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Chiral representations are the key to obtaining light fermions from some ultraviolet completed theories.
The well-known chiral example is one family set of 15 chiral fields in the standard model. We find a new
chiral theory SU(2) 4, x U(1), with 16 chiral fields, which does not have any gauge and gravitational
anomalies. The group SU(2),,4 % U(1), may belong to the dark sector, and we present a derivation of the
spectrum from the Eg x E{ heterotic string. Necessarily, there appear two degrees at low energy: two dark-
Z"s, or a dark-Z' plus a dark photon. Being chiral, there is a chance to probe this theory at TeV accelerators.
Since the model belongs to the dark sector, the way to probe it is through the kinetic mixing.
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I. INTRODUCTION

In particle physics, there has been a deep question known
as the gauge hierarchy problem: “How do the Standard
Model (SM) fermions appear at such a small electroweak
scale, compared to an ultraviolet completed scale, the
Planck mass Mp, or the grand unification (GUT) scale
Mgut?” Two issues in the hierarchy problem are as
follows: (i) obtaining massless SM particles at the ultra-
violet completed scale, and (ii) rendering the electroweak
scale masses to the SM fermions. The first issue is resolved
by the profound and simple requirement, a chiral theory at
the ultraviolet completed scale [1]. The second issue is the
method obtaining the vacuum expectation value (VEV) of
the Higgs field at the electroweak scale v,,, = 246 GeV, a
kind of TeV scale, for which the most well-known example
is supersymmetry (SUSY) [2].

In this paper, we propose that any particles appearing at
the TeV scale, for a detection possibility at the LHC, must
satisfy condition (i). The best known example is a spinor
representation in the SO(4n+2) GUT models [3].
Orbifolding in extra dimensions presents a possibility of
massless particles, as shown in a simple field theoretic
orbifold [4]. But, the orbifold compactification in string
theory is the prototype example [5], providing a simple
geometrical interpretation. Note, however, that fermionic
constructions [6] and Gepner models [7] have also been
used in four-dimensional (4D) phenomenology from string.
In these 4D constructions, it was necessary to check
whether vectorlike representations of exotically charged
particles, which appear quite often, are present or not
present as studied in Refs. [8].

Anyway, condition (i) is the basic requirement we satisfy
at low-energy effective theory in four dimensions. To
realize condition (ii), model parameters are required to
be known in detail, and hence we do not discuss it here
except by pointing out several mass scales in particle
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physics. The SM chiral theory, realized in nature, describes
the electroweak scale physics successfully. So, we antici-
pate that if a natural chiral model is found, then it might
have a great chance to be realized in nature. Since any new
particle has not been detected at the LHC so far, a new
particle in the new chiral theory, which interacts with the
SM sector extremely feebly, must be in the dark sector.
Here, the dark sector is not introduced just for explaining
cold dark matter (CDM) of the Universe. The well-known
CDM examples, “invisible” axions [9], and weaky inter-
acting massive particles [10], belong to the visible sector.
On the other hand, the heterotic Eg x Ej string [11] implies
a possibility of a dark sector from Eg. If the dark sector
introduces CDM, then it is just a bonus. In fact, a dark
sector for various possibilities of CDM particles has been
introduced earlier [12] to account for the excess of positron
spectra. Even though the dark sector interacts with the SM
sector extremely feebly, it can be probed by the kinetic
mixing terms [13] of two SM gauge bosons, photon and Z.
Since the dark sector does not carry the SM weak
hypercharge, the charge raising and lowering gauge bosons
in the dark sector cannot have kinetic mixings with W+ of
the SM.

In the dark sector, a simple chiral theory is shown to be
SU(2) gac x U(1), which does not have any gravitational
and gauge anomalies. Because the rank of this gauge group
is 2, we will have two Z’ gauge bosons at low energy. This
minimal model will be called two dark Z model (TDZ). The
first new particles observed at the CERN SPS proton-
antiproton collider were W* and Z [14]. This is because it
is relatively easy to identify leptons at high-energy col-
liders. With this new chiral model, therefore, we expect that
the first new particles expected at the LHC are two dark Z’s.

In Sec. II, we present the minimal chiral model. In
Sec. TII, the kinetic mixing in the SU(2)4,4 x U(1), is
discussed. In Sec. IV, it is shown that the minimal chiral
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model is derivable from a string compactification.
Section V is a conclusion. In Appendix, a SUSY scenario
based on the hidden sector SU(5) from Z,_; orbifold
compactification [15] is discussed.

II. MINIMAL CHIRAL MODEL

If a new gauge boson is discovered at a terrestrial
observatory using the SM particle beams, it may be from
a chiral theory. A pure U(1) gauge theory can survive down
to the TeV scale, but we need matter Higgs fields to render
it mass. Thus, a pure gauge theory is completely decoupled
from the LHC machine. Furthermore, to couple to the SM
particles, we need some matter fields possessing both
quantum numbers of the SM and this hypothetical U(1).
Then, it is not a pure gauge theory.

Sometimes, a chiral extension of the SM, SU(2), x
SU(2)g x U(1), is considered as a low-energy model [16].
Its subgroup SU(2), x U(1), x U(1),z_, may be consid-
ered as the simplest extension of the SM. Our dark sector,
however, does not include these extensions because the
SM fermions carry B — L charges that form a vectorlike
representation of U(1),_,. We will not allow vectorlike
representations. Another simple extension with a strongly
interacting effective extra U(1) in the dark sector has been
studied [17] to probe self-interacting dark matter.

With these caveats, we consider a new chiral theory. A
chiral theory near the electroweak scale should not have
gravitational and gauge anomalies. First, consider the rank-
1 gauge groups. If we consider an SU(2), it is not possible
to have a chiral theory because there must be an even
number of doublets [18]. With only one U(1), group, the
absence of gravitational anomaly requires Tr Y = 0 and the
absence of gauge anomaly in addition requires Tr Y3 = 0.
For example, even though two charged fields ¥ = +1 and
—1 do not have these anomalies, the model is not allowed in
our framework because it is vectorlike. But if we use the Y
of the SM, these two conditions are satisfied." Second, let
us consider the rank-2 gauge groups,

SU(3): Vectorlike representations, hence not allowed,

SU(2) x SU(2): No chiral theory with even number of
doublets,

U(1) x U(1)": Six conditions for the absence of anom-
alies,{TrY, TrY’, TrY?, TrY"”?, TrYY”?, TrY?Y'} = 0, and

SU(2) x U(1): Two conditions with doublets and singlets,
{TrY,TrY?} =0. (1)

Thus, the simplest case is SU(2)g,4 % U(1),, and at least
two dark-Z"’s are predicted at low energy. Two conditions
in (1) for N(= even) doublets and 2N singlets are

'In addition, the SM requires Tr ¥ = 0 for quarks and leptons
separately, and also additional conditions for the absence of non-
Abelian gauge anomalies.
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Condition (2) satisfies Eq. (3) if the term Zi##k is
vanishing. The number of terms in this sum is

<4N > ()
3 9
which is very large. So, a complete search is more involved.
The well-known chiral theory, satisfying (3), is the
SM, SU(3) x SU(2), x U(1)y.

Here, we present a simpler one SU(2)y,, x U(1),,

satisfying the conditions in (2) and (3), with the following
fermions:

Lo (E Ei i =1.2.3
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3 & &%
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where the subscripts denote the Q charges. There are four
doublets without the SU(2) anomaly [18]. One set, one
of E;_, and Sf 1> forms a vectorlike pair, but we keep them
to provide masses for all the particles after breaking
SU(2) ga X U(1). In Eq. (5), there appear 16 left-handed
chiral fields,” and they do not introduce any gravitational
and gauge anomalies. It is interesting to observe that there
appear 16 chiral fields as in the spinor representation 16 in
SO(10). Equation (5) realizes the TDZ model.

To break the rank-2 gauge group SU(2)g,, x U(1),
completely and to give fermions masses, let us introduce
two doublets® and a singlet of scalars,

‘) (#)
®, = . ®,= , So (6
(% o () s

2

where their VEVs are”

*Note that the SM has 45 chiral fields.

With supersymmetry, we need two doublets to make all chiral
fields massive.

4Choosing the O = 2 singlet for breaking U(1) is just for an
illustration.
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W= 8=k )
Then, masses of two dark-Z'’s are
2
M, = (G + Gy)Vh = 2oV, ®)

MZ _(2 )ZV_.%_zzv2
z, — 9o 2 90

= 2g5tan’0V3,  (9)
where g, and g, are the SU(2)4, and U(1), couplings,
respectively, tan 6 = g, /gy, and V3 = V2 + V2. Thus, the
mass ratio of two dark-Z’ masses is

r:ﬁ‘ﬁsme. (10)
Vb

If V¢ — 0, Z, may be called a dark photon, which is
included in our terminology TDZ. This estimate will be
used in Appendix.

III. THE KINETIC MIXING

If multiple dark-U(1) gauge bosons are present, they can
mix with the SM photon, most probably via kinetic mixings
as suggested in [13]. Since the rank of the SU(2)g, X
U(1), gauge group is 2, there are two dark- Z’ ’s and we
summarize their kinetic mixing with a photon These arise
via loops between photon and dark-photon through an
intermediate particle(s) y that carries both the electromag-
netic and dark charges. After a proper diagonalization
procedure of the kinetic energy terms, the electromagnetic
charge of y can be millicharged, O(a/2x)e. In the heterotic
Eg x Ej string model, the extra E§ gauge group may contain
dark photons that will be called dark-Z"’s, leading to the
kinetic mixing of O(a/2x) [19]. Indeed, an explicit model
for this kind from string compactification exists in the
literature [20,21].

The intermediate O(MeV) millicharged particles have
not been ruled out by observations in the previous study
[22-24]. For the discovery possibility at the LHC, we
consider the electroweak scale dark-Z'’s.

Consider three Abelian gauge groups U(1)qep and
U(1),(i = 1,2). The kinetic mixing of U(1)qggp and
U(1), dark-Z"’s are parametrized by, following the notation
of [21,23],

1 1, 1oy o

E — _ZFﬂDFﬂD_le Xl;w 4x2yx2;w
élF X — asz X2””—§12X1 X2, (11)
2

>Their mixing with the Z boson is omitted here.
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where A”(X"ﬂ) is the U(1)ggp [dark-U(1)] gauge boson,
and its field strength tensor is F " (X ;w) The kinetic
mixings are parametrized by &’s, which are generically
allowed by the gauge invariance and the Lorentz symmetry.
In the low-energy effective theory, £’s are considered to be
completely arbitrary parameters. An ultraviolet-completed
theory is expected to generate the kinetic mixing param-
eters. The usual diagonalization procedure of these kinetic
terms leads to the relation,

A” By, 0 0 Aﬂ
x! | = 75\‘/‘% I=¢h o & |, (12
2 A
X & &n 1 .
where
(& = &)* 4265 (1 = &)
By, = \/1— ! - %2 ‘ (13)

and we obtain

1 1 1
‘C:_ZFﬂDFﬂD_ZX/IWXIﬂD_ZX/%DXZ”D7 (14)

where the new field strengths are F,,, X}, and Xj,. The
photon corresponds to A, and dark-Z”s correspond to
X! (i =1,2). If the dark-Z"’s are exactly massless, there
exists an SO(3) symmetry in the A, — X,’, field space.

Using the above SO(3) symmetry, let us take the
following simple interaction Lagrangian of a SM fermion
with a photon in the original basis as

L =y (Qey")yA,. (15)

Note that in this basis there is no direct interaction between
the electron and the hidden sector gauge boson X. If there
exists a hidden sector Dirac fermion y with the U(1),,
charge Q,, its interaction with the hidden sector gauge
boson is simply represented by

L= (@09 X (16)

where é., can be different from é in general. In this
case, there is also no direct interaction between the

hidden fermion and the visible sector gauge boson Aﬂ.

We can recast the Lagrangian (15) in the transformed basis
A, and X,

V1-&,
V1-8-8,+2658,

QS
>

rwA,.  (17)
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where we used the inverse of (12),

VI=&,. o, 0

1 _&-6én 52512 By, 0

- 2 1
Det -8, (18)
——52_%22 ., —¢nB1, By m
with

Det = \/1-8 -8 - &, + 26660

Here, one notices that the standard model fermion has a
coupling only to the visible sector gauge boson A, even
after changing the basis of the gauge bosons. However,
the coupling constant ¢ is modified to e as suggested in
Eq. (17). Similarly, we derive the following couplings for y:

ef* & =&
L= )(y”[ (B“X1 Y )Qe"
Det SV -y

éex
+D . (Bn\/ 1 —&L,X5 — Bii&pX,

52 : flélZA) 3 :|)( (19)
V=762

In this basis, the hidden sector matter field y now can
couple to the visible sector gauge boson A, with the

couplings —2* Q% (&) — £,61,)/+/1 — &, /Det to the mass
eigenstate X, and 85* 05 (&, — £,&12)/+/ 1 — €}, /Det to the

mass eigenstate Xi. In terms of the aforementioned SO(3)
symmetry, it simply means the mismatch between the
gauge couplings of the electron and other fermions.
Thus, we can set the physical hidden sector coupling e,
as e, = €., and we define the coupling of the field y to the
visible sector gauge boson A,, introducing the millicharge
parameter g;, as ¢;e such that

e
Vi-8-8
81__@ 5 52512 _251’
e \/1- T+ 2858
(20)
82:_6 & —&ién %—ﬁéz.
e /1~ — & +265¢n, €
(21)

Note in general that e # e§*. Since &; 1, = O(g;e/e5*) is
expected to be small, the condition ¢&;, <1 gives
a*/a > €. From a fundamental theory, one can calculate
the ratio e.,/e in principle, which is possible with the
detailed knowledge of the compactification radius [25].
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Similarly, one can calculate the mixing of the SM Z boson
with dark-Z"’s, which, however, is not presented here.

IV. FROM A STRING MODEL

In this section, we derive the minimal chiral model (5)
discussed in Sec. II from a string theory. The Eg x E
heterotic string model compactified on the Z,_; orbifold
gives the flipped SU(S)py;, times SU(S)" x SU(2)" with
several extra U(1)’s [15]. Here, the factor SU(S)g;, contains
agauge group U(1): SU(5) x U(1)y. The firstimportant U(1)
gauge groupis U(1) in SU(5) x U(1)y, which is free of any
gauge anomaly. The second is the anomalous U(1),,0m-
Except these two U(1) factors, U(1)y and U(1),,0m» the non-
Abelian gauge group is SU(5) x SU(5)" x SU(2)'. Note that
the charges of U(1)y and U(1),,,,, are’

= (=2,-2,-2,-2,-2;0%)(0%), (22)
inom = 8401 + 1470, — 4203 — 6305 — 904
= 18(0%; 56,98, —28)(3,3,3,3,-9;21,21, —45)/,
(23)
where
= (05;12,0,0)(0%),
0, = (0°50,12,0)(0%)’,
= (05;0,0, 12) (0%,
= (0%)(0%,0;12,-12,0)’,
= (0%)(0*,0;-6,-6, 12,
06 = (0%)(=6,—6, 6,6, 18;0,0,6)".
With the second line of (23), the sum of entries of (---)’

is zero, which implies that it commutes with our SU(2)’
raising/lowering shift (0%)(5, 5. 51,58, 5, 5L 3L 3L
This definition also commutes with a set of raising/
lowering generators of SU(5), in particular with
(08)(%1,%1,%1,%1,%1,%1,%1,7) For an easier calcula-
tion, we can use a simpler form; i.e., we can use any other
linear combination Q,,,, in terms of O}, of (23) and
anomaly free U(l) charges belonging to Eg x Ef,
18(-3,-3,-3,-3,+49,0,0,+3)’, which will not change
TrQanom and Tr(Quuom Q. Q5 ) Where Q, and Q), are anomaly
free gauge charges.7 With this process, we use the following

Qanom 10 the tables:

Qunom = 603(07;16,28,-8)(0°;6,6,-12)’

7 3
—42{2Q1+§Q2—Q3—§Q5}- (24)

6For the definition, see Ref. [26].
"With this new definition, ¢, presented in [26,27] remains
intact even though the individual entries are changed.
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TABLE 1.
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The SU(5)’ representations. The bold entries are Q,nom/63.

Sect. States SU(5)) Multiplicity Q, 0, Q3 Q4 0Os Qg Oanom Label
9 (00000; 21=1=1)(=10000; 111y 10, 1 -2 =2 -2 0 +3 +9 -567(-9) T}
(00000:745! (345343130
Ty (00000; - 1<) (=10000: 1 43)’ (5,2, 1 -2 -2 -2 0 43 49 -567(-9) Fj
(00000: 35 (344151 510y
(00000: 25355155 9 50)
(00000; =L =) (00001; 2251
79 (00000; g1 5h) (513545455510 5 1 2 2 2 0 43 -15 -567(-9) F}
(00000; 2121 1) (0000 — 15111y
Ty 65560337 0)Fae52:1570) 5.s/3 ! +4 -4 0 4+l 4l S315(-5) R
6656633 05333 032’
T} (65566° 562333 30:500) 555 3 2 42 46 44 -2 42 00) F,
(LLLLL-—_ILL)(LLLLL —_l—_l—_l)/
666667 6 62/\66662° 6 2 2 ~
T EIEEEIAIEHRT0) &, 3 2 6 42 4 42 2 (W) R
—lol=l=l=l.=l=lly=l=l=l=1=1.111y
( ) )
6 6 6 6 626 26/\6 6 6 6 2’622
T;  (Fl=l=l=l=lilgshyE=l=i=l=l.-l 545 1 +4 0 4 -4 -1 -11 +567(+9) Fy

In the orbifold compactification, frequently there appears
an anomalous U(1), gauge field A, from a subgroup of
Eg x E§ [28]. The charge of this anomalous U(1), is given
in Eq. (24). In addition, the anomaly cancellation in ten
dimensions (10D) requires the so-called Green-Schwarz
term in terms of the second rank antisymmetric-tensor field
Byn(M,N =1,2,...,10) [29]. The 10D B,y always
introduces a model-independent (MI) axion ay in 4D,
D any eﬂyp,,HW’”(,u,etc. =1,2,3,4) where H*° is the
field strength of B’ [30]. The anomalous U(1) gauge
boson absorbs the MI axion to become massive, and there
results a global symmetry U(1),,,, below the compacti-
fication scale. More phenomenologically, U(1),,,, can be
suggested for a plausible flavor symmetry [26]. The global
symmetry U(1),,., is good for a Peccei-Quinn symmetry
[31] toward “invisible” axions at the intermediate scale M,
[9]. Except for the two U(1)’s, Egs. (22) and (24), all U(1)’s
are assumed to be broken at a high-energy scale, much
above M;,. In more detail, it works as follows. Suppose
that five U(1) charges out of Q; ¢ are broken, and there is
only one gauge symmetry remaining, which we identify as
U(1) 40om- Now, we can consider two continuous parameters,
one is the Ml-axion direction and the other the phase of
U(1) yom transformation. Out of two continuous directions,
only one phase or pseudoscalar is absorbed by the U(1),,0m
gauge boson, and one continuous direction survives. The
remaining continuous degree corresponds to a global
symmetry, which is called the 't Hooft mechanism [32]:
“If both a gauge symmetry and a global symmetry are
broken by one scalar VEV, the gauge symmetry is broken

and a global symmetry is surviving.” The resulting global
charge is a linear combination of the original gauge and
global charges. Even though we obtain a global symmetry
U(1)om» it is obtained from the original two gauge
symmetries, one from the two-index antisymmetric tensor
gauge field B,y in 10D and the other the U(1),,,,,, Subgroup
of Eg x Eg given in Eq. (24).

Here, the primed groups SU(5)" x SU(2)’ are the hidden
sector non-Abelian gauge groups. The hidden sector
representations under SU(5)' x SU(2)’ are given in
Tables I and II [26]. After removing vectorlike representa-
tions from Tables I and II, we obtain

anom

10, 1), (5.2, (5.1). (1.2)),
SU(5)" x SU(2), = Wap, @, iy, %,

under

(25)

where the tensor notation is used in the second line with the
SU(5)" index A ={1,2,3,4,5} and the SU(2)" index
a = {1,2}. The representations in (25) do not lead to an
SU(5)" anomaly. Let two SU(2) subgroup indices of SU(5)’
bei = {1,2} and I = {4, 5} so that the five SU(5)’ indices
split into

{A} = {i.3.1}. (26)
By the VEV of ®4¢ = (5/,2/),
(@A 7=2) =V, (27)
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TABLE II.  The SU(2)’ representations with the convention of Table 1. We listed only the upper component of SU(2)’ from which the
lower component can be obtained by applying 7~ of SU(2)".
Sect. States SU(2)) Multiplicity Q; Q, Qs Q4 0Os Qg O .nom Label
T (00000; =L =121 (10000; }“—1‘5) (5.2), 1 -2 -2 =2 0 43 -3 -567(-9) F)
(00000; 2- =L =1)(00000; 2 2 5L
Ty (00000; 7 2 1) (00001; 3 53)' 2 1 -2 -2 -2 0 +3 +21 -567(-9) D,
T Giill. 1-loylilll . L3gy 2 1 +4 -4 0 -8 =5 45  463(+1) D;
Ty FH2F2E:F3030Gi10H) 2,5 1 -8 0 -4 -4 +5 -5 -819(-13) D,
Ty F2LL4:309H)(G0, 54y P 1 +4 0 +8 -4 +5 -5 -315(-5) Ds
Ty et e UL TTUN 2,5 1 +2 -2 +6 -4 -4 -8 —126(-2) Dg
T GUMEIDEIY Za 1 42 6 2 s 48 (1) D
P G Ze 2 2 42 46 8 4 w8 e b,
T; (FE2=L2t 2= lo; 200y 2, 2 -2 -6 +2 +8 -4 -8 —882(-14) 2D,
TS @iill.120)(llill; ZLloy 2 1 +4 +8 0 +4 -5 45 +1827(+29) D
T (iill.=2-lg)yiilll. Tlgy 25, 1 -8 —4 0 44 -5 +5 -945(-15) Dy
T7  (FFAAtloghy RS0y 2%, 1 +4 0 -4 48 +5 -5 +189(+3) Dy,
we obtain a group containing two SU(2) x U(1)" sub- 3. 0. 0, 0, 0
groups from non-Abelian factors SU(5)" x SU(2), i.e., a 0 = 0. 0. 0
rank-4 subgroup from the rank-5 non-Abelian group, which o2 +1, 0
is denoted as Q=10 0 1, 0, 0|® o —1
0, 0, 0, 0, 0
0, 0, 0, 0, O
SU(2), x U(1), x SU(2), x U(1),, (28) +
=Y, ® ’ 31
IO 31)
where the index i is for SU(2), and the index I is for
SU(2),. In fact, the VEV (27) breaks the rank-5 SU(5)’ x
SU(2)" down to rank-4 SU(4)" x U(1)'. The rank-3 SU(4)"  and
is further broken down to rank-2 SU(2), x SU(2), by the
VEV in the direction
—1
R 0’ 0, 0, 0
-1
0, 0, O, 0, 0 0, > 0, 0, O
0. 0,0, 0 0 Yi=|o0 0 1,0 0],
(10p) =v,: 0. 0. 0. 0. 0 (29) 0, 0. 0, 0, 0
0, 0, 0, 0, V, 0, 0, 0, 0,0
0, 0, 0, =V,, 0 g0, 0, 0, 0
0, £, 0, 0 0
Summarizing the above discussion, the rank-5 SU(5)" x Y, 0. 0. £, 0 0 (32)
SU(2)" is broken down to a rank-3 group by V; and V,, 0, 0, 0 F, 0
0, 0, 0 0 F

SU(2), x SU(2), x U(1), (30)

where

Thus, V, breaks Y,, which does not participate in Q of
Eq. (31). SU(2), and SU(2), generators are
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(2x2), 0, 0
Ti = 0, 0, 0],
0, 0,0

The SU(2), x SU(2), x U(1),, quantum numbers are

V0P eV, 00 e, =(1,1)11 ®(2.1)

PHYSICAL REVIEW D 96, 055033 (2017)

0, 0, 0
=10 0, 0 |. (33)
0, 0, (2x2)

1 P (2, 2)%1 © (1a 2)—1 D (17 1)((]a)’

2

OB 3 @ @1 = (2. 1) 11 + (2,1) s + (1, 1)z + (L)Y + (L,2)11 + (1,2) 1,

% = (1. 1)+1 + (1. 1)_1,

(34)

where several colored pairs form vectorlike representations. Removing the green and blue vectorlike pairs, and
one combination of the red pair 1y, = (1/ \/5)[(1,1)(()“) - (1,1)(()}’)] where S(A) represents the (anti)symmetric

combination, we obtain

(1,1)11 @ (2, 2)+71 ©(1,2) 1@ (1,1)05 D (2,1)

Now, let us break® SU(2), by the VEV ((1,2),) that does
not carry the Q charge. So, the surviving gauge group is
SU(2) gare X U(1), where SU(2)4,y is SU(2),. Then, the
SU(2) g x U(1),, representations result,

1+1®22+71®21_1@10@2—7?®l+2®2+71
®1,d2-1,, (36)

which are exactly those appearing in Eq. (5).

Considering only the low-energy SUSY, we have shown
that the minimal chiral model is derivable from a string
compactification. So, it will be useful if the SUSY scenario
is consistent with the unification of gauge coupling con-
stants. Since there are so many unknown parameters in this
study, we deferred a brief discussion on the SUSY scenario
to Appendix.

V. CONCLUSION

We obtained a new chiral model with the gauge group
SU(2) g x U(1), without any gauge and gravitational
anomalies. This gauge group may belong to the dark sector.
We also derived this chiral spectrum from a compactifica-
tion of the heterotic string. This new chiral theory has a
chance to be found at TeV scale accelerators through the
kinetic mixing effects. Necessarily, there appear two
degrees at low energy: two dark-Z'’s, or a dark-Z’ plus a
dark photon [if Vg =0 in Eq. (9)].

*In Appendix, we do not break SU(2),.

=3
2

@(171)+2®(271)+71 69(171)71@(172)0' (35)
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APPENDIX: HIDDEN SECTOR SU(5)

1. Mass scales

Toward a suggestion for an ultraviolet completed
theory, we discuss at which scales symmetry breakings
are introduced. First, we need one confining force for
dynamical SUSY breaking [33,34]. The confining non-
Abelian gauge group at the intermediate scale is chosen as
SU(5)’. Around the same scale, SU(5)’ is broken down to
SU(4)" and at a somewhat lower scale to SU(2), by the
condensation of matter superfield, breaking SU(2),.
Because SU(2), is neutral under the SU(2)4, x U(1),
transformation, the discussion leading to the minimal model
is intact. A rough sketch of related scales is shown in Fig. 1.

The confining superfields in Eq. (35) are

(2,470 @ (1, B%)_; & (1,C7),, (A1)

where a = {1,2} counts the number of color degrees of
SU(2),. The anomaly matching conditions [35] must lead
to the following composite states under SU(2) g, X U(1):

2D @25, (A2)
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My Mgyt M

FIG. 1. The red dashed line is for SU(2)'.

where the composite states D and S are SU(2) 4,5 x U(1),
doublets and singlets, respectively, composed of A, B, and
C degrees,

(1, CP),,

¥

S o eqp(1B)p(L. ).

D+Tl X E(Iﬁ(Z,Aa)
(A3)

Even though SU(2), is smaller than the color SU(3), it
can confine at the intermediate scale if SU(5)’ and SU(4)’
run between the GUT scale and the intermediate scale. So,
the SU(4)" breaking VEV V,, Eq. (29), is around the
intermediate scale.

SU(5) x SU(Z)/|V1<MGUT
— SU®4) x U(1)]y,

= SU(2) gane x U(1), (A4)
where V| < Mgyt. From the compactification scale down
to Mgyr, SU(5)" runs more steeply than SU(2)’, which is
illustrated as the separate couplings at V; in Fig. 1.

In the radiative breaking of the SM gauge group in the
MSSM, the large top quark Yukawa coupling plays a
crucial role. To break SU(2)y,, % U(1),, near the electro-
weak scale, we need some large Yukawa coupling(s)
involving 2%1’5, 2_73, 1_,’s, and 1,, in Eq. (36).

2. Running of couplings

For a rough guess of the coupling constants, we use just
one loop evolution equations. With the mass order of Fig. 1,
we have the following running of gauge coupling59:

%Spectra of SU(5) x U(1)y are counted from Ref. [26]. The
gauge group U(1),, which is not the anomalous U(1), survives
down to the TeV scale.

PHYSICAL REVIEW D 96, 055033 (2017)

1 1 1 M
SUS)aip- = o (=3-5+12)In——,
G g5 (Mgur)  g3(My) 8712( ) Maur
(AS)
SUGS)'t =y 4354 3) 2t (a6)

. ~42¥<V1) gg(Mst) 8 1 ’

1 1 1 v,
SU4)": < == +—(=3-4+4)In—, (A7
W Sy~ 7w T Jing . (A7)

1 1 1 v,
SU(2),: - =t os(-3-2+4)In—L, (A8
@ HMz)  H(Vy) 82 ) M, (A8)

1 1 1 v,
Ul)g: = == +—(+4)In—-, (A9
Wet o) ~moy Tae VM, )

where SU(5)" couplings are tilded. In Fig. 1, we also
sketched the running of the SU(2), [SU(3).] coupling as
the (green) dashed line. From the observed value of a, at
u = M for sin’0y,(M,) = 0.23 [36], we obtain its GUT
scale value. Identifying this as the SU(5)" coupling at
My, we estimate the couplings as sketched in Fig. 1. We
assume that SU(4)" gauginos condense at ~V|,

(GRGy) #0. (A10)
Then, between V| and V,, we consider the group SU(4)'.
At V,, @, has not reached an order one value, but (¥;,) can
be developed at V,. The representation 6 of SU(4)’ has a
larger Casimir operator % than that of the fundamental
representation X2, So, we expect that there appear compo-
sites D.: and S_, discussed in this appendix.

Using the electroweak coupling at M, a, = 3.38 x 1072
[37], we obtain its evolution to Mgyr, @ (Mgur) = 0.0412
where Mgur = 2.5 x 10'® GeV is used. At the hypotheti-
cal string scale M, =0.7 x 10'® GeV, we obtain the
coupling as(M,) = 0.0389, which is equated to as(M,).
Now, we can run the hidden sector couplings down from
M. Suppose that gaugino condensation occurs at
Mg = 1013 GeV. With V| = Mgy,

SU(S)/: as(MGUT) = 00517, for

Mgur = 2.5 x 10'° GeV.  (Al1)
For SU(5), the Casimir of the adjoint representation is
25/12 times larger than that of the fundamental represen-
tation. So, gauginos couple more strongly than the funda-
mentals. The SU(4)" coupling at V, is

SU(4)": a4(V,) =0.1066, if V, =103 GeV. (Al2)
Let us equate (A12) as the SU(2), coupling at V,. Then, the
SU(2); and U(1), couplings at M are
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SU(2),: &(M,) = 0.743,

U(1)y: ap(Mz) =0.0251, (A13)
such that the mixing angle is [sind|,,,=+/ag /(@ +ag)|y,=
0.213. At M4, a,(M ) is much larger than the electroweak
coupling a;(M). If the VEV (2, ;) has the same order as
Vp of Eq. (8), then we obtain dark-Z| mass at the
electroweak scale. Actually, the dark-Z' masses depend
on the parameters, the mixing angle, and the VEVs given in
Egs. (8) and (9).

We also note that there exists a possible superpotential
term,

U000 Pe, 5~ (1,1)0(1,2)41(1,2)1  (Al4)

which may allow (¥;;) =V, by the condensation
of ((1.2),,(1.2) ;).
3. Confinement of SU(2),

The large SU(2), coupling in Eq. (A13) suggests a
possibility that SU(2), confines around the electroweak
scale. Let us consider four doublets of Eq. (5) as

Py Py
D] - ) D2 - )
Ni/Jpa Ny /s
(v.)
2 — N2 R,%}a

(A15)

pl

I
VN
Z 5
N——
=]

(]l

PHYSICAL REVIEW D 96, 055033 (2017)

where two SU(2), doublets are represented as R-handed
chiral fields and the subscripts are the U(1), charges.
Below the SU(2), confinement scale, we consider the
following condensations:

(D\Dy) = Vp, (DyD;) = Vs, (Al6)

and use the mass ratio presented in Eq. (10). When a,
becomes order 1 at the scale y,, let us assume that SU(2),
confines. The condensation scale is guessed as /2,
following the estimate of the QCD condensation scale
(au) ~ 1 GeV/3 where ac(1 GeV) = O(1). @, becomes
order 1 at u, =22.2 GeV. In this setup, we estimate the
masses of two dark-Z"’s as [38]

R0 K2 - 00 Gev. M, = v2sin0 5 ~6 GeV.

M, ~ £
DD N Vo

(A17)

where we used Vg = V|, and sin@ = 0.2. Note, however,
that our estimate is very primitive because we used
V| = Mgur, one-loop running for gauge coupling evolu-
tion, followed the hypothetical SUSY breaking, and a naive
chiral symmetry breaking below the SU(2), confinement
scale. Nevertheless, this crude estimate has led to two
electroweak scale dark-Z'’s.

[1] H. Georgi, Towards a grand unified theory of flavor, Nucl.
Phys. B156, 126 (1979).

[2] L.E. Ibafiez and G.G. Ross, SU(2); x U(1) symmetry
breaking as a radiative effect of supersymmetry breaking in
GUTs, Phys. Lett. B 110B, 215 (1982); K. Inoue, A.
Kakuto, H. Komatsu, and S. Takeshita, Aspects of grand
unified models with softly broken supersymmetry, Prog.
Theor. Phys. 68, 927 (1982); Erratum, Prog. Theor. Phys.
70, 330(E) (1983); J.R. Ellis, J. S. Hagelin, D. V. Nano-
poulos, and K. Tamvakis, Weak symmetry breaking by
radiative corrections in broken supergravity, Phys. Lett. B
125, 275 (1983).

[3] H. Georgi, State of the art-gauge theories, AIP Conf. Proc.
23, 575 (1975); H. Fritzsch and P. Minkowski, Unified
interactions of leptons and hadrons, Ann. Phys. (N.Y.) 93,
193 (1975); J. E. Kim, Model of Flavor Unity, Phys. Rev.
Lett. 45, 1916 (1980).

[4] Y. Kawamura, Triplet doublet splitting, proton stability and
extra dimension, Prog. Theor. Phys. 105, 999 (2001).

[5] L.J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Strings
on orbifolds, Nucl. Phys. B261, 678 (1985); Strings on

orbifolds II, Nucl. Phys. B274, 285 (1986); L. E. Ibafiez, H.
P. Nilles, and F. Quevedo, Orbifolds and Wilson lines, Phys.
Lett. B 187, 25 (1987); L. E. Ibaiiez, J. E. Kim, H. P. Nilles,
and F. Quevedo, Orbifold compactifications with three
families of SU(3) x SU(2) x U(1)", Phys. Lett. B 191,
282 (1987); J. A. Casas and C. Munoz, Three generation
SU(3) x SU(2) x U(1), models from orbifolds, Phys. Lett.
B 214, 63 (1988).

[6] I. Antoniadis, C.P. Bachas, and C. Kounnas, Four-
dimensional superstrings, Nucl. Phys. B289, 87 (1987);
H. Kawai, D. Lewellen, and S. H. H. Tye, Construction of
fermionic string models in four-dimensions, Nucl. Phys.
B288, 1 (1987); 1. Antoniadis, J. R. Ellis, J. S. Hagelin, and
D. V. Nanopoulos, The flipped SU(5) x U(1) string model
revamped, Phys. Lett. B 231, 65 (1989); A.E. Faraggi,
Z, x Z, orbifold compactification as the origin of realistic
free fermionic models, Phys. Lett. B 326, 62 (1994); G. B.
Cleaver, M. Cvetic, J.R. Espinosa, L. Everett, and P.
Langacker, Flat directions in three generation free fermionic
string models, Nucl. Phys. B545, 47 (1999); G. B. Cleaver
and A.E. Faraggi, On the anomalous U(l) in free

055033-9


https://doi.org/10.1016/0550-3213(79)90497-8
https://doi.org/10.1016/0550-3213(79)90497-8
https://doi.org/10.1016/0370-2693(82)91239-4
https://doi.org/10.1143/PTP.68.927
https://doi.org/10.1143/PTP.68.927
https://doi.org/10.1143/PTP.70.330
https://doi.org/10.1143/PTP.70.330
https://doi.org/10.1016/0370-2693(83)91283-2
https://doi.org/10.1016/0370-2693(83)91283-2
https://doi.org/10.1063/1.2947450
https://doi.org/10.1063/1.2947450
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1103/PhysRevLett.45.1916
https://doi.org/10.1103/PhysRevLett.45.1916
https://doi.org/10.1143/PTP.105.999
https://doi.org/10.1016/0550-3213(85)90593-0
https://doi.org/10.1016/0550-3213(86)90287-7
https://doi.org/10.1016/0370-2693(87)90066-9
https://doi.org/10.1016/0370-2693(87)90066-9
https://doi.org/10.1016/0370-2693(87)90255-3
https://doi.org/10.1016/0370-2693(87)90255-3
https://doi.org/10.1016/0370-2693(88)90452-2
https://doi.org/10.1016/0370-2693(88)90452-2
https://doi.org/10.1016/0550-3213(87)90372-5
https://doi.org/10.1016/0550-3213(87)90208-2
https://doi.org/10.1016/0550-3213(87)90208-2
https://doi.org/10.1016/0370-2693(89)90115-9
https://doi.org/10.1016/0370-2693(94)91193-2
https://doi.org/10.1016/S0550-3213(98)00863-3

JIHN E. KIM

fermionic superstring models, Int. J. Mod. Phys. A 14, 2335
(1999).

[7]1 D. Gepner, Space-time supersymmetry in compactified
string theory and superconformal models, Nucl. Phys.
B296, 757 (1988); A.N. Schellekens and N.P. Warner,
Weyl groups, supercurrents and covariant lattices. 2., Nucl.
Phys. B313, 41 (1989).

[8] G.B. Cleaver and A. E. Faraggi, On the anomalous U(1) in
free fermionic superstring models, Int. J. Mod. Phys. A 14,
2335 (1999); J. E. Kim, J-H. Kim, and B. Kyae, Superstring
standard model from Z,,_; orbifold compactification with
and without exotics, and effective R parity, J. High Energy
Phys. 06 (2007) 034; O. Lebedev, H. P. Nilles, S. Raby, S.
Ramos-Sanchez, M. Ratz, and P.K.S. Vaudrevange, The
heterotic road to the MSSM with R parity, Phys. Rev. D 77,
046013 (2008).

[9] J. E. Kim, Weak-Interaction Singlet and Strong CP Invari-
ance, Phys. Rev. Lett. 43, 103 (1979); M. A. Shifman, V. 1.
Vainshtein, and V.I1. Zakharov, Can confinement ensure
natural CP invariance of strong interactions?, Nucl. Phys.
B166, 493 (1980); M. Dine, W. Fischler, and M. Srednicki,
A simple solution to the strong CP problem with a harmless
axion, Phys. Lett. 104B, 199 (1981); A.P. Zhitnitsky, On
possible suppression of the axion hadron interactions (in
Russian), Sov. J. Nucl. Phys. 31, 260 (1980) [Yad. Fiz. 31,
497 (1980)].

[10] P. Hut, Limits on masses and number of neutral
weakly interacting particles, Phys. Lett. 69B, 85 (1977);
B.W. Lee and S. Weinberg, Cosmological Lower Bound
on Heavy Neutrino Masses, Phys. Rev. Lett. 39, 165
(1977).

[11] D.J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, The
Heterotic String, Phys. Rev. Lett. 54, 502 (1985).

[12] N. Arkani-Hamed, A theory of dark matter, Phys. Rev. D 79,
015014 (2009).

[13] L.B. Okun, Limits of electrodynamics: paraphotons?, J.
Exp. Theor. Phys. 56, 502 (1982) [Zh. Eksp. Teor. Fiz. 83,
892 (1982)]; B. Holdom, Two U(1)’s and epsilon charge
shifts, Phys. Lett. 166B, 196 (1986).

[14] G. Armison ef al. (UA1 Collaboration), Experimental ob-
servation of lepton pairs of invariant mass around
95-GeV/ ¢2 at the CERN SPS Collider, Phys. Lett. 126B,
393 (1983); Experimental observation of isolated large
transverse energy electrons with associated missing energy
at /s =540-GeV, Phys. Lett. 122B, 103 (1983); P.
Bagnaia et al. (UA2 Collaboration), Evidence for Z° —
ete™ at the CERN pp Collider, Phys. Lett. 129B, 130
(1983); Observation of single isolated electrons of high
transverse momentum in events with missing transverse
energy at the CERN pp collider, Phys. Lett. 122B, 476
(1983).

[15] J-H. Huh, J. E. Kim, and B. Kyae, SU(S)g, x SU(S)" from
Z,,_;, Phys. Rev. D 80, 115012 (2009).

[16] R. N. Mohapatra and J. C. Pati, Left-Right gauge symmetry
and an isoconjugate model of CP violation, Phys. Rev. D
11, 566 (1975).

[17] M. Kaplinghat, S. Tulin, and H-B. Yu, Direct detection
portals for self-interacting dark matter, Phys. Rev. D 89,
035009 (2014).

PHYSICAL REVIEW D 96, 055033 (2017)

[18] E. Witten, An SU(2) anomaly, Phys. Lett. 117B, 324 (1982).

[19] K.R. Dienes, C.F. Kolda, and J. March-Russel, Kinetic
mixing and the supersymmetric gauge hierarchy, Nucl.
Phys. B492, 104 (1997).

[20] J.E. Kim, PVLAS experiment, star cooling and BBN
constraints: Possible interpretation with temperature depen-
dent gauge symmetry breaking, Phys. Rev. D 76, 051701(R)
(2007).

[21] See, also, K. Cheung and T.C. Yuan, Hidden fermion as
milli-charged dark matter in Stueckelberg Z’ model, J. High
Energy Phys. 03 (2007) 120; D. Feldman, Z. Liu, and P.
Nath, The Stueckelberg Z’ extension with kinetic mixing
and milli-charged dark matter from the hidden sector, Phys.
Rev. D 75, 115001 (2007).

[22] S. Davidson, S. Hannestad, and G. Raffelt, Updated bounds
on milli-charged particles, J. High Energy Phys. 05 (2000)
003.

[23] J-H. Huh, J.E. Kim, J-C. Park, and S.C. Park, Galactic
511 keV line from MeV milli-charged dark matter, Phys.
Rev. D 77, 123503 (2008).

[24] M. Ahlers, H. Gies, J. Jaeckel, J. Redondo, and A.
Ringwald, Light from the hidden sector, Phys. Rev. D
76, 115005 (2007).

[25] L.J. Dixon, V. Kaplunovsky, and J. Louis, Moduli
dependence of string loop corrections to gauge coupling
constants, Nucl. Phys. B355, 649 (1991); 1. Antoniadis,
Possible new dimension at a few TeV, Phys. Lett. B 246,
377 (1990); J.E. Kim, Gauge mediated supersymmetry
breaking without exotics in orbifold compactification,
Phys. Lett. B 651, 407 (2007); J.E. Kim and B. Kyae,
Kaluza-Klein masses in nonprime orbifolds: Z(12-I) com-
pactification and threshold correction, Phys. Rev. D 77,
106008 (2008).

[26] J. E. Kim, B. Kyae, and S. Nam, The anomalous U(1) global
symmetry and flavors from an SU(5) x SU(5)" GUT in
Z.,,_; orbifold compactification, arXiv:1703.05345.

[27] J.E. Kim and S. Nam, Couplings between QCD axion and
photon from string compactification, Phys. Lett. B 759, 149
(2016).

[28] J.J. Atick, L. Dixon, and A. Sen, String calculation of
Fayet-Iliopoulos d-terms in arbitrary supersymmetric com-
pactifications, Nucl. Phys. B292, 109 (1987); M. Dine, 1.
Ichinose, and N. Seiberg, F-terms and d-terms in string
theory, Nucl. Phys. B293, 253 (1987).

[29] M. B. Green and J. H. Schwarz, Anomaly cancellation in
supersymmetric D = 10 gauge theory and superstring
theory, Phys. Lett. 149B, 117 (1984).

[30] E. Witten, Some properties of O(32) superstrings, Phys.
Lett. 149B, 351 (1984).

[31] R.D. Peccei and H.R. Quinn, CP Conservation in
the Presence of Pseudoparticls, Phys. Rev. Lett. 38, 1440
(1977).

[32] G. t Hooft, Renormalizable Lagrangians for massive Yang-
Mills fields, Nucl. Phys. B35, 167 (19871).

[33] S. Ferrara, L. Girardello, and H.P. Nilles, Breakdown of
local supersymmetry through gauge fermion condensates,
Phys. Lett. 125B, 457 (1983).

[34] J-P. Derendinger, L. E. Ibaiiez, and H. P. Nilles, On the low-
energy d = 4, N = 1 supergravity theory extracted from the

055033-10


https://doi.org/10.1142/S0217751X99001172
https://doi.org/10.1142/S0217751X99001172
https://doi.org/10.1016/0550-3213(88)90397-5
https://doi.org/10.1016/0550-3213(88)90397-5
https://doi.org/10.1016/0550-3213(89)90512-9
https://doi.org/10.1016/0550-3213(89)90512-9
https://doi.org/10.1142/S0217751X99001172
https://doi.org/10.1142/S0217751X99001172
https://doi.org/10.1088/1126-6708/2007/06/034
https://doi.org/10.1088/1126-6708/2007/06/034
https://doi.org/10.1103/PhysRevD.77.046013
https://doi.org/10.1103/PhysRevD.77.046013
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(77)90139-3
https://doi.org/10.1103/PhysRevLett.39.165
https://doi.org/10.1103/PhysRevLett.39.165
https://doi.org/10.1103/PhysRevLett.54.502
https://doi.org/10.1103/PhysRevD.79.015014
https://doi.org/10.1103/PhysRevD.79.015014
https://doi.org/10.1016/0370-2693(86)91377-8
https://doi.org/10.1016/0370-2693(83)91177-2
https://doi.org/10.1016/0370-2693(83)90744-X
https://doi.org/10.1016/0370-2693(83)90744-X
https://doi.org/10.1103/PhysRevD.80.115012
https://doi.org/10.1103/PhysRevD.11.566
https://doi.org/10.1103/PhysRevD.11.566
https://doi.org/10.1103/PhysRevD.89.035009
https://doi.org/10.1103/PhysRevD.89.035009
https://doi.org/10.1016/0370-2693(82)90728-6
https://doi.org/10.1016/S0550-3213(97)80028-4
https://doi.org/10.1016/S0550-3213(97)80028-4
https://doi.org/10.1103/PhysRevD.76.051701
https://doi.org/10.1103/PhysRevD.76.051701
https://doi.org/10.1088/1126-6708/2007/03/120
https://doi.org/10.1088/1126-6708/2007/03/120
https://doi.org/10.1103/PhysRevD.75.115001
https://doi.org/10.1103/PhysRevD.75.115001
https://doi.org/10.1088/1126-6708/2000/05/003
https://doi.org/10.1088/1126-6708/2000/05/003
https://doi.org/10.1103/PhysRevD.77.123503
https://doi.org/10.1103/PhysRevD.77.123503
https://doi.org/10.1103/PhysRevD.76.115005
https://doi.org/10.1103/PhysRevD.76.115005
https://doi.org/10.1016/0550-3213(91)90490-O
https://doi.org/10.1016/0370-2693(90)90617-F
https://doi.org/10.1016/0370-2693(90)90617-F
https://doi.org/10.1016/j.physletb.2007.06.048
https://doi.org/10.1103/PhysRevD.77.106008
https://doi.org/10.1103/PhysRevD.77.106008
http://arXiv.org/abs/1703.05345
https://doi.org/10.1016/j.physletb.2016.05.067
https://doi.org/10.1016/j.physletb.2016.05.067
https://doi.org/10.1016/0550-3213(87)90639-0
https://doi.org/10.1016/0550-3213(87)90072-1
https://doi.org/10.1016/0370-2693(84)91565-X
https://doi.org/10.1016/0370-2693(84)90422-2
https://doi.org/10.1016/0370-2693(84)90422-2
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1016/0370-2693(83)91325-4

NATURALLY REALIZED TWO DARK Z’S NEAR THE ...

d =10, N =1 superstring, Phys. Lett. 155B, 65 (1985);
M. Dine, R. Rohm, N. Seiberg, and E. Witten, Gluino
condensation in superstring models, Phys. Lett. 156B, 55
(1985).

[35] G.’t Hooft, Naturalness, chiral symmetry, and spontaneous
chiral symmetry breaking, NATO ASI Ser., Ser. B B59, 135
(1980).

[36] J. E. Kim, P. Langacker, M. Levine, and H. H. Williams, A
theoretical and experimental review of the weak neutral
current: A determination of its structure and limits on

PHYSICAL REVIEW D 96, 055033 (2017)

deviations from the minimal SU(2), x U(1) electroweak
theory, Rev. Mod. Phys. 53, 211 (1981).

[37] J. Earler and A. Freitas, Electroweak model and constraint
on new physics, in K. Olive et al. (PDG), Review of Particle
Physics, Chin. J. Phys. C 38, 090001 (2014).

[38] L. Susskind, Dynamics of spontaneous symmetry breaking
in the Weinberg-Salam theory, Phys. Rev. D 20, 2619
(1979); S. Weinberg, Implications of dynamical symmetry
breaking: An addendum, Phys. Rev. D 19, 1277 (1979).

055033-11


https://doi.org/10.1016/0370-2693(85)91033-0
https://doi.org/10.1016/0370-2693(85)91354-1
https://doi.org/10.1016/0370-2693(85)91354-1
https://doi.org/10.1103/RevModPhys.53.211
https://doi.org/10.1103/PhysRevD.20.2619
https://doi.org/10.1103/PhysRevD.20.2619
https://doi.org/10.1103/PhysRevD.19.1277

