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The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received
great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark
matter may have similar mass to the proton, while mirror matter and G × G grand unified theories provide
rationales for additional gauge sectors which may have minimal interactions with standard model particles.
In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the
number of light colored particles and the value of the confinement scale on the lightest stable state, the dark
matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic
states.
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I. INTRODUCTION

The current evidence of the makeup of the Universe
shows that one quarter of the energy budget is made up of
dark matter [1]. The nature of dark matter is one of the key
questions of present day physics. The near equality of the
baryon and dark matter mass densities,

ΩDM ≃ 5ΩB; ð1Þ

motivates the idea that the origin of dark matter is connected
to that of baryonic matter. If one expresses the critical
density as a product of particle number density and mass,
ΩDM ¼ nm, then assuming a mechanism that generates
similar number densities of matter and dark matter, we
require the relation mD ∼ 5mp. Asymmetric dark matter
models provide a way to generate similar number densities
[2–4]. In these models one typically generates a dark matter
asymmetry just like that of the visible sector such that all
dark antimatter and a large fraction of dark matter have been
annihilated away into dark and/or standard radiation and
only dark matter remains.
In order to explain the similarity in mass we first note

that the mass scale of ordinary baryons is generated by the
confinement scale of QCDwhere the SU(3) gauge coupling
becomes nonperturbative. If dark matter has a mass similar
to the proton, then it is natural to consider dark confining
gauge groups of a hidden sector. These “dark sectors” have
been considered in a large number of models in recent years
and dark QCD models [5–13] in particular have received
much attention.1 In these models almost all of the mass

density of the Universe would be dynamically generated.
The mass of a proton can by dimensional analysis alone be
seen to depend largely on the confinement scale
ΛQCD ∼ 200 MeV, and so as a first estimate we can relate
the masses of dark baryons to a dark confinement scale,
ΛDM, of a hidden SU(3) group. The similarity in confine-
ment scales at low energy can be explained by models such
as mirror matter [36,37] or G × G unification. Models
where at high energy the gauge forces are described by a
mirror symmetric SUð5ÞDM × SUð5ÞVM, can feature spon-
taneously broken mirror symmetry [38,39] resulting in two
distinct sectors that have gauge couplings which run
independently. We can then have the standard model
(SM) consisting of the usual SUð3Þ × SUð2Þ ×Uð1Þ,
and a dark sector containing at least SUð3ÞD.
In this work we examine some of the properties that dark

baryons of a hidden QCD may possess. We will consider
the hidden sector colored fermions to be charged at most
under a mirror copy of the SM gauge group G0 ¼
SUð3ÞD × SUð2ÞD ×Uð1ÞD. In the context of broken
mirror symmetries the similar confinement scales of the
two SU(3) groups then has a natural explanation in the UV
unification of the two non-Abelian gauge couplings. While
exploring the rich spectra of such hidden theoretical QCD
models may be beyond the reach of current dark matter
experiments, the ground state and its dependence on a
number of assumptions in the theory can be computed. For
a model of dark matter we are primarily interested in dark
QCD models and their lightest stable ground states, as on
the time scale of the Universe almost all dark matter would
be expected to be in this form. Various theoretical models
of QCD have seen great success in modeling the properties
of baryons and mesons. Lattice QCD, chiral perturbation
theory, the relativistic and nonrelativistic quark models, the
bag model, and others have all seen encouraging results
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though no model other than lattice QCD can promise
complete success. The study of a dark QCD could also be
approached in various ways. In this work we use a simple
model of predicting the baryonic ground state spectra that
captures the key dependence on the confinement scale and
has replicated the ground states of baryons well: the
hyperspherical constituent quark model (hCQM) [40,41].
In Sec. II we review the hyperspherical constituent quark
potential models and the specialization to hypercentral
potentials for the calculation of ground states. Section III
then explores the baryon and meson spectra and analyzes a
number of key scenarios. We then consider the possible
evidence for these cases and the cosmological conse-
quences in Sec. IV before concluding in Sec. V.

II. HYPERSPHERICAL POTENTIALS

To examine the masses of dark baryons we use the
hCQM [40,41]. Potential models of the hadronic spectra
have a long history in the development of the quark model.
The hypercentral approximation is a special case of the
hyperspherical formalism with a potential that depends on a
single radius. The more accurate full hyperspherical for-
malism for three-body problems can be used, which
reduces the problem to a set of infinite coupled differential
equations in six dimensions [40]. However, truncating the
infinite set at first order, which is equivalent to the hyper-
central approximation, already fits the experimental spectra
quite well as noted in [42,43] and works particularly well
on ground states, which are the most important for the
present work on examining dark matter candidates. First we
rewrite the coordinates in the Jacobi form assuming the
case of equal constituent quark masses,

ρ⃗ ¼ r⃗2 − r⃗1;

λ⃗ ¼ 1ffiffiffi
3

p ð2r⃗3 − r⃗1 − r⃗2Þ;

R⃗ ¼ 1

3
ðr⃗1 þ r⃗2 þ r⃗3Þ: ð2Þ

The center of mass motion is separated out; hence the
coordinate associated with it, R, is not used. We then
convert to hyperspherical polar coordinates,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ λ2

q
; ð3Þ

ϕ ¼ tan−1
�
ρ

λ

�
; ð4Þ

with x the new hyperradius and ϕ the hyperangle. The six-
dimensional (6D) vector depends not only on x;ϕ, but on
the four angles associated with coordinates ρ and λ as well.
These are denoted by two vectors Ωρ, Ωλ, respectively. In
analogy with one-particle quantum mechanics we can

introduce hyperspherical harmonics Y ½γ�ðΩ5Þ, in analogy
with the spherical harmonics in three dimensions, and a six-
dimensional grand orbital angular momentum operator
LðΩ5Þ, with Ω5 consisting of all five angles ϕ;Ωρ;Ωλ,
and lρ;λ are the conventional three-dimensional orbital
angular momenta quantum numbers corresponding to ρ
and λ, taking values (0; 1; 2;…). The eigenvalues of L2 are
given by

L2Y ½γ�ðΩ5Þ ¼ γðγ þ 4ÞY ½γ�ðΩ5Þ: ð5Þ

As the hypercentral formalism assumes that the potential is
dependent only on the hyperradius we have that Vðρ; λÞ
becomes VðxÞ and the spatial wave function can be
separated into functions of the hyperradius and the remain-
ing angles,

ψ space ¼ ψN;½γ�ðxÞY ½γ�ðΩ5Þ: ð6Þ

The non-negative integer N now characterizes the radial
excitations of the baryons, and γ is the grand angular
quantum number such that γ ¼ 2nþ lρ þ lλ with n a new
quantum number, a non-negative integer ð0; 1; 2;…Þ that
identifies the degree of the Jacobi polynomials that serve in
the definition of the hyperspherical harmonics. lρ and lλ are
the angular momenta for the ρ and λ coordinates, respec-
tively. For instance, the nucleon is associated with the
EN¼0;γ¼0 eigenvalue while its first radial excitation is E10,
otherwise known as the Roper resonance. Then the hyper-
radial Schrödinger equation becomes

�
d2

dx2
þ 5

x
d
dx

−
γðγ þ 4Þ

x2

�
ψN;½γ� ¼ −2m½EN½γ� − VðxÞ�ψN;½γ�;

ð7Þ

which can be solved analytically for some select choices of
VðxÞ and otherwise will be solved for numerically. In this
work we use the matrix methods of [40] to solve for these
eigenvalues. One of the simplest quark interaction forms is
described by the Cornell-type potential,

VðxÞ ¼ −
τ

x
þ kx; ð8Þ

consisting of a hyperCoulombic and a linear term. Other
potentials with variations on this general shape have been
considered in the literature of the constituent quark model
[40,41,44,45]. These models have yielded great successes
in replicating the spectra when the parameters of the
potential are fitted to just a few experimental states, though
predicting the masses of both the light and the heavy
spectra simultaneously has presented more of a challenge.
In the next section we examine the spectra for light baryons
generated by such potentials and the implications for dark
non-Abelian composite states.
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III. HADRONIC SPECTRA

While the constituent quark model has achieved con-
siderable success in replicating the ground states of the
baryon spectrum, in adapting this method to the exploration
of a hidden QCD we have to deal with the fact that the
parameters of the theory are taken from the experimental
spectra, which are unavailable in the dark sector. In the case
of hyperspherical potential models we adopt a method of
exploring the possible dark matter spectra by considering
simplified models that depend on only a few parameters,
and then deducing how those parameters change for the
dark QCD case. In particular, we consider models in which
the lightest dark quarks have near degenerate mass and
where the baryon mass scale E0 ∼ ΛDM is a free parameter.
This is based on our treatment of ΛDM itself as a free
parameter of the theory following the work in [39]. In that
model of asymmetric dark matter the UV value of αDM is
fixed by the Z2 symmetry imposed on the G ×Gmirror
theory. ΛDM will then vary from ΛQCD by the location of
mass thresholds of dark quarks with mass greater thanΛDM,
making the latter parameter different from the SM value,
ΛQCD ∼ 200 MeV, following the mechanism of asymmet-
ric symmetry breaking [39]. In these models, the heavy
dark quarks may have masses significantly larger than the
dark confinement scale:mq ≫ ΛDM. As these very massive
degrees of freedom have no effect, except through their
production of a given ΛDM, on the ground state of the dark
SU(3) theory, the locations of the thresholds can be made to
produce a given low scale value of ΛDM and thus E0. The
lightest dark quarks with negligible bare mass then have a
dressed mass of ∼E0=3.
With the variation of ΛDM we also vary accordingly the

length scale of the interquark potential and any other
dimensional parameters associated with ΛDM in the theory.
As in the bag model of QCD, where the length scale of
confinement scales inversely with the energy scale, we will
vary the length scale of the potential and constituent quark
masses withΛDM. The parameters of the reference potential
will be fitted to the standard model QCD spectra, and a
number of different potential forms will be used for
comparison. We define the ratio of confinement scales in
the two sectors as

ξ ¼ ΛDM

ΛQCD
: ð9Þ

In a model with high scale mirror symmetry, large values of
ξ are less likely since mass thresholds only vary the rate of
running slightly, and so similar QCD mass scales for the
two sectors are well motivated by the insensitivity of the
scale of dimensional transmutation to higher mass scales in
the theory [38]. In such models, the Yukawa couplings of
the two sectors are also independent despite the high scale
mirror symmetry. This can be seen as an effect of both the
different running couplings and the fact that the Higgs

mechanisms responsible for mass generation in the two
sectors can involve scalar states that are not mirror partners
[39]. In this work we similarly take the Yukawa coupling
constants of the dark quarks to be effectively unrelated to
those of the corresponding ordinary quarks.
If ξ > 1 and the lightest dark quark bare masses are

comparable to the up and down quarks of the SM, then the
approximate chiral flavor symmetry becomes more exact as
ξ increases. This can be compared with our own QCD
where it is the small quark masses relative to the confine-
ment scale that generate the isospin symmetry. No sym-
metry connecting the bare up and down quark masses is
necessary for strong isospin, only that they are small
enough to be insignificant compared to the near equal
constituent masses the quarks gain from chiral symmetry
breaking within the bound states in the constituent quark
model. It is in this sense that a dark QCD with nl light
flavors with masses ml ≪ ΛDM can form an SUðnlÞ
analogue of strong isospin. The assumption of near
degenerate dark quarks is then seen to refer to constituent
masses. This dark isospin is then a consequence of any
hidden QCD where fermions gain mass via a Higgs-like
mechanism and the product of the hidden sector Higgs
vacuum expectation value (VEV) vD and any dark quark
Yukawa couplings are small in relation to the dark confine-
ment scale. As the light dark quarks form the lightest bound
states of a dark QCD, any colored fermions more massive
than the confinement scale will decay to lighter states of the
theory and only be produced in small numbers following
the dark quark hadron phase transition. We also consider
states analogous to the strange quark of QCD which have a
mass which can be less than ΛQCD but can still contribute a
significant amount to hadronic masses. There also exists the
limiting case of when all of the dark quarks have mass
above ΛDM, which has been explored in models such as
[46–48] where the possibility of glueball dark matter is
examined. In the case of six massless quarks and a baryonic
mass scale E0 ∼ ΛDM,

2 the meson states will have zero
mass as genuine Goldstone bosons. The exception is the
Goldstone boson associated with the breaking of the
anomalous U(1) axial symmetry. In QCD it is the η0.
Importantly, in one flavor QCD, the only meson of the
theory will gain an anomalous mass, and so even in a dark
QCD model with a single massless quark, there will be no
massless Goldstone bosons. We will briefly discuss this
particular case in the next section.
To compute the mass spectra of a dark QCD, we apply

the hCQM and scale relevant parameters with the confine-
ment scale. In the simplest potential model with an
interquark interaction as in Eq. (8), the size of the bound

2The effects of the strange quark as a virtual state contributing
to the mass of the proton has a long history. It is estimated that a
massless strange quark may lower the nucleon mass scale of QCD
by between ∼1% and 20% [49].
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state can be compared to the radius at which the potential
transitions from Coulomb-like to linear. This follows
directly from our treatment of the confinement scale as a
free parameter, in that we are adjusting the scale at which
the hidden QCD theory transitions from perturbative to
nonperturbative. This transition radius then decreases
inversely with ξ. This can be seen directly in the case of
Eq. (8) where k has units of ðEÞ2 and so becomes ξ2k in a
scaled potential. The crossing point is then rc ¼

ffiffi
τ
k

p
1
ξ. This

relationship can be seen in Fig. 1. The shape of the potential
directly affects the masses of bound states and in particular
has important consequences for resonance states and the
size of the hyperfine corrections. We now turn to the
computation of the dark hadron spectra of different cases of
a hidden QCD. The masses also depend on the reference
potential that we can scale from and which is taken from
past work on potential models of QCD in order to replicate
the masses of the hadrons of the standard model.

A. Baryon spectra

We distinguish the cases by the number of light dark
quarks in the theory and examine how the spectra change
with the confinement scale. Including electromagnetic
effects we can consider that as ΛDM increases and rc
decreases, the size of the electromagnetic (EM) mass
contribution to neutral and charged states will be more
significant. In particular, if we consider the simple expres-
sion for the scaling of theEMself-energy of a neutron as [50]

ΔEM ∼ −
α

hx2i1=2 ; ð10Þ

then this term will scale upwards with ξ as the distance
becomes smaller. The proton by comparison has a positive
mass contribution that also scales with ξ, and the difference
between these will push charged states above the masses of
neutral states for the case of light quarks of equal mass.
Such contributions are not, however, to be subtracted from

the calculated neutral ground states in the hypercentral
analysis as they are in theory already factored in by the
Coulombic term scaling of the potential and the fact that the
potential was fitted to the experimental neutral masses from
the PDG for ξ ¼ 1. For this reason, our work is most
applicable to theories of a dark QCD with an EM U(1)
coupling strength the same as that of ordinary electromag-
netism. In models of broken mirror symmetries the value of
the dark sector’s EM coupling constant is constrained to be
very close to that of the SM value due to the opposite
direction of the running of Uð1ÞY and SUð2ÞW , and so the
model in this work is directly applicable to the QCD spectra
of these models. In a theory without an EM gauge group, the
EM mass contribution to the effective potential must be
separated in order to remove its effect from the mass
ordering.
For larger confinement scales the effect of EMU(1) force

in the theory will create mass differences pushing any
charged states well above any light neutral ground states
if the set of light quarks allows for them. The only counter to
this is if the bare dark quarkmass differences compensate for
the EM mass difference as in the case of the proton-neutron
mass splitting of ordinary QCD. This can be contrasted with
the effect of ξ on the chromomagnetic spin-spin interactions
that we employ and which scale inversely with the dark
confinement scale and thus increase the degeneracy between
the doublet and quartet in two flavor dark isospin, and
between the octet and decuplet in three flavor dark isospin.
This term crucially depends on the spatial wave function and
the contact term for overlapping quark coordinates
hδð3Þi ¼ jψð0Þj2. The spin-spin interaction in the form of
the chromomagnetic contact term is [51]

Vss ¼
X

i<j

4

9π

αs
mimj

δð3ÞðrijÞσi · σj: ð11Þ

Note the inverse scaling with constituent masses mimj

which will increase degeneracy between the mixed
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FIG. 1. The variation of an example hypercentral potential VðxÞ with ξ (left) and the value of rc, an estimate of the radius of
confinement, as a function of ξ (right). By scaling the dimensionful parameters of the interaction potential with the confinement scale,
we are directly scaling the range at which the interaction transitions from perturbative to nonperturbative.
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symmetry and totally symmetric baryon multiplets. This
term is analogous to the magnetic spin-spin contact inter-
action that gives rise to the hyperfine splittings in atomic
theory, however, in this case is motivated by the color-
magnetic moments. This term is important in understanding
theΛ0 − Σ0 andΔ0 − N mass differences in QCDwhere the
flavor composition is identical and the spin-flavor wave
function is different, a unique feature for baryon wave
function ground states when the number of flavors exceeds
two. They are then similarly important for the present work
as they contribute to the mass splitting between the different
ground statewave functions allowed in the constituent quark
model. One could also consider the spin-flavor and spin-
orbit interactions, and depending on the choice of potential
these may contribute more or less significantly. We discuss
these possibilities further in Appendix A. In this work we
consider models where the spin-spin interaction is the
dominant source of these mass differences. In the hyper-
central assumption with only one hyperradius we lose the
ability to directly calculate the full value of the contact term
hδð3Þi for the full coordinate system of three quark wave
function. The Gaussian-smeared contact term with a func-
tional form

δð3ÞðxÞ ¼ κex
2=r2

0 ð12Þ

that is treated perturbatively is an approximation which has
been applied successfully to fitting the light baryons in
[41,52] among others, andwe similarly use it in thiswork for
the extrapolation to dark QCD states.
In fitting the form of the potential we compare parameter

fits done in similarmodels for standard hadronic spectra.We
consider primarily potentials generalizing that of Eq. (8),

VðxÞ ¼ −
τ

x
þ kxρ; ð13Þ

as well as a perturbative hyperfine interaction given by
Eq. (11). The eigenstates are then given byENγ. This follows
the work on visible QCD in [52–54] as well as [55]. The
masses of the baryons are then given by MB ¼ E0 þ ENL
where E0 ¼ 3mq; i.e., it is the quantity that scales directly
with ξ along with the dressed light quark masses.With these
different potentials, which all fit the experimental spectra to
varying degrees, we can examine the variation of dark
baryon masses with the choice of potential. Following the
potentials given in [52–55] we list in Table I three sets of

parameters that with Eq. (13) provide a good fit to the
hadronic spectra. While our starting point was with these
potentials, our exact choice of parameters prioritizes the fit
to the ground states over the resonances as these are themost
relevant to this work. We are then assuming that such a
potential, when scaled, provides the more accurate predic-
tion of dark QCD ground states.
We can then calculate the same states for a dark QCD

model as a function of the number of light quarks and a
value of ξ. The parameters (τ; k; ρ; κ; mq; r0; E0) then all
scale appropriately according to the mass dimensions of the
chosen potential as discussed in Fig. 1. Figure 2 shows the
fit to ground states of the N and Δ baryons in QCD while

TABLE I. Parameter sets of the three choices of potentials in the fitting to ground states of QCD. The three parameter sets (P1, P2, P3)
are taken from the works in [52–54], respectively. The choice of units reflects the units used in the original works.

Model τ k ρ κ mq r0 E0

P1 102.67 MeV · fm 940.95 MeV=fm 1 616.02 MeV · fm 337 MeV 0.45 fm 913.5 MeV
P2 0.5069 0.1653 GeV2 1 1.8609 0.315 GeV 2.3 GeV−1 0.8321 GeV
P3 0.4242 0.3898 GeV5=3 2=3 1.8025 0.277 GeV 2.67 GeV−1 1.1313 GeV
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FIG. 2. The resonances of the N and Δ0 states compared to
PDG. The spin 1=2 ground state of the neutron and spin 3=2
ground state of theΔ0 are fitted to match the experimental ground
states exactly in each case. These values serve as the reference for
dark QCD calculations.
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Fig. 3 shows a scaled version for a value of ξ ¼ 5, chosen
for the sake of example.
In the one flavor quark case, the baryon spectrum

consists of the lightest stable Δ baryon with ground state
spin 3=2. In the case of dark electromagnetic Uð1ÞQ
symmetry consistent with the SM it would have EM charge
þ2 in the case of a single up type quark. It could also be a
single down type and so be singly charged with the
opposite sign. For the mass of this state we can compare
with standard QCD in that we calculate the mass from the
constituent quarks and the potential energy from the scaled
potential including the spin interactions that lifts the ground
state according to the chromomagnetic hyperfine interac-
tion in Eq. (11). The mesonic states will likewise contain
only one state; however, this lightest meson will be unique
in that it has the feature of an anomalous mass from the
breaking of the anomalous axial U(1). The size of this
anomalous mass in these models of dark QCD with one
light flavor is beyond the scope of this work.
In the two flavor quark case, with an isospin symmetry

among the light states, the baryon sector will have a spin-
flavor SU(4) symmetry. The spectrum then consists of a Δ
quartet of spin 3=2 states as well as a spin 1=2 pair ðN;PÞ.

However, we can also consider the cases where this doublet
and quartet have charges that follow the possibility of the
two light dark quarks being both up type or both down type.
The splitting between the doublet and quartet in any
scenario is modeled again with the spin-spin contribution
which gives the spin 3=2 states larger mass than similar
spin 1=2 states while EM effects will make the neutral
states lighter in general. For sufficiently light quarks with
near equal masses we can consider the spin 1=2 ðN;PÞ
doublet as the lightest states in the first case, and with
Uð1ÞQ corrections selecting the neutral state as the lightest
ground state. In the case of two uplike or downlike dark
quarks, we have degenerate states with equal EM contri-
butions which we label (Σþþ

c ;Ξþþ
c ) and (Ξ−;Σ−) following

the naming conventions of standard QCDwhere in this case
the flavor content of the theory is taken to consist of near
degenerate (u,c) or (d,s) dark quarks.
In the three flavor case we can compare directly with

QCD; however, again we can distinguish the cases accord-
ing to other quantum numbers. With three flavors we
recover the familiar octet and decuplet; however, with near
degenerate quark masses the spectrum will be near degen-
erate in flavor unlike the strange quark mass splitting seen
in QCD. Again we can consider EM mass differences
where flavor content allows for neutral and charged states.
In the case of three or more flavors we gain two ways of
forming a spin 1=2wave function for ground states as in the
case of the Σ, Λ. The differences in terms of Eq. (11) are the
values of the σ · σ terms. It remains true, however, that in
the degenerate u, d, s case that N, Σ, Λ have the same mass
and share the place of the lightest state.
In Fig. 4 we show as a function of ξ the lightest spin

parity states for each of the lightest baryons in the cases of
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FIG. 3. Spin 1=2 and spin 3=2 for a confinement scale ratio
ξ ¼ 5 and three light quarks. Dimensional parameters scale with ξ
displayed in the upper left. The PDG values for the experimental
spectra are shown for reference to the scale of the ξ ¼ 1 case.
Each of the results (P1, P2, P3) corresponds to a choice of
parameters for the ξ ¼ 1 potential given in Table I.
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FIG. 4. Spin 1=2 and spin 3=2 states as a function of the
parameter ξ, the ratio of confinement scales. The direct scaling
with the confinement scale becomes more significant at large ξ as
one expects from dimensional analysis. This uses an average of
the three parameter regimes P1, P2, and P3. Using this plot we
can see at each value of ξ the lowest lying baryon in a dark QCD
spectrum for models of one flavor (uuu, orange curve), or with
two or more flavors (udd, blue curve).
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only one light quark and two light quarks. The case of two
light quarks, however, provides the mass scale of the
lightest state for any number of light quarks greater than
or equal to two.
By observing the spin and flavor symmetries of a given

set of light quarks one can construct an equation with a
functional form similar to that of the Gell-Mann-Okubo
equation which was used to make sense of the mass
splittings of ground state hadrons in the quark model.
For a dark variant of such an equation, the unknown
parameters cannot be extracted from experiment, though
we can consider how these parameters change from
ordinary QCD for a choice of dark QCD. We introduce
the additional free parameter δms as the mass difference
between the constituent quark mass of the light states and
the constituent mass of a semilight state, analogous to the
position of the strange quark in QCD. In particular, we
consider the spin and hypercharge symmetries of the set
given by the SUSð2Þ andUYð1Þ groups. We also include the
generalization of isospin, SUIðnlÞ where nl is the number
of light flavors. This leads us to the form of the Gürsey-
Radicati mass formula, which was used to explain the Gell-
Mann-Okubo mass relations [56], which is written as

M ¼ M0 þ CC2½SUSð2Þ� þDC1½UYð1Þ�

þ E

�
C2½SUIðnlÞ� −

1

4
ðC1½UYð1Þ�Þ2

�
; ð14Þ

where C1, C2 are the quadratic Casimirs for each group. In
the case of QCD this becomes

M¼M0þCSðSþ 1ÞþDYþE

�
TðTþ 1Þ− 1

4
Y2

�
ð15Þ

and works quite well in reproducing the masses of the octet
and decuplet, of ground states in QCD, as shown in Fig. 5.
In Eq. (15) M0 is a new scale that places the energy of the
full baryon spectrum rather than being E0 itself. However,

from the hypercentral analysis to find the ground state of a
confining theory with nl light flavors and a given E0 we can
predict the mass of the ground state and working from this
result determine the value of M0. This idea follows the
applications to the experimental QCD spectrum in [57]
where the SU(6) spin-flavor symmetric Hamiltonian is
solved numerically to find the central values for the
Gürsey-Radicati formula. The experimental states typically
chosen to fit the parameters are, in terms of ground
states,

Σ� − Σ ¼ 3C;

Σ − N ¼ 3

2
E −D;

Λ − N ¼ −D −
1

2
E: ð16Þ

We can then use Eq. (A5) to obtain a minimal number of
baryon ground states and refit the above parameters, for a
choice of ξ and δms, based on our calculated eigenvalues
instead of the experimental spectrum. Figure 6 shows the
masses of the Λ0 and Σ ground states, as well as the mass
differences in spin 1=2 and spin 3=2 Σ ground states,
needed to find the parameters of such a formula for a choice
of ξ and δms while Fig. 4 shows the lightest 1

2
þ,1

2
−, and 3

2
þ

values needed in order to fit the mass difference parameters
that use the neutral N and Δ states. Note that as δms
approaches zero, the dimensional parameters D, E also
approach zero, as we expect. This is relevant to the limit of
maximum degeneracy. It is through this method that the
mass differences within the baryon multiplet for a dark
QCD model can then be explored by solving for the
Gürsey-Radicati formula parameters each time we generate
the resonance spectrum for dark QCD states. Figure 7
examines the cases with only two light flavors, and in Fig. 8
we examine how the spectra of lightest spin-flavor states
change depending on the value of ξ and whether there are
any nondegenerate light quarks. Applying this methodol-
ogy to a dark QCD inherently comes with the caveats that
the exact scaling of these parameters in, for instance, one
flavor dark QCDmay be more complicated than the scaling
we employ. In particular, the relationship between bare
quark mass and constituent quark mass is nontrivial and has
been explored in lattice studies such as [58].

B. Meson spectra

For mesons we are mostly interested in the scaling with
confinement scale as their masses can have significant
consequences on the stability of baryons. They may addi-
tionally impact the cross sections of strong interactions and
thus the self-interaction strength of dark matter. In QCD,
the application of the constituent quark model meson
formula [60],
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FIG. 5. Baryon states in our model for visible QCD compared
to PDG values [59]. Parameters for the Gürsey-Radicati formula
are fitted from the baryon mass results of the hypercentral
Schrodinger equation.

ASYMMETRIC DARK MATTER AND THE HADRONIC … PHYSICAL REVIEW D 96, 055027 (2017)

055027-7



Mmeson ¼ m1 þm2 þ
1

3

�
8π

3

�
4παs
m1m2

S1:S2jΨmesonð0Þj2;

ð17Þ

works surprisingly well, where S · S is 1=4 for vector
mesons and −3=4 for pseudoscalars. Taking the up and the
down to have constituent mass 310 MeV and the strange
quark to have 483 MeV reproduces the results in Fig. 9.
One approach we can then take in exploring a dark
analogue is to simply consider the interquark potential
from the baryon spectrum and solve for the two body wave
function to find jΨmesonð0Þj2. This follows the work in
[52–54] where the potential and parameter space consid-
ered was specifically designed to fit both the baryon and the
meson spectra.
While Eq. (17) is not particularly accurate in the chiral

limit asmq → 0, we observed that the pion scaling with ξ is
consistent with the Gell-Mann, Oakes, Renner relation,

m2
π ¼

ðmu þmdÞρ
f2π

; ð18Þ

if one assumes a pion decay constant that does not vary
with ξ. The parameter ρ is the condensate, ρ ¼ hq̄qi, that
scales directly with ξ. This suggests that the model we
employ is taking the degree of explicit chiral symmetry
breaking to be of the same magnitude as standard model
QCD as we increase ξ. In other words, while the bare light
dark quark masses remain small compared to ΛDM, we are
able to analyze the meson spectrum for models where the
ratio of light dark quark current masses to ΛDM is similar to
standard QCD. This is consistent with models of broken
mirror symmetries where the dark EW scale can be a free
parameter. This limits the amount of parameter space we
can explore in this particular approach to dark hadronic
spectra to models of dark QCD with a similar degree of
chiral symmetry breaking. We additionally know that in the
chiral limit the mesons approach zero mass and so Eq. (17)
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FIG. 6. The top two plots show the masses of the dark sector Λ0 and Σ and states for a range of values of the semilight mass splitting
δms and ξ. The lower plots display the mass differences for the Σ and Σ� baryons as well as the mass splitting of the two different three-
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is applied in the context of increasing ξ with meson spectra
fitted dressed masses now scaling with ξ along with the
interquark potential. We can also factor in a value of δms to
observe the splitting with a semilight dressed state. The
meson spectra are much more sensitive to the masses of the
bare dark quarks, which are all free parameters, and thus the
spectra and the comparison between meson and baryon
masses will depend on the exact model. As noted in [13],
choosing a semilight mass for bare quark masses and a
hidden QCD without flavor violating dark electroweak
forces, one can make states similar to theΛ baryon stable as
kaons may be too heavy for kinematics to allow decay to
lighter baryons.
Figure 10 shows the light meson spectra for a small set of

different dark QCD cases. As the dark confinement scale is
large, we take the anomalous meson to be sufficiently
heavy that it is not part of the light set as discussed
previously. In Fig. 11 we examine how a sample of the
meson spectra in this model varies with ξ. In particular, we
see the variation of the mass between the pseudoscalar and
vector mesons as ξ increases. As we are assuming a
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consistent value of the pion decay constant, it must be the
case that the bare quark masses are similarly increasing
with ξ. This reiterates the previous statement that this
model is not well suited to exploring the chiral limit and,
indeed, exploring the full parameter space of varying the
bare quark mass and confinement scale independently for a
dark QCD is a task that chiral perturbation theory or lattice
QCD studies may have the capacity to accomplish.

IV. COSMOLOGICAL HISTORY
OF DARK MATTER

Asymmetric dark matter models position dark matter as
the remaining abundance of matter in a dark sector
following the annihilation of near equal amounts of dark
matter and dark antimatter, similar to the baryon asymme-
try in our own sector [3]. We then require from an

asymmetric dark matter model with a dark QCD a number
of key features. The first is that dark matter is stable, and so
a conserved global quantum number is necessary. Dark
QCD can provide this in the form of a dark baryon number;
however, this must be present in the model of the dark
quarks themselves, as is the case in models with a mirror
symmetry. Second, in order for the dark symmetric matter-
antimatter components to be annihilated, a form of dark
radiation such as dark electromagnetism Uð1ÞD is needed
or annihilation into ordinary radiation must occur. In the
case that the symmetric component of dark matter annihi-
lates into relativistic standard model species, the dark sector
could avoid any constraints from the CMB data and
nucleosynthesis by having a broken dark U(1) symmetry
with a massive dark photon and therefore have zero dark
relativistic species. If dark photons fulfill that role of
annihilating the symmetric component, then this has direct
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implications as discussed in the previous chapter on the
ordering of the hadronic spectra as well as the self-
interaction cross section for dark matter. The existence
of a dark photon opens up the possibility of a kinetic
mixing term 1

2
FμνFμν

0. This can have important conse-
quences for the interaction of DM with SM species, which
has been explored in a number of asymmetric dark matter
models such as [61,62]. Additionally such light degrees of
freedom in the dark sector contribute to Neff and will bring
it above the current limits imposed if the temperature of the
dark sector is equal to the visible sector. For this reason we
consider in further detail how the bounds on the number of
effective neutrinos can still be compatible with such dark
sectors. If the contribution to Neff is suppressed by a lower
temperature of the dark sector, then one or more light
species can fill this role in dark sector models. We will
examine how such temperature differences can naturally be
created in models with dark confinement transitions in the
following section.

A. Thermal history of dark sectors

The total number of relativistic degrees of freedom is
given by the equation

g�ðTÞ ¼
X

b

gi

�
Ti

T

�
4

þ 7

8

X

f

gi

�
Ti

T

�
4

: ð19Þ

The first term in Eq. (19) is for bosonic and the second term
is for fermionic degrees of freedom. We can see that each
relativistic species contributes to varying degrees depend-
ing on its relative temperature to our own sector. One way
of obtaining a lower temperature for a composite dark
sector is to thermally decouple the two sectors at a moment
in time with a large imbalance in the number of degrees of
freedom. We consider the case that the two sectors are in
thermal equilibrium, and thus at equal temperatures, from
the early universe to a temperature TDEC after which
the two temperatures, TV , TD, evolve independently.
The relationship between the temperature of the two
sectors after thermal decoupling will depend on the number
of degrees of freedom of each sector at the moment of
decoupling and on the number of degrees of freedom of
each sector at each moment in their evolution afterwards.
By the conservation of entropy we have

T3
V

T3
D
¼ gD

gV

�
gV
gD

�

DEC
: ð20Þ

In particular, a lower temperature dark sector is possible if
the visible sector has a greater number of degrees of
freedom at the moment of decoupling. This is due to most
of the entropy density being shifted to the visible sector,
after which the two sectors evolve with the entropy density
they had at the moment of TDEC. Models of composite dark

matter, in which the dark composite scale is greater than the
QCD scale, naturally come with such a moment in the
thermal history. At the confining transition in the standard
model, we transition from g� ∼ 61.75 to g� ∼ 10.75. This is
due to all of the gluons and the three remaining relativistic
quarks suddenly becoming nonrelativistic as they form
hadrons. As noted in [63], it is then possible to obtain a
large temperature difference if decoupling takes place
after the dark quark-hadron phase transition but before
the quark-hadron phase transition of the visible sector.
This will depend, however, on the rest of the particle
content of the dark sector. If we consider the case of an
otherwise mirror sector, we obtain a temperature ratio of
TD=TV ≃ 0.56. The distribution of light and heavy dark
quarks is not critical here as the visible sector masses are
known, and we are considering the region where the dark
sector’s degrees of freedom have lost all remaining dark
colored particles. With this temperature difference, a mirror
photon, and three light mirror neutrino species we obtain
ΔNeff ≃ 0.73 which is above the bounds. However, with
the current bounds of ΔNeff ¼ 0.11� 0.23, we see that
dark sectors with fewer relativistic species are permissible.
With fewer mirror neutrino flavors we both increase the
temperature difference and reduce the total contribution to
Neff . Assuming a standard model-like temperature differ-
ence between mirror photon and mirror neutrinos due to
mirror electron injection we obtain ΔNeff ≃ 0.49 for two
mirror neutrino flavors, ΔNeff ≃ 0.31 for one and ΔNeff ≃
0.17 for none. We can see that one light mirror neutrino and
one mirror photon falls within the bound for ΔNeff in this
minimal case.3 The use of this mechanism requires a
suitable coupling between the two sectors such that
thermal decoupling will take place in the range
ΛQCD < TDEC < ΛDM. This can occur in one of two ways.
Either the interaction rate falls below the Hubble rate in this
temperature region or the number densities of the species
involved become Boltzmann suppressed during this time.
In [63] an effective four fermion operator is considered and
the effective cutoff scale is chosen such that the interaction
rate meets the rate of expansion in the temperature range
between the two quark-hadron phase transitions.

B. Self-interaction of dark baryons

If the dark EM coupling is of the same scale as the SM
value, the self-interaction rate for a population of purely
charged dark matter may be above the current bounds. For a
recent analysis of constraints see [64] where DM with a

3Additional mirror neutrino flavors may be allowed in the
case of more mass thresholds that could be crossed in the dark
sector that would alter its total number of degrees of freedom in
the temperature region between ΛQCD and ΛDM. One can also
consider how models with a dark photon and a second relativistic
fermion species, such as a dark neutrino, might have these relative
dark temperatures be affected by additional injection mecha-
nisms, similar to the electron annihilations in the standard model.
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U(1) gauge charge was considered and constraints from
triaxiality and galaxy cluster mergers were compared to the
significant bounds, in particular that for ∼10 GeV scale
DM the dark EM coupling αD < 10−4. Note that these
bounds assume no compact object formation in the dark
sector. The strength of the dark gauge coupling in this case
allows for different fractions of DM to be charged. If the set
of light quarks allows for neutral states, however, then we
have seen that degenerate quark masses motivate models in
which the neutral states are the lightest stable composites;
and if nuclear forces are sufficiently weak, then dark matter
can satisfy these constraints. In the case of a dark neutron
analogue we consider the effect of having dark matter with
no direct dark U(1) charge but rather a dark magnetic
moment. In models that constrain the size of αD for an
unbroken U(1) symmetry of the dark sector, the effective
drag force for charged particles interacting through a long
range Coulomb force can be modeled as a function of the
Coulomb logarithm Logðbmax=bminÞ, with maximum and
minimum impact parameters b. In Ref. [65] the strongest
constraint comes from galactic halo dynamics. By demand-
ing that DM-DM interactions induce no more than a small
fractional change in the energy of a DM particle in a
galactic halo on cosmological time scales we can obtain
constraints on the size of αD, the dark sector’s fine structure
constant. For the case of a population of magnetic dipoles,
the radial force will scale as (1=r4), and so we consider the
effect of numerous long range collisions by deriving the
effective drag that instead of scaling with the Coulomb
log depends on the impact parameters through a term
∼ð1=b4min − 1=b4maxÞ. The maximum impact parameter is
commonly associated with the Debye length; however, in
the magnetic case we can see that the (1=r4) suppression
makes this less relevant, as even with no long range cutoff
the magnetic term is no longer divergent, by contrast with
the Coulomb interaction. With a minimum impact param-
eter given by the de Broglie limit and an unconstrained
maximum impact parameter, long range magnetic self-
interactions permit αD to be above the SM value in the
region mDM ≥ 1 GeV while maintaining consistency with
the phenomenological bounds. For short range interactions
we can compare directly to the neutron-neutron scattering
rate, σnn ≃ 10−24 cm−2, which is just in the region of the
self-interacting dark matter constraints for this mass region.
With ξ increasing we expect this cross section to decrease
by 1=ξ2 as the physical size of dark baryons decreases. This
shows that for a population of dark neutrons, the favored
dark matter candidate for most of the cases we have
considered, all of the requirements of a dark matter
candidate are satisfied. In the absence of strong nuclear
forces, these dark neutrons undergo no dissipation effec-
tively and behave as a collisionless gas. Of course, light
mesons may accommodate long range nuclear forces, and
this will place additional limits on the meson spectra for a
model of a composite dark sector. In the case of dark

glueball dark matter Ref. [61] considers the relationship
derived from the suspected glueball state of QCD that
mGB ∼ 5.5ΛDM and estimates a self-interaction cross sec-
tion σ ∼ 4π=Λ2

DM.

C. Dark sector abundances

In order to find a natural explanation for the observed
components of the Universe, ΩD ≃ 5ΩV , we require a
reason for the similar abundance of baryons and dark
baryons as well as the similarity in mass. The relationship
in the abundance can be formulated in a large number of
different ways as it is dependent on the theory of the
generation of the baryon asymmetry of our own sector if we
are to regard the similarity as not a coincidence. In the case
of mass, Sec. III has demonstrated how the lightest stable
baryon may scale with a dark confinement scale.
In the cases where there is a large mass gap between the

lightest baryon and the rest of the spectra we can take the
dark matter candidate to be this stable state if dark weak
interactions exist and are not suppressed and dark quark
masses are light. If, however, the mass differences between
two or more of the lightest dark QCD states are small, then
the darkQCDphase transitionmay produce similar numbers
of these states. This can be compared to standard cosmology
where the near degeneracy of the neutron and proton
produces roughly equal numbers following the quark hadron
phase transition. In that case the near equal numbers allow
for the process of nucleosynthesis where an array of stable
states of multiple nucleons can be formed. This is in the case
where the dark sector has nþ νe ↔ pþ e− interactions that
maintain near equal n, p densities prior to the freeze-out of
weak interactions. In models of mirror matter with dark
electrons and neutrinos with masses larger than the mass
difference of the lightest dark baryons such processeswill be
kinematically suppressed. This equilibration can allow for
dark helium to make up a significant fraction (∼26%) of the
visible mass density. One can then consider dark sectors
where two or more near degenerate composite states, that is
where Δm ≪ ΛDM, are bound by dark nuclear forces into a
complex arrangement of nucleilike objects. The complexity
may be far greater than standard nuclear theory where there
is an approximately linear relationship between the number
of protons and neutrons in nuclear bound states, for
example; three near degenerate baryons, as in the case of
degenerate u,d,s, have six possible dibaryon states, and the
mass hierarchy among these will depend nontrivially on the
dark nuclearlike interactions. Compact objects in the formof
neutron-starlike bodies could also manifest ultimately
depending on the model and the self-interaction strength
from stronglike interactions.

V. CONCLUSION

In this work we have considered the hypercentral
approximation of the constituent quark model and the
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possible properties of a dark sector with a QCD analogue.
In particular we have examined the dependence of the
hadron spectra on the number of light chiral fermions and
the resulting phenomenology of dark QCD with a confine-
ment scale in the few GeV range. As a class of theories to
explain the nature of dark matter we have seen that larger
confinement scales result in higher degrees of degeneracy
in the spectra while the number of flavors has a significant
impact on the mass and nature of the lightest baryon and
meson for SU(3) theories. Constituent quark models have
provided insight into the nature of QCD, and while many
frameworks for advancing these calculations have sought
to better replicate the experimental signatures, potential
models still allow us to probe the ground state spectra in a
simple manner with fewer parameters and a direct relation-
ship to the confinement scale. By incorporating such
descriptions of dark QCD into asymmetric dark matter
models where the gauge couplings of the SM and hidden
sectors are connected in the UV, the similarity in mass scale
of DM and baryons finds a natural explanation. In this work
we have found that if the hidden sector contains symmetries
that parallel the visible sector, the higher confinement scale
motivates theories with a neutral ground state in addition to
higher degeneracy among the baryons with different total
spin and less degeneracy in charge. The spin and charge of
the ground state is further dependent on the number of light
dark quarks in the theory and the quantum numbers of these
quarks that make up the light set. Given the unexplained
almost 5 orders of magnitude that the quark flavors of the
SM span, the possibility of a nontrivial splitting arrange-
ment in the set of dark quarks allows for the possibility of a
very wide variety of composite dark matter models that
differ greatly from conventional chromodynamics.

APPENDIX HYPERSPHERICAL MATRIX
METHODS

The full potential including additional spin-spin inter-
actions, isospin-isospin and spin-isospin interactions has
the form

HV ¼ Vðr⃗ijÞ þ VSSðr⃗ijÞσ⃗1 · σ⃗2 þ VIIðr⃗ijÞt⃗1 · t⃗2
þ VSIðr⃗ijÞðt⃗1 · t⃗2Þðσ⃗1 · σ⃗2Þ; ðA1Þ

and the full nonrelativistic Hamiltonian is then [44,45]

H ¼
X

i

mi þH0 þHV ðA2Þ

with H0 ¼
P

i
p2
i

2mi
. As the spin-spin interaction has a larger

contribution to the potential than the remaining hyperfine
interactions and the spin-orbit term is taken to be negligible
as in [41] we similarly focus on a model with the spin-spin
effect contributing the most important effects to mass
differences. It has the form [51]

Hij
HI ¼ A

��
8π

3

�
S⃗i · S⃗jδ3ðrijÞ

�
; ðA3Þ

where A ¼ 2αs
3mimj

. In the case of the confining potentials of

Eq. (13) where analytic solutions are not obtainable we use
the matrix methods of [40]. This then uses the expansion of
the 6D hyperspherical Schrodinger equation using the
Fourier expansion of the spatial wave functions over the
hyperradius x. Following the matrix methods converts this
to a scaled coordinate y ¼ x

xþr0
where r0 remains as a

scaling estimate of the radius of the spatial wave function.
We can then express the hypercentral wave functions as

ψðyÞ ¼
XN

i¼1

ai sinðiπyÞ: ðA4Þ

This reduces the differential equation to a matrix eigenvalue
problem that gives the first N levels for a given value of γ,

X

j

��
1

2m
ð1 − yiÞ4

r20

X

k

�
2

N þ 1

�
sinðkπyjÞk2π2 sinðkπyiÞ

�

−
�
1

2m
5

r20

ð1 − yiÞ3
yi

X

c

2

N þ 1
sinðcπyjÞcπ cosðcπyiÞ

�

þ
�

1

2m
γðγ þ 4Þ
xðyjÞ2

þ VðxðyjÞÞ
�
δij

�
ψ j ¼ EN½γ�ψðyiÞ:

ðA5Þ

This can be compared to the numerical solution of the case
without the hypercentral approximation. In that calculation,
a similar change of variables allows for the calculation of
the complete set of coupled hyperspherical differential
equations. In our case we apply it to a variety of nonanalytic
potentials that scale to dark sector parameters and that use
the hypercentral approach.
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