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Suppressing naturalness concerns, we discuss the compatibility requirements of high-scale supersym-
metry breaking with the Higgs boson mass constraint and gauge coupling unification. We find that to
accommodate superpartner masses significantly greater than the electroweak scale, one must introduce
large nondegeneracy factors. These factors are enumerated for the Minimal Supersymmetric Standard
Model, and implications for the allowed forms of supersymmetry breaking are discussed. We find that
superpartner masses of arbitrarily high values are allowed for suitable values of tan β and the non-
degeneracy factors. We also compute the large, but viable, threshold corrections that would be necessary at
the unification scale for exact gauge coupling unification. Whether or not high-scale supersymmetry can be
realized in this context is highly sensitive to the precise value of the top quark Yukawa coupling,
highlighting the importance of future improvements in the top quark mass measurement.
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I. INTRODUCTION

The discovery of the Higgs boson at the Large Hadron
Collider (LHC) [1,2] marked the culmination of the
Standard Model (SM) as an effective theory of the
electroweak scale. All properties measured so far are
consistent with a simple Standard Model Higgs boson of
mass 125 GeV. In the supersymmetric context this is
consistent with the decoupling of the superpartner mass
scale, where the lightest CP even Higgs eigenstate is SM-
like and the others are heavy and inaccessible to the LHC.
In view of the constraints on the supersymmetric spectra
imposed by the measured Higgs mass, and the nonobser-
vation of superpartners at the weak scale, we discuss the
possibility that supersymmetry exists at higher scales. This
is uncomfortable from the perspective of naturalness, and
we do not discuss it further here.
The next question to ask from a supersymmetry (SUSY)

point of view is what does the measured Higgs boson mass
imply for the superpartner spectrum. Previous studies have
indicated that in order for SUSY in the form of the minimal
supersymmetric model (MSSM) to be reconciled with the
observed Higgs mass, there are constraints from the
requirement that unification at the high scale still occur
[3–6]. There are also experimental lower limits [7–10], and
theoretical studies of upper limits on the scale of super-
partners [4,11–21]. Many of these analyses are built on
important studies of the lightest Higgs Boson mass in the
MSSM, such as [22–31]. For a recent study comparing
Effective Field Theory calculations of the Higgs mass with
fixed order calculations, see [32]. However, for the most
part, these studies have been concerned with determining
approximate limits on the SUSY breaking scale in setups
where the SUSY spectrum is close to degenerate.

We also discuss the implications of having such
high-scale SUSY theories for gauge coupling unification.
Supersymmetric grand unified theories, for both low
and high SUSY scales, have a venerable history
[33–40]. Our analysis here focuses on how high-scale
thresholds allow for high-scale SUSY to be reconciled with
exact gauge coupling unification, following from our
previous analysis in [41].
In this paper we show that the superpartner non-

degeneracy is just as important in assessing the ability
to accommodate the 125 GeV Higgs boson mass as
is the overall scale of superpartner masses. We show
below that, even when the scale of supersymmetry is
orders of magnitude beyond the weak scale, any
characteristic superpartner mass can fit the 125 GeV
mass. Furthermore, we show that this can be consistent
with exact gauge coupling unification. However, not any
SUSY theory will do: requirements on nondegeneracy
have strong implications for the type of supersymmetry
breaking that is allowed, which we discuss at the end of
the paper.
The paper is organized as follows. In Sec. II, we discuss

the matching condition for the SM to the SUSY theory as a
function of the matching scale and tan β at one-loop order.
We comment on the size of the necessary threshold
corrections to the Higgs quartic coupling for matching to
occur. In Sec. III, we analyze how the various one-loop
corrections to the SUSY Higgs quartic coupling compare
with one another. We then explain how we set up our
analysis of nondegenerate spectra, and present results for
various different choices of characteristic SUSY scales and
values of tan β. In Sec. IV, we discuss specific example
spectra at each choice of SUSY scale, where matching to
the SM has been achieved. Finally in Sec. V, we discuss the
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implications for gauge coupling unification. We summarize
our findings in Sec. VI.

II. HIGGS SELF-COUPLING MATCHING

The Standard Model Higgs potential is

VðHÞ ¼ λH
2
ðjHj2 − v2Þ2 ð1Þ

which implies that after symmetry breaking, the physical
propagating Higgs boson field h has mass m2

h ¼ 2λHv2 at
tree level, where v≃ 174 GeV. We take the experimentally
determined mass of the Higgs boson from [42] to extract
the value of λH in the Standard Model, with our chosen
normalization for the vacuum expectation value (VEV) v.
In this paper we assume that the SM is a low-energy

effective theory of a minimal supersymmetric model
(MSSM) that was integrated out at a scale ~m, which is
characteristic of the superpartner masses. The well-known
tree-level matching condition for the scalar quartic coupling
at the SUSY scale is

λtreeH ð ~mÞ ¼ 1

4

�
g22ð ~mÞ þ 3

5
g21ð ~mÞ

�
cos22β; ð2Þ

where ~m is the SUSY scale, gi are the SUð2Þ and Uð1ÞY
gauge couplings with the appropriate grand unified theory
(GUT) normalization and β is conventionally the angle
associated with the ratio of the vacuum expectation values
of the two Higgs doubletsHu and Hd. In our analysis, as in
[11], the treatment of tan β requires extra care, and will be
discussed in Appendix A. All the couplings above are in the
MS scheme, which explicitly breaks supersymmetry.
Therefore in the supersymmetric regime one must switch
to the DR scheme, which will lead to finite corrections to
the above relation.
This tree-level relation receives threshold corrections at

the scale ~m, which can be large if the superpartners are not
precisely degenerate. Thus at one loop the matching
condition for λ becomes

λHð ~mÞ ¼ λtreeH ð ~mÞ þ Δλð1ÞH ð ~mÞ; ð3Þ

where Δλð1ÞH ð ~mÞ incorporates the finite correction due
to switching between the MS scheme in the SM phase
and DR in the SUSY phase, as well as the corrections
due to scalar and gaugino/Higgsino loops. Expressions
for these one-loop corrections are provided in
Appendix B.
Let us now analyze the conditions required for matching

of the SM λH to the MSSM. In Fig. 1 we see how the SM
and the tree-level MSSM values for λH vary as a function of
the scale ~m. Since our definition of tan β is valid at the input
scale, which can be chosen to be any value of ~m, we do not

include running of tan β here. Therefore the slight variation
with ~m of the MSSM tree-level relation for λH is entirely
due to the running of g1;2, which we calculate to two-loop
accuracy. For the renormalisation group equation evolution
of the SM λH, we use the partial three-loop results provided
in [11], for greater accuracy. Our SM input values, with
their corresponding errors, are taken from Ref. [42]. We use
the procedure of [43] to obtain the two-loop MS values of
the SM couplings, evaluated at the scale μinput ¼ mt.
Of note is that, from Fig. 1, the naive maximum SUSY

scale appears to be ~m≃ 1010 GeV, since that is where the
SM central value of λH crosses the absolute minimum tree-
level MSSM value of λtreeH ¼ 0. However, it is worth
remarking that if one takes the value of the top quark
Yukawa coupling as ytðmtÞcentral − 3σytðmtÞ, one finds that
the SM value of λH is always greater than 0. This highlights
the importance of an accurate measurement ofmtðmtÞ, both
for a better understanding of how the Higgs mass can be
matched onto a SUSY theory, and of course for its
implications for electroweak vacuum stability. This also
highlights the importance of knowing precisely how to
extract the top Yukawa coupling from the measured top
quark mass, since the uncertainty in the extraction feeds
into the uncertainty in the running, and therefore the
matching.
As a function of the scale ~m, we can define the required

higher-order corrections to the SUSY tree-level value of
λtreeH needed to match the SM value at the scale ~m:

ΔλreqH ð ~mÞ ¼ λSMH ð ~mÞ − λtreeH ð ~mÞ: ð4Þ

These needed corrections are plotted in Fig. 2. Thus, at
every scale ~m, there is a certain ΔλreqH ð ~mÞ that is required,
which can then be compared with the one-loop threshold

FIG. 1. Plot showing the running of λH in the SM (solid blue
line), with 3σ contours corresponding to both the error in αsðmtÞ
(inner dotted blue lines) and ytðmtÞ (outer dashed blue lines).
Also shown is the tree-level SUSY matching condition of Eq. (2),
for values of tan β ¼ 1, 2, 4, 50 (dark blue solid, dashed purple,
dot-dashed olive, dotted green).
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corrections Δλð1ÞH ð ~mÞ, for various SUSY spectra. We see
from Fig. 2 that the required higher-order threshold
corrections depend most significantly on the parameters
tan β and ~m.
We now show, in Fig. 3, the required threshold correc-

tions as a function of tan β for various different choices of
~m. From this figure we can see that for any given SUSY
scale there is a naively preferred value of tan β, correspond-
ing to where the required threshold corrections are zero. For
GUT-scale SUSY, since the required threshold corrections
are always negative, there is no tree-level preferred value of
tan β. As one gets to large values of tan β ≳ 5, we see that
the required threshold corrections asymptote to a fixed
value. This is due to the asymptotic behavior of cos2 β
which appears in the SUSY tree-level matching condi-
tion, Eq. (2).

III. ACHIEVING SUFFICIENTLY LARGE
THRESHOLD CORRECTIONS

Now that we have determined that either positive or
negative threshold corrections may be required to match the
SM to the tree-level SUSY Higgs quartic coupling, we
would like to investigate whether and how such corrections
may be achieved in the MSSM. In Fig. 4, we see how
different contributions to the one-loop threshold corrections
in the MSSM vary as a function of tan β. We show this for
an almost degenerate spectrum, so that we know the sign of
the coefficient in front of the log’s in Eqs. (C2)–(C6). This
allows us to see that in order to get overall negative
threshold corrections, we need there to be a significant
contribution from the gauginos/Higgsinos, while minimiz-
ing the contribution from the scalars. To achieve large
positive threshold corrections (such as for low-scale SUSY
with large tan β), one should maximize stop mixing as
expected.
Comparing how the different contributions to the thresh-

old corrections vary as a function of the SUSY scale ~m, we
find that all the contributions become smaller for larger ~m.

FIG. 2. Plot showing the required threshold corrections for the
tree-level SUSY λtreeH ð ~mÞ to match the SM λSMH ð ~mÞ at a given scale
~m. Again, 3σ contours are shown, with the same definition as in
Fig. 1. Shown is ΔλreqH ð ~mÞ ¼ λSMH ð ~mÞ − λtreeH ð ~mÞ for tan β ¼ 1, 2,
4, 50 (blue, purple, red, orange).

FIG. 3. Plot showing the required threshold corrections for the
tree-level SUSY λtreeH ð ~mÞ to match the SM λSMH ð ~mÞ as a function
of tan β. Again, 3σ contours are shown, with the same definition
as in Fig. 1. Shown is ΔλreqH ð ~mÞ ¼ λSMH ð ~mÞ − λtreeH ð ~mÞ for ~m ¼
5 × 103; 106; 1010; 1016 GeV (blue, purple, red, orange).

FIG. 4. Plot showing the variation of different parts of the
threshold corrections ΔλH at one-loop, in units of 16π2, as a
function of tan β with ~m ¼ 104 GeV. Shown are the threshold
corrections defined in Eqs. (C2)–(C6), divided into subcompo-
nents, with the soft breaking masses of all superpartners mi
chosen to be almost degenerate (mi ¼ 1.01 ~m), so that the “log” s
are not all zero. In blue is the pure m ~qL;3 ; m~tR;3 part, corresponding
to the first two lines of Eq. (C2). In black is the stop mixing part,
corresponding to the last three lines of Eq. (C2) (black dot-dashed
corresponds to stop mixing with At ¼ 0.) The first and second
generation squark, and all slepton generation contribution,
corresponding to Eq. (C3) is smaller, and therefore is not shown.
The part of the scalar corrections which is independent of the
scalar masses, corresponding to Eq. (C4), is shown in green. The
mA-dependent part from Eq. (C5) is shown in purple. The red line
corresponds to the first three lines of Eq. (C6). The orange line
shows a possible correction to the running of the gauge couplings
in a split SUSY setup, due to the Higgsino mass parameter μ
being considerably lighter than the rest of the spectrum. All solid
lines indicate positive corrections, while dashed lines indicate
negative corrections.
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Most contributions only vary a small amount, with for
example the gaugino contributions given in Eq. (C6)
decreasing such that

Δλð1Þ;−inoH

����
1016 GeV

∼ 0.75Δλð1Þ;−inoH

����
103 GeV

; ð5Þ

with only a small variation in the numerical factor as a
function of tan β.
The decrease at higher ~m for both the stop contributions

in the first two lines of Eq. (C2) as well as the stop mixing
contributions from the last three lines of Eq. (C2) is more
substantial, with1

Δλð1Þ;~tH

����
1016 GeV

∼ ½0.06; 0.02�Δλð1Þ;~tH

����
103 GeV

;

tan β ∈ ½1; 50�; ð6Þ

Δλð1Þ;~t-mixing
H

����
1016 GeV

∼ ½0.06; 0.04�Δλð1Þ;~t-mixing
H

����
103 GeV

;

tan β ∈ ½1.01; 50�; ð7Þ

regardless of the choice of At, except for the special case

where jAt − μ cot βj ¼ 0, which results in Δλð1Þ;~t-mixing
H ¼ 0

for all values of ~m. The decrease is primarily due to the
smaller value of the top Yukawa coupling yt at large ~m due
to RG evolution.
Having determined how large the threshold corrections

must be in order to match the tree-level SUSY relation
to the SM λH, as well as how various superpartners
would contribute to the MSSM threshold corrections,
we are now in a position to perform scans of SUSY
spectra to find solutions to the one-loop matching
condition.
We study the one-loop matching for three different high

SUSY scales, ~m ¼ 106, 1010, and 1016 GeV. Each choice is
motivated for different reasons. We also include the scale
~m ¼ 5 × 103, since it is of interest for naturalness and due
to the viability of the lightest supersymmetric particle as a
dark matter candidate. The scale ~m ¼ 106 GeV is of
interest as the scale of split supersymmetry [44–48].
However, it is worth remarking that in typical split
supersymmetry setups, μ and the gaugino masses are
signifcantly lighter than ~m, so one must account for that
separation with modified running of λH between the various
scales. In our analysis, we keep μ and the gaugino masses
fairly close to the typical superpartner scale ~m. The choice
of the intermediate scale of ~m ¼ 1010 GeV is motivated
because it corresponds to the scale which the tree-level
matching condition suggests to be the naive maximum

SUSY scale. Finally, the choice of ~m ¼ 1016 GeV is
motivated by the possibility of associating SUSY breaking
to GUT breaking. Having SUSY at the GUT scale is also
interestingly compatible with recent proposals for ultra-
heavy gravitino dark matter [49,50].
In each of Figs. 5–8, we show how Δλð1Þ in the MSSM

compares with the required threshold correction for match-
ing to occur (shown by green lines in each figure). We fix
the SUSY scale to be ~m ¼ m ~qL;3 ¼ m~tR;3 , the scale of the
left-handed and right-handed stops, which we take to be
degenerate at the input scale. We then scan over four sets of
parameters:

fm ~qL;i ; m ~uR;i ; m ~dR;i
; m ~bR;3

; m ~lL;i
; m~eR;i ; mAg;fμg;

fMag; ftan βg;

where Ma is the gaugino mass parameter. We assume the
gaugino masses obey the standard GUT relation, namely,

M1

g21
¼ M2

g22
¼ M3

g23
; ð8Þ

so that when we vary Ma, we choose it to be equivalent to
the Wino mass parameterM2, withM1 related toMa by the
above expression.
We only choose to vary over this set of parameters for

several reasons. The first is that these parameters are
typically generated by different mechanisms, and therefore
can be expected to be different from each other. The second
is that the light scalars, the sbottom quark and the heavy
Higgs boson do not contribute much to the threshold
corrections (see Fig. 4), and therefore can be lumped
together without substantial impact on the numerical
analysis. The third is that since we are interested in
implications for GUTs, we want to group masses according
to their likely GUT relations.
We allow the scalar and gaugino mass parameters above

to vary in the range ~m≤fm ~qL;i ;m ~uR;i ;m ~dR;i
;m ~bR;3

;m ~lL;i
;m~eR;i ;

mAg;fMag≤100 ~m, and the Higgsino mass parameter
μ to vary from ~m=100 ≤ μ ≤ ~m, and investigate various
choices of tan β. We do not allow the Higgsino mass μ to
vary above ~m so as to not run afoul of stop mixing
constraints.
We study the values of tan β ¼ 1, 2, 4 and 50 initially,

with further fine-graining as necessary to determine the
exact range where matching can be achieved at a given ~m.
The gluino massM3 only appears in the two-loop threshold
corrections to λH [11], and therefore is not a parameter we
vary explicitly.
We define the parameter ξ used in Figs. 5–8 as follows.

For any value of ξ, the superpartner masses in the MSSM
spectrum are allowed to vary either from ~m to as large as
ξ ~m for the scalars and gauginos, or from ~m to as small as
~m=ξ for the Higgsinos, where ~m is the scale set by the

1We choose tan β ¼ 1.01 as the lower limit so that the
correction does not vanish at tan β ¼ 1.
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degenerate stop masses m ~qL;3 and m~tR;3 . For example, in
Fig. 5 if the x-axis ξ ¼ 40, the superpartner masses are
allowed to vary from ~m to as low as ~m=40 for Higgsinos,
and as high as 40 ~m for scalars and gauginos.
Now we come to the interpretation of Figs. 5–8. As

expected, matching the SM quartic coupling to the SUSY
theory at one-loop for ~m ¼ 5 × 103 GeV is straightfor-
ward. Having TeV scale SUSY “prefers” larger values of
tan β, but is compatible with a wide range of values of
tan β depending on the variation of the superpartner
masses. It also prefers having a relatively large trilinear
At. As we go to higher superpartner mass scales one finds
that significant one-loop threshold corrections are required
in order for matching with the SM value to occur, which in
turn can only be achieved by large variations or non-
degeneracies in the superpartner masses, thereby creating
large logarithms that saturate the matching condition
requirement.
For example, let us look at the tan β ¼ 2 plot for the

~m ¼ 1010 GeV case [Fig. 7(b)]. We see that if there are no

variations or small variations (under a factor of 10) among
the superpartner masses near 1010 GeV there is no way to
achieve large enough threshold corrections to match to the
necessary SM Higgs self-coupling at the scale ~m. One
needs variations greater than a factor of 10 to match
the 3σmt

upper limit on λH. Significantly larger nondege-
neracy would be required to match the central value of λH.
These variations are substantially larger than typically
considered in supersymmetry breaking schemes. One could
only consider such large variations in the context of an
underlying supersymmetry-breaking scheme that naturally
gave rise to large nondegeneracies. The issue then becomes
highly model dependent, so we do not discuss it fur-
ther here.
In [12], it was pointed out that at very large values of

tan β ∼ 200, the sbottom and stau mixing alone are enough
for a degenerate SUSY spectrum at ~m ∼ 1016 GeV to give
the correct Higgs mass. However, the value of the super-
potential bottom Yukawa coupling ŷb ¼ yb= cos β is such
that α̂b ¼ ŷ2b=4π is so large that there is a Landau pole at
Λ ∼ 10 ~m [12]. In our analysis we have shown that the low
tan β ∼ 1 regime also allows the correct Higgs boson mass
to be obtained within 1σ if there is nondegeneracy ξ≳ 10,

(a)

(c)

(b)

(d)

FIG. 5. These plots show how the required corrections to λH (solid green) compare to the upper and lower limits of the threshold
corrections Δλ obtained from a scan, at a SUSY scale ~m ¼ m ~qL;3 ¼ m~tR;3 ¼ 5 × 103 GeV. The dashed green lines correspond to the 3σ
upper and lower limits from mt uncertainty. Scanned independently are μ; fm ~qL;i ; m ~uR;i ; m ~dR;i

; m ~bR;3
; m ~lL;i

; m~eR;i ; mAg; fMag and tan β.

The top trilinear At has been set
2 to

ffiffiffi
6

p
~m. Each mass is allowed to vary up to ξ ¼ 100 relative to ~m, with scanned points shown here for

ξ ¼ 0, 10, 20, 50, 75 and 100. The four plots show the results for four separate choices of tan β.

2This choice is made purely to ensure the existence of solutions
to the matching condition. Other solutions exist also.
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and within 1 GeV if there is nondegeneracy ξ≳ 45, as seen
in Fig. 8, while avoiding the potentially dangerous effects
of having large tan β. If one allows for even larger non-
degeneracy, ξ≳ 100, the central value for the Higgs mass
is reached.
We remind the reader that while at tree level, the mass of

the physical propagating Higgs boson in the Standard
Model is m2

h ∝ λH, there are uncertainties due to the top
quark mass and the QCD coupling which are not insig-
nificant (see for example [43,51]). Therefore, only with
better understanding of the exact relationship between the
Higgs boson mass and λH in the Standard Model will we be
able to precisely determine the ability to match on to a
SUSY theory. Additionally, there are theoretical uncertain-
ties associated with both the extraction of the top Yukawa
coupling from the measured top quark mass, and from
missing higher order corrections to the matching of SUSY
at high scales, so that overall, one expects a typical Δmth:

h ∼
1 GeV for high-scale SUSY [12].

IV. EXAMPLE SPECTRA

In this section, we consider various benchmark spectra
which allow for matching λSMH to λtreeH þ ΔλH at the chosen

SUSY scales ~m ¼ 5 × 103; 106; 1010 and 1016 GeV. We
choose the benchmark spectra by a χ2-minimization, with
the χ2 being obtained as

χ2 ¼
�
ΔλobtH − ΔλreqH

σΔλH

�
2

; ð9Þ

where the error σΔλH is obtained by using the 1σ error
associated with the top mass mtðmtÞ. The quantities ΔλobtH
and ΔλreqH are the obtained and required threshold correc-
tions at one loop from the SUSY spectrum respectively. For
all the example spectra in this section, we have cross-
checked with the public code SUSYHD [12] that our
calculation agrees with theirs.
For TeV-scale SUSY with tan β ¼ 50, we find that a

spectrum where all the scalars are degenerate, mscalars ¼
~m ¼ 5 × 103 GeV, the gaugino masses are Ma ¼ 9 ~m, and
μ ¼ 0.5 ~m has χ2 ¼ 3 × 10−4, so that ΔλreqH and ΔλobtH are in
good agreement. To ensure that there is no undue effect of
the choice of matching scale, we can examine how the
various components of λH and ΔλH conspire to match
the Standard Model λSMH , as a function of the matching

(a) (b)

(c) (d)

FIG. 6. These plots show how the required corrections to λH (solid green) compare to the upper and lower limits of the threshold
corrections Δλ obtained from a scan, at a SUSY scale ~m ¼ m ~qL;3 ¼ m~tR;3 ¼ 106 GeV. The dashed green lines correspond to the 3σ upper
and lower limits from mt uncertainty. Scanned independently are μ; fm ~qL;i ; m ~uR;i ; m ~dR;i

; m ~bR;3
; m ~lL;i

; m~eR;i ; mAg; fMag and tan β. The top

trilinear At has been set to zero. Each mass is allowed to vary up to ξ ¼ 100 relative to ~m, with scanned points shown here for ξ ¼ 0, 10,
20, 50, 75 and 100. The four plots show the results for four separate choices of tan β.
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scale. This is shown in Fig. 9(a). We see that the choice of
tan β ¼ 50 requires some positive threshold corrections,
since λSMH is greater than λtreeH . This is obtained with a fairly
large positive correction from stop mixing with just a small
negative threshold correction being provided primarily by
the Higgsinos/gauginos (hence the nondegeneracy of the
Higgsino with the gauginos). The correction from the other
scalars is small for this choice of parameters.
For PeV-scale SUSY with tan β ¼ 2.5, we find that a

spectrum where all the scalars are degenerate, mscalars ¼ ~m,
Ma ¼ μ ¼ ~m, has χ2 ¼ 0.004, so thatΔλreqH andΔλobtH are in
good agreement. Shown in Fig. 9(b) is how the choice of
matching scale affects the quality of SM to MSSM
matching. We see that the choice of tan β ¼ 2.5 requires
threshold corrections of order (−λtreeH =20), which are
provided primarily by the Higgsinos/gauginos. The cor-
rection from scalars, which includes the L ↔ R mixing of
the stops is almost zero for this choice of parameters,
therefore our choice of setting At ¼ 0 does not affect the
result. We note that for matching scales going below
μmatch ¼ m ~qL;3 ¼ m~tR;3 ¼ 106 GeV, the effect of the scalars
(red dotted) increases. This is the well-known threshold
correction due to the stop mixing parameter Xt ¼ At −
μ cot β that enters in the last three lines in Eq. (C2). In that

range, the impact of the choice of At is important, and can
be used to cancel off the effect of μ cot β > m ~qL;3 ; m~tR;3 .
For an intermediate SUSY scale of 1010 GeV with

tan β ¼ 1, we find that a spectrum where all the super-
partners are degenerate, mscalars ¼ Ma ¼ μ ¼ ~m, has
χ2 ¼ 0.008, so that ΔλreqH and ΔλobtH are in good agreement.
Once more, we show in Fig. 9(c) how the choice of the
matching scale affects the SM to MSSM matching. We see
that the choice of tan β ¼ 1 requires threshold corrections
to be of order −λSMH , since the tree-level value of λtreeH ¼ 0.
Here, the threshold corrections are given by a partial
cancellation between the positive corrections due to the
scalars and a negative correction due to the Higgsinos/
gauginos, with a small contribution from the change of
renormalization scheme. This cancellation effect at tan β ∼
1 can be understood by referring back to Fig. 4, where we
see that for At ¼ 0, the stop mixing and the Higgsino/
gaugino contributions to the threshold corrections are
similar in size, and opposite in sign. As for PeV-scale
SUSY, we note that for matching scales below the central
one, the impact of stop mixing becomes more pronounced.
For SUSYat the GUT scale of 1016 GeV with tan β ¼ 1,

we find that a spectrum where the superpartner masses are
given by mscalars ¼ ~m, Ma ¼ 20 ~m and μ ¼ 0.001 ~m, has

(a)

(c) (d)

(b)

FIG. 7. These plots show how the required corrections to λH (solid green) compare to the upper and lower limits of the threshold
corrections Δλ obtained from a scan, at a SUSY scale ~m ¼ m ~qL;3 ¼ m~tR;3 ¼ 1010 GeV. The dashed green lines correspond to the 3σ

upper and lower limits from mt uncertainty. Scanned independently are μ; fm ~qL;i ; m ~uR;i ; m ~dR;i
; m ~bR;3

; m ~lL;i
; m~eR;i ; mAg; fMag and tan β.

The top trilinear At has been set to zero. Each mass is allowed to vary up to ξ ¼ 100 relative to ~m, with scanned points shown here for
ξ ¼ 0, 10, 20, 50, 75 and 100. The four plots show the results for four separate choices of tan β.
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χ2 ¼ 0.0001, so thatΔλreqH andΔλobtH are in good agreement.
The various components of λH and ΔλH conspiring to
match the Standard Model λSMH are shown in Fig. 9(d) as
a function of the matching scale. We see that the choice
of tan β ¼ 1 requires threshold corrections to be −λSMH ,
since the tree-level value of λtreeH ¼ 0. Here, the threshold
corrections are almost entirely due to the negative
correction from the Higgsinos/gauginos, with a small
contribution from the change of renormalization scheme.
Significant contributions come from the finite one-loop
correction from the Higgsinos/gauginos [the first three
lines of Eq. (C6)], and are therefore not purely due to the
changed running of g1 and g2 in the presence of an
SUð2Þ doublet and triplet. Since the stop-mixing con-
tribution is almost zero, the choice of At ¼ 0 does not
impact our results.
To conclude this subsection, we show two-dimensional

plots where the spectra match λSMH ¼ λtreeH þ ΔλH to within
1, 1.96 and 3 sigma (green, orange, red), where sigma is the
same σΔλH as in Eq. (9). We choose to plot the gaugino
mass Ma ¼ M2 against the Higgsino mass parameter μ,
since the threshold corrections depend strongly on the
choice of these two parameters. These plots can be

interpreted as showing how matching occurs when all
superpartners are degenerate except for an SUð2Þ singlet,
doublet and triplet, with appropriate hypercharge assign-
ments. We set M1 ¼ ðg21=g22ÞM2 as in Eq. (8), so as to
maintain the GUT relation between gaugino masses.
Showing such contours for ~m ¼ 5 × 103 is not particularly
illuminating, since there are many regions in parameter
space that can have matching of λH. However, for the
higher SUSY scales, it is interesting to consider what
regions are viable, and how they shift as a function of the
choice of matching scale.
We see in Fig. 10 that for PeV-scale SUSY, shifting only

slightly the value of tan β results in a large change in the
ratio of μ=Ma that is necessary for matching to occur. For
tan β ¼ 3.1, degeneracy, or only slight nondegeneracy, is
required, with ratios Oð1Þ viable, while for tan β ¼ 2.5,
ratios must be Oð10Þ or greater. This can be better under-
stood by referring back to Fig. 3, which gave an idea of
the “optimal” values of tan β for matching, for various
different SUSY scales. We see that regardless of the
SUSY scale, ΔλreqH has a strong tan β dependence
between 1 ≤ tan β ≲ 5, with the strongest dependence near
tan β ∼ 2–3. Since for PeV-scale SUSY, the optimal

(a) (b)

(c) (d)

FIG. 8. These plots show how the required corrections to λH (solid green) compare to the upper and lower limits of the threshold
corrections Δλ obtained from a scan, at a SUSY scale ~m ¼ m ~qL;3 ¼ m~tR;3 ¼ 1016 GeV. The dashed green lines correspond to the 3σ

upper and lower limits from mt uncertainty. The dashed blue lines shown for tan β ¼ 1 correspond to mh � 1 GeV. Scanned
independently are μ; fm ~qL;i ; m ~uR;i ; m ~dR;i

; m ~bR;3
; m ~lL;i

; m~eR;i ; mAg; fMag and tan β. The top trilinear At has been set to zero. Each mass is

allowed to vary up to ξ ¼ 100 relative to ~m, with scanned points shown here for ξ ¼ 0, 10, 20, 50, 75 and 100. The four plots show the
results for four separate choices of tan β.
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(a) (b)

(c) (d)

FIG. 9. Shown are λSMH (black), λtreeH (purple dot-dashed) and ΔλtotH (blue), as a function of the matching scale μmatch ¼ m ~qL;3 ¼ m~tR;3 .
The four panels correspond to different characteristic SUSY scales. Also shown are the various components that add up to give ΔλtotH ,
namely the correction from MS to DR (orange dashed), the scalar contribution (red dotted) and the Higgsino/gaugino contribution
(green solid).

(a) (b)

FIG. 10. Shown are the regions in Ma, μ space, for degenerate scalars ~m, tan β ¼ 2.5, 3.1 and m ~qL;3 ¼ m~tR;3 ¼ μmatch where λH is
matched to within 1, 1.96 and 3 sigma (green, orange, red). The matching has been performed at the scale μmatch ¼ 106 GeV.
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tan β ∼ 3, we can see that small variations in tan β around
that value will result in large changes in ΔλreqH , thus
requiring a large change in the ratio μ=Ma.
For SUSY at ~m ¼ 1010 GeV, we see in Fig. 11 that for

both tan β ¼ 1 and tan β ¼ 1.2, ratios of μ=Ma ∼ 1 are
sufficient to achieve matching. This makes sense, since μ ¼
1010 GeV is close to the scale where λSMH passes through
zero, which would therefore match with the tree-level value
of λtreeH ðtan β ¼ 1Þ ¼ 0. Values away from tan β ¼ 1
actually expand the parameter space available for matching
to occur. This is because for tan β ¼ 1, some of the

contributions to Δλð1ÞH are zero, as can be seen in Fig. 4,
and Eqs. (C1)–(C6). By going to values tan β ≠ 1, con-
tributions which were previously zero can now be used to
open up more regions of the parameter space.
From Fig. 12, we see that for GUT-scale SUSY at

1016 GeV, the ratio μ=Ma has to be of Oð50Þ or greater.
This is not an unreasonably large nondegeneracy, because
the two mass parameters are typically set by different
mechanisms in many SUSY-breaking scenarios (see e.g.
[52–55]). Therefore it is entirely possible to construct
models which would give rise to such nondegeneracies.

(a) (b)

FIG. 11. Shown are the regions in Ma, μ space, for degenerate scalars ~m, tan β ¼ 1, 1.2 and m ~qL;3 ¼ m~tR;3 ¼ μmatch where λH is
matched to within 1, 1.96 and 3 sigma (green, orange, red). The matching has been performed at the scale μmatch ¼ 1010 GeV.

(a) (b)

FIG. 12. Shown are the regions in Ma, μ space, for degenerate scalars ~m, tan β ¼ 1, 0.9 and m ~qL;3 ¼ m~tR;3 ¼ μmatch where λH is
matched to within 1, 1.96 and 3 sigma (green, orange, red). The matching has been performed at the scale μmatch ¼ 1016 GeV.
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V. GAUGE COUPLING UNIFICATION

So far we have mainly been discussing compatibility of
high-scale supersymmetry with the Higgs boson mass
measurement. We have found compatibility up to arbitrary
high scales as long as the superpartners are allowed to have
significant nondegeneracies among them. These very large
nondegeneracies, however, are not ones that pull apart
multiplets of GUT groups, such as the 5̄ and 10 of SUð5Þ or
the 16 of SOð10Þ. Rather, the nondegeneracies are across
these GUT representations, not within them. Strictly speak-
ing this is not required, since orbifold GUTs, for example,
can glue together several components of GUT representa-
tions into what looks like a single GUT representation from
the IR point of view. Nevertheless, it is encouraging that
even the simplest GUT theories pass the first test of
compatibility with the Higgs boson mass and high-scale
supersymmetry breaking.
A separate issue is whether exact gauge coupling

unification indeed can happen in such theories. The lore
is that low-scale supersymmetry is needed for exact gauge
coupling unification. Having at least the SUð3Þ and
SUð2Þ adjoint representations, as well as the Higgsino
SUð2Þ doublets at a low scale, is known to alter the
running of the gauge couplings so as to facilitate exact
gauge coupling unification [44–48]. However, as we
emphasized in [41], exact gauge coupling unification is
just as much an issue with the high-scale threshold
corrections from GUT representation splittings as it is
with low-scale threshold corrections that arise from
superpartner thresholds. Thus, even the SM up to the
high scale is compatible with gauge coupling unification
from this perspective, although the corrections become
quite large in that case, and one has to ask whether nature
would rather have large corrections at the GUT scale for a
SM GUT or very small corrections for a low-scale
SUSY GUT.
In the case of high-scale supersymmetry breaking, say

the PeV scale or even the intermediate scale of 1010 GeV,
the situation is in between the SM GUT concerns and the
very small corrections needed by low-scale supersym-
metry to achieve exact gauge coupling unification.
We can demonstrate this graphically using our visuali-
zation technique for the required threshold corrections to
achieve exact gauge coupling unification. This is shown
in Fig. 13.
To understand the plot we need to build up the meaning

of Δλ23 and Δλ12 (see [41] for more detailed discussion).
First, we must pick a scale μ� as a candidate GUT scale, at
which point the required GUT threshold corrections for
exact unification are computed. The values of μ� are the
numbers labeled along the lines in Fig. 13. At μ� we then
compute the gauge couplings in the low-scale effective
theory giðμ�Þ and compare them to a candidate value of the
GUT group’s gauge coupling gUðμ�Þ. These are related at
one-loop [56,57] by

�
1

g2i ðμ�Þ
�

MS
¼

�
1

g2Uðμ�Þ
�

MS
−
�
λiðμ�Þ
48π2

�
MS

; ð10Þ

where λiðμ�Þ are the GUT-scale threshold corrections,
specific to each gauge group coupling gi in the MS scheme.
From the low-energy point of view there are combina-

tions of gauge couplings that do not involve the unification
coupling gUðμ�Þ

�
Δλijðμ�Þ
48π2

�
MS;DR

≡
�

1

g2i ðμ�Þ
−

1

g2jðμ�Þ
�

MS;DR

¼
�
λjðμ�Þ − λiðμ�Þ

48π2

�
MS;DR

ð11Þ

for i; j ¼ 1; 2; 3; i ≠ j. These Δλijðμ�Þ are the horizontal
and vertical axes in Fig. 13.
Figure 13 shows the required threshold corrections at

various putative GUT scales μ� for the SM and for
intermediate scale supersymmetry, where the SUSY part-
ners are all near 1010 GeV. What we find is that super-
symmetry deflects the “thresholds line” corresponding to
Eq. (11) to pass closer to the (0,0) coordinates in the
ðΔλ12;Δλ23Þ plane. It also increases the value of μ� (i.e.
GUT scale choice) that has its closest approach to (0,0).
The result is familiar: the introduction of supersymmetry
both reduces the needed threshold corrections at the high
scale and increases the GUT scale (from the point of view
of lowest-threshold correction is for higher values of μ�).
This latter element is helpful since one generally requires
that the GUT scale be above about 1015 GeV so that the X,

FIG. 13. Plot of the threshold corrections needed for exact
gauge coupling unification. The numbers along the line are the
scales μ� at which the IR couplings are evaluated for unification
and at which point the needed threshold corrections are computed
and then plotted in the plane. The long straight line is assuming
only the SM up to the highest scale. The second line that branches
downward is for the case of superpartners existing at 1010 GeV,
which lowers the needed threshold corrections at high scales. The
results for this plot are obtained by using two-loop running in the
SM and MSSM, and one-loop matching.
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Y GUT gauge bosons do not induce too large dimension-
six operators that cause the proton to decay faster than
current limits allow. If supersymmetry existed at
∼103 GeV, which is still compatible with constraints,
the thresholds line would pass very close to the (0,0) point
for μ� ≃ 2 × 1016 GeV, as is well known and illustrated in
Fig. 2 of [41].
Since threshold corrections at the GUT scale can enable

even pure SM theories to unify with exact gauge coupling
unification [41,58,59], the same must be true for 1010 GeV
SUSY, since it only improves convergence to exact uni-
fication. Compared to the SM threshold corrections ΔλSM
for the GUT-scale choice μ� ¼ 1016 GeV, SUSY threshold
corrections for a high-supersymmetry scale of 10x GeV are
given by ∼ΔλSMðx − 3Þ=13. More detailed analysis shows
that this slightly overestimates the needed corrections for
6≲ x≲ 12. Thus, exact gauge coupling unification is
viable for intermediate values of supersymmetry breaking,
which are also compatible with the Higgs boson mass
constraint.
If superpartnerswere near theGUT scale, i.e. ~m ∼ 1015;16,

gauge coupling unificationwould involve not only threshold
corrections from the GUT boson/Higgs representations, but
also from the superpartners themselves. Therefore, detailed
analysis would be required to discuss precisely the con-
ditions required for gauge coupling unification to occur,
which we leave to future work.

VI. CONCLUSION

The existence of supersymmetry at the weak scale has
traditionally been assumed by reducing the naturalness
problem of the quadratically sensitive Higgs sector of the
SM. Our understanding of how naturalness is resolved in
nature may be limited, and it is useful to consider theories
of supersymmetry that are not beholden to the simplest
notions of naturalness, and thus are not required to be at the
weak scale.
One important experimental prediction of minimal

supersymmetry, even for superpartners at very high scales,
is the existence of a relatively light Higgs boson. This has
been seen by the LHC. We have shown in this paper that
even arbitrary high scales of superpartners allow the light
Higgs boson, due to the required matching of the SM
effective theory Higgs self-interaction coupling to gauge
couplings in the supersymmetric theory. Since gauge
couplings stay perturbative up to the high scale this keeps
the Higgs boson prediction light. Nevertheless, very high-
scale supersymmetry above the PeV scale becomes increas-
ingly difficult to reconcile with the Higgs mass; however,
this may be achieved with large nondegeneracy factors,
which we discussed in detail in the text. This has impli-
cations for the form of supersymmetry breaking that must
be at play if supersymmetry is at very high scales well
above the PeV scale.

We reiterate here that the ability tomatch the SM effective
theory to a supersymmetric theory at high scales can be
substantially altered by a change in the measurement of
mtðmtÞ. Therefore an accurate measurement of this quantity
would greatly improve the accuracy with which one could
claim what conditions are necessary for matching to occur.
For example, if ytðmtÞactual ¼ ytðmtÞcentral − 3σytðmtÞ, the SM
theory can be matched for totally degenerate spectra at all
scales, whereas if ytðmtÞactual ¼ ytðmtÞcentral þ 3σytðmtÞ, the
SM appears unlikely to be matched to GUT-scale SUSY
(see Fig. 8).
Another feature of supersymmetry, even for very high-

scale values, is that requirements are reduced of large
threshold corrections to achieve exact gauge coupling
unification in a GUT. We have discussed how gauge
coupling unification generally only improves in a super-
symmetric theory, even at very high scales, with respect to
the SM. Thus, we find that PeV scale [44–48] or inter-
mediate scale supersymmetry [3,5], two ideas that are
prevalent in the literature for other reasons involving dark
matter and neutrino physics, are compatible with the Higgs
boson constraint and gauge coupling unification under the
conditions described above.
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APPENDIX A: TREATMENT OF tan β IN
OUR ANALYSIS

We discuss here the precise treatment of tan β in our
analysis. Conventionally, tan β is defined as being

tan β ¼ hHui
hHdi

: ðA1Þ

However, since we are considering SUSY scales signifi-
cantly above the scale of electroweak symmetry breaking,
the IR quantities hHui and hHdi do not have meaning in the
UV SUSY theory. Additionally, if we were to treat tan β
according to the usual definition, this would complicate the
analysis of the threshold corrections at the SUSY scale.
Therefore, we define tan β as a scale-dependent tunable
parameter for the mixing angle from the two Higgs
doublets in the UV theory, Hu and Hd, to the two Higgs
doublets in the IR theory, H and A (where H is the light
SM-like Higgs doublet):

SEBASTIAN A. R. ELLIS and JAMES D. WELLS PHYSICAL REVIEW D 96, 055024 (2017)

055024-12



�
H

A

�
¼

�
cos β sin β

− sin β cos β

��
~Hd

Hu

�
; ðA2Þ

where ~Hd ¼ −iσ2H�
d. As a result, tan β is defined as an

input at the SUSY scale, and must be renormalisation group
equation evolved to different scales as in [60]. This choice
for the treatment of tan β is the same as that of Ref. [11].

APPENDIX B: CORRECTIONS DUE
TO SWITCHING BETWEEN THE

MS AND DR SCHEMES

Here we summarize how switching between the MS and
DR schemes affects the various couplings in the discussion
in Sec. II.
The gauge couplings receive a finite correction:

gMS
i ¼ gDRi

�
1 −

g2i
96π2

CðGÞ
�
; ðB1Þ

where CðGÞ is the quadratic Casimir of the group G,
defined as CðGÞδab ≡ facdfbcd, where fabc are the struc-
ture constants of the group. Thus for Uð1Þ; SUðNÞ gauge
groups, CðGÞ ¼ 0; N respectively.
The quartic coupling λH also receives a finite correction

due to the scheme switch:

λMS
H ¼ λDRH −

1

16π2

�
9

100
g41 þ

3

10
g21g

2
2 þ

3

4
g42

�
; ðB2Þ

where the couplings on the right-hand side are all in the
DR scheme.

APPENDIX C: ONE-LOOP SUSY
MATCHING TO HIGGS SELF-COUPLING

The one-loop corrections to λtreeH are as follows, with all
couplings now shown in the MS scheme. The one-loop
corrections due to switching from DR to MS to match with
the Standard Model are

Δλð1Þ; scheme
H ð ~mÞ ¼ 1

16π2

�
−

9

100
g41ð ~mÞ − 3

10
g21ð ~mÞg22ð ~mÞ

−
�
3

4
−
cos22β

6

�
g42ð ~mÞ

�
: ðC1Þ

While most terms arise due to the correction of λDRH → λMS
H

as can be found, for example, in [11], the term proportional

to cos2 2β arises due to the correction from gDR2 → gMS
2

[11]. More details on switching schemes can be found in
Appendix B.
The contribution from third generation squarks is

given by

Δλð1Þ; 3rd genH ð ~mÞ ¼ 1

16π2

�
3y2t

�
y2t þ

1

2

�
g22 −

1

5
g21

�
cos 2β

�
log

m2
~qL;3

~m2
þ 3y2t

�
y2t þ

2

5
g21 cos 2β

�
log

m2
~tR;3

~m2

þ cos22β
300

�
3ðg41 þ 25g42Þ log

m2
~qL;3

~m2
þ 24g41 log

m2
~tR;3

~m2
þ 6g41 log

m2
~bR;3

~m2

�

þ 6y4t
ðAt − μ cot βÞ2

m ~qL;3m~tR;3

�
~F1

�
m ~qL;3

m~tR;3

�
−

1

12

ðAt − μ cot βÞ2
m ~qL;3m~tR;3

~F2

�
m ~qL;3

m~tR;3

��

þ 3

4
y2t

ðAt − μ cot βÞ2
m ~qL;3m~tR;3

cos 2β

�
3

5
g21 ~F3

�
m ~qL;3

m~tR;3

�
þ g22 ~F4

�
m ~qL;3

m~tR;3

��

−
1

4
y2t

ðAt − μ cot βÞ2
m ~qL;3m~tR;3

cos22β

�
3

5
g21 þ g22

�
~F5

�
m ~qL;3

m~tR;3

��
; ðC2Þ

where the argument ð ~mÞ for all the couplings is
implicit. The coupling yt is the top Yukawa coupling
as defined in the SM phase, namely ytðmtÞ ¼ffiffiffi
2

p
mtðmtÞ=vðmtÞ, where mtðmtÞ is the pole top quark

mass and vðmtÞ is the electroweak VEV evaluated at
the top mass threshold. We note that the last three
lines are those that involve the stop L − R mixing term
At − μ cot β.

There are additional corrections from the sbottoms and
staus not shown above, which are given in for example
[12,13], which become important for very large values of
tan β ≳ 50. Since we restrict ourselves in our analysis to
values tan β ≤ 50, we do not list these contributions here.
Their inclusion does not alter the numerical results.
The contribution from the first two generations of

squarks and sleptons is given by
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Δλð1Þ; 1; 2 genH ð ~mÞ ¼ 1

16π2

�
cos22β
300

X2
i¼1

�
3ðg41 þ 25g42Þ log

m2
~qL;i

~m2
þ 24g41 log

m2
~uR;i

~m2
þ 6g41 log

m2
~dR;i

~m2
þ ð9g41 þ 25g42Þ log

m2
~lL;i

~m2

þ 18g41 log
m2

~eR;i

~m2

��
; ðC3Þ

for the parts explicitly dependent on the squark and slepton masses. The scalar corrections to λH also yield a mass-

independent correction which depends only on gi and tan β, which we denote as Δλð1Þ; s
24β

H ð ~mÞ:

Δλð1Þ; s
24β

H ð ~mÞ ¼ −
1

16π2
3

16

�
3

5
g21 þ g22

�
sin2 4β: ðC4Þ

The corrections due to the heavy Higgs boson doublet A is

Δλð1Þ;AH ð ~mÞ ¼ 1

16π2

�
1

4800
ð261g41 þ 630g21g

2
2 þ 1325g42 − 4 cos 4βð9g41 þ 90g21g

2
2 þ 175g42Þ

− 9 cos 8βð3g21 þ 5g22Þ2Þ log
m2

A

~m2

�
; ðC5Þ

while the correction due to gauginos/Higgsinos is given by

Δλð1Þ;−inoH ð ~mÞ ¼ 1

16π2

�
1

400
ð−36g41G1ðx1Þ − 120g21g

2
2G2ðx1; x2Þ − 100g42G3ðx2Þ þ 80λHðg21Gðx1Þ þ 5g22 Gðx2ÞÞ

þ cos 4βð−36g41G4ðx1Þ þ 120g21g
2
2G5ðx1; x2Þ − 100g42G6ðx2ÞÞ

− 16 sin 2βðg21ð6g21 − 5λHÞ ~F5ðx1Þ þ 5g22½4g21G7ðx1; x2Þ þ ð10g22 − 5λHÞ ~F5ðx2Þ�ÞÞ

−
1

6
cos22β

�
2g42 log

M2
2

~m2
þ
�
9

25
g41 þ g42

�
log

μ2

~m2

��
; ðC6Þ

where xa ¼ Ma=μ.
The loop functions appearing in the expressions above are defined to be

G1ðxÞ ¼
−1 − 8x2 þ 7x4 þ 2x6 þ x2ð−3 − 11x2 þ 2x4Þ log x2

ðx2 − 1Þ3 ; ðC7Þ

G2ðx; yÞ ¼
x3ð1þ 2x2Þ log x2
ðx − yÞðx2 − 1Þ2 −

ðy2 − 1Þ2x2 − 2y2 − 3xy − 1

ðx2 − 1Þðy2 − 1Þ −
y3ð1þ 2y2Þ log y2
ðx − yÞðy2 − 1Þ2 ; ðC8Þ

G3ðxÞ ¼
−3 − 26x2 þ 25x4 þ 4x6 þ x2ð−9 − 35x2 þ 8x4Þ log x2

ðx2 − 1Þ3 ; ðC9Þ

G4ðxÞ ¼
1þ 2x2 − 3x4 þ x2ð3þ x2Þ log x2

ðx2 − 1Þ3 ; ðC10Þ

G5ðx; yÞ ¼
x3 log x2

ðx − yÞðx2 − 1Þ2 þ
1þ xy

ðx2 − 1Þðy2 − 1Þ −
y3 log y2

ðx − yÞðy2 − 1Þ2 ; ðC11Þ

G6ðxÞ ¼
3þ 4x2 − 5x4 − 2x6 þ x2ð9þ x2 þ 2x4Þ log x2

ðx2 − 1Þ3 ; ðC12Þ

G7ðx; yÞ ¼
3

2

�
xþ y

ðx2 − 1Þðy2 − 1Þ þ
x4 log x2

ðx2 − 1Þ2ðx − yÞ −
y4 log y2

ðy2 − 1Þ2ðx − yÞ
�
; ðC13Þ
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GðxÞ ¼ −3ðx4 − 6x2 þ 1Þ
2ðx2 − 1Þ2 þ 3x4ðx2 − 3Þ log x2

ðx2 − 1Þ3 ; ðC14Þ

~F1ðxÞ ¼
x log x2

x2 − 1
; ðC15Þ

~F2ðxÞ ¼
6x2ð2 − 2x2 þ ð1þ x2Þ log x2Þ

ðx2 − 1Þ3 ; ðC16Þ

~F3ðxÞ ¼
2xð5ð1 − x2Þ þ ð1þ 4x2Þ log x2

3ðx2 − 1Þ2 ; ðC17Þ

~F4ðxÞ ¼
2xðx2 − 1 − log x2Þ

ðx2 − 1Þ2 ; ðC18Þ

~F5ðxÞ ¼
3xð1 − x4 þ 2x2 log x2Þ

ð1 − x2Þ3 : ðC19Þ
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