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We find a set of necessary and sufficient conditions for the CP conservation in the most general 2HDM
in terms of observable quantities. This set contains two simple and relatively easily testable conditions
instead of the more complex conditions usually discussed.
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I. INTRODUCTION

CP violation is one of the important yet not well
understood aspect of the fundamental physics. The modern
LHC data [1–4] allow us to conclude that the observed
particle hð125Þ is a Higgs boson with spin-CP parity
0þþ—but only under the assumption that this particle has a
definite parity. Generally it can may happen that it does not
possess a definite parity, and this indeed happens in many
models. In this case the data give no information about
hð125Þ parity [5].
In the standard model theCP violation is described by the

Cabbibo-Kobayashi-Maskawa matrix, but its origin remains
unclear. The extension of SM with two Higgs doublets,
called the two Higgs doublet model (2HDM), has been
introduced in 1974 with the main aim to provide an extra
source of CP violation [6]. Later, many variants of 2HDM
were considered with different features, providing different
physical realizations. Each of these variants is described by
Lagrangian with many parameters. The choice of the set
of these parameters, describing the same physical reality
(the basis choice in the parameter space) is ambiguous.
In nonminimal models such as 2HDM the current situation,
with the properties of the observed Higgs boson resembling
those of theSMHiggs (SM-like scenario [7–10] oralignment
limit [11]), can be described by different nonequivalent sets
of parameters.
We consider in the paper two types of problems which

appear in the study of CP violation in these models.
(A) Let us have a variant of 2HDM, constructed as a

model for the description of some set of phenomena.
How to know whether the CP symmetry is

violated or not in this model without detailed
calculations of each particular effect? Here a basis
independent recipe is desirable.

(B) Consider 2HDM as an approximation to the de-
scription of the Nature. How do we know whether

the CP violation is described by this approximation,
or whether the observed CP violation is an effect of
yet another, weaker interaction.
How to check the presence of CP violation in the

experiments with particles that appear in 2HDM?

II. 2HDM

The 2HDM describes a system of two spinless isospinor
fields ϕ1, ϕ2 with hypercharge Y ¼ 1. The most general
form of the 2HDM potential is as follows

V ¼ λ1
2
ðϕ†
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2
ðϕ†
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1ϕ2Þðϕ†

2ϕ1Þ þ
λ5
2
ðϕ†

1ϕ2Þ2 þ
λ�5
2
ðϕ†

2ϕ1Þ2

þ ½λ6ðϕ†
1ϕ1Þðϕ†

1ϕ2Þ þ λ7ðϕ†
2ϕ2Þðϕ†

1ϕ2Þ þ H:c:�

−
m2

11

2
ðϕ†

1ϕ1Þ −
m2

22

2
ðϕ†

2ϕ2Þ −
�
m2

12

2
ðϕ†
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ð1Þ
The potential parameters are restricted by the requirement
that the potential should be positive at large quasiclassical
values of ϕi (positivity constraints). We assume also that
these coefficients are not too big so that one can use
estimates based on the lowest nontrivial approximation of
the perturbation theory.
After Electroweak Symmetry Breaking the 2HDM con-

tains 3 neutral Higgs bosons ha ≡ h1;2;3 (in general with
indefinite CP parity) and the charged Higgs bosons H�,
with the masses Ma and M�, respectively (the numbering
of ha is independent of the ordering of masses Ma).

A. Reparametrization freedom

2HDM describes system of two fields with identical quan-
tum numbers. Therefore, its description in terms of original
fields ϕi or in terms of their linear superpositions ϕ0

i are
equivalent; this statement verbalizes the reparameterization*Deceased
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(RPa) freedom of the model. The RPa group consists of RPa
transformations F̂ of the form:

ðϕ0
1ϕ

0
2Þ ¼ F̂ genðθ; τ; ρÞðϕ1ϕ2Þ;

F̂ gen ¼ eiρ0ðcos θeiρ=2 sin θeiðτþρ=2Þ

− sin θe−iðτþρ=2Þ cos θe−iρ=2Þ: ð2Þ

This transformation induces a transformation of the param-
eters of theLagrangian in such away that the newLagrangian,
written in terms of fields ϕ0

i, describes the same physical
content. We refer to these different choices as different RPa
bases. A subgroup of the RPa group—the rephasing group
RPh—describes a freedom of adjusting the relative phase of
the fields ϕi.
Transformation (2) is parametrized by angles θ, ρ, τ and

ρ0. The parameter ρ0 describes an overall phase trans-
formation of the fields and can be ignored since it does not
affect the parameters of the potential. The parameter ρ
describes the RPh symmetry transformation of system.
The Uð1ÞEM symmetry preserving ground state of this

system is given by a global minimum of the potential and
reads

hϕ1i ¼
�

0

v1=
ffiffiffi
2

p
�
; hϕ2i ¼

�
0

v2eiξ=
ffiffiffi
2

p
�
; ð3Þ

with the standard parametrization tan β ¼ v2=v1, or
v1 ¼ v cos β, v2 ¼ v sin β.

B. The Higgs basis

We use below the RPa basis with v2 ¼ 0 (the Higgs, or
Georgi, basis [12]), in which the 2HDM potential can be
written in the form [13]

VHB ¼ M2
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: ð4Þ

For this basis we use capital letters to denote the fields and
the parameters of potential, Φi and Λj, respectively.

III. RELATIVE COUPLINGS

In the discussion below we use the relative couplings for
each neutral Higgs boson1 ha (in 2HDM a ¼ 1, 2, 3):

χPa ¼ gPa
gPSM

; χ�a ¼ gðHþH−haÞ
2M2

�=v
;

χH
þW−

a ¼ gðHþW−haÞ
MW=v

: ð5Þ

The quantities χPa (where P ¼ VðW;ZÞ; q ¼ t; b;…,
l ¼ τ;…) are the ratios of the couplings of ha with the
fundamental particles P to the corresponding couplings for
the would-be SM Higgs boson with mass Ma. The other
relative couplings describe the interactions of ha with the
charged Higgs bosonH�. Couplings χVa and χ�a are real due
to Hermiticity of Lagrangian, and are directly measurable.
Couplings χH

þW−
a , χqa and χla are generally complex.

Besides, one can note that [13]

χZab ≡ gðZhahbÞ
MZ=v

¼ −εabcχVc : ð6Þ

There are useful sum rules among these couplings,
namely

ðaÞ
X
a

ðχVa Þ2 ¼ 1; ðbÞ ðχVa Þ2 þ jχHþW−
a j2 ¼ 1: ð7Þ

Both the real and imaginary parts of the Yukawa couplings
χqa and χla can be measured in principle using distributions
of Higgs bosons decay products in ha → q̄q, ha → l̄l. The
absolute value of the coupling χH

þW−
a is fixed by the sum

rule (7) b) and is well measurable.
The unitarity of the rotation matrix describing transition

from components of fields ϕi to the physical Higgs fields
ha allows to obtain the following relations for couplings
χH

þW−
a (the factor eiρ represents the rephasing freedom in
the Higgs basis):

χH
þW−

1 ≡ ðχH−Wþ
1 Þ� ¼ −eiρ

χV1 χ
V
2 − iχV3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðχV2 Þ2
p ;

χH
þW−

2 ≡ ðχH−Wþ
2 Þ� ¼ eiρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðχV2 Þ2

q
;

χH
þW−

3 ≡ ðχH−Wþ
3 Þ� ¼ −eiρ

χV2 χ
V
3 þ iχV1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðχV2 Þ2
p : ð8Þ

Note, that here we discuss couplings which appear in the
Lagrangian. Radiative corrections (RC) change these cou-
plings; however in most cases these corrections are small
and therefore the corresponding observables differ weakly
from those presented in the Lagranian. In this sense we treat
the latter ones as being measurable. Therefore the identities
(6)–(8) are valid with accuracy to RC.
When describing interactions of the Higgs bosons

with the gauge bosons V ¼ W, Z, one should distinguish
interactions of different Lorentz structure: the vectorial
haVμVμ, tensor haVμνVμν and axial-tensor ha ~VμνVμν inter-
actions, with the coupling constants gVa , gVaT and ~gVaT ,
respectively (here Vμν ¼ ∂μVν − ∂νVμ, ~Vμν ¼ ϵμναβVαβ).1We omit the adjective “relative” below.
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These interactions can be separated in the experiment
from each other by the study of angular correlations in
the decays like ha → ZZ → eþe−μþμ− [14]. In this paper
we concentrate on vectorial couplings appearing in
Lagrangian (and modified weakly by the RC).
In the 2HDM tensor and axial-tensor interactions appear

only due to RC (mainly from t-loops). In most cases they
give very small contributions to the observed decays rates
of ha and are hardly observable.
The axial-tensor interaction can imitate CP violation.

This interaction was studied in Ref. [14] for CP conserved
variant of 2HDM, in which one of neutral Higgs bosons is
pseudoscalar A. It was found that the corresponding decay
A → eþe−μþμ−, etc. can be observable only in a very
narrow range of parameters (MA ≈ 2mt, low tan β). If it is
realized, the study of angular correlation of leptons allows
to distinguish CP odd nature of the initial state (as it is done
currently at the LHC in the study of CP properties of the
Higgs boson [1–4]) without violation of CP symmetry.

IV. A MINIMAL COMPLETE SET OF
OBSERVABLES IN 2HDM

In Ref. [13] a minimal complete set of directly meas-
urable quantities (observables) defining the 2HDM was
found (a ¼ 1, 2, 3), namely:

v:e:v: of Higgs field v ¼ 246 GeV;

masses of Higgs bosonsMa;M�;

2 ðout of 3Þ couplings χVa ;
3 couplings χ�a ;

quartic coupling g ðHþH−HþH−Þ: ð9Þ

In the most general 2HDM, these 11 observables are
independent from each other. In particular variants of the
2HDM, additional relations among these parameters may
appear.
The parameters of the potential in the Higgs basis are

expressed through these observables and free parameter ρ
[it appears in Λ5;6;7 via couplings χH

þW−
a given in Eq. (8)]:

Λ1¼
X
a

ðχVa Þ2M2
a=v2; Λ5¼

X
a

ðχH−Wþ
a Þ2M2

a=v2;

Λ4¼
�X

a

M2
a−M2

�

�
=v2−Λ1; Λ3¼2ðM2

�=v
2Þ
X
a

χVa χ
�
a ;

Λ6¼
X
a

χVa χ
H−Wþ
a M2

a=v2; Λ7¼2ðM2
�=v

2Þ
X
a

χH
−Wþ

a χ�a ;

Λ2¼2gðHþH−HþH−Þ: ð10Þ

The parameters of the potential (1) with the values
of tan β and ξ defined in (3) are obtained from parameters

(10) with the aid of transformation (2) in the following
form

ðϕ1ϕ2Þ ¼ F̂HBðΦ1Φ2Þ;
F̂HB ¼ F̂ genðθ ¼ −β; τ ¼ ξ;−ρÞ: ð11Þ

V. CONDITIONS FOR A CP CONSERVATION

In the Higgs models like 2HDM neutral scalar particles
coincide with their antiparticles. Therefore, in such models
one can discuss the P-parity violation, but not C-parity.When
in addition we consider fermions, the P-parity violation is
transformed to the CP violation (see e.g. [15–17]).

A. Basic facts

The CP symmetry is conserved in the 2HDM and similar
models containing spinless bosons if2

• Each observable physical neutral spinless

boson has definite P-parity
ð12aÞ

• There are no P-violating interactions
between these bosons:

ð12bÞ

In the 2HDM we denote neutral spinless P-even bosons as
h1, h2 (they are called often as h andH) and P-odd boson as
h3 (it is called often as A). The condition (12b) means the
absence of the interactions3 ði; j; k ¼ 1; 2Þ

hihjh3; h3h3h3; hihjhkh3; hih3h3h3: ð13Þ

It is well known that in the 2HDM the CP conservation
holds if

There exists the RPa basis in which :

• all parameters of potential are real; ð14aÞ

• relative phase ð3Þ ξ ¼ 0: ð14bÞ

It is worth mentioning that the condition (14a) forbids the
explicit CP violation while conditions (14a) and (14b)
together forbid the spontaneous CP violation.
The statement (12) only describes CP conservation,

but does not provide a criterium for CP conservation in
the considered model. The description (14) is RPa basis-
dependent. Below we discuss both (A) and (B) setups of
our problem, presented in the Introduction.
Many authors consider solution of problem (A) as a

necessary step in solving problem (B). Our approach is

2Note that CP violation originating from fermions and (or)
vector bosons, appears in the interactions of spinless particles via
radiative correction.

3Similar conditions were discussed in Ref. [18].
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different: we look for a solution to problem (B), with a
solution to problem (A) appearing as a by-product.

B. Method of the CP-odd basis-independent invariants

Many authors found the basis independent criterium for
CP violation or conservation in terms of parameters of the
Higgs potential; this corresponds to problem (A) stated in
the Introduction. For this goal they constructed the RPa
basis-invariant CP-odd combinations of parameters of the
potential and as a condition for CP conservation they
demanded vanishing of all these invariants. For 2HDM
three such invariants ImJ 1;2;3 were found in Refs. [19,20],
the procedure for construction of such invariants for multi-
Higgs models is developed in Ref. [21].
To solve the corresponding problem (B) the invariants

[19,20] for 2HDM were expressed via measurable quan-
tities in Refs. [22]. In the terms of quantities (9), the
corresponding conditions for the CP conservation read as

ImJ 1 ¼
X
i;j;k

εijk
2M2

i M
2
�

v4
χVi χ

V
k χ

�
j ¼ 0;

ImJ 2 ¼ 2χV1 χ
V
2 χ

V
3

X
i;j;k

εijk
M4

i M
2
k

v6
¼ 0;

ImJ 30 ¼ 4
X
i;j;k

εijkT iχ
V
j χ

�
k ¼ 0;

where T i ¼ frðM2
�χ

�
i þM2

i χ
V
i ÞM2

i M
2
�v

6: ð15Þ

Note that in this approach there are four CP-odd
invariants but one should check vanishing only of two
of them (see e.g. [17]). Since the choice of these two
invariants is not fixed from beginning, the presented set
contains three conditions, instead of necessary two. In our
opinion the equations (15) are too complicated and their
experimental verification, discussed in [19,20,22,23],
requires very complex procedure.

C. A direct criterium for CP conservation

In the direct method we approach directly problem (B)
mentioned above. We start with a description of CP
conservation (12) and use only observables, which by
definition are basis independent.
In Refs. [24,25] we proposed conditions for CP con-

servation, based only on one condition4 (12a), without
checking up of condition (12b), in the form

Y
a

χVa ¼ 0;
Y
a

χ�a ¼ 0: ð16Þ

Below we simplify these conditions and prove that the set
of new conditions is necessary and sufficient.

(i) The direct criterium
In the CP conserving 2HDM, all ha should have

definite P-parity. In particular, one of them is P-odd,
while two others are P-even (12a). Therefore, the
necessary condition for a CP conservation is an
existence of one neutral Higgs boson (we denote it
h3), which doesn’t couple to the CP-even states VV
and HþH−. So it reads:

There exists an neutral Higgs boson h3 for

which vectorial coupling gV3 ≡ gðh3VVÞ ¼ 0

and g�3 ≡ gðh3HþH−Þ ¼ 0:

ð17Þ

Now, one has to check condition (12b). In order to
do this, we substitute Eqs. (17), (8) into (10),
choosing ρ ¼ 0. The choice ρ ¼ 0 together with
constraint χV3 ¼ 0 in (8) makes both χH

þW−

1;2 real

while χH
þW−

3 is imaginary. Next, we insert these
χH

þW−
a into (10). The parameter Λ5 contains real

negative quantity ðχHþW−

3 Þ2 while in Λ6 and Λ7 this
imaginary χH

þW−

3 is multiplied by χV3 or χ�3 , which
are zeros (17). Hence, with this choice all parameters
of potentialΛa in the Higgs basis are real. Therefore,
in view of the statement (14), the CP-symmetry of
model is not violated. In particular, the CP violating
interactions (13) do not appear. (Besides, it is easy to
check that conditions (17) ensure compliance of
conditions (15) and first two conditions (16)).
Therefore we conclude that

the conditions ð17Þ are necessary and sufficient

for establishing CP conservation in the boson

sector of 2HDM ðproblem BÞ:

Note that Eq. (10), after substitution of Eq. (17)
together with Eq. (11), can be treated as a solution of
problem (A).

(ii) A discussion of the direct criterium. In view of
identity (6), the first condition (17) can be written
also in the form gðZh1h2Þ ¼ 0. In some cases,
checking this condition in the latter form may be
more convenient. Such form of criterium for CP
nonviolation5 was discussed in Ref. [26].

Besides, the conditions for CP conservation
written via the CP-odd invariants (15) are fulfilled

4A particular version of such approach was used in [26].

5Let us recall that such condition is insufficient to establish CP
conservation, since it does not guarantee the fulfillment of the
condition (12b), i.e., nonappearance of CP odd vertices (13).
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if some masses Ma are degenerate and some special
relations among observable couplings χVa and χ�a
take place. This combination can be treated as an
alternative form of our necessary and sufficient
condition in this particular case. Note, that if
gðh3HþH−Þ ≠ 0, the loop diagrams of Fig. 1 mix
the Higgs states with different “bare” CP parity,
which results in CP violation.

VI. POSSIBILITIES FOR A VERIFICATION

The verification of the CP conservation requires obser-
vation of all scalars of the model. In the SM-like scenario
realized in Nature this looks difficult (see, e.g., [25]).
Moreover, one should check if some measurable quantities
are equal to zero. In any case, these measurements cannot be
performed with a high accuracy. From this point of view the
proposal to change a direct criterium to a condition for a
nonobservation of decay h3 → h1Z, etc. given in [26] looks
attractive. Nevertheless, one can not hope for a high
accuracy in testing CP conservation in the 2HDM. Let us
remind that the possible observation of weak enough decay
h3 → ZZ → lþ

1 l
−
1l

þ
2 l

−
2 do not contradictCP conservation.

If this decay is observed, the correlations between momenta
of leptons should be studied. The CP conservation for h3
will be confirmed if these correlations show axial-tensor
nature of this interaction, i.e., pseudoscalar nature of h3.
If in the future the experiments show, within the definite

experimental uncertainties, an agreement with criteria (17),
the important problem arises for the further studies, namely
whether one can expect that the more accurate measure-
ments will show violation of CP in our 2HDM, i. e.
violation of criteria (17), or the observed CP violation
is in fact an effect beyond approximation given by 2HDM,
and some new weaker interactions should be implemented
in the description of Nature.

This situation is similar to that in atomic physics. Atomic
interaction (QED) conserves P-parity. Parity nonconserva-
tion appears at the smallest distances due to next level weak
interaction. It is observed as a small effect in rare atomic
transitions.

VII. CONCLUSIONS

We present here a compact set of necessary and sufficient
conditions for CP conservation in 2HDM (17), which are
common for all mechanisms of CP violation. We prove that
the verification of CP conservation in 2HDM requires to
measure two simple and relatively easily testable observ-
ables instead of more complex conditions with CP-odd
invariants (15) discussed by many authors [19,20,22,23].
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APPENDIX: NECESSARY CONDITION FOR
CP CONSERVATION IN MULTI-HIGGS

DOUBLET MODEL

The criterium of CP conservation in the multi-Higgs
doublet models—nHDM are also of interest. Here, the
method of CP-odd invariants allows to construct many
equations, which can be used for obtaining conditions for
CP conservation. Both complete set of these equations and
their expressions via measurable quantities are absent up to
now (see, e.g., [21]).
The direct method used above allows us to formulate

for the nHDM simple necessary conditions for the CP
conservation.
After Electroweak Symmetry Breaking the nHDM con-

tains 2n − 1 neutral Higgs bosons ha, generally with
indefinite CP parity, and n − 1 charged Higgs boson
H�

b , with masses Ma, Mb�, respectively. The couplings
haVV obey the first sum rule (7). In the case of CP
conservation one can split spinless neutral particles ha into
two groups: P-even h1, …; hn and P-odd hnþ1;…; h2n−1.
Similarly to (17), the condition for a CP conservation in the
nHDM can be written as

There existn− 1neutral Higgs bosonshc; for

whichgðhcVVÞ ¼ 0; gðhcHþ
b H

−
b Þ ¼ 0

with nþ 1 ≤ c ≤ 2n− 1; 1 ≤ b ≤ n− 1:

ðA1Þ

These nðn − 1Þ conditions are necessary for CP conserva-
tion. We do not know now whether these conditions are
sufficient or not.

1h 3h

+H

−H

1h 3h

1h

2h

2h

FIG. 1. Mixing provided by the HþH− loop (up) and by one of
CP violated vertices (13) (down).
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