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We present ψ 0MSSM, a model based on a Uð1Þψ 0 extension of the minimal supersymmetric standard
model. The gauge symmetry Uð1Þψ 0, also known as Uð1ÞN , is a linear combination of the Uð1Þχ and Uð1Þψ
subgroups of E6. The model predicts the existence of three sterile neutrinos with masses ≲0.1 eV, if the
Uð1Þψ 0 breaking scale is of order 10 TeV. Their contribution to the effective number of neutrinos at
nucleosynthesis is ΔNν ≃ 0.29. The model can provide a variety of possible cold dark matter candidates
including the lightest sterile sneutrino. If the Uð1Þψ 0 breaking scale is increased to 103 TeV, the sterile
neutrinos, which are stable on account of a Z2 symmetry, become viable warm dark matter candidates. The
observed value of the standard model Higgs boson mass can be obtained with relatively light stop quarks
thanks to the D-term contribution fromUð1Þψ 0 . The model predicts diquark and diphoton resonances which
may be found at an updated LHC. The well-known μ problem is resolved and the observed baryon
asymmetry of the universe can be generated via leptogenesis. The breaking of Uð1Þψ 0 produces
superconducting strings that may be present in our galaxy. A Uð1Þ R symmetry plays a key role in
keeping the proton stable and providing the light sterile neutrinos.
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I. INTRODUCTION

E6 grand unified theory (GUT) [1] contains two especially
interesting maximal subgroups for model building, namely
SUð3Þ3 and SOð10Þ × Uð1Þψ . Supersymmetric (SUSY)
models based on SUð3Þ3, sometimes referred to as trinifi-
cation models, have been extensively discussed in the
literature. For instance, in SUSY SUð3Þ3, mechanisms have
been proposed to resolve [2] the minimal supersymmetric
standard model (MSSM) μ problem or make [3] the proton
essentially stable.
The subgroup SOð10Þ ×Uð1Þψ of E6 can be decom-

posed further, via SUð5Þ, to the MSSM gauge symmetry
group accompanied by Uð1Þχ × Uð1Þψ [4,5]. One in-
triguing combination of these two Uð1Þ’s, denoted here
as Uð1Þψ 0 (also known as Uð1ÞN [4] in the literature), is
assumed [6] here to be broken at a scale at least an order of
magnitude greater than the TeV scale of soft SUSY
breaking. We refer to this extension of the MSSM accom-
panied by Uð1Þψ 0 as ψ 0MSSM. The well-known right
handed neutrino contained in the matter 16-plet of
SOð10Þ transforms as a singlet under Uð1Þψ 0. This enables
the three right handed neutrinos to acquire large masses, so
that the standard seesaw scenarios can apply and high scale

leptogenesis [7] can be realized [8]. Note that the subscript
ψ 0 reiterates the essential role played byUð1Þψ 0 in resolving
the MSSM μ problem.
Our ψ 0MSSMmodel employs in an essential way aUð1Þ

R symmetry such that dimension five and higher dimen-
sional operators potentially causing proton decay are
eliminated. The MSSM μ problem is also resolved and
the usual lightest SUSY particle of MSSM remains [9] a
compelling dark matter candidate. More intriguingly per-
haps, the model predicts that the three SOð10Þ singlet sterile
neutrino matter fields that it contains can only acquire tiny
masses, on the order of 0.1 eV or less if Uð1Þψ 0 is broken
around 10 TeV. We estimate that for this case the effective
number of neutrinos during nucleosynthesis is changed by
≃0.29. The lightest sterile sneutrino as well as two more
particles, which are stable on account of discrete sym-
metries, can, under certain circumstances, be additional
cold dark matter candidates.
If the breaking scale ofUð1Þψ 0 is increased to 103 TeV or

so, the sterile neutrinos, which happen to be stable on
account of a Z2 symmetry, become plausible candidates for
keV scale warm dark matter.
The contributionof theD-termforUð1Þψ 0 to themassof the

lightest CP-even neutral Higgs boson of the MSSM can be
appreciable leading, in the so-called decoupling limit, to the
observed value of 125 GeV with relatively light stop quarks.
In addition to the Z0 gauge boson associated with the

breaking of the Uð1Þψ 0 gauge symmetry, the model predicts
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the existence of diphoton [10] and diquark [11] resonances
with masses in the TeV range. A high luminosity or high
energy (33 TeV) LHC upgrade may be able to find them.
Note that the Uð1Þψ 0 breaking produces superconducting
strings [12] which presumably survived inflation and
should be present in our galaxy. If the breaking scale is
not too high, a 100 TeV collider may be able to make these
strings, which definitely would be exciting.
The layout of our paper is as follows. In Sec. II, we

introduce the model with its field content, symmetries, and
couplings. In Sec. III, we analyze the details of the sponta-
neous symmetry breaking of Uð1Þψ 0 , while in Sec. IV we
discuss the spontaneous breaking of the electroweak sym-
metry. Section V is devoted to the diphoton excess and
Sec. VI to the presentation of a numerical example. In
Sec. VII, we study the sterile neutrinos. The possible
composition of dark matter in the universe is presented in
Sec. VIII and our conclusions are summarized in Sec. IX.

II. THE MODEL

We consider a SUSY model based on the gauge group
GSM × Uð1Þψ 0 , where GSM ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY
is the standard model (SM) gauge group. The GUT-
normalized generator Qψ 0 of the extra local Uð1Þψ 0 sym-
metry is given by

Qψ 0 ¼ 1

4
ðQχ þ

ffiffiffiffiffi
15

p
QψÞ; ð1Þ

where Qχ is the GUT-normalized generator of the Uð1Þχ
subgroup of SOð10Þ which commutes with its SUð5Þ
subgroup and Qψ is the GUT-normalized generator of
the Uð1Þψ subgroup of E6 which commutes with its
SOð10Þ subgroup. The Uð1Þψ 0 symmetry is to be sponta-
neously broken at some scale M and we prefer to imple-
ment this breaking by a SUSY generalization of the
well-known Brout-Englert-Higgs mechanism.
The important part of the superpotential is

W ¼ yuH1
uquc þ ydH1

dqd
c þ yνH1

ulνc þ yeH1
dle

c

þ 1

2
Mνcν

cνc þ λiμNHi
uHi

d þ κSðNN̄ −M2Þ
þ λiDNDiDc

i þ λiqDiqqþ λiqcD
c
i u

cdc

þ λLSLL̄þ λαHd
νcL̄Hα

d þ λiNNiNi
N̄2

2mP
; ð2Þ

where mP is the reduced Planck mass and yu, yd, yν, ye are
the Yukawa coupling constants with the family indices
suppressed. Here q, uc, dc, l, νc, ec are the usual quark and
lepton superfields of MSSM including the right handed
neutrinos νc andHi

u,H
j
d (i, j ¼ 1, 2, 3) are SUð2ÞL doublets

withhyperchargeY¼1=2,−1=2 respectively.The superfields
N, N̄ constitute a conjugate pair of SM singlets, while S is a

gauge singlet. The coupling λijμNHi
uH

j
d is diagonalized by

appropriate rotations of Hi
u and Hj

d and a discrete Z2

symmetry under which Hα
u and Hα

d (α ¼ 2, 3) are odd is
imposed. Consequently, only H1

u, H1
d couple to quarks and

leptons and are the standard electroweak Higgs superfields.
The superfields Di and Dc

i (i ¼ 1, 2, 3) are color triplets
and antitriplets with Y ¼ −1=3 and 1=3 respectively and
the coupling λijDNDiDc

j is diagonalized by appropriate
rotations of Di and Dc

j . The superfields Ni (i ¼ 1, 2, 3)

are SM singlets and the coupling λijNNiNjN̄2=2mP is again
diagonalized by rotating Ni and Nj. We impose an extra Z0

2

symmetry under which the Ni’s are odd. In order to achieve
unification of the MSSM gauge coupling constants, we
introduced an extra conjugate pair of SUð2ÞL doublets L
and L̄ with Y ¼ −1=2 and 1=2 respectively. These doublets
are odd under Z2 and together with Hα

d and Hα
u (α ¼ 2, 3)

form three complete SUð5Þ multiplets with the color (anti)
triplets Di and Dc

i . Note that the superfields q, u
c, dc, l, νc,

ec, Hi
u, Hi

d, Di, Dc
i , and Ni form three complete funda-

mental representations of E6, while N, N̄ and L, L̄ are
conjugate pairs from incomplete E6 multiplets.
In Table I, we summarize all the superfields of the model

together with their transformation properties under the SM
gauge group GSM and their charges under the discrete
symmetries Z2, Z0

2, the global R symmetry Uð1ÞR, and the

TABLE I. Superfield content of the model.

Superfields
Representations
under GSM

Extra Symmetries

Z2 Z0
2 R 2

ffiffiffiffiffi
10

p
Qψ 0

Matter Superfields

q ð3; 2; 1=6Þ þ þ 1=2 1
uc ð3̄; 1;−2=3Þ þ þ 1=2 1
dc ð3̄; 1; 1=3Þ þ þ 1=2 2
l ð1; 2;−1=2Þ þ þ 0 2
νc ð1; 1; 0Þ þ þ 1 0
ec ð1; 1; 1Þ þ þ 1 1
Hα

u ð1; 2; 1=2Þ − þ 1 −2
Hα

d ð1; 2;−1=2Þ − þ 1 −3
Di ð3; 1;−1=3Þ þ þ 1 −2
Dc

i ð3̄; 1; 1=3Þ þ þ 1 −3
Ni ð1; 1; 0Þ þ − 1 5

Higgs Superfields

H1
u ð1; 2; 1=2Þ þ þ 1 −2

H1
d ð1; 2;−1=2Þ þ þ 1 −3

S ð1; 1; 0Þ þ þ 2 0
N ð1; 1; 0Þ þ þ 0 5
N̄ ð1; 1; 0Þ þ þ 0 −5

Extra SUð2ÞL Doublet Superfields

L ð1; 2;−1=2Þ − þ 0 −3
L̄ ð1; 2; 1=2Þ − þ 0 3
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local Uð1Þψ 0 with GUT-normalized charge Qψ 0 . Note that
the discrete symmetries Z2, Z0

2 do not carry SUð3Þc or
SUð2ÞL anomalies.
The symmetries of the model allow not only the super-

potential terms in Eq. (2), but also the following higher
order terms (divided by appropriate powers of mP):

νcHα
uLN; ecHα

dLN̄;H1
uH1

ull; Hα
uH

β
ull; H1

uHα
dlL̄;

Hα
uH1

dlL̄; H
1
dH

1
dL̄ L̄; Hα

dH
β
dL̄ L̄; qucqdcN̄; quceclN̄;

qdcνclN̄; ecνcLLN;Hα
uqdclL;H1

uHα
ulLN;

H1
uH1

uLLNN;Hα
uH

β
uLLNN;Hα

uquclL̄ N̄;

Hα
dqd

clL̄ N̄; νcH1
dlL̄ L̄ N̄; ecH1

ulLLN; qdcLqdcL;

Dc
i u

cucL̄ L̄ N̄; Dc
i d

cdcLLN; ecqdclLL;H1
uqdcLLN;

H1
dqu

cL̄ L̄ N̄; H1
dH

α
dlL̄ L̄ L̄ N̄; Hα

uecLLLNN;

νcquclL̄ L̄ N̄ N̄; qucqucL̄ L̄ N̄ N̄; ececLLLLNN;

Hα
dqu

clL̄ L̄ L̄ N̄ N̄ : ð3Þ

Note that all the couplings in Eqs. (2) and (3) can be
multiplied by the combinations NN̄=m2

P, LL̄=m2
P, and

L̄lN̄ L̄ lN̄=m6
P arbitrarily many times and this exhausts

all the possible superpotential couplings compatible with
the symmetries of the model.
Assigning baryon number B ¼ −2=3 and 2=3 to the

diquark superfieldsDi and Dc
i , respectively, we see that the

baryon numberUð1ÞB symmetry is automatically present to
all orders in the superpotential and, thus, fast proton decay
and other baryon number violating effects are avoided [13].
The fundamental representation of E6 contains two SM

singlets with the quantum numbers of νc and Ni. Let us
assume that at high energies the gauge symmetry is
GSM × Uð1Þχ ×Uð1Þψ . A conjugate pair of Higgs super-
fields of the type νc, ν̄c from an incomplete E6 multiplet can
break Uð1Þχ ×Uð1Þψ to Uð1Þψ 0 at a scale of order the GUT
scale. So, at lower energies, only the gauge symmetry
GSM × Uð1Þψ 0 of our model survives. The spontaneous
breaking of Uð1Þψ 0 at a scaleM ∼ 10 TeV is then achieved
by a conjugate pair of Higgs superfields of the type N, N̄
from an incomplete E6 multiplet via the superpotential
terms κSðNN̄ −M2Þ. This breaking will generate a network
of local superconducting strings. Their string tension,
which is determined by the scale M, is relatively small
and certainly satisfies the most stringent relevant upper
bound from pulsar timing arrays [14]. Note, in passing, that
the kinetic mixing of Uð1Þψ 0 and Uð1ÞY is negligible—see
fourth paper in Ref. [4].
The “bare” MSSM μ term is replaced by a term

λ1μNH1
uH1

d, so that the μ term is generated after N acquires
a non-zero vacuum expectation value (VEV) hNi of order
10 TeV. The same VEV gives masses to the two remaining
pairs of SUð2ÞL doublets Hα

u, Hα
d (α ¼ 2, 3) via the

superpotential terms λαμNHα
uHα

d as well as to the diquarks
Di, Dc

i (i ¼ 1, 2, 3) via the terms λiDNDiDc
i . The gauge

singlet S acquires a VEV hSiof order TeV from soft SUSY
breaking [15]. (In the SUSY limit the VEV of S is zero.)
This VEV generates masses for the extra doublets L, L̄ via
the term λLSLL̄. Finally, the sterile neutrino fields, which
are the fermionic parts of Ni, acquire masses of order
10−1 eV or so via the terms λiNNiNiN̄2=2mP.
The spontaneous breaking of Uð1Þψ 0 implemented with

the fields S, N, N̄ delivers, in the exact SUSY limit, four
spin zero particles all with the same mass given by

ffiffiffi
2

p
κM.

This mass, even for M ≫ 1 TeV, can be of order TeV by
selecting an appropriate value for κ. We should point out
though that, depending on the SUSY breaking mechanism,
these states may end up with significantly different masses.
The diquarks Di, Dc

i may be found [11] at the LHC.

III. Uð1Þψ 0 BREAKING

We will assume here that the breaking scale of Uð1Þψ 0 is
much bigger than the electroweak scale. In this case, the
spontaneous breaking of Uð1Þψ 0 is not affected by the
electroweak Higgs doublets in any essential way and can be
discussed by considering only the superpotential terms

δW ¼ κSðNN̄ −M2Þ ð4Þ

in the right-hand side (RHS) of Eq. (2). They give the
following scalar potential

V ¼ κ2jNN̄ −M2j2 þ κ2jSj2ðjNj2 þ jN̄j2Þ
þ ðAκSNN̄ − ðA − 2m3=2ÞκM2Sþ H:c:Þ
þm2

0ðjNj2 þ jN̄j2 þ jSj2Þ þ D-terms: ð5Þ

Here the mass parameterM and the dimensionless coupling
constant κ are made real and positive by field rephasing and
the scalar components of the superfields are denoted by the
same symbol. The parameter m3=2 is the gravitino mass,
A ∼m3=2 is the coefficient of the trilinear soft terms taken
real and positive, and m0 ∼m3=2 is the common soft mass
of N, N̄, and S. We assumed, for definiteness, minimal
supergravity. In this case, the coefficients of the trilinear
and linear soft terms are related as shown in Eq. (5).
Vanishing of the D-terms implies that jNj ¼ jN̄j, which
yields N̄� ¼ eiϑN, while minimization of the potential
requires that ϑ ¼ 0. So, N and N̄ can be rotated to the
positive real axis by a Uð1Þψ 0 transformation.
We find [15] that the scalar potential in Eq. (5) is

minimized at

hSi ¼ −
m3=2

κ

�
1þ

X
n≥1

cn

�
m3=2

M

�
n
�

ð6Þ
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and

hNi ¼ hN̄i≡ N0ffiffiffi
2

p ¼ M
�
1þ

X
n≥1

dn

�
m3=2

M

�
n
�
; ð7Þ

where cn, dn are numerical coefficients of order unity.
Assuming that M ≫ m3=2 and keeping in hSi2 and N2

0

terms up to orderm2
3=2, these formulas can be approximated

as follows:

hSi≃ −
m3=2

κ
;

N2
0

2
≃M2 þ Am3=2 −m2

3=2 −m2
0

κ2
: ð8Þ

We should point out that the trilinear and linear soft terms in
the second line of Eq. (5) play an important role in our
scheme. Substituting N and N̄ by their VEVs, these terms
yield a linear term in S which, together with the mass term
of S, generates [15] a VEV for S of order TeV. It is then
obvious that, substituting this VEV of S in the super-
potential term λLSLL̄, the superfields L, L̄ acquire a mass
mL ¼ λLjhSij ¼ λLm3=2=κ. Moreover, the MSSM μ term is
obtained by substituting hNi in the superpotential term
λ1μNH1

uH1
d with μ ¼ λ1μN0=

ffiffiffi
2

p
, while Hα

u, Hα
d (α ¼ 2; 3Þ

andDi,Dc
i acquire masses of order TeV from the couplings

λαμNHα
uHα

d and λiDNDiDc
i respectively. Note that, with Di,

Dc
i , L, L̄, and Hα

u, Hα
d masses ∼TeV, the gauge couplings

stay in the perturbative domain for up to four such pairs of
color (anti)triplets and SUð2ÞL doublets.
The mass spectrum of the scalar S − N − N̄ system can

be constructed by substituting N ¼ hNi þ δ ~N and N̄ ¼
hN̄i þ δ ~̄N. In the unbroken SUSY limit, we find two

complex scalar fields S and θ ¼ ðδ ~N þ δ ~̄NÞ= ffiffiffi
2

p
with equal

masses mS ¼ mθ ¼
ffiffiffi
2

p
κM. Soft SUSY breaking can, of

course, mix these fields and generate a mass splitting. For
example, the trilinear soft term AκSNN̄ yields a mass-
squared splitting � ffiffiffi

2
p

κMA with the mass eigenstates now
being ðSþ θ�Þ= ffiffiffi

2
p

and ðS − θ�Þ= ffiffiffi
2

p
. This splitting is

small for A ≪
ffiffiffi
2

p
κM.

IV. ELECTROWEAK SYMMETRY BREAKING

The standard scalar potential for the radiative electro-
weak symmetry breaking in MSSM is modified in the
present model. A modification originates from the D-term
for Uð1Þψ 0 :

VD¼ g2ψ 0

80
½−2jHuj2−3jHdj2þ5ðjNj2− jN̄j2Þ�2; ð9Þ

where gψ 0 is the GUT-normalized gauge coupling constant
for the Uð1Þψ 0 symmetry and Hu, Hd are the neutral
components of the scalar parts of the Higgs SUð2ÞL doublet

superfieldsH1
u,H1

d respectively. In order to find the leading
contribution of this D-term to the electroweak potential, we
must integrate out to one loop the heavy degrees of freedom
N and N̄. To this end, we express these complex scalar
fields in terms of the canonically normalized real scalar
fields δN, δN̄, φ, φ̄ as follows:

N ¼ 1ffiffiffi
2

p ðN0 þ δNÞe iφ
N0 ; N̄ ¼ 1ffiffiffi

2
p ðN0 þ δN̄Þe iφ̄

N0 : ð10Þ

Then the combination jNj2 − jN̄j2, which appears in the
D-term in Eq. (9), becomes

jNj2 − jN̄j2 ¼
ffiffiffi
2

p
N0ηþ ηξ; ð11Þ

where

η ¼ δN − δN̄ffiffiffi
2

p ; ξ ¼ δN þ δN̄ffiffiffi
2

p ð12Þ

are canonically normalized real scalar fields. The D-term
can now be expanded as follows:

VD ¼ g2ψ 0

80
½E2 þ 10

ffiffiffi
2

p
N0Eηþ 50N2

0η
2 þ � � ��; ð13Þ

where E≡ −2jHuj2 − 3jHdj2. Here we kept only up to
quadratic terms in η, ξ, but ignored the mixed quadratic
term proportional to ηξ since its coefficient is much smaller
than the coefficient of the η2 term assuming thatN0 is much
bigger than the electroweak scale.
We see, from Eq. (13), that integrating out the heavy

states reduces to the calculation of a path integral over the
real scalar field η. To do this, we first need to find the η
dependence of the potential V in Eq. (5). So we substitute
in this equation N and N̄ from Eq. (10). Keeping only
η-dependent terms up to the second order and substituting S
by its VEV in Eq. (8), we obtain

δV≃1

2

�
−
κ2

2
N2

0þm2
3=2þm2

0þ κ2M2þAm3=2

�
η2; ð14Þ

which, substituting N0 from Eq. (8), gives

δV ≃m2
Nη

2 with m2
N ≡m2

3=2 þm2
0: ð15Þ

Adding δV to the D-term potential in Eq. (13), we obtain
the potential

Vη ¼
g2ψ 0

80
E2 þ

ffiffiffi
2

p
g2ψ 0

8
N0Eηþ

�
m2

N þ 5g2ψ 0

8
N2

0

�
η2 þ � � � ;

ð16Þ
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which can be given the form

Vη ¼
g2ψ 0E2

80

�
1þ 5g2ψ 0N2

0

8m2
N

�−1

þ
�
m2

N þ 5g2ψ 0N2
0

8

�

×

 
ηþ g2ψ 0N0E

8
ffiffiffi
2

p �
m2

N þ 5g2
ψ 0N

2
0

8

�
!

2

þ � � � : ð17Þ

The path integral

Z
ðdηÞe−iVηV ; ð18Þ

where V is the spacetime volume, can be readily calculated
and, besides an irrelevant overall constant factor, we are left
with the term

δVD ≃ g2ψ 0

80
½2jHuj2 þ 3jHdj2�2

�
1þ m2

Z0

2m2
N

�−1
ð19Þ

to be added to the usual electroweak symmetry breaking
potential. Here mZ0 ¼ ffiffiffi

5
p

gψ 0N0=2 is the mass of the Z0

gauge boson associated with Uð1Þψ 0 .
Another modification of the MSSM electroweak poten-

tial comes from the integration of the heavy complex field
S with mass

ffiffiffi
2

p
κM in the exact SUSY limit. The cross

F-term FN between the superpotential terms κSNN̄ and
λ1μNH1

uH1
d in Eq. (2) together with the mass-squared term

of S give

2κ2M2jSj2 þ ðκS�N̄� ~λμH1
uH1

d þ H:c:Þ

¼
���� ffiffiffi2p

κMSþ 1ffiffiffi
2

p ~λμH1
uH1

d

����2 − 1

2
~λ2μjH1

uH1
dj2; ð20Þ

where ~λμ ≡ λ1μ. Integrating out S, we then obtain the extra
term

−
1

2
~λ2μjHuj2jHdj2 ð21Þ

in the electroweak potential. One can show that the inte-
gration of all the other heavy fields gives smaller contribu-
tions, which we ignore.
Now the potential for the electroweak symmetry break-

ing as can be derived from the superpotential terms

κSðNN̄ −M2Þ − ~λμNHuHd ð22Þ

after substituting the VEVs of S, N, and N̄ from Eq. (8) and
adding the D-term in Eq. (19) and the term in Eq. (21) is

VEW ≃m2
Hu
jHuj2 þm2

Hd
jHdj2 − BðHuHd þ H:c:Þ

þ λ2μjHuj2jHdj2 þ
1

8
ðg2 þ g02ÞðjHuj2 − jHdj2Þ2

þ cðQujHuj2 þQdjHdj2Þ2; ð23Þ

where m2
Hu

¼ ~m2
Hu

þ μ2, m2
Hd

¼ ~m2
Hd

þ μ2 with ~mHu
, ~mHd

being the soft masses of Hu, Hd and B ¼ ~B −m3=2 with ~B
being the coefficient of the soft trilinear term corresponding
to the second term in Eq. (22). Here λμ ≡ ~λμ=

ffiffiffi
2

p
, g is

the SUð2ÞL and g0 the non-GUT-normalized Uð1ÞY gauge
coupling constant, Qu ¼ 2, Qd ¼ 3, and

c ¼ g2ψ 0

80

�
1þ m2

Z0

2m2
N

�−1
: ð24Þ

Note that the potential in Eq. (23) contains the so-called
next-to-minimal supersymmetric standardmodel (NMSSM)
term

λ2μjHuj2jHdj2: ð25Þ

Minimization of the potential in Eq. (23) yields the
following relations:

m2
Hu

¼ m2
Acos

2β þ 1

2
m2

Z cos 2β − λ2μv2cos2β

− 2cQuv2ðQusin2β þQdcos2βÞ;

m2
Hd

¼ m2
Asin

2β −
1

2
m2

Z cos 2β − λ2μv2sin2β

− 2cQdv2ðQusin2β þQdcos2βÞ: ð26Þ

Here v2¼v2uþv2d with vu¼hHui and vd ¼hHdi, tan β ¼
vu=vd, and the expressions

m2
Z ¼ 1

2
ðg2 þ g02Þv2; m2

A ¼ 2Bμ
sin 2β

ð27Þ

for the Z gauge boson mass mZ and the CP-odd Higgs
boson mass mA are used. Note that the latter is not affected
by the extra terms in the potential VEW since they involve
only the absolute values of Hu, Hd.
The mass-squared matrix in the CP-even Higgs sector

M ¼
�
M11 M12

M12 M22

�
ð28Þ

can be constructed by substituting Hu ¼ vu þ hu=
ffiffiffi
2

p
and

Hd ¼ vd þ hd=
ffiffiffi
2

p
in the RHS of Eq. (23) and keeping

only terms quadratic in hu, hd. We find
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M11 ¼ m2
Hu

þ 1

2
m2

Zð3sin2β − cos2βÞ þ λ2μv2cos2β

þ 2cQuv2ð3Qusin2β þQdcos2βÞ;
M12 ¼ ð−m2

A −m2
Z þ 2λ2μv2 þ 4cQuQdv2Þ sin β cos β;

M22 ¼ m2
Hd

þ 1

2
m2

Zð3cos2β − 2sin2βÞ þ λ2μv2sin2β

þ 2cQdv2ð3Qdcos2β þQusin2βÞ: ð29Þ

Using the minimization conditions in Eq. (26), M11 and
M22 can be cast in the form

M11 ¼ m2
Acos

2β þ ðm2
Z þ 4cQ2

uv2Þsin2β;
M22 ¼ m2

Asin
2β þ ðm2

Z þ 4cQ2
dv

2Þcos2β: ð30Þ

The eigenvalues m2
h and m2

H of the mass-squared matrix in
Eq. (28), which are, respectively, the “tree-level” masses
squared of the lightest and heavier neutral CP-even Higgs
bosons, can now be constructed:

m2
h;H ¼ 1

2
Σ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
Σ2 − Δ

r
ð31Þ

with

Σ ¼ m2
A þm2

Z þ 4c2v2ðQ2
usin2β þQ2

dcos
2βÞ;

Δ ¼ m2
Am

2
Zcos

22β þ 4cv2m2
AðQusin2β þQdcos2βÞ2

þ λ2μv2m2
Asin

22β þ cv2m2
ZðQu þQdÞ2sin22β

þm2
Zλ

2
μv2sin22β − λ4μv4sin22β

− 4cQuQdλ
2
μv4sin22β: ð32Þ

Let us note that, here, by tree-level masses we mean the
masses without the inclusion of the radiative corrections in
MSSM. It is easy to see thatm2

h, in the so-called decoupling
limit where mA ≫ mZ, is given by

m2
h ¼ m2

Zcos
22β þ 4cv2ðQusin2β þQdcos2βÞ2

þ λ2μv2sin22β: ð33Þ

V. DIPHOTON RESONANCES

The real scalar θ1 and real pseudoscalar θ2 components

of θ¼ðδ ~Nþδ ~̄NÞ= ffiffiffi
2

p ½¼ ðθ1þ iθ2Þ=
ffiffiffi
2

p � with mass mθ ¼ffiffiffi
2

p
κM in the exact SUSY limit can be produced at the LHC

by gluon fusion via a fermionic Di, Dc
i loop as indicated in

Fig. 1. They can decay into gluons, photons, Z or W�
gauge bosons via the same loop diagram as well as a similar
fermionic Hi

u, Hi
d loop. The most promising decay channel

to search for these resonances is into two photons with the
relevant diagrams also shown in Fig. 1.
Applying the results of Ref. [16], the cross section of the

diphoton excess is

σðpp → θm → γγÞ≃ Cgg

mθsΓθm

Γðθm → ggÞΓðθm → γγÞ;

ð34Þ

where m ¼ 1, 2, Cgg ≃ 3163,
ffiffiffi
s

p ≃ 13 TeV, Γθm is the
total decay width of θm, and the decay widths of θm to two
gluons (g) or two photons (γ) are given by

Γðθm → ggÞ ¼ m3
θα

2
s

512π3hNi2
�X3

i¼1

AmðxiÞ
�2

; ð35Þ

Γðθm → γγÞ ¼ m3
θα

2
Ycos

4θW
9216π3hNi2

�X3
i¼1

AmðxiÞ

þ 3

2

X3
i¼1

AmðyiÞ
�
1þ α2tan2θW

αY

�	
2

: ð36Þ

Here A1ðxÞ ¼ 2x½1þ ð1 − xÞarcsin2ð1= ffiffiffi
x

p Þ�, A2ðxÞ ¼
2xarcsin2ð1= ffiffiffi

x
p Þ, xi ¼ 4m2

Di
=m2

θ > 1 with mDi
¼ λiDhNi

being the mass ofDi andDc
i , yi¼4m2

Hi
=m2

θ>1withmHi
¼

λiμhNi being the mass of Hi
u and Hi

d, and αs, αY , and α2 are
the strong, hypercharge, and SUð2ÞL fine-structure con-
stants, respectively.
The cross section in Eq. (34) simplifies under the

assumption that the spin zero fields θm decay predomi-
nantly into gluons, namely Γθm ≃ Γðθm → ggÞ. In this case,
one obtains [17]

σðpp → θm → γγÞ≃ 7.3 × 106
Γðθm → γγÞ

mθ
fb: ð37Þ

FIG. 1. Production of the complex scalar field θ at the LHC by
gluon (g) fusion and its subsequent decay into photons (γ). Solid
(dashed) lines represent the fermionic (bosonic) component of the
indicated superfields. The arrows depict the chirality of the
superfields and the crosses are mass insertions which must be
inserted in each of the lines in the loops.
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For xi and yi just above unity, which guarantees that the
decay of θm to Di, Dc

i and Hi
u, Hi

d pairs is kinematically
blocked, A1ðxiÞ and A2ðyiÞ are maximized with values
A1 ≃ 2 and A2 ≃ π2=2. So we consider this case. It is also
more beneficial to consider the decay of the pseudoscalar
θ2 since A2ðxÞ > A1ðxÞ for all x > 1. Using Eq. (36), we
then find that Eq. (37) gives

σðpp → θ2 → γγÞ≃ 5.5

�
mθ

hNi
�

2

fb≃ 11κ2 fb: ð38Þ

In the exact SUSY limit, the complex scalar field θ could
decay into a fermionic Di, Dc

i or Hi
u, Hi

d pair via the
superpotential terms λiDNDiDc

i or λiμNHi
uHi

d if this is
kinematically allowed—see Figs. 2(a) and 2(b). It could
also decay into a bosonic L, L̄ pair via the F-term FS

between the superpotential couplings κSNN̄ and λLSLL̄ if
this is kinematically allowed—see Fig. 2(c). The decay
widths in the three cases are

Γθ
Di ¼ ðλiDÞ2

16π
mθ; Γθ

Hi ¼ ðλiμÞ2
16π

mθ; Γθ
L ¼ ðλLÞ2

8π
mθ;

ð39Þ

respectively, where we assumed that the mass of the
relevant Di, Dc

i , or H
i
u, Hi

d, or L, L̄ is much smaller than
mθ=2. Depending on the kinematics the total decay width
of the resonance could easily lie in the 100 GeV range. The
diphoton, dijet, and diboson decay modes in this case
would be subdominant.
Our estimate in Eq. (37) holds provided that the decay

widths of θ into a Di, Dc
i , or H

i
u, Hi

d, or L, L̄ pair are
subdominant or these decays are kinematically blocked.
The latter is achieved for mθ ≃

ffiffiffi
2

p
κM < 2mDi

≃ 2λiDM,
2mHi

≃ 2λiμM, and 2mL ≃ 2λLjhSij≃ 2λLm3=2=κ, which
implies that

κ ≲ ffiffiffi
2

p
λiD;

ffiffiffi
2

p
λiμ; 2λL

m3=2

mθ
: ð40Þ

Note that the estimate of the maximal cross section of the
diphoton excess in Eq. (38) corresponds to saturating the
first two of the inequalities in Eq. (40). For simplicity and

for not disturbing the MSSM gauge coupling unification,
we choose to saturate the third inequality too.
The complex scalar field S can decay into a bosonic

Di, Dc
i or Hi

u, Hi
d pair via the F-terms FN between the

superpotential couplings κSNN̄ and λiDNDiDc
i or λ

i
μNHi

uHi
d

if this is kinematically allowed—see Figs. 3(a) and 3(b). It
could also decay into a fermionic L, L̄ pair via the super-
potential coupling λLSLL̄ if this is kinematically allowed—
see Fig. 3(c). The decay widths ΓS

Di , ΓS
Hi , and ΓS

L in the three
cases are, respectively, equal to the decay widths Γθ

Di , Γθ
Hi ,

and Γθ
L in Eq. (39). It is obvious that, if the inequalities in

Eq. (40) are satisfied so as our estimate of the cross section
of the diphoton excess in Eq. (38) to hold, these decay
channels of S are also blocked. In this case, S will decay to
lighter particles.
Note that, in the exact SUSY limit, the complex scalar

field S cannot be produced at the LHC by gluon fusion and,
thus, cannot lead to diphoton excess. This would require
bosonic Di, Dc

i loops with mass-squared insertions origi-
nating from soft trilinear SUSY breaking terms—for such
loops see Ref. [18]. As we already mentioned, the soft
SUSY breaking terms generate mixing between the scalar
fields S and θ. Consequently, we can have four diphoton
resonance states rather than just two from the scalar θ alone.
Soft SUSY breaking also gives rise to more diagrams
contributing to the diphoton excess. However, our estimate
of the cross section of the diphoton excess for exact SUSY
is the dominant one provided that the scale of Uð1Þψ 0

breaking is much bigger than the soft SUSY breaking scale.
Finally, let us note that demanding that the mass of the Z0

gauge boson mZ0 ≃ ffiffiffi
5

p
gψ 0M=

ffiffiffi
2

p
> 3.8 TeV [19], say, we

find that

gψ 0M ≳ 2.4 TeV: ð41Þ

VI. NUMERICAL ANALYSIS

We can show that the gauge coupling constant gψ 0

associated with the Uð1Þψ 0 gauge symmetry unifies with
the MSSM gauge coupling constants provided that its value
at low energies is equal to about 0.45. This value depends
very little on the exact value of the diquark, the extra

(a) (b) (c)

FIG. 2. Decay of the complex scalar field θ into a fermionic Di,
Dc

i (a) or H
i
u, Hi

d (b) pair or a bosonic L, L̄ pair (c). The notation
is the same as in Fig. 1.

(a) (b) (c)

FIG. 3. Decay of the complex scalar field S into a bosonic Di,
Dc

i (a) orH
i
u,Hi

d (b) pair or a fermionic L, L̄ pair (c). The notation
is the same as in Fig. 1.
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SUð2ÞL doublet, the resonance, and the Z0 gauge super-
multiplet masses. So the bound in Eq. (41) implies that
M ≳ 5.34 TeV. As an example, we will set M ¼ 10 TeV.
In addition, we can show that the coupling constants κ and
~λμ remain perturbative up to the GUT scale provided that
they are not much bigger than about 0.7. The requirement
that the diphoton resonance mass mθ ¼

ffiffiffi
2

p
κM is bigger

than about 4.5 TeV as indicated by the recent CMS results
[20], implies that κ ≳ 0.32. In the case where the first
two inequalities in Eq. (40) are saturated, we then obtain
that 0.5≳ λiD; λ

i
μ ≳ 0.22. For definiteness, we choose λiD≃

λiμ ≃ 0.3, which means in particular that ~λμ ≃ 0.3. This
choice implies that κ ≃ 0.42, mDi

≃mHi
≃ 3 TeV (in

particular μ≃ 3 TeV), mθ ≃ 6 TeV, and mZ0 ≃ 7.1 TeV.
Saturating the third inequality in Eq. (40), we obtain
mL ≃ 3 TeV. Note that, for κ ≲ 0.7, the resonance mass
remains below 9.9 TeV.
In Fig. 4, we plot the lightest CP-even Higgs boson mass

mh in the decoupling limit versus MSUSY, which is the
geometric mean of the stop quark mass eigenvalues. We
generally assume maximal stop quark mixing, which
maximizes mh, and include the two-loop radiative correc-
tions to mh in MSSM using the package SUSYHD [21]. The
NMSSM and D-term contributions to mh are also included
from Eq. (33). In this figure, tan β ¼ 20 andm3=2 ¼ 4 TeV.
Notice that the NMSSM correction is very small since
~λμ is relatively small. The D-term correction, however, is
sizable and allows us to obtain the observed value of mh
with much smaller stop quark masses than the ones
required in MSSM or NMSSM. Indeed, the inclusion
of the D-term from Uð1Þψ 0 reduces MSUSY from about
1900 GeV to about 1200 GeV. Note, in passing, that λL, in
this case, is about 0.32.

In Fig. 5, we plot mh in the decoupling limit and for
maximal stop quark mixing versus tan β for M ¼ 10 TeV,
~λμ ¼ 0.3,MSUSY ¼ 1200 GeV, andm3=2 ¼ 4 TeV. We see
that the experimental value of mh is achieved at tan β ¼ 20
as it should consistently with Fig. 4. However, as one can
see from Fig. 5, the observedmh can be practically obtained
in a wide range of tan β’s. Note that, without the inclusion
of the D-term contribution from Uð1Þψ 0 , the Higgs boson
mass remains well below its observed value for all the
values of tan β. This again shows the crucial role of the
D-term for obtaining the observed value of mh with
relatively low stop quark masses. Finally, we notice that,
for larger tan β’s,mh decreases as tan β increases in all three
cases depicted in this figure. This is due to the relatively
large value of μ.
In Fig. 6, we depict mh under the same assumptions

versus m3=2 for M ¼ 10 TeV, ~λμ ¼ 0.3, tan β ¼ 20, and
MSUSY ¼ 1200 GeV. The observed Higgs boson mass is

FIG. 4. Higgs boson mass mh in the decoupling limit and for
maximal stop quark mixing versus MSUSY for M ¼ 10 TeV,
~λμ ¼ 0.3, tan β ¼ 20, and m3=2 ¼ 4 TeV. The dotted (red) curve
corresponds to MSSM, the dashed (blue) curve to MSSM plus the
NMSSM correction, and the continuous (brown) curve to MSSM
plus the D-term and NMSSM corrections. The experimental
value of mh is also depicted by the bold horizontal line.

FIG. 5. Higgs boson mass mh in the decoupling limit and
for maximal stop quark mixing versus tan β for M ¼ 10 TeV,
~λμ ¼ 0.3, MSUSY ¼ 1200 GeV, and m3=2 ¼ 4 TeV. The notation
is the same as in Fig. 4.

FIG. 6. Higgs boson mass mh in the decoupling limit and
for maximal stop quark mixing versus m3=2 for M ¼ 10 TeV,
~λμ ¼ 0.3, tan β ¼ 20, and MSUSY ¼ 1200 GeV. The notation is
the same as in Fig. 4.
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obtained at m3=2 ¼ 4 TeV consistently with Figs. 4 and 5.
We see again that, without the D-term, mh remains well
below its observed value for all m3=2’s. We also observe
that, without the D-term, mh is independent from the value
of m3=2 as it should.
In the present numerical example, the cross section of the

diphoton excess in Eq. (38) turns out to be equal to 1.94 fb.
Needless to say that higher cross sections can be obtained
for higher values of κ. The diphoton resonance mass, as
already discussed, is equal to 6 TeVand the diquark masses
about 3 TeV. In conclusion, we see that our model can
predict diphoton and diquark resonances which hopefully
can be observed in future experiments.

VII. STERILE NEUTRINOS

After the spontaneous breaking of the Uð1Þψ 0 symmetry,
the fermionic components of the three superfields Ni,
which are SM singlets, acquire masses mNi

≃ λiNM
2=mP

via the last superpotential coupling in Eq. (2). These masses
can be ≲0.1 eV for M ∼ 10 TeV and these fermionic
fields, which are stable on account of the Z0

2 symmetry
in Table I, can act as sterile neutrinos.
In the early universe, the sterile neutrinos are kept in

equilibrium via reactions of the sort NiN̄i ↔ a pair of
SM particles or Niþ a SM particle↔Niþ a SM particle.
These reactions proceed via a s- or t-channel exchange of a
Z0 gauge boson. The thermal average hσvi, where σ is the
corresponding cross section and v the relative velocity of
the annihilating particles, is estimated to be of order T2=M4

with T being the cosmic temperature. The interaction rate
per sterile neutrino is then given by

ΓNi
¼ nhσvi ∼ T5

M4
; ð42Þ

where n ∼ T3 is the number density of massless particles in
thermal equilibrium. The decoupling temperature TD of
sterile neutrinos is estimated from the condition

ΓNi
∼H ∼

T2

mP
; ð43Þ

where H is the Hubble parameter. This condition implies
that

TD ∼M

�
M
mP

�1
3

: ð44Þ

Here we followed the same strategy as the one used for
estimating the SM neutrino decoupling temperature via
processes involving weak gauge boson exchange. In the
case of ordinary neutrinos, however, the scale M should be
identified with the electroweak scale, which is of order
100 GeV, and the decoupling temperature turns out to be of

order 1 MeV. From Eq. (44), we see that TD scales like
M4=3. So, in our case and for M ≃ 10 TeV, TD is expected
to be of order 460 MeV, which is well above the critical
temperature for the QCD transition.
The effective number of massless degrees of freedom

in equilibrium right after the decoupling of sterile neutrinos
is 61.75. At T ∼ 1 MeV and just before the decoupling
of the SM neutrinos, this number is reduced to 10.75. So,
due to entropy conservation in each comoving volume,
the temperature of ordinary neutrinos Tν is raised relative to
the temperature of the sterile neutrinos TN by a factor
ð61.75=10.75Þ1=3. Consequently, the contribution of the
three sterile neutrinos to the effective number of neutrinos
at big bang nucleosynthesis is

ΔNν ¼ 3 ×

�
10.75
61.75

�4
3 ≃ 0.29: ð45Þ

This result is perfectly compatible with the Planck satellite
bound [22] on the effective number of massless neutrinos

Nν ¼ 3.15� 0.23: ð46Þ

Note that although the derivation of our estimate in
Eq. (45) is somewhat rough, we believe that the result is
quite accurate. This is due to the fact that the effective
number of massless degrees of freedom in equilibrium right
after the decoupling of sterile neutrinos does not change if
TD varies between the critical temperature of the QCD
transition, which is about 200 MeV, and the mass of the
charm quark mc ≃ 1270 MeV. Also, a more accurate
determination of the decoupling temperature of ordinary
neutrinos does not change the effective number of massless
degrees of freedom in equilibrium just before this temper-
ature is reached.

VIII. DARK MATTER

The scalar component of the superfield Ni, which is
expected to have mass of order m3=2, can decay into a
fermionic Ni and a particle-sparticle pair via a Z0 gaugino
exchange provided that this is kinematically allowed.
A necessary (but not sufficient) condition for this decay to
be possible is that there exist sparticles which are lighter
than the scalar Ni. Note that, as a consequence of the
unbroken discrete symmetry Z0

2, the decay products of the
scalar Ni should necessarily contain an odd number of Nj

superfields.
If the decay of the lightest scalar Ni (denoted as N̂) is

kinematically blocked, this particle can contribute to the
cold dark matter in the universe. In the early universe, the
scalar N̂ is kept in equilibrium since, for example, a pair of
these scalars can annihilate into a pair of SM particles via a
Z0 gauge boson exchange. The thermal average hσvi in this
case and for s-wave annihilation is expected to be
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hσvi ∼m2
N̂

M4
; ð47Þ

where mN̂ is the mass of the scalar N̂.
Following the standard analysis of Ref. [23], we can

estimate the freeze-out temperature Tf of the sterile
sneutrino N̂ as well as its relic abundance ΩN̂h

2 in the
universe. To this end, we take M ≃ 5.34 TeV, which
saturates the lower bound on mZ0 [19] mentioned in
Sec. V. The requirement that ΩN̂h

2 equals the cold dark
matter abundance ΩCDMh2 ≃ 0.12 from the Planck satellite
data [24] then implies that mN̂ ≃ 1.25 TeV. The freeze-out
temperature Tf in this case is about 51 GeV and the
corresponding number of massless degrees of freedom
86.25. Higher values of M require even higher values of
mN̂ . So we see that the SUSY spectrum is pushed up
considerably if the decay of the lightest sterile sneutrino is
kinematically blocked and this particle contributes to the
cold dark matter of the universe.
The model possesses an accidental lepton parity sym-

metry Zlp
2 under which the superfields l, ec, νc, L, L̄ are

odd. Combining this symmetry with the baryon parity Zbp
2

subgroup of Uð1ÞB under which q, uc, dc are odd, we
obtain a matter parity symmetry Zmp

2 under which q, uc, dc,
l, ec, νc, L, L̄ are odd. A discrete R-parity can then be
generated if we combine this symmetry with fermion parity.
The bosonic q, uc, dc, l, ec, νc, L, L̄ and the fermionic Hi

u,
Hi

d, Di, Dc
i , Ni, S, N, N̄ are odd under this R-parity. Note

that the decay products of these particles with the excep-
tion, of course, of the fermionic Ni cannot contain a single
Ni because of the Z0

2 symmetry. Also, they cannot contain a
single L, L̄, Hα

u, Hα
d except, of course, for the decay

products of the bosonic L, L̄ and fermionic Hα
u, Hα

d
themselves as a consequence of the Z2 symmetry. The
S, N, N̄ fermions can decay into a Higgs boson-Higgsino
pair, while the Di, Dc

i fermions can decay into a quark-
squark pair. So all the particles with negative R-parity,
except the bosonic L, L̄ and the fermionic Hα

u, Hα
d, Ni end

up yielding the usual stable lightest sparticle of MSSM
which can, in principle, participate in the cold dark matter
of the universe.
The possible fate of the Ni superfields has been already

discussed. The Z2 symmetry and R-parity imply that the
lightest state in the bosonic L, L̄ and fermionic Hα

u, Hα
d, or

in the fermionic L, L̄ and bosonic Hα
u, Hα

d, which is
hopefully neutral, is stable. We thus have two more
candidates for cold dark matter. Their relic abundances
in the universe depend on details. However, if their masses
are large, these abundances can be negligible. Finally, let us
mention that, if the breaking scale <N> of Uð1Þψ 0 is

increased to about 103 TeV, the sterile neutrinos become
plausible candidates for keV scale warm dark matter (for a
recent review see Ref. [25]). In conclusion, we see that the
model possesses many possible candidates for the compo-
sition of dark matter.

IX. SUMMARY

We have explored the implications of appending
a Uð1Þ gauge symmetry to the MSSM gauge group
SUð3Þc × SUð2ÞL × Uð1ÞY . This Uð1Þ symmetry, referred
to here as Uð1Þψ 0 , arises from a linear combination
of Uð1Þχ and Uð1Þψ contained in E6. The three matter
27-plets in E6 give rise to three SOð10Þ singlet fermions
Ni, called sterile neutrinos, which are prevented from
acquiring masses via renormalizable couplings by a
combination of symmetries, especially a Uð1Þ R sym-
metry. Thus, for a relatively low (∼10 TeV or so) breaking
scale of Uð1Þψ 0 , these fermionic Ni’s, the lightest of which
happens to be stable, only acquire tiny masses ≲0.1 eV
and their contribution as fractional cosmic neutrinos
during nucleosynthesis has been estimated. The lightest
sterile sneutrino as well as two more particles, which are
stable on account of discrete symmetries, can, under
certain circumstances, be cold dark matter candidates in
addition to the usual lightest sparticle of MSSM. Note that
the breaking ofUð1Þψ 0 at suitably higher energies, of order
103 TeV or so, would yield keV scale masses for the
fermionic Ni’s and thus transform them into plausible
warm dark matter candidates. The D-term for Uð1Þψ 0 can
contribute appreciably to the mass of the lightest neutral
CP-even MSSM Higgs boson. Consequently, the
observed value of this mass can be obtained in the
decoupling limit with relatively light stop quarks.
The spontaneous breaking of Uð1Þψ 0 yields superconduct-
ing cosmic strings which presumably were not inflated
away. The model also predicts the existence of diquark
and diphoton resonances which may be found at the LHC
or its future upgrades. The MSSM μ problem is naturally
resolved. The right handed neutrinos can acquire large
masses, which allows the standard seesaw mechanism and
the leptogenesis scenario to be realized. Baryon number is
conserved to all orders in perturbation theory rendering a
stable proton.
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