is approximately unbro-
ken and we can therefore expand the 2 → 2NGB scattering
in definite multiplets of Sp(4), as

5 ⊗ 5 ¼ 1 ⊕ 10 ⊕ 14; ð17Þ

and assume they correspond to pure elastic channels, with
no mixing among them. We note that the Higgs boson is
also part of the NGB scattering. The VBS topology can be
seen as a special case of this scattering, with the longi-
tudinal modes related to the eaten NGB πi (i ¼ 1, 2, 3)
through the equivalence theorem.
Inelastic channels ππ → X with X being either n > 2

NGBs, other composite states out of the NGB multiplet, or
SM particles have the effect of squeezing the Argand circle

to lower radius, ImaJðsÞ > jaJðsÞj2. To be more precise, we
can define inelastic scattering amplitudes that fulfill (see
Appendix B for more details)

X
X

jaXJ ðsÞj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

X=s
q

≡ ImaJðsÞ − jaJðsÞj2; ð18Þ

where M2
X is the sum of squared masses of all particles

in the X system and
P

XjaXJ ðsÞj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

X=s
p

≤ 1=4.
Equation (18) goes back to Eq. (16) in the purely elastic
limit. Note that by knowing the cross section of the inelastic
channels one can get the exact unitarity condition and
thus the scale of unitarity violation and strong effects
accordingly.
Nevertheless, elasticity is a good approximation for

energies below the threshold production of composite
states other than the NGB. Inelastic channels with more
than two NGBs in the final state appear at higher order
in chiral perturbation theory at Oððs=ð4πfÞ2Þ3Þ while
the production of SM fermions and transversal weak
bosons is negligible at high energies [14]. Other
composite states can open relevant inelastic channels
beyond their mass thresholds, e.g.

ffiffiffi
s

p
> 2Mσ for the

scalar; however, since we are interested in describing the
lightest resonance in each isospin-spin channel, these
effects can be usually neglected, and we will comment in
the text when otherwise.
Two interesting exceptions in which inelasticity could be

relevant are the case of a relatively light top partner T and
the case of extra NGBs present in larger groups (like the
ones required in the partial-compositeness scenario). In
both cases, it is plausible that these states sit at scales higher
than we consider here (as discussed in the Introduction). It
is nevertheless worth commenting on the possibility of a
lighter top partner T, which opens inelastic channels via the
process ππ → TT̄ with ππT couplings typically of order
OðMT=fÞ [51], and which would affect our analysis. A
thorough analysis of the contribution of this process to
partial waves is still missing, although in Refs. [52,53] the
scale of strong interaction in FF → FF channel were
estimated for a heavy fermion F. The analysis of these
processes will be presented elsewhere.
From the d ¼ 2 Lagrangian [Eq. (5)] we get the LO

amplitudes. We will consider only the leading spin, i.e.
the scalar J ¼ 0 for the singlet channel 1≡ A, aA0ðsÞ,
the vector J ¼ 1 for the 10≡ B representation (since
the J ¼ 0 amplitude vanishes), aB1ðsÞ, and the scalar
for 14≡ C, aC0ðsÞ. The corresponding partial wave
amplitudes at LO are

að0ÞA0 ðsÞ ¼
s

16πf2
; ð19Þ

að0ÞB1 ðsÞ ¼
s

192πf2
; ð20Þ
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að0ÞC0ðsÞ ¼
−s

64πf2
: ð21Þ

A real amplitude can never satisfy the unitarity con-
dition, Eq. (16). The absorptive and imaginary part of the
amplitude comes at first order at loop level, and fulfills
the perturbative unitarity relation4

Imað1ÞðsÞ ¼ jað0ÞðsÞj2; ð22Þ

where að1ÞðsÞ is the correction from the effective energy
expansion. As long as perturbativity is under control this
relation is sufficient to avoid unitarity violation, what
makes evident the relation between unitarity and perturba-
tivity. This observation allows us to define another criteria
of unitarity, which is

jaðsÞj < 1: ð23Þ

Therefore, according to Eq. (19) unitarity is fated to be
violated at energies ffiffiffi

s
p ≳ 4

ffiffiffi
π

p
f: ð24Þ

Since from EWPO we expect sin θ ≲ 0.2, we need to reach
partonic energies of the order of

ffiffiffi
s

p ≲ 8 TeV to observe
strong VBS effects. Such energies could in principle be at
the extreme corner of LHC potential, but it seems more
feasible to be reached at a higher-energy machine, such as a
100-TeV collider. Even for lower angles, e.g. θ ¼ 0.1,
unitarity violation would take place around

ffiffiffi
s

p
∼ 16 TeV,

which is within the reach of a 100-TeV machine. If inelastic
channels are open, the scale of strong effects are expected
to be lower.
The next-to-leading order (NLO) correction to the partial

wave amplitudes, which includes the tree-level diagrams
involving dimension-6 operators, Eq. (6), and one-loop
diagrams, is given by [54]

að1ÞA0 ðsÞ ¼
s2

32πf4

�
1

16π2

�
29

12
þ 46

18
log

�
s
μ2

�
þ 2πi

�

þ 2

3
cLAðμÞ

�
; ð25Þ

að1ÞB1 ðsÞ ¼
s2

32πf4

�
1

16π2

�
−

35

432
þ 1

12
log

�
s
μ2

�
þ 1

72
πi

�

þ 2

3
cLBðμÞ

�
; ð26Þ

að1ÞC0ðsÞ ¼
s2

32πf4

�
1

16π2

�
83

144
−
4

9
log

�
s
μ2

�
þ 1

8
πi

�

þ 2

3
cLCðμÞ

�
: ð27Þ

We defined the following combinations of Wilson
coefficients:

cLAðμÞ ¼ cL0ðμÞ þ 68cL1ðμÞ þ 36cL2ðμÞ þ 17cL3ðμÞ;cLBðμÞ ¼ 2cL0ðμÞ − 4cL1ðμÞ þ 2cL2ðμÞ −cL3ðμÞ;cLCðμÞ ¼ 8cL1ðμÞ þ 16cL2ðμÞ þ 2cL3ðμÞ: ð28Þ

bLIðμÞ are renormalized in the MS scheme and run
according to the renormalization group equations,

bLIðμÞ ¼ bLIðμ0Þ þ
kI

16π2
log

�
μ

μ0

�
; ð29Þ

with kI ¼ −43=6, 1=4, −4=3 for I ¼ A, B, C respectively.
Of the four coefficients only two are independent for what
concerns this process. In particular, we have

cLCðμÞ ¼
2

7
ðcLAðμÞ þ 10cLBðμÞÞ: ð30Þ

The NLO and LO partial wave amplitudes can be
defined by

aNLOðsÞ ¼ að0ÞðsÞ þ að1ÞðsÞ; aLOðsÞ ¼ að0ÞðsÞ: ð31Þ

We show in Fig. 1 the energy at which the A0-channel
amplitude crosses unitarity bounds, i.e. jaðsÞj > 1, for
sin θ ¼ 0.2.5 At LO, the scale of unitarity violation, where
jaLOðΛLOÞj ¼ 1 is given in Eq. (24) and is independent of
the Wilson coefficients, is depicted as a vertical line in the
figure. At NLO we show the scale of unitarity violation
jaNLOðΛNLOÞj ¼ 1 as a function of cLAð8 TeVÞ.
It can be noticed that NLO corrections always anticipate

the violation of unitarity to lower scales, ΛNLO < ΛLO, and
therefore ΛLO is an important physical scale. If the NLO
corrections to jaðsÞj are positive, they will lead to a broad
continuum enhancement at least as strong as the LO
amplitude or to resonance formation before the scale
of LO unitarity violation; i.e., the mass of the resonance
obeys M ≲ ΛLO. For the scalar A0 channel this implies
Mσ ≲ 1.7 TeV= sin θ, which is more stringent than
lattice results on the scalar spectrum of SUð2Þ gauge

4The relation holds if no inelastic channels are open, otherwise
further loop contributions will increase the imaginary part with
Imað1ÞðsÞ > jað0ÞðsÞj2.

5The result for different θ is very similar; indeed if we
choose the renormalization scale proportional to

ffiffiffi
s

p
, μ ∝

ffiffiffi
s

p
,

we find that the amplitudes depend only on the ratio s=f2 apart
from logarithmic corrections from the running of the effective
coefficients.
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theory with two Dirac fermions, which provide
Mσ ¼ 4.7ð2.6Þ TeV= sin θ. If the NLO corrections are
negative at

ffiffiffi
s

p
< ΛLO, there is a crossing point where

jaNLOðsÞj ¼ jaLOðsÞj and where the NLO amplitude must
therefore have a faster growing behavior to fulfill ΛNLO <
ΛLO and trespass the LO amplitude before ΛLO. The NLO
amplitude should therefore be controlled, very likely by a
more strongly bounded and narrower resonance. In either
case, the LO amplitude enhancement can be regarded as
the weakest and smoothest possible strong effect in GBS
before unitarity violation.
We also show in shaded areas in Fig. 1 the regions where

theK-factorK ≡ jaNLOðsÞj=jaLOðsÞj − 1 is K > 50% (blue
area), K < −50% (green area), and K > 100% (brown
area), where perturbativity is jeopardized. A correlation
between a lack of perturbativity and violation of unitarity is
visible, as expected.
Inelastic channels do not change the upper limit on the

scale of strong dynamics we just discussed, but they would
anticipate the effects to lower energy scales, since they
shrink the unitarity circle. The inelastic effect of 2 → n
with n > 2 NGB scattering at ΛLO is estimated to be ∼5%.

A. Unitarization model: The IAM method

A phenomenological approach to describe the physics
beyond the perturbative regime in pion-pion scattering
is given by unitarization models. They are based on
formulas that force the amplitudes of GBS to satisfy the
unitarity condition and maintain the low-energy behavior.
Unitarization models are intended to represent the

approximate magnitude of these amplitudes beyond the
perturbative regime and have been able in some cases to
describe the first resonances of QCD. In view of the great
similarities between low-energy QCD and electroweak
physics, the ideas of unitarization models have been
translated to a strong symmetry breaking sector in many
studies [55–61]. They are not complete quantum field
theories, and in particular they typically violate crossing
symmetry; despite those deficiencies, these models still
carry out their phenomenological purpose of estimating the
magnitude of strong VV scattering cross sections much
above the perturbative regime.
One of the most widespread unitarization method used

for VV scattering is based on the K-matrix, introduced in
the 1940s [62]. Besides violating crossing symmetry, the
K-matrix unitarization procedure spoils the singularity
structure of the fixed-order amplitudes. Generalizations
and improved versions of the method where analyticity is
restored have been provided [63,64].
In the N=D protocol, unitarity is exactly restored with

the extra quality of improved analytical properties. It is
derived from dispersion relations [65,66].
A special case of the N=D method is the so-called

IAM, which maintains the proper analytical structure of
fixed order calculation with the correct branching cuts
and without the need of extra parameters. It also produces
very interesting phenomenological consequences in the
context of strong vector boson scattering. It has been
widely and successfully used in the description of low-
energy pion-pion scattering and has given remarkable
results describing meson dynamics further beyond the
perturbative regime, reproducing the first resonances in
each isospin-spin channel up to 1.2 GeV. The method is
derived from dispersion relation and can be regarded as a
resumation of s-channel bubble diagrams [67,68]. For
certain values of the chiral coefficients, the unitarized
amplitudes present poles that can be interpreted as
dynamically generated resonances. The saturation of
unitarity via resonances is indeed the expectation for
typical strong dynamics [69,70].
It is important to note that we use the unitarization

method with caution, as a guidance of possible behavior
of high-energy amplitudes. We consider different values of
effective coefficients and also nonresonant scenarios in
order to encompass a complete range of viable strong
effects. Therefore, we expect that a study using a different
unitarization method (which at least respects the analytical
structure of the amplitudes) should reproduce our results
and conclusions. Indeed, in previous studies the improved
K-matrix method, the N=D, and the IAM have shown good
agreement [61,66,68]. However, it has been advocated that
the IAM is the correct method to treat the spin-1 channel
[68,71]. These methods have been implemented and
studied in the context of the full 2 → 6 matrix elements
framework for strong VBS in Ref. [72].

FIG. 1. Unitarity violation [Eq. (23)] scale of aA0ðsÞ as a
function of cLAð8 TeVÞ for sin θ ¼ 0.2 at NLO (blue solid line)
and LO (black solid line). Also shown are the regions of lost of
perturbativity K ≡ jaNLOðsÞj=jaLOðsÞj − 1 > 50% (blue shaded
area), K > 100% (brown area), and K < −50% (green area).
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We will concentrate here on the IAM due to its good
analytical properties and the dynamical generation of
resonances, which we aim to compare with the effective
description of Sec. II. The IAM defines the unitarized
amplitude

aIAMIJ ðsÞ ¼ að0ÞIJ ðsÞ
1 − að1ÞIJ ðsÞ

að0ÞIJ ðsÞ

: ð32Þ

For low energies this amplitude restores the chiral ampli-
tudes while fully satisfying the unitarity condition. From
the denominator of the IAM amplitudes a mass and a
running width can be extracted,

M2
A ¼ 2f2

1
16π2

ð29
12
Þ þ 2

3
cLAðMAÞ

; ΓA ¼ M3
A

16πf2
;

M2
B ¼ ðf2=6Þ

1
16π2

ð− 35
432

Þ þ 2
3
cLBðMBÞ

; ΓB ¼ M3
B

192πf2
;

M2
C ¼ −ðf2=2Þ

1
16π2

ð 83
144

Þ þ 2
3
cLCðMCÞ

; ΓC ¼ M3
C

64f2
: ð33Þ

The amplitudes can then be written in a particularly
simple form by choosing a dynamical renormalization
scale μ ¼ ffiffiffi

s
p

,

aIAMIJ ðsÞ ¼ −ΓI=MI

s −M2
I þ i ΓI

MI
sþ 32πs ΓI

MI

kI
16π2

logð
ffiffi
s

p
MI
Þ

ð34Þ

with kI given in Eq. (29).
As a specific example and benchmark scenario we

will now make use of lattice results MV ≡MB ¼
3.2ð5Þ TeV= sin θ. The corresponding effective coefficient
can be extracted from Eq. (33), LBðMVÞ ¼ 2.225 × 10−3,
and it is independent of θ. The J ¼ 1 partial wave
amplitude for this scenario is shown for sinθ¼0.2ð0.15Þ
in Fig. 2. We use renormalization scale μ ¼ ffiffiffi

s
p

.
For the scalar channel the lattice result Mσ ≡MA ¼

4.7ð2.6Þ TeV= sin θ has very large uncertainty. The mass of
an eventual resonance is also proportional to the scale f;
thus, we define the parameters

υI ≡MI sin θ
TeV

; I ¼ A;B;C: ð35Þ

The effective coefficient for channel A is LAðMAÞ ¼
−0.0229556þ 0.181548=υ2A. The corresponding unita-
rized amplitude is shown in Fig. 3 for different values
of υA. For large values of υA ≳ 1.5 a broad enhancement
takes the place of the typical Breit-Wigner peak of a
resonance.

We now look at unitarization of the C channel. As
mentioned before, the effective coefficients are linearly
dependent according to Eq. (30); therefore, if we choose to
fix lattice inspired υB ¼ 3.2, we find the relation among υC
and υA, shown in Fig. 4. We conclude that this eventual
resonance must be at higher scales.

B. Vector resonances

In this and the following sections, we will use the chiral
Lagrangians described in Sec. II including vector and
scalar states to estimate their parameters in the light of
unitarity considerations just explored. Let us start with the
vector case.
At tree level the projections can all be computed from

the single master amplitude Aðs; t; uÞ of the process
πþπ− → π0π0. The vector states contribute with trilinear
couplings [Eq. (11)] to the NGBs and also by modifying
the quartic coupling of NGBs to recover the correct LET
behavior, giving

FIG. 2. Absolute value of partial wave amplitude aIAMB1 ðsÞ
shown together with aNLOB1 ðsÞ and aLOB1 ðsÞ for sin θ ¼ 0.2 and
sin θ ¼ 0.15.

FIG. 3. Absolute value of partial wave amplitude aIAMA0 ðsÞ
shown together with aNLOA0 ðsÞ and aLOA0 ðsÞ.
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Aðs; t; uÞ ¼ −g2V

�
s − u
t −M2

V
þ s − t
u −M2

V
þ 3s
M2

V

�
: ð36Þ

The projections are given by

AAðs; t; uÞ ¼ 5Aðs; t; uÞ þAðt; s; uÞ þAðu; t; sÞ;
ABðs; t; uÞ ¼ Aðt; s; uÞ −Aðu; s; tÞ;
ACðs; t; uÞ ¼ Aðt; s; uÞ þAðu; s; tÞ: ð37Þ

Further expanding in partial waves we get

avA0ðsÞ¼−
g2V
8π

��
2þ3

s
M2

V

�
−2

�
M2

V

s
þ2

�
log

�
1þ s

M2
V

��
;

ð38Þ

avB1ðsÞ ¼
g2V
32π

�
s

3ðs −M2
VÞ

−
s

2M2
V
−
�
M2

V

s
þ 2

�

×

�
2 −

�
2
M2

V

s
þ 1

�
log

�
1þ s

M2
V

���
: ð39Þ

The J ¼ 1 amplitude is shown in Fig. 5 for sin θ ¼ 0.2
and lattice inspired value of massMV ¼ 3.2 TeV= sin θ. We
show three different values of the vector coupling aV ¼ 0.8,
1, 1.2. We can see that aV must be close to 1 to better
describe the dynamical inspired IAM amplitude. Moreover,
the departure from aV ¼ 1 creates large deviations from the
LO amplitude at low energy. We thus take aV ¼ 1 as a
natural value. The total width of the decay into the NGBs is

given by ΓV ¼ g2V
48πMV. The choice aV ¼ 1 reproduces the

total width provided by IAM method, Eq. (33).
A remark about the EWand photon exchange follows. It

is well known that low-mass boson exchange leads to large
logarithmic enhancements due to the so-called “excep-
tional” phase-space regions, e.g. the terms logð1þ s

M2
V
Þ

when t → 0. These large logarithms need usually to be
resummed for improved perturbative calculations.
Nevertheless, this EW physics is not relevant for the
present analysis, as customary [14,17].

C. Scalar isosinglet σ

The σ contribution to the master amplitude is given by

Aðs; t; uÞ ¼ −g2σ
s
f2

s
s −M2

σ
; ð40Þ

with gσ ¼ κ0=2.
The total width of σ into NGBs is given by Γσ ¼ 5 g2σm3

σ

32πf2.

Requiring a width similar to IAM leads to gσ ∼ 0.63.
We show on the left-hand panel of Fig. 6 the aA0ðsÞ

amplitudes, including the σ contribution for gσ ¼ 0.63 and
υA ¼ 1. We show also the contribution from the v state
with aV ¼ 1. On the right-hand panel, we show the
equivalent aB1ðsÞ amplitudes. The effect of the inelastic
channel ππ → σσ in the unitarity bound is depicted in
the dotted black line in the figure. The corresponding
amplitude was computed assuming κ00 ¼ 1.5 and a σ3

trilinear coupling λ3 ¼ 1 (gσ ¼ 0.63 and υA ¼ 1 are
kept unchanged), and its contribution to B1 channel
estimated. The new unitarity bound is taken to be

jaðsÞj < 1=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 − ja2σðsÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2

σ=s
pq

, according
to Eq. (18). It can be noticed that the effect is small for this
value of κ00. We also note that interactions between σ and
vector states are viable but were not considered here for
simplicity.
For larger values of υA ≳ 1 the growing behavior of the

LO piece renders difficult for a resonance to unitarize the
amplitude. This fact is illustrated in Fig. 7 where we show
the aA0ðsÞ amplitudes for three values of υA ¼ 0.5, 1, 1.5,
using the IAM unitarization model (solid curve), the
fixed width σ resonance (dashed) or a running width,

FIG. 5. Absolute value of partial wave amplitude a0B1ðsÞ þ
avB1ðsÞ together with LO, NLO and IAM equivalents, for three
values of aV ¼ 0.8, 1, 1.2 and sin θ ¼ 0.2.

FIG. 4. Value of υC as a function of υA for fixed value of
υB ¼ 3.2.
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Γfix →
Γrun
M s, (dotted).6 It can be seen that values of Mσ too

close or larger than the unitarity violation scale,Mσ ∼ ΛLO,
prevent any meaningful use of resonant propagation and a
broad continuum appears instead. Moreover, close to the
peak the running width approach slightly ameliorates the
line shape description.
Similarly, large couplings can also jeopardize the reso-

nant description and violate unitarity. Extra contributions to
the width can dump down and unitarize the amplitude, but
nevertheless do not help in the description of the line shape.
In Fig. 8 we show the aA0ðsÞ amplitudes for three values of
gσ using the IAM unitarization model (cyan line), a fixed
width (solid line) and a running width (dashed line).

IV. EXPERIMENTAL SIGNATURES AT
FUTURE COLLIDERS

We found in previous sections that the dynamically
inspired parameters are aV ∼ 1 andMV ∼ 3.2 TeV= sin θ in
the vector sector and gσ ¼ 0.63 andMσ ≲ 1.2 TeV= sin θ in
the scalar sector. Alternatively, LET behavior gives a mean-
ingful benchmark scenario for nonresonant continuum
(below unitarity violation). In all cases, sin θ < 0.2. In this
section we study these scenarios in realistic observables at
hadron colliders.
Composite vector states can have large mixing with the

SM weak bosons, which generates minimal coupling to
fermions7; consequently they have complementary produc-
tion modes, either via DY or via vector boson fusion, as

FIG. 7. Absolute value of partial wave amplitudes a0A0ðsÞ þ
aσA0ðsÞ for υA ¼ 0.5, 1, 1.5, using the IAM unitarization model
(solid curve), a fixed width σ resonance (dashed line) and a
running width (dotted line).

FIG. 8. Absolute value of partial wave amplitudes a0A0ðsÞ þ
aσA0ðsÞ for gσ ¼ 0.4, 0.63, 0.8, using a fixed width (solid
curve) and a running width (dashed line) compared to the
IAM (cyan line).

FIG. 6. (Left) Absolute value of partial wave amplitudes a0A0ðsÞ þ aσA0ðsÞ þ avA0ðsÞ together with LO, NLO and IAM equivalents.
(Right) Equivalent amplitudes for B1 channel, a0B1ðsÞ þ aσB1ðsÞ þ avB1ðsÞ. Parameters are υA ¼ 1, sin θ ¼ 0.2, gσ ¼ 0.63. The effect of
inelastic channels in the unitarity bound is depicted by the dotted black curve and explained in the text.

6The resummation of the self-energy diagrams lead to
momenta dependent widths, or running widths, which are
typically important for heavy and broad resonances. An ad hoc
incorporation of such running width is, however, not usually
recommended due to large extra miscancellations which worsen
unitarity problems at higher energies, and can be cured with
running width gauge invariant method as in Ref. [73].

7We assume there is no direct coupling to fermions, even
though this is a logical possibility.
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well as complementary decay modes into fermions or
bosons. We will discuss the vector phenomenology in
Sec. IVA. Similarly, the σ scalar resonance mixes with the
Higgs boson and generates minimal couplings to SM
fermions proportional to their masses, which would lead
to its production through gluon fusion via a loop of top
quarks. However, this mixing should be small and the
dominant channel has to be VBF production with decay
to weak bosons. This signature falls in the same class of
process of strong VBS, VV → VV. Due to the intrinsic
high compositeness scale of CH models for sin θ ≲ 0.2,
these typical strong effects will be observable more likely at
a future 100-TeV machine than at the LHC.
In proton-proton collisions, VBS is embedded in more

complicated processes where a quark in each proton emits
a gauge boson, V. These scatter among themselves and
produce two V s along with the two extra remnant jets in
the forward-backward region of the detector. The V s
subsequently decay into jets and/or leptons. This process
has been scrutinized for a long time [74–91] with an
increasing degree of sophistication, in particular in the
context of CH models [92,93], for walking Technicolor
with the Higgs identified as the first scalar excitation [94],
and more recently at a 100 TeV collider [95–97].
The goal we will pursue in Sec. IV B is to assess the

possibility to distinguish the CH scenario from the SM
predictions looking at the high-energy region of MðVVÞ.
In the CH scenario an overall excess or a resonance is
expected. We consider only the simplest and cleanest VBS
channel where two Z decay into leptons, pp → jjZZ →
jj4l. The only relevant backgrounds are SM electro-
weak ZZjj and QCD ZZ þ jets production. The other
VBS channels (WW and WZ) and other decay channels
will definitely improve the discriminant power here pre-
sented [97].

A. Vector phenomenology

To get cross sections and branching ratios (BRs) for
the composite vectors we make use of the full model
presented in Ref. [45] and briefly described in Appendix A.
It was implemented in the Universal FeynRules Output
(UFO) format [98] via the FEYNRULES package [99] and is
available in the High Energy Physics Model Data Base.8

We use the PDF set NNPDF 2.3 at LO [100].9 We use
MADGRAPH5_AMCNLO [102] to compute the cross sections
for both the DY and VBF productions. For the calculation
of VBF cross sections we have selected the minimum set of
gauge invariant diagrams in pp → VVjj which contains
the VBF topology and applied a minimum transverse
energy on the jets, pTðjÞ > 20 GeV, to avoid singularities.

The heavy masses of these states MV ≳ 16 TeV (since
sin θ ≲ 0.2) have to be probed at higher energies than those
available at the LHC. A 100-TeV machine like the FCC is
the natural candidate. The limits on production cross
section times branching ratio (σ × BR) of general vector
resonances ρ at the FCC have been derived in Ref. [103].
This study is based on the exclusion sensitivities of two
LHC analyses [104,105] and on the scaling of cross
sections due to the evolution of the parton luminosities.
The limits are provided as a function of the resonance
mass,Mρ, for two different decay channels, ρ → lþl− and
ρ → WZ, and two integrated luminosities, L ¼ 1 and
10 ab−1. In Table I we show the exclusion limits at
95% C.L. on σ × BR for sin θ ¼ 0.2, corresponding to
Mρ ∼ 16 TeV (apart from mixing effects), and sin θ ¼ 0.15
with Mρ ∼ 21.3 TeV.
From the vast spectrum of 15 vector states, the isotriplet

V0;� will be the most massively produced. The second
triplet S0;� is only a bit heavier, near degenerate with V0;�,
but has a lower cross section into fermions and weak
bosons. It could dominate in the Higgs decay channels,
which were not considered in Ref. [103]. The A0;� states
will also be produced in a proton-proton collision, but
they are heavier and will be more difficult to observe. Other
states do not mix with SM particles and are much harder
to be produced. Therefore, it is safe to assume the first
observed peak will come from the V0;� states, and we will
neglect the other contributions.
Once sin θ ¼ 0.2, 0.15, MV ¼ 3.2 TeV= sin θ and

MA ¼ 3.5 TeV= sin θ are fixed, we are left with two extra
free parameters: ~g and r. For r ¼ 1 the decay into fermions
dominates. Once r departs from 1, the diboson decay
channel becomes more important and rapidly overcomes
the fermion channel.
In Fig. 9 we can see the excluded region at 95% C.L. in

the plane ð~g; rÞ for sin θ ¼ 0.2 (left panel) and sin θ ¼ 0.15
(right panel). The full parameter space for θ ¼ 0.2 can be
excluded with a luminosity L ¼ 10 ab−1 (dashed line). For
θ ¼ 0.15 there is a region ~g≳ 8 and jr − 1j≳ 0.1 which
will not be excluded with 10 ab−1. Lines of dynamically
inspired jaV j ¼ 1 are also depicted in the plots.

TABLE I. Exclusion limits at 95% C.L. on the σ × BR
production process pp → ρ, in two different decay modes,
ρ → lþl− and ρ → WZ. Values for two different luminosities,
L ¼ 1 and 10 ab−1, and two different masses, Mρ ¼ 16 TeV
(21.3 TeV), are extracted from [103].

Lðab−1Þ Decay Mρ ¼ 16 TeV Mρ ¼ 21.3 TeV

1 lþl− 2.28 × 10−6 pb 3.7 × 10−6 pb
10 lþl− 4.01 × 10−7 pb 7.49 × 10−7 pb

1 WZ 4.0 × 10−4 pb 3.78 × 10−4 pb
10 WZ 3.73 × 10−5 pb 5.41 × 10−5 pb

8http://hepmdb.soton.ac.uk/hepmdb:0416.0200.
9Only the first two families of quarks are included, even

though the third family is known to be important for a center-of-
mass energy of 100 TeV [101].
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B. Strong VBS in pp → jjZZ → jj4l

To model the nonresonant excess and the σ resonance
we have implemented the Lagrangian in Eq. (13) in the
UFO format via the FEYNRULES package. We consider the
following benchmark scenarios:

(i) LET nonresonant enhancement: This is the Lagran-
gian in Eq. (13) without σ. It is the simplest and most
conservative effect of strong VBS in CH models and
is a general feature not specific to the SUð4Þ=Spð4Þ
realization. The observation of this excess gives an
indirect probe of the Higgs coupling to weak bosons
[95]. At the LHC, the measurement of hZZ coupling
can reach 3% accuracy in the most optimistic case
or 5% in a more realistic scenario (at 1 standard
deviation) [106]. These deviations correspond to
sin θ ∼ 0.24 and ∼0.31, respectively. We will show
that even with only the ZZ → 4l channel we may
exclude sin θ ¼ 0.2 with good probability. We con-
sider also sin θ ¼ 0.15, 0.1. We note that the
energies beyond LO unitarity violation have negli-
gible contributions for our analysis.

(ii) Scalar σ resonance: We summarize in Table II
the benchmark scenarios we have considered. The

first four scenarios in the table will be analyzed for a
100-TeV machine and the last one is an optimistic
case to be analyzed at LHC energies.

Events for the process pp → jjZZ → eþe−μþμ−jj have
been simulated at LO with the multipurpose generator
SHERPA [107]. We imported the UFO model through the
beyond the SM module [108] available for the COMIX

matrix element generator [109]. All the samples generated
have LO accuracy, and are showered through the CSS

module, the Catani-Seymour dipole-based shower [110].
We have used dynamical factorization and renormalization
scales μ2F ¼ μ2R ¼ ðpμ

Z1
þ pμ

Z2
Þ2. The NNLO CT14 PDF set

[111] in the four-flavor scheme has been employed.10 The
SM parameters used are αEW¼1=127.9, MZ¼91.18GeV,
GF¼1.16639×10−5GeV and αSðMZÞ ¼ 0.118. Besides
the CH scenario described above, we produced events for
the relevant backgrounds, SM EW ZZjj, and the QCD
ZZþ jets, merged up to the second jet at LO accuracy
through the MPES@LO [112] algorithm as implemented in
SHERPA.
We would like to stress the importance of gauge

invariance in this study. The cancellations are so delicate
that even fixed-width effects can produce a large fake
enhancement at high energies. One way out is to use the
complex mass scheme to restore gauge invariance. Our
approach is instead to set all the widths of the gauge bosons
to zero since, due to the implemented generation cuts, we
do not have kinematic regions where the internal boson

(b)(a)

FIG. 9. The 95% C.L. exclusion regions in the ð~g; rÞ plane for sin θ ¼ 0.2 (left) and sin θ ¼ 0.15 (right) in the ρ → WZ (blue contour,
hashed) and ρ → lþl− (red, shaded) channels. L ¼ 1 ab−1 (solid contour) and L ¼ 10 ab−1.

TABLE II. Parameters of benchmark scenarios for the CH
model with σ resonance.

sin θ υA Mσ (TeV) Γσ (TeV) gσ Collider

0.2 1.2 6 2.81 0.63 FCC
0.15 0.9 6 1.58 0.63 FCC
0.1 0.6 6 0.7 0.63 FCC
0.1 0.8 8 2.69 0.8 FCC
0.2 0.8 4 1.34 0.8 LHC

10Here again the third family PDF, including the top quark,
may play an important role at 100 TeV. This would lead to a
process with two b-jets in the final state, allowing for a b-tagging
on the forward jets, and could be treated as a different process.
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propagators go on shell. Z bosons are decayed a posteriori
with the SHERPA decay handler.
An analysis routine has been implemented in the RIVET

framework [113]. Final-state particles are identified within
jηj < 6. One pair of isolated opposite charged muons
and one of electrons with pT;min ¼ 30 GeV and jηlj < 4

are identified to reconstruct the Z bosons. If more than
one lepton of the same type is present we take the one
with highest pT . The reconstructed Z mass is required to
be in the window 65 < mðZÞ < 115 GeV, in order to
suppress the non-ZZ backgrounds. Jets are reconstructed
with the anti-kT clustering algorithm, with R ¼ 0.4 and
pT;min ¼ 30 GeV. Moreover, typical kinematic selection
cuts to enhance VBS topology have been implemented for
LHC (FCC): the two jets are back to back in the forward-
backward region of the detector, forming a system with
large invariant mass, while the Z bosons are central and
highly energetic. These cuts are summarized in Table III.
For the statistical assessment we performed a simple

counting experiment analysis. We define S ¼ σSL and
B ¼ σBL, where L is the considered integrated luminosity
and σS;B are the effective cross sections after the application
of all selection cuts for the CH scenario (S) and for the SM
prediction (B), both comprising QCD ZZ þ jets. We have
multiplied the final cross section by a factor of 2 assuming
the decay channels with two pairs of identical leptons
can be reconstructed with similar efficiency to the channel
2e2μ. We model the probability to observe a number of
events k with a smeared Poisson and mean value λ, given
by either S or B,

Pðk; λ; ϵÞ ¼ 1

2ϵ

Z
1þϵ

1−ϵ
dxe−xλ

ðxλÞk
k!

ð41Þ

where ϵ models a flat systematic and theoretical uncer-
tainty, related to scale dependence and experimental sys-
tematic error.
QCD corrections to boson-boson production via vector

boson fusion [114–117] at the LHC turn out to be below
10%. At the FCC this is expected to be even lower. EW
corrections, on the other hand, are known to increase with
energy and can be very large and negative for VBS [118].11

To partially account for such large corrections we consider
a flat error up to ϵ ¼ 40%.
A good estimator of the discriminatory power of the

analysis is given by the probability to exclude the SM
assuming one of the CH scenarios describes nature. This
probability is given by

1 − β ¼
X∞
k¼m

Pðk;SÞ ð42Þ

where m is defined by12

Xm
k¼0

Pðk;BÞ ¼ 95%: ð43Þ

1. Nonresonant excess at 100 TeV

We will see below that the nonresonant enhancement
cannot be observed at the LHC; we therefore study this
scenario at a 100-TeV collider.
In Fig. 10 (left panel) we show the distributions of

the reconstructed ZZ system invariant mass, for the
scenario with sin θ ¼ 0.2, 0.15, 0.1. The corresponding
1 − β is shown in the right panel as a function of
luminosity, L. The central solid line assumes a sys-
tematic error ϵ ¼ 20%. The upper and lower dashed
lines refer to no systematic error (ϵ ¼ 0) and ϵ ¼ 40%,
respectively. The vertical dashed line highlights the
benchmark value of luminosity used in the limits set on
the vector resonances, L ¼ 10 ab−1. The line 1 − β ¼
0.5 indicates the exclusion, assuming the mode of the
distribution is observed.
We can see that for the case sin θ ¼ 0.2 we have a good

probability (1 − β ≳ 50%) of excluding the SM already
around L ∼ 3 ab−1. For sin θ ¼ 0.15 we need more sta-
tistics; with L≳ 25 ab−1 we can reach a good probability of
excluding the SM. For sin θ ¼ 0.1 the situation is more
complicated and considering the other VBS channels is
unavoidable.

TABLE III. Selection cuts implemented in the analyses at the FCC and LHC.

Cut 100 TeV 14 TeV

Two jets pT > 30 GeV, jηj > 3.5, η1 · η2 < 0 pT;j > 30 GeV, jηjj > 3, ηj1 · ηj2 < 0

ZZ invariant mass mZZ > 3 TeV mZZ > 3 TeV
Dijet invariant mass mjj > 1 TeV mjj > 1 TeV

Zs centrality jηZi
j < 2 jηZi

j < 2

Zs momentum pT;Zi
> 1 TeV pT;Zi

> 0.5 TeV

11In the W�W� channel at the LHC the EW correction is
k ∼ −25% for Mðl�l�Þ≳ 500 GeV for LHC energies.

12To ensure exact 95% in the formula above we use fractional
values in the sum.
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2. Heavy scalar at 100 TeV

The σ resonance has a more pronounced excess at lower
energies and a better probability of being observed. In
Fig. 11(a) we present the invariant mass of the recon-
structed ZZ system for the resonant scenarios listed in
Table II. We note that the σ resonance postpones the
unitarity violation with respect to the plain LET scenario,
and the high-energy behavior beyond the resonance peak
approaches the SM prediction for a large energy range. For
this reason we add a selection MðZZÞ < 10 TeV to avoid
contamination from nonresonant areas.

In Fig. 11(b) the corresponding 1 − β are shown. We
note a good probability 1 − β > 50% even for sin θ ¼ 0.15,
which could be in particular stronger than vector resonance
searches.

3. Heavy scalar at the LHC

The LHC is not the most indicated machine to observe a
signal of strong VBS in CH models, due to the high
intrinsic compositeness scales. However, nothing is pre-
venting some dynamical mechanism from producing a
lighter state.

(a) (b)

FIG. 10. (a) The ZZ system reconstructed invariant mass distribution for sin θ ¼ 0.1, 0.15, 0.2 in the nonresonant excess scenario and
the SM backgrounds (EW ZZjj and QCD ZZ þ jets). (b) The corresponding 1 − β.

(a) (b)

FIG. 11. (a) The ZZ system reconstructed invariant mass distribution in the σ resonant excess scenarios (Table II). (b) The
corresponding 1 − β.
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Beyond the SM searches through VBS have been
analyzed by the ATLAS and CMS Collaborations
[104,119,120]. In [121] in particular the production of
scalar resonances in VBS in the ZZ → 4l channel atffiffiffi
s

p ¼ 14 TeV, for L ¼ 300–3000 fb−1, has been consid-
ered. For a resonance of mass Mσ ¼ 1 TeV with gσ ¼ 2.5
they predict a sensitivity of 9.4 standard deviations at
3 ab−1. Unfortunately, our motivated scenarios have larger
masses and smaller couplings. We consider here gσ ¼ 0.8,
Mσ ¼ 4 TeV as an optimistic case.
In Fig. 12 we show the invariant mass of the recon-

structed ZZ system at
ffiffiffi
s

p ¼ 14 TeV. The effective cross
section found is only σ ¼ 2.9 × 10−4 ab. As already noted,
the ZZ channel has the smallest cross section among the
VBS channels, and including all the other channels is
imperative for this search. Another source of improvement
could come from the mixing of σ with the Higgs, which at
this mass could give some small gluon fusion contribution.
Further detailed study is required.

V. CONCLUSIONS

In this work we have shown the implications of GBS
unitarity in the spectra of CH scenarios, in particular
the FMCHM.
In particular, we have made definite predictions for the

possible range of the mass of an eventual σ-like composite
scalar resonance, which can be described as a Breit-Wigner
peak only if Mσ ≲ 1.2 TeV= sin θ. Heavier than that, the
LET growing behavior overcomes and dilutes any possible
peak, making the strong VBS signal more like a continuum.
Inspired by models of unitarization, which saturate

unitarity and provide good description of pion-pion and

pion-kaon scattering data, we estimate the parameters of the
CH effective description. The vector and σ couplings to
NGBs are found to be aV ∼ 1 and gσ ≲ 0.63.
The predictions from the analysis of GBS amplitudes

lead to specific signatures at experimental setups in
colliders. Limits on the production cross section of heavy
composite vectors in the FMCHM and a first assessment of
strong VBS in CH in the simplest channel pp → jjZZ →
jj4l have been provided. The results at the 100-TeV
collider are promising. For sin θ ¼ 0.2 the nonresonant
excess could be observed with few inverse attobarns and
an indirect limit on hVV coupling set. The scenario
sin θ ¼ 0.15 will also be observed with modest luminos-
ities L ∼ 30 ab−1. The motivated resonant scenario with
sin θ ¼ 0.15 and gσ ¼ 0.63 would probably be detected
with L ∼ 15 ab−1. For lower values of sin θ other VBS
channels must be considered to enhance the observability
potential. At the LHC the situation is more complicated,
even for very optimistic scenarios, and a more detailed
study including other VBS channels and gluon fusion
production must be considered.
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APPENDIX A: FMCHM IN THE CCWZ
CONSTRUCTION

We follow Refs. [21,22] for the symmetry breaking
structure of the theory. The unbroken Va (a ¼ 1;…; 10)
and spontaneously broken Ya (a ¼ 1;…; 5) generators in
SUð4Þ=Spð4Þ are defined by

Va · Σ0 þ Σ0 · VaT ¼ 0; ðA1Þ

Ya · Σ0 − Σ0 · YaT ¼ 0: ðA2Þ

We can similarly define the unbroken and broken gener-
ators in the ΣB vacuum,

Sa · ΣB þ ΣB · SaT ¼ 0; ðA3Þ

Xa · ΣB − ΣB · XaT ¼ 0; ðA4Þ

and identify Si (i ¼ 1, 2, 3) and Si (i ¼ 4, 5, 6) as the
SUð2ÞL and SUð2ÞR subgroup generators. SUð2ÞL and
Y ≡ S6 are then gauged and identified as the EW group,
weak and hypercharge respectively. When θ is nonzero, the
unbroken generators Va are not fully aligned with the

FIG. 12. ZZ invariant mass at the LHC for the composite
scenario devised for LHC (gσ ¼ 0.8, Mσ ¼ 4 TeV) and the SM
backgrounds (EW ZZjj and QCD ZZ þ jets).
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electroweak generators and EW symmetry is spontaneously
broken.
The (pseudo-)NGB field is parametrized by the expo-

nential map

U ¼ exp

�
i

ffiffiffi
2

p

f

X5
a¼1

πaYa

�
; ðA5Þ

with πa the NGBs. π4 ≡ h is identified with the Higgs
boson and π5 ≡ η a electroweak singlet, and they are
pseudo-NGBs. The other three are the exact NGBs
absorbed by W and Z bosons.
We define the gauge Maurer-Cartan one-form ωμ and its

projections,

ωμ ¼ U†DμU; ðA6Þ

Dμ ¼ ∂μ − igWi
μSi − ig0BμS6; ðA7Þ

xμ ¼ 2Tr½Yaωμ�Ya; ðA8Þ

sμ ¼ 2Tr½Vaωμ�Va: ðA9Þ

vμ transforms inhomogeneously under SUð4Þ,

vμ → v0μ ¼ hðg; πÞðvμ þ i∂μÞh†ðg; πÞ; ðA10Þ

while xμ transforms homogeneously,

xμ → x0μ ¼ hðg; πÞxμh†ðg; πÞ: ðA11Þ

1. Vector resonances in the HLS method

In the HLS method, we enhance the symmetry group
SU(4) to SUð4Þ0 × SUð4Þ1, and embed the SM gauge
bosons in SUð4Þ0 and the heavy resonances in SUð4Þ1. The
low-energy Lagrangian is then characterized in terms of
the breaking of the extended symmetry down to a single
Sp(4): the SUð4Þi are spontaneously broken to Spð4Þi via
the introduction of two matrices Ui containing five NGBs
each. The remaining Spð4Þ0 × Spð4Þ1 is then spontane-
ously broken to Sp(4) by a sigma field K, containing ten
NGBs corresponding to the generators of Sp(4). The two
replicas of the NGB exponential map are given by

U0 ¼ exp

�
i

ffiffiffi
2

p

f0

X5
a¼1

ðπa0YaÞ
�
;

U1 ¼ exp

�
i

ffiffiffi
2

p

f1

X5
a¼1

ðπa1YaÞ
�
: ðA12Þ

The Maurer-Cartan one-form and its projections to the
broken generators are defined for each copy in the

same way as in Eq. (A9), with the weak bosons and
the heavy composite vectors introduced in the different
copies of Ui, as

DμU0 ¼ ð∂μ − igWi
μSi − ig0BμS6ÞU0;

DμU1 ¼ ð∂μ − i~gVa
μVa − i~gAb

μYbÞU1: ðA13Þ

The K field is introduced to break the two remaining
copies of Spð4Þ, Spð4Þ0 × Spð4Þ1 to the diagonal final
Spð4Þ,

K ¼ exp ½ikaVa=fK�; ðA14Þ

and it transforms like

K → K0 ¼ hðg0; π0ÞKh†ðg1; π1Þ: ðA15Þ

Thus its covariant derivative takes the form

DμK ¼ ∂μK − iv0μK þ iKv1μ: ðA16Þ

The ten pions contained in K are needed to provide the
longitudinal degrees of freedom for the ten vectors Va

μ, while
a combination of the other pions πi acts as the longitudinal
degrees of freedom for theAa

μ. It should be reminded that out
of the five remaining scalars, three are exact NGBs eaten by
the massive W and Z bosons, while two remain as physical
scalars in the spectrum: one Higgs-like state plus a singlet η.
In the basis of charge eigenstates, the trilinear couplings

[Eq. (11)] are given by

πþπ−v0∶ igVðp− − pþÞ; ðA17Þ

π�π0v∓∶ igVðp� − p0Þ; ðA18Þ

π�hs∓∶ gVðp� − phÞ; ðA19Þ

π0hs0∶ gVðp0 − phÞ; ðA20Þ

π�η~s∓∶ ∓igVðp� − pηÞ; ðA21Þ

π0η~s0∶ igVðp0 − pηÞ; ðA22Þ

hη ~v0∶ −gVðph − pηÞ: ðA23Þ

We have used a redefinition ~s0 → −i~s0 with respect
to Ref. [45].

APPENDIX B: PARTIAL WAVES AND
INELASTIC CROSS SECTION

One can expand the ππ → ππ scattering amplitudes in
partial waves according to Eq. (15). The elastic differential
cross section is given by (neglecting external masses and
for identical particles)
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dσel ¼
jAðs; tÞj2
64πs

d cos θ: ðB1Þ

By integrating in cos θ and using the completeness relation
of Legendre polynomials we get the contribution from the
elastic channel to the cross section,

σel ¼
32π

s

X
J

ð2J þ 1ÞjaJðsÞj2: ðB2Þ

Now we can get the total cross section by the use of the
optical theorem

σ ¼ 1

s
ℑAðs; 0Þ ¼ 32π

s

X∞
J¼0

ImaJðsÞð2J þ 1ÞPJð1Þ; ðB3Þ

and derive an expression for the total cross section of
inelastic channels ππ → X, which must account for the rest
of the total cross section. Hence,

σinel ¼ σ − σel ¼
32π

s

X∞
J¼0

ð2J þ 1ÞðImaJðsÞ − jaJðsÞj2Þ:

ðB4Þ
We can now defineX

X

jaXJ ðsÞj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

X=s
q

≡ ImaJðsÞ − jaJðsÞj2; ðB5Þ

where X is one inelastic channel and M2
X its total

squared mass. This function has a maximumP
XjaXJ ðsÞj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −M2

X=s
p

< 1=4, which is related to the
Froissart bound for inelastic channel [122].
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