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Chiral representations are the key to obtaining light fermions from some ultraviolet completed theories.
The well-known chiral example is one family set of 15 chiral fields in the standard model. We find a new
chiral theory SUð2Þdark × Uð1ÞQ with 16 chiral fields, which does not have any gauge and gravitational
anomalies. The group SUð2Þdark × Uð1ÞQ may belong to the dark sector, and we present a derivation of the
spectrum from the E8 × E0

8 heterotic string. Necessarily, there appear two degrees at low energy: two dark-
Z0’s, or a dark-Z0 plus a dark photon. Being chiral, there is a chance to probe this theory at TeVaccelerators.
Since the model belongs to the dark sector, the way to probe it is through the kinetic mixing.
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I. INTRODUCTION

In particle physics, there has been a deep question known
as the gauge hierarchy problem: “How do the Standard
Model (SM) fermions appear at such a small electroweak
scale, compared to an ultraviolet completed scale, the
Planck mass MP, or the grand unification (GUT) scale
MGUT?” Two issues in the hierarchy problem are as
follows: (i) obtaining massless SM particles at the ultra-
violet completed scale, and (ii) rendering the electroweak
scale masses to the SM fermions. The first issue is resolved
by the profound and simple requirement, a chiral theory at
the ultraviolet completed scale [1]. The second issue is the
method obtaining the vacuum expectation value (VEV) of
the Higgs field at the electroweak scale vew ≃ 246 GeV, a
kind of TeV scale, for which the most well-known example
is supersymmetry (SUSY) [2].
In this paper, we propose that any particles appearing at

the TeV scale, for a detection possibility at the LHC, must
satisfy condition (i). The best known example is a spinor
representation in the SOð4nþ 2Þ GUT models [3].
Orbifolding in extra dimensions presents a possibility of
massless particles, as shown in a simple field theoretic
orbifold [4]. But, the orbifold compactification in string
theory is the prototype example [5], providing a simple
geometrical interpretation. Note, however, that fermionic
constructions [6] and Gepner models [7] have also been
used in four-dimensional (4D) phenomenology from string.
In these 4D constructions, it was necessary to check
whether vectorlike representations of exotically charged
particles, which appear quite often, are present or not
present as studied in Refs. [8].
Anyway, condition (i) is the basic requirement we satisfy

at low-energy effective theory in four dimensions. To
realize condition (ii), model parameters are required to
be known in detail, and hence we do not discuss it here
except by pointing out several mass scales in particle

physics. The SM chiral theory, realized in nature, describes
the electroweak scale physics successfully. So, we antici-
pate that if a natural chiral model is found, then it might
have a great chance to be realized in nature. Since any new
particle has not been detected at the LHC so far, a new
particle in the new chiral theory, which interacts with the
SM sector extremely feebly, must be in the dark sector.
Here, the dark sector is not introduced just for explaining
cold dark matter (CDM) of the Universe. The well-known
CDM examples, “invisible” axions [9], and weaky inter-
acting massive particles [10], belong to the visible sector.
On the other hand, the heterotic E8 × E0

8 string [11] implies
a possibility of a dark sector from E0

8. If the dark sector
introduces CDM, then it is just a bonus. In fact, a dark
sector for various possibilities of CDM particles has been
introduced earlier [12] to account for the excess of positron
spectra. Even though the dark sector interacts with the SM
sector extremely feebly, it can be probed by the kinetic
mixing terms [13] of two SM gauge bosons, photon and Z.
Since the dark sector does not carry the SM weak
hypercharge, the charge raising and lowering gauge bosons
in the dark sector cannot have kinetic mixings with W� of
the SM.
In the dark sector, a simple chiral theory is shown to be

SUð2Þdark × Uð1ÞQ, which does not have any gravitational
and gauge anomalies. Because the rank of this gauge group
is 2, we will have two Z0 gauge bosons at low energy. This
minimal model will be called two dark Zmodel (TDZ). The
first new particles observed at the CERN SPS proton-
antiproton collider were W� and Z [14]. This is because it
is relatively easy to identify leptons at high-energy col-
liders. With this new chiral model, therefore, we expect that
the first new particles expected at the LHC are two dark Z’s.
In Sec. II, we present the minimal chiral model. In

Sec. III, the kinetic mixing in the SUð2Þdark × Uð1ÞQ is
discussed. In Sec. IV, it is shown that the minimal chiral
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model is derivable from a string compactification.
Section V is a conclusion. In Appendix, a SUSY scenario
based on the hidden sector SUð5Þ0 from Z12−I orbifold
compactification [15] is discussed.

II. MINIMAL CHIRAL MODEL

If a new gauge boson is discovered at a terrestrial
observatory using the SM particle beams, it may be from
a chiral theory. A pure U(1) gauge theory can survive down
to the TeV scale, but we need matter Higgs fields to render
it mass. Thus, a pure gauge theory is completely decoupled
from the LHC machine. Furthermore, to couple to the SM
particles, we need some matter fields possessing both
quantum numbers of the SM and this hypothetical U(1).
Then, it is not a pure gauge theory.
Sometimes, a chiral extension of the SM, SUð2ÞL×

SUð2ÞR × Uð1Þ, is considered as a low-energy model [16].
Its subgroup SUð2ÞL × Uð1ÞY × Uð1ÞB−L may be consid-
ered as the simplest extension of the SM. Our dark sector,
however, does not include these extensions because the
SM fermions carry B − L charges that form a vectorlike
representation of Uð1ÞB−L. We will not allow vectorlike
representations. Another simple extension with a strongly
interacting effective extra U(1) in the dark sector has been
studied [17] to probe self-interacting dark matter.
With these caveats, we consider a new chiral theory. A

chiral theory near the electroweak scale should not have
gravitational and gauge anomalies. First, consider the rank-
1 gauge groups. If we consider an SU(2), it is not possible
to have a chiral theory because there must be an even
number of doublets [18]. With only one Uð1ÞY group, the
absence of gravitational anomaly requires Tr Y ¼ 0 and the
absence of gauge anomaly in addition requires Tr Y3 ¼ 0.
For example, even though two charged fields Y ¼ þ1 and
−1 do not have these anomalies, the model is not allowed in
our framework because it is vectorlike. But if we use the Y
of the SM, these two conditions are satisfied.1 Second, let
us consider the rank-2 gauge groups,
SU(3): Vectorlike representations, hence not allowed,
SUð2Þ × SUð2Þ: No chiral theory with even number of

doublets,
Uð1Þ × Uð1Þ0: Six conditions for the absence of anom-

alies,fTrY;TrY 0;TrY3;TrY 03;TrYY 02;TrY2Y 0g ¼ 0; and

SUð2Þ×Uð1Þ∶ Two conditions with doublets and singlets;
fTrY;TrY3g¼ 0: ð1Þ

Thus, the simplest case is SUð2Þdark × Uð1ÞQ, and at least
two dark-Z0’s are predicted at low energy. Two conditions
in (1) for Nð¼ evenÞ doublets and 2N singlets are

X4N
i¼1

Qi ¼ 0; ð2Þ

and

X4N
i¼1

Q3
i ¼

�X4N
i¼1

Qi

��X4N
i¼1

Q2
i −

X4N
i≠j

QiQj

�

þ 3
X4N
i≠j≠k

QiQjQk ¼ 0: ð3Þ

Condition (2) satisfies Eq. (3) if the term
P

i≠j≠k is
vanishing. The number of terms in this sum is

�
4N

3

�
; ð4Þ

which is very large. So, a complete search is more involved.
The well-known chiral theory, satisfying (3), is the
SM, SUð3ÞC × SUð2ÞL × Uð1ÞY .
Here, we present a simpler one SUð2Þdark × Uð1ÞQ,

satisfying the conditions in (2) and (3), with the following
fermions:

Q ¼ 1

2
∶ li ¼

�
Ei

Ni

�
þ1
2

;
Ec
i;−1

Nc
i;0

ði ¼ 1; 2; 3Þ;

Q ¼ −
3

2
∶ L ¼

�
E

F

�
−3
2

;
Ec
;þ1

F c
;þ2

; ð5Þ

where the subscripts denote the Q charges. There are four
doublets without the SU(2) anomaly [18]. One set, one
of Ec

i;−1 and E
c
;þ1, forms a vectorlike pair, but we keep them

to provide masses for all the particles after breaking
SUð2Þdark × Uð1ÞQ. In Eq. (5), there appear 16 left-handed
chiral fields,2 and they do not introduce any gravitational
and gauge anomalies. It is interesting to observe that there
appear 16 chiral fields as in the spinor representation 16 in
SO(10). Equation (5) realizes the TDZ model.
To break the rank-2 gauge group SUð2Þdark × Uð1ÞQ

completely and to give fermions masses, let us introduce
two doublets3 and a singlet of scalars,

Φu¼
�
ϕþ
u

ϕ0
u

�
Q¼þ1

2

; Φd¼
�
ϕ0
d

ϕ−
d

�
Q¼−1

2

; SQ¼2; ð6Þ

where their VEVs are4

1In addition, the SM requires Tr Y ¼ 0 for quarks and leptons
separately, and also additional conditions for the absence of non-
Abelian gauge anomalies.

2Note that the SM has 45 chiral fields.
3With supersymmetry, we need two doublets to make all chiral

fields massive.
4Choosing the Q ¼ 2 singlet for breaking U(1) is just for an

illustration.
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hϕ0
u;di ¼

Vu;dffiffiffi
2

p ; hSi ¼ VSffiffiffi
2

p : ð7Þ

Then, masses of two dark-Z0’s are

M2
Z0
1
¼ ðg22 þ g2QÞV2

D ¼ g22
cos2θ

V2
D; ð8Þ

M2
Z0
2
¼ ð2gQÞ2

V2
S

2
¼ 2g2QV

2
S ¼ 2g22tan

2θV2
S; ð9Þ

where g2 and gQ are the SUð2Þdark and Uð1ÞQ couplings,
respectively, tan θ≡ gQ=g2, and V2

D ¼ V2
u þ V2

d. Thus, the
mass ratio of two dark-Z0 masses is

r ¼
ffiffiffi
2

p ���� VS

VD
sin θ

����: ð10Þ

If VS → 0, Z0
2 may be called a dark photon, which is

included in our terminology TDZ. This estimate will be
used in Appendix.

III. THE KINETIC MIXING

If multiple dark-U(1) gauge bosons are present, they can
mix with the SM photon, most probably via kinetic mixings
as suggested in [13]. Since the rank of the SUð2Þdark ×
Uð1ÞQ gauge group is 2, there are two dark-Z0’s and we
summarize their kinetic mixing with a photon.5 These arise
via loops between photon and dark-photon through an
intermediate particle(s) χ that carries both the electromag-
netic and dark charges. After a proper diagonalization
procedure of the kinetic energy terms, the electromagnetic
charge of χ can be millicharged,Oðα=2πÞe. In the heterotic
E8 × E0

8 string model, the extra E0
8 gauge group may contain

dark photons that will be called dark-Z0’s, leading to the
kinetic mixing of Oðα=2πÞ [19]. Indeed, an explicit model
for this kind from string compactification exists in the
literature [20,21].
The intermediate OðMeVÞ millicharged particles have

not been ruled out by observations in the previous study
[22–24]. For the discovery possibility at the LHC, we
consider the electroweak scale dark-Z0’s.
Consider three Abelian gauge groups Uð1ÞQED and

Uð1Þiði ¼ 1; 2Þ. The kinetic mixing of Uð1ÞQED and
Uð1Þi dark-Z0’s are parametrized by, following the notation
of [21,23],

L ¼ −
1

4
F̂μνF̂

μν −
1

4
X̂1
μνX̂

1 μν −
1

4
X̂2
μνX̂

2μν

−
ξ1
2
F̂μνX̂

1 μν −
ξ2
2
F̂μνX̂

2 μν −
ξ12
2

X̂1
μνX̂

2 μν; ð11Þ

where ÂμðX̂i
μÞ is the Uð1ÞQED [dark-Uð1Þi] gauge boson,

and its field strength tensor is F̂μνðX̂i
μνÞ. The kinetic

mixings are parametrized by ξ’s, which are generically
allowed by the gauge invariance and the Lorentz symmetry.
In the low-energy effective theory, ξ’s are considered to be
completely arbitrary parameters. An ultraviolet-completed
theory is expected to generate the kinetic mixing param-
eters. The usual diagonalization procedure of these kinetic
terms leads to the relation,

0
B@

Aμ

X1
μ

X2
μ

1
CA ¼

0
BBB@

B11 0 0

ξ1−ξ2ξ12ffiffiffiffiffiffiffiffiffi
1−ξ2

12

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ212

p
0

ξ2 ξ12 1

1
CCCA
0
BBB@

Âμ

X̂1
μ

X̂2
μ

1
CCCA; ð12Þ

where

B11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðξ1 − ξ2Þ2 þ 2ξ1ξ2ð1 − ξ12Þ
1 − ξ212

s
ð13Þ

and we obtain

L ¼ −
1

4
FμνFμν −

1

4
X1
μνX1μν −

1

4
X2
μνX2μν; ð14Þ

where the new field strengths are Fμν; X1
μν, and X2

μν. The
photon corresponds to Aμ and dark-Z0’s correspond to
Xi
μði ¼ 1; 2Þ. If the dark-Z0’s are exactly massless, there

exists an SO(3) symmetry in the Aμ − Xi
μ field space.

Using the above SO(3) symmetry, let us take the
following simple interaction Lagrangian of a SM fermion
with a photon in the original basis as

L ¼ ψ̄ðQêγμÞψÂμ: ð15Þ

Note that in this basis there is no direct interaction between
the electron and the hidden sector gauge boson X̂. If there
exists a hidden sector Dirac fermion χ with the Uð1Þex
charge Qχ , its interaction with the hidden sector gauge
boson is simply represented by

L ¼ χ̄ðêexi Qex
i γ

μÞχX̂i
μ; ð16Þ

where êex can be different from ê in general. In this
case, there is also no direct interaction between the
hidden fermion and the visible sector gauge boson Âμ.
We can recast the Lagrangian (15) in the transformed basis
Aμ and Xμ,

L ¼ ψ̄

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ212
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21 − ξ212 þ 2ξ1ξ2ξ12

p Qê

1
AγμψAμ; ð17Þ

5Their mixing with the Z boson is omitted here.
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where we used the inverse of (12),

1

Det

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ212

p
; 0; 0

− ξ1−ξ2ξ12ffiffiffiffiffiffiffiffiffi
1−ξ2

12

p ; B11; 0

− ξ2−ξ1ξ12ffiffiffiffiffiffiffiffiffi
1−ξ2

12

p ; −ξ12B11; B11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ212

p

1
CCCCCA ð18Þ

with

Det ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21 − ξ22 − ξ212 þ 2ξ1ξ2ξ12

q
:

Here, one notices that the standard model fermion has a
coupling only to the visible sector gauge boson Aμ even
after changing the basis of the gauge bosons. However,
the coupling constant ê is modified to e as suggested in
Eq. (17). Similarly, we derive the following couplings for χ:

L ¼ χ̄γμ
�
êex1
Det

�
B11X1

μ −
ξ1 − ξ2ξ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ212
p Aμ

�
Qex

1

þ êex2
Det

�
B11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ212

q
X2
μ − B11ξ12X1

μ

−
ξ2 − ξ1ξ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ212
p Aμ

�
Qex

2

�
χ: ð19Þ

In this basis, the hidden sector matter field χ now can
couple to the visible sector gauge boson Aμ with the

couplings −êex1 Qex
1 ðξ1 − ξ2ξ12Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ212

p
=Det to the mass

eigenstate X1
μ and êex2 Q

ex
2 ðξ2 − ξ1ξ12Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ212

p
=Det to the

mass eigenstate X2
μ. In terms of the aforementioned SO(3)

symmetry, it simply means the mismatch between the
gauge couplings of the electron and other fermions.
Thus, we can set the physical hidden sector coupling eex
as eex ≡ êex, and we define the coupling of the field χ to the
visible sector gauge boson Aμ, introducing the millicharge
parameter εi, as εie such that

e ¼ êffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21 − ξ22

p ;

ε1 ¼ −
êex1
e

ξ1 − ξ2ξ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21 − ξ22 − ξ212 þ 2ξ1ξ2ξ12

p ≈ −
êex1
e

ξ1;

ð20Þ

ε2 ¼ −
êex2
e

ξ2 − ξ1ξ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21 − ξ22 − ξ212 þ 2ξ1ξ2ξ12

p ≈ −
êex2
e

ξ2:

ð21Þ
Note in general that e ≠ eexi . Since ξi;12 ≃Oðεie=eexi Þ is
expected to be small, the condition ξi;12 < 1 gives
αexi =α > ε2. From a fundamental theory, one can calculate
the ratio eex=e in principle, which is possible with the
detailed knowledge of the compactification radius [25].

Similarly, one can calculate themixing of the SMZ boson
with dark-Z0’s, which, however, is not presented here.

IV. FROM A STRING MODEL

In this section, we derive the minimal chiral model (5)
discussed in Sec. II from a string theory. The E8 × E0

8

heterotic string model compactified on the Z12−I orbifold
gives the flipped SUð5Þflip times SUð5Þ0 × SUð2Þ0 with
several extra U(1)’s [15]. Here, the factor SUð5Þflip contains
a gauge groupU(1): SUð5Þ×Uð1ÞX. The first importantU(1)
gauge group isUð1ÞX in SUð5Þ × Uð1ÞX, which is free of any
gauge anomaly. The second is the anomalous Uð1Þanom.
Except these two U(1) factors, Uð1ÞX and Uð1Þanom, the non-
Abelian gauge group is SUð5Þ × SUð5Þ0 × SUð2Þ0. Note that
the charges of Uð1ÞX and Uð1Þanom are6

X ¼ ð−2;−2;−2;−2;−2; 03Þð08Þ0; ð22Þ
Q0

anom ¼ 84Q1 þ 147Q2 − 42Q3 − 63Q5 − 9Q6

¼ 18ð05; 56; 98;−28Þð3; 3; 3; 3;−9; 21; 21;−45Þ0;
ð23Þ

where

Q1 ¼ ð05; 12; 0; 0Þð08Þ0;
Q2 ¼ ð05; 0; 12; 0Þð08Þ0;
Q3 ¼ ð05; 0; 0; 12Þð08Þ0;
Q4 ¼ ð08Þð04; 0; 12;−12; 0Þ0;
Q5 ¼ ð08Þð04; 0;−6;−6; 12Þ0;
Q6 ¼ ð08Þð−6;−6;−6;−6; 18; 0; 0; 6Þ0:

With the second line of (23), the sum of entries of ð� � �Þ0
is zero, which implies that it commutes with our SUð2Þ0
raising/lowering shift ð08Þð�1

2
; �1

2
; �1

2
; �1

2
; �1

2
; �1

2
; �1

2
; �1

2
Þ0.

This definition also commutes with a set of raising/
lowering generators of SUð5Þ0, in particular with
ð08Þð�1

2
;∓1

2
;∓1

2
;∓1

2
;∓1

2
; �1

2
; �1

2
; �1

2
Þ0. For an easier calcula-

tion, we can use a simpler form; i.e., we can use any other
linear combination Qanom in terms of Q0

anom of (23) and
anomaly free U(1) charges belonging to E8 × E0

8,
18ð−3;−3;−3;−3;þ9; 0; 0;þ3Þ0, which will not change
TrQanom and TrðQanomQaQbÞwhereQa andQb are anomaly
free gauge charges.7 With this process, we use the following
Qanom in the tables:

Qanom ¼ 63ð05; 16; 28;−8Þð05; 6; 6;−12Þ0

¼ 42

�
2Q1 þ

7

2
Q2 −Q3 −

3

2
Q5

	
: ð24Þ

6For the definition, see Ref. [26].
7With this new definition, caγγ presented in [26,27] remains

intact even though the individual entries are changed.
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In the orbifold compactification, frequently there appears
an anomalous Uð1ÞA gauge field ~Aμ from a subgroup of
E8 × E0

8 [28]. The charge of this anomalous Uð1ÞA is given
in Eq. (24). In addition, the anomaly cancellation in ten
dimensions (10D) requires the so-called Green-Schwarz
term in terms of the second rank antisymmetric-tensor field
BMNðM;N ¼ 1; 2;…; 10Þ [29]. The 10D BMN always
introduces a model-independent (MI) axion aMI in 4D,
∂μaMI ∝ ϵμνρσHνρσðμ; etc: ¼ 1; 2; 3; 4Þ where Hνρσ is the
field strength of Bρσ [30]. The anomalous U(1) gauge
boson absorbs the MI axion to become massive, and there
results a global symmetry Uð1Þanom below the compacti-
fication scale. More phenomenologically, Uð1Þanom can be
suggested for a plausible flavor symmetry [26]. The global
symmetry Uð1Þanom is good for a Peccei-Quinn symmetry
[31] toward “invisible” axions at the intermediate scaleMint
[9]. Except for the two U(1)’s, Eqs. (22) and (24), all U(1)’s
are assumed to be broken at a high-energy scale, much
above Mint. In more detail, it works as follows. Suppose
that five U(1) charges out ofQ1;…;6 are broken, and there is
only one gauge symmetry remaining, which we identify as
Uð1Þanom. Now,we can consider two continuous parameters,
one is the MI-axion direction and the other the phase of
Uð1Þanom transformation. Out of two continuous directions,
only one phase or pseudoscalar is absorbed by the Uð1Þanom
gauge boson, and one continuous direction survives. The
remaining continuous degree corresponds to a global
symmetry, which is called the ’t Hooft mechanism [32]:
“If both a gauge symmetry and a global symmetry are
broken by one scalar VEV, the gauge symmetry is broken

and a global symmetry is surviving.” The resulting global
charge is a linear combination of the original gauge and
global charges. Even though we obtain a global symmetry
Uð1Þanom, it is obtained from the original two gauge
symmetries, one from the two-index antisymmetric tensor
gauge fieldBMN in 10D and the other theUð1Þanom subgroup
of E8 × E0

8 given in Eq. (24).
Here, the primed groups SUð5Þ0 × SUð2Þ0 are the hidden

sector non-Abelian gauge groups. The hidden sector
representations under SUð5Þ0 × SUð2Þ0 are given in
Tables I and II [26]. After removing vectorlike representa-
tions from Tables I and II, we obtain

ð1̄00; 10Þ; ð50; 20Þ; ð5̄0; 10Þ; ð10; 20Þ; under

SUð5Þ0 × SUð2Þ0;→ ΨAB;ΦAα;ψA;ϕα; ð25Þ

where the tensor notation is used in the second line with the
SUð5Þ0 index A ¼ f1; 2; 3; 4; 5g and the SUð2Þ0 index
α ¼ f1; 2g. The representations in (25) do not lead to an
SUð5Þ0 anomaly. Let two SU(2) subgroup indices of SUð5Þ0
be i ¼ f1; 2g and I ¼ f4; 5g so that the five SUð5Þ0 indices
split into

fAg≡ fi; 3; Ig: ð26Þ

By the VEV of ΦAα ≡ ð50; 20Þ,

hΦA¼3;α¼2i ¼ V1; ð27Þ

TABLE I. The SUð5Þ0 representations. The bold entries are Qanom=63.

Sect. States SUð5Þ0 Multiplicity Q1 Q2 Q3 Q4 Q5 Q6 Qanom Label

T0
1 ð00000; −1

6
−1
6

−1
6
Þð−10000; 1

4
1
4
1
2
Þ0 1̄000 1 −2 −2 −2 0 þ3 þ9 −567(−9) T 0

1

ð00000; −1
6

−1
6

−1
6
Þð1

2
1
2
−1
2

−1
2

1
2
; −1
4

−1
4
0Þ0

T0
1 ð00000; −1

6
−1
6

−1
6
Þð−10000; 1

4
1
4
1
2
Þ0 ð50; 20Þ0 1 −2 −2 −2 0 þ3 þ9 −567(−9) F0

1

ð00000; −1
6

−1
6

−1
6
Þð1

2
1
2
1
2
1
2
−1
2
; −1
4

−1
4
0Þ0

ð00000; −1
6

−1
6

−1
6
Þð1

2
−1
2

−1
2

−1
2

−1
2
; −1
4

−1
4
0Þ0

ð00000; −1
6

−1
6

−1
6
Þð00001; −3

4
−3
4

−1
2
Þ0

T0
1 ð00000; −1

6
−1
6

−1
6
Þð−1

2
1
2
1
2
1
2
−1
2
; −1
4

−1
4
0Þ0 5̄00 1 –2 –2 –2 0 þ3 −15 −567(−9) F0

2

ð00000; −1
6

−1
6

−1
6
Þð0000 − 1; 1

4
1
4
1
2
Þ0

Tþ
1 ð1

6
1
6
1
6
1
6
1
6
; 1
3
−1
3
0Þð−5

6
1
6
1
6
1
6
1
2
; 1
12

−1
4
0Þ0 5̄0−5=3 1 þ4 −4 0 þ4 þ1 þ11 −315(−5) F0

3

ð1
6
1
6
1
6
1
6
1
6
; 1
3
−1
3
0Þð−1

3
−1
3

−1
3

−1
3
0; 7

12
1
4
1
2
Þ0

Tþ
4 ð1

6
1
6
1
6
1
6
1
6
; −1
6

1
6
1
2
Þð2

3
−1
3

−1
3

−1
3
0; 1

3
00Þ0 50−5=3 3 –2 þ2 þ6 þ4 −2 þ2 0(0) F0

4

ð1
6
1
6
1
6
1
6
1
6
; −1
6

1
6
1
2
Þð1

6
1
6
1
6
1
6
1
2
; −1
6

−1
2

−1
2
Þ0

T−
4 ð−1

6
−1
6

−1
6

−1
6

−1
6
; −1
6

−1
2

1
6
Þð−2

3
1
3
1
3
1
3
0; −1

3
00Þ0 5̄05=3 3 –2 –6 þ2 −4 þ2 −2 −1260(−20) F0

5

ð−1
6

−1
6

−1
6

−1
6

−1
6
; −1
6

−1
2

1
6
Þð−1

6
−1
6

−1
6

−1
6

−1
2
; 1
6
1
2
1
2
Þ0

T−
7 ð−1

6
−1
6

−1
6

−1
6

−1
6
; 1
3
0 −1

3
Þð5

6
−1
6

−1
6

−1
6

−1
2
; −1
12

1
4
0Þ0 505=3 1 þ4 0 –4 −4 −1 −11 þ567(þ9) F0

6

ð−1
6

−1
6

−1
6

−1
6

−1
6
; 1
3
0 −1

3
Þð1

3
1
3
1
3
1
3
0; −7

12
−1
4

−1
2
Þ0
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we obtain a group containing two SUð2Þ × Uð1Þ0 sub-
groups from non-Abelian factors SUð5Þ0 × SUð2Þ0, i.e., a
rank-4 subgroup from the rank-5 non-Abelian group, which
is denoted as

SUð2Þ1 × Uð1Þ1 × SUð2Þ2 × Uð1Þ2; ð28Þ

where the index i is for SUð2Þ1 and the index I is for
SUð2Þ2. In fact, the VEV (27) breaks the rank-5 SUð5Þ0 ×
SUð2Þ0 down to rank-4 SUð4Þ0 × Uð1Þ0. The rank-3 SUð4Þ0
is further broken down to rank-2 SUð2Þ1 × SUð2Þ2 by the
VEV in the direction

h1000i ¼ V2∶

0
BBBBBB@

0; 0; 0; 0; 0

0; 0; 0; 0; 0

0; 0; 0; 0; 0

0; 0; 0; 0; V2

0; 0; 0; −V2; 0

1
CCCCCCA
: ð29Þ

Summarizing the above discussion, the rank-5 SUð5Þ0 ×
SUð2Þ0 is broken down to a rank-3 group by V1 and V2,

SUð2Þ1 × SUð2Þ2 × Uð1Þ; ð30Þ

where

Q ¼

0
BBBBBB@

−1
2
; 0; 0; 0; 0

0; −1
2
; 0; 0; 0

0; 0; 1; 0; 0

0; 0; 0; 0; 0

0; 0; 0; 0; 0

1
CCCCCCA

⊗
�þ1; 0

0; −1

�

¼ Y1 ⊗
�þ1; 0

0; −1

�
ð31Þ

and

Y1 ¼

0
BBBBBB@

−1
2
; 0; 0; 0; 0

0; −1
2
; 0; 0; 0

0; 0; 1; 0; 0

0; 0; 0; 0; 0

0; 0; 0; 0; 0

1
CCCCCCA
;

Y2 ¼

0
BBBBBBBB@

þ1
3
; 0; 0; 0; 0

0; þ1
3
; 0; 0; 0

0; 0; þ1
3
; 0; 0

0; 0; 0; −1
2
; 0

0; 0; 0; 0; −1
2

1
CCCCCCCCA
: ð32Þ

Thus, V2 breaks Y2, which does not participate in Q of
Eq. (31). SUð2Þ1 and SUð2Þ2 generators are

TABLE II. The SUð2Þ0 representations with the convention of Table I. We listed only the upper component of SUð2Þ0 from which the
lower component can be obtained by applying T− of SUð2Þ0.
Sect. States SUð2Þ0 Multiplicity Q1 Q2 Q3 Q4 Q5 Q6 Qanom Label

T0
1 ð00000; −1

6
−1
6

−1
6
Þð10000; 1

4
1
4
1
2
Þ0 ð50; 20Þ0 1 −2 −2 −2 0 þ3 −3 −567(−9) F0

1

ð00000; −1
6

−1
6

−1
6
Þð00000; −3

4
−3
4

−1
2
Þ0

T0
1 ð00000; −1

6
−1
6

−1
6
Þð00001; 1

4
1
4
1
2
Þ0 200 1 −2 −2 −2 0 þ3 þ21 −567(−9) D2

Tþ
1 ð1

6
1
6
1
6
1
6
1
6
; 1
3
−1
3
0Þð1

6
1
6
1
6
1
6
1
2
; 1
12

3
4
0Þ0 20−5=3 1 þ4 −4 0 −8 −5 þ5 þ63(þ1) D3

T−
1 ð−1

6
−1
6

−1
6

−1
6

−1
6
; −2
3
0 −1

3
Þð1

3
1
3
1
3
1
3
0; −1

12
1
4
1
2
Þ0 205=3 1 −8 0 −4 −4 þ5 −5 −819(−13) D4

T−
1 ð−1

6
−1
6

−1
6

−1
6

−1
6
; 1
3
0 2
3
Þð1

3
1
3
1
3
1
3
0; −1

12
1
4
1
2
Þ0 205=3 1 þ4 0 þ8 −4 þ5 −5 −315(−5) D5

Tþ
2 ð−1

6
−1
6

−1
6

−1
6

−1
6
; 1
6
−1
6

1
2
Þð1

3
1
3
1
3
1
3
0; 1

6
1
2
0Þ0 205=3 1 þ2 −2 þ6 −4 −4 −8 −126(−2) D6

T−
2 ð1

6
1
6
1
6
1
6
1
6
; 1
6
−1
2

−1
6
Þð1

6
1
6
1
6
1
6
1
2
; 1
3
0 1
2
Þ0 20−5=3 1 þ2 −6 −2 þ4 þ4 þ8 −882(−14) D7

Tþ
4 ð1

6
1
6
1
6
1
6
1
6
; −1
6

1
6
1
2
Þð1

6
1
6
1
6
1
6
1
2
; −1
6

1
2
1
2
Þ0 20−5=3 2 −2 þ2 þ6 −8 þ4 þ8 −378(−6) 2D8

T−
4 ð−1

6
−1
6

−1
6

−1
6

−1
6
; −1
6

−1
2

1
6
Þð1

3
1
3
1
3
1
3
0; 2

3
00Þ0 205=3 2 −2 −6 þ2 þ8 −4 −8 −882(−14) 2D9

Tþ
7 ð1

6
1
6
1
6
1
6
1
6
; 1
3
2
3
0Þð1

6
1
6
1
6
1
6
1
2
; 7
12

1
4
0Þ0 20−5=3 1 þ4 þ8 0 þ4 −5 þ5 þ1827(þ29) D10

Tþ
7 ð1

6
1
6
1
6
1
6
1
6
; −2
3

−1
3
0Þð1

6
1
6
1
6
1
6
1
2
; 7
12

1
4
0Þ0 20−5=3 1 −8 −4 0 þ4 −5 þ5 −945(−15) D11

T−
7 ð−1

6
−1
6

−1
6

−1
6

−1
6
; 1
3
0 −1

3
Þð−1

6
−1
6

−1
6

−1
6

−1
2
; −1
12

−3
4
0Þ0 205=3 1 þ4 0 −4 þ8 þ5 −5 þ189(þ3) D12
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Ti ¼

0
B@

ð2 × 2Þi; 0; 0

0; 0; 0

0; 0; 0

1
CA; TI ¼

0
B@

0; 0; 0

0; 0; 0

0; 0; ð2 × 2ÞI

1
CA: ð33Þ

The SUð2Þ1 × SUð2Þ2 × Uð1ÞQ quantum numbers are

ð34Þ

where several colored pairs form vectorlike representations. Removing the green and blue vectorlike pairs, and

one combination of the red pair 10;A ¼ ð1= ffiffiffi
2

p Þ½ð1; 1ÞðaÞ0 − ð1; 1ÞðbÞ0 � where SðAÞ represents the (anti)symmetric
combination, we obtain

ð35Þ

Now, let us break8 SUð2Þ2 by the VEV hð1; 2Þ0i that does
not carry the Q charge. So, the surviving gauge group is
SUð2Þdark × Uð1ÞQ where SUð2Þdark is SUð2Þ1. Then, the
SUð2Þdark × Uð1ÞQ representations result,

1þ1 ⊕ 2 · 2þ1
2
⊕ 2 · 1−1 ⊕ 10 ⊕ 2−3

2
⊕ 1þ2 ⊕ 2þ1

2

⊕ 1−1 ⊕ 2 · 10; ð36Þ

which are exactly those appearing in Eq. (5).
Considering only the low-energy SUSY, we have shown

that the minimal chiral model is derivable from a string
compactification. So, it will be useful if the SUSY scenario
is consistent with the unification of gauge coupling con-
stants. Since there are so many unknown parameters in this
study, we deferred a brief discussion on the SUSY scenario
to Appendix.

V. CONCLUSION

We obtained a new chiral model with the gauge group
SUð2Þdark × Uð1ÞQ without any gauge and gravitational
anomalies. This gauge group may belong to the dark sector.
We also derived this chiral spectrum from a compactifica-
tion of the heterotic string. This new chiral theory has a
chance to be found at TeV scale accelerators through the
kinetic mixing effects. Necessarily, there appear two
degrees at low energy: two dark-Z0’s, or a dark-Z0 plus a
dark photon [if VS ¼ 0 in Eq. (9)].
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APPENDIX: HIDDEN SECTOR SUð5Þ0
1. Mass scales

Toward a suggestion for an ultraviolet completed
theory, we discuss at which scales symmetry breakings
are introduced. First, we need one confining force for
dynamical SUSY breaking [33,34]. The confining non-
Abelian gauge group at the intermediate scale is chosen as
SUð5Þ0. Around the same scale, SUð5Þ0 is broken down to
SUð4Þ0 and at a somewhat lower scale to SUð2Þ1 by the
condensation of matter superfield, breaking SUð2Þ2.
Because SUð2Þ2 is neutral under the SUð2Þdark × Uð1ÞQ
transformation, the discussion leading to the minimal model
is intact. A rough sketch of related scales is shown in Fig. 1.
The confining superfields in Eq. (35) are

ð2; AαÞþ1
2
⊕ ð1; BαÞ−1 ⊕ ð1; CαÞ0; ðA1Þ

where α ¼ f1; 2g counts the number of color degrees of
SUð2Þ2. The anomaly matching conditions [35] must lead
to the following composite states under SUð2Þdark × Uð1ÞQ:

2 ·Dþ1
2
⊕ 2 · S−1; ðA2Þ8In Appendix, we do not break SUð2Þ2.
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where the composite states D and S are SUð2Þdark × Uð1ÞQ
doublets and singlets, respectively, composed of A, B, and
C degrees,

Dþ1
2
∝ ϵαβð2; AαÞþ1

2
ð1; CβÞ0;

S−1 ∝ ϵαβð1; BαÞþ1
2
ð1; CβÞ0: ðA3Þ

Even though SUð2Þ2 is smaller than the color SUð3ÞC, it
can confine at the intermediate scale if SUð5Þ0 and SUð4Þ0
run between the GUT scale and the intermediate scale. So,
the SUð4Þ0 breaking VEV V2, Eq. (29), is around the
intermediate scale.

SUð5Þ0 × SUð2Þ0jV1<MGUT

→ SUð4Þ0 × Uð1Þ0jV2

→ SUð2Þ1 × SUð2Þ2 × Uð1ÞQjMint

→ SUð2Þdark × Uð1ÞQ; ðA4Þ

where V1 < MGUT. From the compactification scale down
to MGUT, SUð5Þ0 runs more steeply than SUð2Þ0, which is
illustrated as the separate couplings at V1 in Fig. 1.
In the radiative breaking of the SM gauge group in the

MSSM, the large top quark Yukawa coupling plays a
crucial role. To break SUð2Þdark × Uð1ÞQ, near the electro-
weak scale, we need some large Yukawa coupling(s)
involving 2þ1

2
’s, 2−3

2
; 1−1’s, and 1þ2 in Eq. (36).

2. Running of couplings

For a rough guess of the coupling constants, we use just
one loop evolution equations. With the mass order of Fig. 1,
we have the following running of gauge couplings9:

SUð5Þflip∶
1

g25ðMGUTÞ
¼ 1

g25ðMstÞ
þ 1

8π2
ð−3 ·5þ12Þ ln Mst

MGUT
;

ðA5Þ

SUð5Þ0∶ 1

~g24ðV1Þ
¼ 1

~g25ðMstÞ
þ 1

8π2
ð−3 ·5þ3Þ lnMst

V1

; ðA6Þ

SUð4Þ0∶ 1

~g24ðV2Þ
¼ 1

~g24ðV1Þ
þ 1

8π2
ð−3 ·4þ4Þ lnV1

V2

; ðA7Þ

SUð2Þ1∶
1

~g22ðMZÞ
¼ 1

~g22ðV1Þ
þ 1

8π2
ð−3 ·2þ4Þ ln V1

MZ
; ðA8Þ

Uð1ÞQ∶
1

~g2QðMZÞ
¼ 1

~g2QðV1Þ
þ 1

8π2
ðþ4Þ ln V1

MZ
; ðA9Þ

where SUð5Þ0 couplings are tilded. In Fig. 1, we also
sketched the running of the SUð2ÞW [SUð3ÞC] coupling as
the (green) dashed line. From the observed value of α2 at
μ ¼ MZ for sin2θWðMZÞ≃ 0.23 [36], we obtain its GUT
scale value. Identifying this as the SUð5Þ0 coupling at
MGUT, we estimate the couplings as sketched in Fig. 1. We
assume that SUð4Þ0 gauginos condense at ≈V1,

h ~GB
A
~GA
Bi ≠ 0: ðA10Þ

Then, between V1 and V2, we consider the group SUð4Þ0.
At V2, ~α2 has not reached an order one value, but hΨIJi can
be developed at V2. The representation 6 of SUð4Þ0 has a
larger Casimir operator 5

2
than that of the fundamental

representation 15
8
. So, we expect that there appear compo-

sites Dþ1
2
and S−1 discussed in this appendix.

Using the electroweak coupling atMZ, α2 ≃ 3.38 × 10−2

[37], we obtain its evolution toMGUT, α2ðMGUTÞ≃ 0.0412
where MGUT ¼ 2.5 × 1016 GeV is used. At the hypotheti-
cal string scale Ms ≃ 0.7 × 1018 GeV, we obtain the
coupling α5ðMsÞ≃ 0.0389, which is equated to ~α5ðMsÞ.
Now, we can run the hidden sector couplings down from
Ms. Suppose that gaugino condensation occurs at
Mcond ¼ 1013 GeV. With V1 ¼ MGUT,

SUð5Þ0∶ ~α5ðMGUTÞ≃ 0.0517; for

MGUT ¼ 2.5 × 1016 GeV: ðA11Þ

For SU(5), the Casimir of the adjoint representation is
25=12 times larger than that of the fundamental represen-
tation. So, gauginos couple more strongly than the funda-
mentals. The SUð4Þ0 coupling at V2 is

SUð4Þ0∶ ~α4ðV2Þ≃ 0.1066; if V2 ¼ 1013 GeV: ðA12Þ

Let us equate (A12) as the SUð2Þ1 coupling at V2. Then, the
SUð2Þ1 and Uð1ÞQ couplings at MZ are

FIG. 1. The red dashed line is for SUð2Þ0.

9Spectra of SUð5Þ × Uð1ÞX are counted from Ref. [26]. The
gauge group Uð1ÞQ, which is not the anomalous U(1), survives
down to the TeV scale.
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SUð2Þ1∶ ~α2ðMZÞ≃ 0.743;

Uð1ÞQ∶ ~αQðMZÞ≃ 0.0251; ðA13Þ

such that the mixing angle is jsinθjMZ
≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~αQ=ð ~α2þ~αQ
p ÞjMZ

≃
0.213. AtMZ, ~α2ðMZÞ is much larger than the electroweak
coupling α2ðMZÞ. If the VEV h21=2i has the same order as
VD of Eq. (8), then we obtain dark-Z0

1 mass at the
electroweak scale. Actually, the dark-Z0 masses depend
on the parameters, the mixing angle, and the VEVs given in
Eqs. (8) and (9).
We also note that there exists a possible superpotential

term,

ðA14Þ

which may allow hΨIJi ¼ V2 by the condensation
of hð1; 2Þþ1ð1; 2Þ−1i.

3. Confinement of SUð2Þ1
The large SUð2Þ1 coupling in Eq. (A13) suggests a

possibility that SUð2Þ1 confines around the electroweak
scale. Let us consider four doublets of Eq. (5) as

D1 ¼
�
P1

N1

�
L;þ1

2

; D2 ¼
�
P2

N2

�
L;þ1

2

;

D̄1 ¼
�
P2

N2

�
R;−1

2

; D̄2 ¼
�
P2

N2

�
R;þ3

2

; ðA15Þ

where two SUð2Þ1 doublets are represented as R-handed
chiral fields and the subscripts are the Uð1ÞQ charges.
Below the SUð2Þ1 confinement scale, we consider the
following condensations:

hD̄1D1i ¼ VD; hD̄2D2i ¼ VS; ðA16Þ

and use the mass ratio presented in Eq. (10). When ~α2
becomes order 1 at the scale μ2, let us assume that SUð2Þ1
confines. The condensation scale is guessed as μ2=2,
following the estimate of the QCD condensation scale
hūui ≈ 1 GeV=3 where αCð1 GeVÞ≃Oð1Þ. ~α2 becomes
order 1 at μ2 ≃ 22.2 GeV. In this setup, we estimate the
masses of two dark-Z0’s as [38]

M1 ∼
~g2ðμ2Þ
2

μ2
2
≳ 20 GeV; M2 ≃

ffiffiffi
2

p
sin θ

VS

VD
∼ 6 GeV;

ðA17Þ

where we used VS ¼ VD and sin θ ¼ 0.2. Note, however,
that our estimate is very primitive because we used
V1 ¼ MGUT, one-loop running for gauge coupling evolu-
tion, followed the hypothetical SUSY breaking, and a naive
chiral symmetry breaking below the SUð2Þ1 confinement
scale. Nevertheless, this crude estimate has led to two
electroweak scale dark-Z0’s.
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