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We calculate the β-functions for SOðNÞ and SUðNÞ gauge theories coupled to adjoint and fundamental
scalar representations, correcting longstanding, previous results. We explore the constraints on N resulting
from requiring asymptotic freedom for all couplings. When we take into account the actual allowed
behavior of the gauge coupling, the minimum value of N in both cases turns out to be larger than realized in
earlier treatments. We also show that in the largeN limit, both models have large regions of parameter space
corresponding to total asymptotic freedom.
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I. INTRODUCTION

The discovery of asymptotic freedom (AF) in 1973 [1,2]
heralded a new era in particle physics. There was immediate
interest in the extent to which AF persists following the
inclusion in a renormalizable gauge theory of fermion and
scalar multiplets. For fermions alone the question is easily
answered, but for scalars, or both fermions and scalars, it
becomes nontrivial. A pioneering and remarkably compre-
hensive analysis was performed very early by Cheng et al.
(CEL) [3]. Under certain assumptions, a search for models of
this type was carried out recently by Giudice et al. [4], who
labeled suchmodels totally asymptotically free (TAF). Other
studies of this sort include Refs. [5,6], who consider relativly
low-scale “unification’ to a semisimple group that is TAF.
Another important question arises once scalar multiplets

are introduced, being the nature and consequences of sponta-
neous symmetry breaking (SSB) in such AF theories, for
example as towhether one can have anAF theorywith SSB to
anAbelian subgroup.CEL also address this issue, concluding
that having enough scalar multiplets to achieve this is
incompatible with AF. This explicit goal no longer seems
essential; however, a fully AF theory remains desirable.
In a series of recent papers [7–10],we have addressed some

other aspects of these issues in the context of a gauge theory
with scalar multiplets coupled to renormalizable, classically
scale invariant gravity. Our motivation in that work was
twofold. Firstly, to demonstrate examples of such theories that
are AF and hence may be termed ultraviolet (UV) complete;
secondly, to show that in such theories, SSB may occur via a
variation on the perturbative dimensional transmutation
mechanism first elucidated by Coleman and Weinberg [11].
Herewe return to theAF issue, but in a class of theorieswith

a more complicated scalar sector than we have previously
considered, namely two distinct scalar representations

transforming according to the adjoint and the fundamental
representations, with gauge groups SOðNÞ and SUðNÞ.1 In
contrast to Refs. [4–6], we restrict our attention to grand
unification in a simple group, even though this model is
incomplete and does not contain the Standard Model (SM).
Weassume the presence of a fermion sector contributing to

the gauge β-functions, but that concomitant Yukawa cou-
plings are sufficiently small that they are all asymptotically
free. As usual [3], they will then make negligible contribu-
tions to the β-functions of the quartic scalar couplings. We
review the flat space CEL calculations, where we find a
number of significant differences from their β-functions. In
the light of these changes, we reconsider the results for the
minimum value of N consistent with AF in the case of both
gauge groups. Here we find some differences from previous
results. For example, CELcorrectly point out that the optimal
situation for AF of the scalar self-couplings occurs for the
minimum of the (absolute) value of the gauge β-function
coefficient (bg), which they choose to approximate by zero.
However, as we point out, this approximation can be
inadequate to establish the actual minimum value of N,
and the genuineminimum of bg should be used in each case.
This model for the SUðNÞ case has been previously
considered in Ref. [12], with whose β-functions we agree.2

We believe our treatment of this SOðNÞ model is new.
We gain further insight into the “minimum value of N”

issue by considering the large N limit of these theories with
appropriate rescaling of the scalar self-couplings. We shall
discuss the extension of these results to renormalizable
gravity elsewhere [13].
The organization of the remainder of the paper is as

follows: In Secs. II and III, we give the beta-functions for the
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1The SUðNÞ case for such scalars was considered by CEL, but
we find some differences in our results both for the β-functions
and for the minimum allowed value of N.

2The authors of Ref. [12] did not mention their disagreements
with CEL. Our minimum value of N differs from theirs.
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SOðNÞ and SUðNÞ models, respectively, and discuss the
minimum value of N consistent with TAF, comparing with
earlier determinations. In Sec. IV, we take up the large N
limits of thesemodels and determine the ultraviolet stable FPs
(UVFPs) for various associated fermionic content. After the
Conclusions, Sec. V, we add two appendices deriving from
the large N models. In Appendix A, we indicate how the
analytic solutions for the UVFPs can be obtained. In
Appendix B, we discuss the possible existence of an infrared
fixed point (IRFP) for the gauge couplings at two loops in
certain cases.

II. THE SOðNÞ MODEL

The scalar potential of the theory is

VðΦ; χÞ ¼ 1

2
λ1ðTrΦ2Þ2 þ λ2TrΦ4 þ 1

8
λ3ðχiχiÞ2

þ 1

2
λ4χiχiTrΦ2 þ 1

4
λ5χiΦikΦkjχj: ð2:1Þ

HereΦ ¼ Raϕa, where ½a ¼ 1; 2…NðN − 1Þ=2� represents
a real adjoint representation, and χi½i ¼ 1; 2…N� is a real
multiplet in the defining (fundamental) representation, and
Ra are the associated antisymmetric N × N matrices
normalized as usual so that

TrRaRb ≡ TðRÞδab; where TðRÞ ¼ 1

2
: ð2:2Þ

Thus, Tr½Φ2� ¼ ϕaϕa=2.
Suppressing in each case a factor of ð16π2Þ−1, the flat

space β-functions are

βg2¼−bgðg2Þ2; bg≡21N−43
6

−
4

3
TF;

βλ1¼
�
NðN−1Þ

2
þ8

�
λ21þ2ð2N−1Þλ1λ2þ6λ22þNλ24

þλ4λ5−6ðN−2Þg2λ1þ9g4;

βλ2¼ð2N−1Þλ22þ12λ1λ2þ
1

8
λ25−6ðN−2Þg2λ2þ

3ðN−8Þ
2

g4;

βλ3¼ðNþ8Þλ23þ
NðN−1Þ

2
λ24þ

N−1
16

λ25þ
N−1
2

λ4λ5

−3ðN−1Þg2λ3þ
3ðN−1Þ

4
g4;

βλ4¼4λ24þ
1

8
λ25þλ5

�
N−1
4

λ1þ
1

2
λ2þ

1

2
λ3

�

þx4

��
NðN−1Þ

2
þ2

�
λ1þð2N−1Þλ2

þðNþ2Þλ3−
3ð3N−5Þ

2
g2
�
þ3

2
g4;

βλ5¼
N
4
λ25þλ5

�
2λ1þðN−1Þλ2þ2λ3þ8λ4−

3ð3N−5Þ
2

g2
�

þ3ðN−4Þg4: ð2:3Þ

Here

TrRa
FR

b
F ≡ TFδ

ab; ð2:4Þ

where the fermions transform according to the representa-
tion RF, and the coefficient of TF in Eq. (2.3) reflects use of
two-component or Majorana fermions. We obtained these
results both by direct calculation and by use of the RG
equation for the effective potential (in the Landau gauge) in
the manner explained in the Standard Model context in
Refs. [14,15]. The disagreements with CEL are in the
coefficients of the following terms:

βλ1∶λ4λ5; βλ2∶λ
2
5; βλ3∶λ4λ5; λ

2
5;

βλ4∶λ1λ5; λ2λ5; λ3λ5; λ
2
5; g

4; βλ5∶λ4λ5; λ
2
5; g

4:

To analyze the RG behavior of the couplings, it is
convenient to introduce rescaled couplings xi ¼ λi=g2,
whereupon the “reduced” β-functions are

β̄x1 ¼
�
NðN − 1Þ þ 16

2

�
x21 þ 6x22 þ 2ð2N − 1Þx1x2

þ Nx24 þ x4x5 þ ðbg − 6ðN − 2ÞÞx1 þ 9;

β̄x2 ¼ ð2N − 1Þx22 þ 12x1x2 þ
1

8
x25 þ ðbg − 6ðN − 2ÞÞx2

þ 3ðN − 8Þ
2

;

β̄x3 ¼ ðN þ 8Þx23 þ
NðN − 1Þ

2
x24

þ N − 1

16
x25 þ

N − 1

2
x4x5

þ ðbg − 3ðN − 1ÞÞx3 þ
3ðN − 1Þ

4
;

β̄x4 ¼ 4x24 þ
1

8
x25 þ x5

�
N − 1

4
x1 þ

1

2
x2 þ

1

2
x3

�

þ x4

��
NðN − 1Þ

2
þ 2

�
x1 þ ð2N − 1Þx2

þ ðN þ 2Þx3 þ bg −
3ð3N − 5Þ

2

�
þ 3

2
;

β̄x5 ¼
N
4
x25 þ x5

�
2x1 þ ðN − 1Þx2 þ 2x3 þ 8x4

þ bg −
3ð3N − 5Þ

2

�
þ 3ðN − 4Þ: ð2:5Þ

In Eq. (2.5),
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β̄xi ≡
dxi
du

; where du≡ g2ðtÞdt: ð2:6Þ

We now proceed to find and classify the fixed points
(FPs) of this system by setting all the reduced β-functions
to zero. As long as one has bg > 0, it is clear that any such
FP (for finite xi) corresponds to TAF. In fact, there are
several FP solutions of this system of equations but, it
turns out, only one is UV stable in all the ratios xi. By UV
stable, we mean that the matrix Sij ≡ ∂β̄xi=∂xj has only
negative eigenvalues at the FP, so that all ratios xi flow
toward the FP asymptotically. We shall refer to such a
point as a UVFP, even though the original couplings are
all TAF.
If any of the eigenvalues is zero, then one would

have to go beyond the linear approximation to determine
whether the associated flat direction is in fact a minimum.
Should that test fail, one would have to go beyond
the one-loop approximation unless one can identify an
exact symmetry ensuring that such a flat direction persists
to all orders in perturbation theory. (It turns out in the
models considered in this paper, such flat directions do not
arise, so this issue is moot.) For flat directions, there may
also be nonperturbative effects such as instantons that lift
the degeneracy but which we have not investigated
presently.
For SOðNÞ, there will be a minimum value of N

consistent with the existence of a UVFP, and this minimum
value of N is generically a monotonically increasing
function of bg. For this reason, CEL set bg ¼ 0 in order
to obtain the minimum of N consistent with a UVFP.
However, this reasoning results in incorrect results when
we consider that, in fact, bg changes by discrete finite steps
obtained by varying the fermion representations of
the model.
If we assume a fermion content consisting of nF funda-

mental (N-dimensional) two-component (or Majorana)
representations, then

bg ¼
21N − 43 − 4nF

6
: ð2:7Þ

Note that for AF we require N > 2. The minimum values
ofbg are obtained by takingnF as large as possible consistent
with bg > 0. These minima, bmin

g , are shown in Table I.
Note that in the case N ¼ 3 (mod 4), it in fact is possible

to have bg ¼ 0. However, in that case the two-loop

correction to βg is necessarily positive in the absence of
Yukawa couplings [16] (which we have been ignoring
throughout) and therefore this case fails to be AF.
With bg ¼ 0, the minimum value of N such that a UVFP

results is N ¼ 10. However, this is not sustained when the
actual value bg ¼ 1=2 is used from Table I. For bg ≠ 0, the
minimum value of N for a UVFP is N ¼ 12. With N ¼ 12
and bg ¼ 1=6, we then find such a FP with

x1 ¼ 0.262953; x2 ¼ 0.111668; x3 ¼ 0.376914;

x4 ¼ 0.104270; x5 ¼ 0.581883: ð2:8Þ

III. THE SUðNÞ MODEL

In this case we have the scalar potential

VðΦ; χÞ ¼ 1

2
λ1ðTrΦ2Þ2 þ λ2TrΦ4 þ 1

2
λ3ðχ†i χiÞ2

þ λ4χ
†
i χ

iTrΦ2 þ λ5χ
†
iΦi

kΦk
jχ

j: ð3:1Þ

Again Φ ¼ Raϕa, where now a ¼ 1; 2…N2 − 1. χi½i ¼
1; 2…N� is now a complex multiplet in the defining
(fundamental) representation, and Ra are no longer
(all) antisymmetric; they are again normalized as usual
so that

TrRaRb ¼ 1

2
: ð3:2Þ

Thus, Tr½Φ2� ¼ ϕaϕa=2.
As indicated in our Introduction (Sec. I), this model

was examined in Chap. 9 of Ref. [12], with β-functions
given in Eq. (9.26) in a slightly different notation. We
have however checked that their flat-space results are in
agreement with ours below.3 Our gravitational correc-
tions differ from theirs, but we shall discuss these
elsewhere [13].
Comparing with the corresponding expression in CEL,

on the face of it the definition of the λ4 terms differ by a
factor of 4. However, in comparing results for the
β-functions, it seems clear that CEL have used our
definition above in the actual calculations. Nevertheless,
there still remain significant differences in the results. Ours
are as follows:

TABLE I. Minimum value of bg in the class of SOðNÞ models.

N 3 (mod 4) 4 (mod 4) 5 (mod 4) 6 (mod 4)

bmin
g

2
3

1
6

1
3

1
2

3Reference [12] does in fact have an error, presumably
inadvertent, in their formula for βf3 , in which the coefficient
of g2f3 should be 3ð3N2 − 1Þ=N, the same as given in their
formula for βf4.
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βg2 ¼ −bgðg2Þ2; bg ≡ 21N − 1

3
−
4

3
TF;

βλ1 ¼ ðN2 þ 7Þλ21 þ
4ð2N2 − 3Þ

N
λ1λ2 þ

12ðN2 þ 3Þ
N2

λ22

þ 2Nλ24 þ 4λ4λ5 − 12Ng2λ1 þ 18g4;

βλ2 ¼
4ðN2 − 9Þ

N
λ22 þ 12λ1λ2 þ λ25 − 12Ng2λ2 þ 3Ng4;

βλ3 ¼ 2ðNþ 4Þλ23 þ ðN2 − 1Þλ24 þ
ðN − 1ÞðN2 þ 2N − 2Þ

2N2
λ25

þ 2ðN2 − 1Þ
N

λ4λ5 −
6ðN2 − 1Þ

N
g2λ3

þ 3ðN − 1ÞðN2 þ 2N − 2Þ
2N2

g4;

βλ4 ¼ 4λ24 þ λ4

�
ðN2 þ 1Þλ1 þ

2ð2N2 − 3Þ
N

λ2 þ 2ðNþ 1Þλ3
�

þ λ25 þ λ5

�
N2 − 1

N
λ1 þ

2ðN2 þ 3Þ
N2

λ2 þ 2λ3

�

−
3ð3N2 − 1Þ

N
g2λ4 þ 3g4;

βλ5 ¼
N2 − 4

N
λ25 þ λ5

�
2λ1 þ

2ðN2 − 6Þ
N

λ2 þ 2λ3 þ 8λ4

−
3ð3N2 − 1Þ

N
g2
�
þ 3Ng4: ð3:3Þ

Assuming, as indicated above, that CEL actually used our
definition of λ4, we disagree with them only in the
coefficients of the following terms:

βλ4∶g
4; βλ5∶λ4λ5; g

4: ð3:4Þ

As before, the form for bg above in Eq. (3.5) assumes
that the fermions are two-component (or Majorana). For
example, if we have an arbitrary number nF of fermions in
the N-dimensional representation, then TF ¼ 1=2 and

bg ¼
21N − 1

3
−
2nF
3

: ð3:5Þ

However the N-dimensional representation of SUðNÞ gives
nonzero triangle anomalies for N ≥ 3, so, in that case, nF
above is necessarily even. Using Eq. (3.5), the results for
bmin
g are shown in Table II. (One can achieve bg ¼ 0 in the

case N ¼ 5 (mod 4), but we eschew this as before because
of the effect of two-loop corrections.)

The corresponding reduced β-functions (xi ≡ λi=g2) are

β̄x1 ¼ ðN2þ 7Þx21þ
4ð2N2− 3Þ

N
x1x2þ

12ðN2þ 3Þ
N2

x22

þ 2Nx24þ 4x4x5þðbg − 12NÞx1þ 18;

β̄x2 ¼
4ðN2− 9Þ

N
x22þ 12x1x2þ x25þðbg −12NÞx2þ 3N;

β̄x3 ¼ 2ðNþ 4Þx23þðN2− 1Þx24þ
ðN − 1ÞðN2þ 2N − 2Þ

2N2
x25

þ 2ðN2− 1Þ
N

x4x5

þ
�
bg−

6ðN2− 1Þ
N

�
x3þ

3ðN − 1ÞðN2þ 2N − 2Þ
2N2

;

β̄x4 ¼ 4x24þ x4

�
ðN2þ 1Þx1þ

2ð2N2− 3Þ
N

x2þ 2ðNþ 1Þx3
�

þ x25þ x5

�
N2− 1

N
x1þ

2ðN2þ 3Þ
N2

x2þ 2x3

�

þ
�
bg−

3ð3N2 − 1Þ
N

�
x4þ 3;

β̄x5 ¼
N2− 4

N
x25þ x5

�
2x1þ

2ðN2− 6Þ
N

x2þ 2x3þ 8x4

þ
�
bg−

3ð3N2 − 1Þ
N

��
þ 3N: ð3:6Þ

For this model, using the approximation bg ¼ 0, the
smallest value of N required to have all couplings AF was
given as Nmin ¼ 7 in Ref. [3], using incorrect β-functions,
and as Nmin ¼ 8 in Ref. [12], using the same β-functions as
ours. For N ¼ 8, the actual minimum value is bmin

g ¼ 1, for
which we find the model is not AF. For N ¼ 9, we have
bmin
g ¼ 4=3, for which the model is AF with its UVFP at

x1 ¼ 0.386000; x2 ¼ 0.293121; x3 ¼ 0.502429;

x4 ¼ 0.195158; x5 ¼ 0.398832: ð3:7Þ

IV. THE LARGE N LIMIT

Let us consider the large N limit of this class of theories.
Of course, as shown many years ago by ’t Hooft [17] for
SUðNÞ, the relevant graphs in the large N limit are planar;
summing these graphs to obtain the full leading N
approximation has proved elusive, even for the pure

TABLE II. Minimum value of bg in the class of SUðNÞmodels.

N 2 (mod 4) 3 (mod 4) 4 (mod 4) 5 (mod 4)

bmin
g

1
3

2
3

1 4
3
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Yang-Mills theory, and despite the fact that there must exist
a classical master equation [18]. Consequently, to salvage
perturbative believability, our results will still require the
relevant couplings to be small. Nevertheless, the results
have features of interest.
Let us begin by considering the SUðNÞ case. [The results

for SOðNÞ turn out to be essentially the same and will be
given below.] Because the gauge contribution to bg
naturally grows as N, ~bg ≡ bg=N remains finite as
N → ∞. Then, as ’t Hooft showed [17], defining a rescaled
gauge coupling ~g2 ≡ Ng2, its β-function satisfies

β ~g2 ¼ − ~bgð~g2Þ2: ð4:1Þ

Thus, in the limit N → ∞, g → 0 for fixed ~g2, β ~g2 remains
finite. Similarly, if we rescale the couplings λi in a certain
way, the resulting β~λi will have finite limits in terms of

rescaled couplings ~λi. This requires

λ1 ¼ ~λ1=N2; λ2 ¼ ~λ2=N; λ3 ¼ ~λ3=N;

λ4 ¼ ~λ4=Np4 ; λ5 ¼ ~λ5=N; ð4:2Þ

for 3=2 ≤ p4 ≤ 2. This ambiguity in the rescaling of λ4
reflects a nonuniformity of the limiting behavior. For
3=2 < p4 < 2, all dependence on ~λ4 drops out except in
β~λ4 , and we find

β~λ1 ¼ ~λ21 þ 8~λ1 ~λ2 þ 12~λ22 þ 18~g4 − 12~g2 ~λ1;

β~λ2 ¼ 4~λ22 þ 3~g4 − 12~g2 ~λ2;

β~λ3 ¼ 2~λ23 þ
1

2
~λ25 þ

3

2
~g4 − 6~g2 ~λ3;

β~λ4 ¼ ~λ4ð~λ1 þ 4~λ2 þ 2~λ3 − 9~g2Þ;
β~λ5 ¼ 2~λ2 ~λ5 þ ~λ25 þ 3~g4 − 9~g2 ~λ5: ð4:3Þ

Inasmuch as β~λ4
is linear in ~λ4, it differs from the others and

from the finite N, Eq. (3.3), β-functions. Consequently, it
has a FP at λ4 ¼ 0, independent of the values of the other
couplings. It turns out that, when one forms the reduced
β-functions in terms of the ratios ~yi ≡ ~λi=~g2, y4 ¼ 0 is in
fact a UVFP for Eq. (4.3).
At the extreme values, p4 ¼ 3=2 or p4 ¼ 2, other terms

survive. In the case, p4 ¼ 3=2, there are quadratic terms in
~λ4 that survive in β~λ1

and β~λ3 , to wit,

β~λ1 ¼ ~λ21 þ 8~λ1 ~λ2 þ 12~λ22 þ 2~λ24 þ 18~g4 − 12~g2 ~λ1;

β~λ3 ¼ 2~λ23 þ
1

2
~λ25 þ ~λ24 þ

3

2
~g4 − 6~g2 ~λ3: ð4:4Þ

The remaining three β-functions are the same as in
Eq. (4.3). It turns out that the UVFP remains at λ4 ¼ 0

in this case, so the presence of these additional terms does
not change the values of the UVFP from the case
3=2 < p4 < 2, Eq. (4.3). They will however affect the
running of the couplings away from the FP.
For p4 ¼ 2, all β~λi for i ≠ 4, are unchanged, whereas β~λ4

becomes

β~λ4
¼ ~λ5ð~λ1 þ 2~λ2 þ 2~λ3Þ þ ~λ25 þ 3~g4

þ ~λ4ð~λ1 þ 4~λ2 þ 2~λ3 − 9~g2Þ: ð4:5Þ

In fact, this, together with the other β-functions from
Eq. (4.3), are an excellent approximation to the large-N
behavior of the exact equations, Eq. (3.3). The other
choices for p4 do not appear to be physically relevant.
For p4 ¼ 2, the reduced β-functions in terms of

~yi ≡ ~λi=~g2, are

β̄ ~y1 ¼ ~y21 þ 12~y22 þ 18 − ð12 − ~bg − 8~y2Þ~y1;
β̄ ~y2 ¼ 4~y22 þ 3 − ð12 − ~bgÞ~y2;

β̄ ~y3 ¼ 2~y23 þ
1

2
~y25 þ

3

2
− ð6 − ~bgÞ~y3;

β̄ ~y4 ¼ ~y5ð~y1 þ 2~y2 þ 2~y3Þ þ ~y25 þ 3

þ ~y4ð~y1 þ 4~y2 þ 2~y3 − ð9 − ~bgÞÞ;
β̄ ~y5 ¼ ~y25 þ 3 − ð9 − ~bg − 2~y2Þ~y5: ð4:6Þ

Solving simultaneously the equations β̄ ~yi ¼ 0, we find
several FPs, one of which is UV stable. The values of this
UVFP for various values of ~bg are given in Table III. For
~bg ≳ 0.84798, there are no real FPs.
The results for SOðNÞ are precisely analogous to those

above. Given the definitions of the self-couplings λi in
Eq. (2.1), the β-functions for the gauge and self-couplings
are

TABLE III. UVFPs for SUð∞Þ.
~bg ~y1 ~y2 ~y3 ~y4 ~y5

0. 2.64270 0.275255 0.289413 0.970346 0.371374
1=3 2.94605 0.284989 0.312552 1.20422 0.389234
1=2 3.15683 0.290153 0.325788 1.39047 0.398894
3=4 3.67495 0.298306 0.348280 1.94791 0.414424
0.84798 4.36728 0.301646 0.358128 2.99190 0.420885
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β~g2 ¼ − ~bg ~g4;

β~λ1
¼ 1

2
~λ21 þ 6~λ22 þ 9~g4 þ ð4~λ2 − 6~g2Þ~λ1;

β~λ2
¼ 2~λ22 þ

3

2
~g4 − 6~g2 ~λ2;

β~λ3
¼ ~λ23 þ

1

16
~λ25 þ

3

4
~g4 − 3~g2 ~λ3;

β~λ4
¼ ~λ5

�
1

4
~λ1 þ

1

2
~λ2 þ

1

2
~λ3

�
þ 1

8
~λ25 þ

3

2
~g4

þ ~λ4

�
1

2
~λ1 þ 2~λ2 þ ~λ3 −

9

2
~g2
�
;

β~λ5
¼ 1

4
~λ25 þ 3~g4 þ

�
~λ2 −

9

2
~g2
�
~λ5: ð4:7Þ

The ~λi above are defined as in Eq. (4.2), with p4 ¼ 2.
Defining once again, ~yi≡ ~λi=~g2, the reduced β-functions

are

β̄ ~y1 ¼
1

2
~y21 þ 6~y22 þ 9þ ð4~y2 þ ~bg − 6Þ~y1;

β̄ ~y2 ¼ 2~y22 þ
3

2
þ ð ~bg − 6Þ~y2;

β̄ ~y3 ¼ ~y23 þ
1

16
~y25 þ

3

4
þ ð ~bg − 3Þ~y3;

β̄ ~y4 ¼ ~y5

�
1

4
~y1 þ

1

2
~y2 þ

1

2
~y3

�
þ 1

8
~y25 þ

3

2

þ ~y4

�
1

2
~y1 þ 2~y2 þ ~y3 þ ~bg −

9

2

�
;

β̄ ~y5 ¼
1

4
~y25 þ 3þ ~y5

�
~y2 þ ~bg −

9

2

�
: ð4:8Þ

As with SUðNÞ, we find several FPs, of which one is UV
stable. The values of this UVFP for various values of ~bg are

given in Table IV. For ~bg ≳ 0.42399, there are no real FPs.
A cursory comparison of Tables III and IV indicates that

many of the rows for the UVFP ~yn are approximately the
same provided, in Table IV, one doubles ~bg and halves ~y5.
Most entries then agree at least in their first two significant
figures. This comes about because the leading term in bg is
proportional to CðGÞ, which, for SOðNÞ, is N=2, half that
of SUðNÞ. To understand the factor of 2 in ~y5, we must
compare the normalization of λ5 in the potentials, Eqs. (2.1)
and (3.1). Recalling that χi is complex for SUðNÞ and real
for SOðNÞ, we would anticipate the couplings might
correspond at large N if λ5 were replaced by λ5=2 in the
potential for SUðNÞ.
On the other hand, if, as with SOð10Þ, one were to add a

fermion in the smallest spinor representation of SOð2nÞ, for
which TðRÞ ¼ 2ðn−4Þ, then obviously the condition that
bg > 0 will be violated at some finite n. (In fact, one must
have n ≤ 10.) Thus, there would be no large-N scaling limit
in such a case.

Equations (4.6) and (4.8) are sufficiently simple to be
solvable analytically (as functions of ~bg) for the FPs of the
β-functions, in particular, for the UVFP. This is described in
Appendix A. In practice, it is actually easier simply to solve
for the FPs numerically. Knowing from the preceding
which of the FPs is the candidate UVFP, one can easily
check whether the eigenvalues of the stability matrix Sij are
all negative. In fact, since the UVFP occurs for positive ~yi,
we can be confident that it is unique [19].4

With reference to the first rows of Tables III and IV, it is
clear that for large but finiteN, ~bg is very small. One ought to
wonder whether the two-loop corrections to the β-functions
might not be equally large in certain cases. Such a possibility
has been examined in the past [20,21] and leads to the idea
that there may be a finite IRFP in g2, a so-called CBZ FP.We
elaborate on this possibility in Appendix B.

V. CONCLUSIONS

We have presented the flat space one-loop β-functions
for both SUðNÞ and SOðNÞ gauge theories coupled to
scalar multiplets in both the adjoint and fundamental
representations. Both cases were originally studied in
CEL; our results differ from theirs in a number of terms,
as do our conclusions regarding the minimum values of N
consistent with TAF, i.e., asymptotic freedom of all the
couplings. In the SUðNÞ case, our results for the
β-functions agree with those presented in BOS (though
not so, as we shall discuss elsewhere [13], when extended
to renormalizable gravity). Instead of simply approximat-
ing the minimum allowed value of bg > 0 by zero, we paid
particular attention to the actual minimum for an essentially
arbitrary choice of fermion representations (Tables I and II),
except for spinor representations, for which there is no
large N scaling limit that is still TAF.
One interesting result in the case of SOðNÞ is that the

smallest allowed value of N is greater than N ¼ 10 (as it is
for bg ¼ 0) when the actual bmin

g ¼ 1=2. The minimum
may go even higher than N ¼ 12 when additional scalars
are included in order to have appropriate Yukawa couplings

TABLE IV. UVFPs for SOð∞Þ.
~bg ~y1 ~y2 ~y3 ~y4 ~y5

0. 2.64270 0.284989 0.310944 1.17978 0.710102
1=6 2.94605 0.290153 0.325788 1.39047 0.741044
1=3 3.45350 0.295531 0.338224 1.64814 0.774966
5=12 4.08657 0.301141 0.354074 2.44429 0.793191
0.42399 4.36728 0.301646 0.355550 2.90078 0.794836

4The example given in Ref. [19] unfortunately uses the
β-functions of Ref. [3] for the model we have treated here. As
we have stated, some of those β-functions are incorrect, but, in
their application, the qualitative conclusions of Ref. [19] remain
unchanged.
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to accommodate the SM fermion spectrum and to incor-
porate electroweak symmetry breaking.
For SUðNÞ, we found that the smallest value of N for

which all couplings are AF is Nmin ¼ 9, for which
bmin
g ¼ 4=3. This is to be compared with Nmin ¼ 7 in

Ref. [3], using incorrect β-functions, and Nmin ¼ 8 in
Ref. [12], using correct β-functions but taking bg ¼ 0.
We also discussed the large N limit in both theories, with

couplings appropriately rescaled so as to render the
β-function coefficients finite. One result there is that there
is an allowed maximum value of bg for large N beyond
which there is no real UVFP. It is about 0.85N for SOðNÞ
and 0.42N for SUðNÞ, so the allowed range of choices for
the fermion representations is not nearly so restrictive as
suggested by choosing N to be as small as permitted, and it
may become much easier to accommodate the three
generations of fermions in the SM. These results are, we
believe, novel and interesting.
These calculations constitute part of our efforts to develop

a UV complete, TAF theory coupled to renormalizable,
scale-invariant gravity that is realistic, i.e., one that leads to
the Standard Model plus Einstein-Hilbert gravity at low
energies. We plan to extend our results here to incorporate
gravitational couplings and to explore whether dimensional
transmutation can generate both gauge symmetry breaking
and a Planck mass term, along the lines of Ref. [10]. Then,
for a realistic model, other scalar representations and the
effect of Yukawa couplings must be considered.We showed
in Ref. [10] how breaking of SOð10Þ to SUð5Þ ×Uð1Þ can
occur in a scale invariant model; one outstanding problem is
how further breaking may be engineered, eventually to the
Standard Model gauge group. The results in this paper
suggest that it will requireNmin ≥ 12 for SOðNÞ andNmin ≥
9 for SUðNÞ, and these minimum values may be even larger
after adding additional scalars needed to account for fermion
masses and to break down to the SM gauge symmetries.
Renormalizable gravity makes relatively small changes to
the flat space results near the UVFP, but there remains the
issue of unitarity in such theories.
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APPENDIX A: ANALYTIC SOLUTIONS
FOR THE LARGE-N FIXED POINTS

As mentioned in the text, Eqs. (4.6) and (4.8) are
sufficiently simple that, given ~bN , their FPs can be
analytically determined. Although all FPs may be so
determined, we shall focus on finding the UVFP.
Consider first the SUðNÞ case, Eq. (4.6). Note that β̄ ~y2 is

a function of ~y2 only. It will have real zeros if and only if the
discriminant of the quadratic is positive:

ð6 − ~bg=2Þ2 − 12 > 0: ðA1Þ

Assuming 12 − ~bg > 0, then the two FPs occur for ~y2 > 0,
and it is easy to see that the smaller is the UVFP. We can
input this value of ~y2 into the other four β-functions to search
for a UVFP in the other ~yn. This enables us to solve explictly
for the FPs in ~y1 from β̄ ~y1 ¼ 0 and for ~y5 from β̄ ~y5 ¼ 0, along

with further constraints on ~bg arising from requiring the
equations to have real roots. In each case, we can choose the
root of the quadratic equation having negative slope for fixed
values of the other ~yn, giving us further candidates for the
UVFP. Given ~y5, we can then solve for ~y3 from β̄ ~y3 ¼ 0, and
choose the smaller root once again. So now we have
candidate values for ~yk; fk ¼ 1; 2; 3; 5g. Finally, β̄ ~y4 is linear
in ~y4, so it has a unique root that can be expressed in terms of
the solutions for the other ~yn. In principle, it could be positive
or negative, but it is a UVFP only if the coefficient is
negative, i.e., only for

~y1 þ 4~y2 þ 2~y3 < 9 − ~bg: ðA2Þ

Thus, the root for ~y4 is also positive. Since each of the
UVFPs is known as a function of ~bg, this inequality may

further restrict the range of ~bg within which there are real
solutions for all the UVFPs. (See Table III.)
Thus we arrive at a unique candidate for the UVFP,

within a restricted range of ~bg. We cannot immediately
conclude that this is a UVFP because the stability matrix
Sm;n ≡ ∂β̄ ~ym=∂ ~yn at a FP has nonzero off-diagonal terms
(except in the case of β̄ ~y2 .) In the preceding, we only took
into account the signs of the diagonal entries in each case.
One must verify that the true eigenvalues at the putative
UVFP have the signs of the diagonal entries. In fact,
they do.
The solution for the SOðNÞ case, Eq. (4.8) can be

obtained in precisely the same manner. The only changes
are in the numerical coefficients of the couplings.

APPENDIX B: THE CBZ INFRARED
FIXED POINT

While bg > 0 is required for AF of the gauge coupling,
to obtain AF for the quartic scalar couplings as well it is
optimal to employ the smallest possible value of bg. This
suggests the possible existence of a CBZ [20,21] infrared
stable fixed point (IRFP); in other words, the basin of
attraction of the UVFP at g2 ¼ 0 is finite.5 Writing

βg2 ¼ −
bg

16π2
g4 þ 2

B
ð16π2Þ2 g

6; ðB1Þ

5We thank a referee for a suggestion that inspired the following
remarks.
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we have in general (in the absence of Yukawa couplings)
that

bg ¼ 2

�
11

3
CG −

2

3
TF −

1

6
TS

�
ðB2Þ

and

B ¼ 10

3
CGTF þ 2

X
CFα

TFα

þ 2
X

CSβTSβ þ
1

3
CGTS −

34

3
C2
G: ðB3Þ

Here TF ¼ P
TFα

and TS ¼
P

TSβ where we label the
irreducible fermion and scalar representations by α, β
respectively.
It was first noted by Caswell [20] that, in a gauge theory

with fermions (but no scalars), for bg ¼ 0, B > 0. It follows
that for bg > 0 but sufficiently small, there exists a
perturbatively believable IRFP corresponding to

g2IR
16π2

¼ bg
2B

: ðB4Þ

In the case of a gauge theory with scalars (but no fermions)
or with both scalars and fermions the corresponding result
is less obvious, but a detailed examination of the possible
quadratic Casimir operators confirms that the same result
holds in these cases, too [22].
Given the proximity of the IRFP to the origin, it is clear

that there is only a limited range of values, 0 < g < gIR, of

g at some reference scale (the grand unified theory scale for
instance), corresponding to AF. For g > gIR, then g
approaches a Landau pole in the UV, i.e., perturbation
theory breaks down. In particular, at large N, for either
SOðNÞ or SUðNÞ, it is easy to see that B → kN2, where k is
a constant. In the large N limit, we define ~bg ≡ bg=N,
~B≡ B=N2, and ~g2 ≡ Ng2, as in Sec. IV. Then

~g2IR
16π2

¼
~bg
2 ~B

: ðB5Þ

It is thus clear that for very small ~bg, corresponding to the
first rows of Tables III and IV, the range of ~g corresponding
to AF is actually very limited. This may constrain model
building involving renormalizable quantum gravity of the
kind envisaged in Ref. [10], where it was important that the
region of coupling constant space corresponding to dimen-
sional transmutation and spontaneous symmetry breaking
lay within the basin of attraction of the UVFP of coupling
constant ratios corresponding to AF of all couplings.
Conversely, should the IRFP of the gauge coupling be
approached in the IR, the resulting theory would probably
become strongly coupled, because the gravitational self-
couplings increase in the IR. Then we would expect a
QCD-type phase transition before the gauge coupling
reaches its IRFP, unless all the other couplings also
displayed CBZ behavior in the IR limit.
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