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We present holographic descriptions of dynamical electroweak symmetry breaking models that
incorporate the top mass generation mechanism. The models allow computation of the spectrum in the
presence of large anomalous dimensions due to walking and strong Nambu–Jona-Lasinio interactions.
Technicolor and QCD dynamics are described by the bottom-up Dynamic AdS/QCD model for arbitrary
gauge groups and numbers of quark flavors. An assumption about the running of the anomalous dimension
of the quark bilinear operator is input, and the model then predicts the spectrum and decay constants for the
mesons. We add Nambu–Jona-Lasinio interactions responsible for flavor physics from extended
technicolor, top-color, etc., using Witten’s multitrace prescription. We show the key behaviors of a top
condensation model can be reproduced. We study generation of the top mass in (walking) one doublet and
one family technicolor models and with strong extended technicolor interactions. The models clearly reveal
the tensions between the large top mass and precision data for δρ. The necessary tunings needed to generate
a model compatible with precision constraints are simply demonstrated.
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I. INTRODUCTION

Technicolor (TC) [1–4] remains an appealing paradigm
for breaking electroweak symmetry since it mirrors the
symmetry breaking mechanism in QCD and superconduc-
tors. It has long faced a variety of attacks from flavor
changing neutral current data [5,6], precision electroweak
data [7], and now the discovery of a very fundamental-
looking Higgs state [8,9]. There still perhaps seems a small
hope that these issues can be dodged by suitable tuning in
the parameter space of the collection of strongly coupled
gauge theories. In particular, walking theories [10], in
which there is a large anomalous dimension for the quark
bilinear over a large energy range, might raise the flavor
scale, lower the electroweak S parameter [11], and even
generate a light technidilaton type state [12–17].
The discovery of the top quark 23 years ago [18] with its

very large mass presented the toughest challenge. If one
naively uses extended technicolor (ETC) [5,6] interactions
to generate the top mass, then one expects

mt ≃ g2hQ̄Qi
Λ2

≃ g2ð4πv3Þ
Λ2

; ð1Þ

where Q are techniquark fields, v is the electroweak scale,
and Λ the mass scale of the new interactions generating the
top mass. Naturally, with the ETC coupling g≃ 1, Λ
should be at or below the 1 TeV scale. When one tried
to include the isospin violating physics needed to generate
the top-bottommass splitting at such a low scale, deviations
in the electroweak precision δρ or T parameter were of
order 100 rather than 0.1 [19,20]. This issue is so
confounding that most more recent work on technicolor

has concentrated on the core electroweak breaking
dynamics and put aside completely the flavor generation
mechanism—the top remains the elephant in the room.
Two possible resolutions of the top problem have been

suggested. The first is that walking dynamics might
enhance the techniquark condensate and raise Λ. Twenty
years ago, gap equation [21–24] and Pagel-Stokar type
formulas [25] were the state of the art for addressing this
issue, but it was hard to generate a sufficient, needed rise in
the tail of the techniquark self-energy to raise Λ enough
[19,20,22]. The second idea was essentially top condensa-
tion [26–29]; additional strong interactions of the top at
high scale generated Nambu–Jona-Lasinio (NJL) operators
that by themselves generated a top condensate and the top
mass independently of the technicolor sector which still
performed the majority of the work of breaking electroweak
symmetry. A mix of these ideas and the possibility that the
ETC interactions were also strongly interacting seemed
possible, but it was hard to construct a computational
framework that seemed in any way reliable. There has been
considerable recent work on lattice simulations of such
theories and that method must eventually lead to full
answers, although the issues involved in simulating with
separated energy scales are still challenging. Some recent
reviews of that progress are in Refs. [30,31].
In the intervening 20 years, a new method for compu-

tation in strongly coupled gauge theories has emerged from
string theory: holography [32]. Holography provides a
rigorous method of computation in a selection of strongly
coupled gauge theories lying near N ¼ 4 gauge theory.
Among these theories are those with quarks that display
chiral symmetry breaking [33–36]. Some aspects of the
meson spectrum are predicted in these models [37]. At least
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in the quenched (probe [38]) limit, the key ingredient to
determining the spectrum is the running anomalous dimen-
sion of the quark bilinear (q̄q)[39–41]. Embracing that
observation, it is possible to construct holographic models
of a wider class of gauge theories including those with
SUðNcÞ gauge group and Nf quark flavors [39,42–44]. We
will use the simple dynamic anti-de Sitter (AdS)/QCD
model [43] in which a plausible guess for the running
anomalous dimensions, γ, is input by hand. Here, we will
be led by the two loop perturbative running in the gauge
theory. This of course is not to be trusted in the non-
perturbative regime, but these Ansätze provide a set of
runnings that include a rising IR fixed point value of γ as
Nf decreases and give candidates for a conformal window
and walking theories [45,46]. The predictions for the QCD
(Nc ¼ 3, Nf ¼ 2) spectrum lie reasonably close to obser-
vation at the 20% level [47]. It is worth stressing that these
successes are in spite of a rather brutal truncation of the
operators assumed to participate in the dynamics and
neglect the expected more stringy aspects of a true
description of the physics. Holography is particularly well
suited to the study of walking dynamics because the
running anomalous dimension is the key input. The
expected increase in the quark condensate and a light
Higgs-like σ have been observed in the model in the
walking regime [43] (the lightness of this state has been
disputed in the alternative holographic model of [39,42]
where deep IR conformal symmetry breaking raises the
state’s mass but other states seem to behave similarly in the
different models). One can hope as one moves away to
theories with walking behavior that the model will continue
to make sensible predictions of the spectrum.
Recently, it has been understood how to use Witten’s

double trace prescription [48] to include NJL [49] four
fermion operators in holography and reproduce the usual
NJL chiral symmetry breaking behavior if the coupling lies
above some critical value [50]. The base model, before the
introduction of the NJL interaction, generates an effective
potential for the model against the quark mass (the holo-
graphic model computes this by evaluating its action on the
vacuum solutions). The Witten prescription includes the
NJL operator as a classical piece in the effective potential
evaluated on the solution at the cutoff Λ, so

ΔVEff ¼
g2

Λ2
Q̄LQRQ̄RQL þ H:c: ¼ Λ2

g2
m2

Q; ð2Þ

where we have used mQ ¼ g2=Λ2hQ̄Qi. This is formally
appropriate in a large N limit. With the NJL term present,
one allows mQ to become dynamically determined, and the
resulting potential can generate a nonzero mass if g is large
enough. This will be the key tool that will enable us to
include ETC flavor interactions in the Dynamic AdS/QCD
model of technicolor dynamics.

We stress that these holographic models are not first
principle computations but they are sensibly motivated
descriptions of the dynamics that include the running of the
anomalous dimension more directly than other approxi-
mations. They allow the construction of, and simple
computation in, a full system of the interactions of these
models. It is rather pleasing to be able to construct these
models within the new holographic formalism from a
purely theoretical stand point, even if LHC data are rather
constraining hopes for physics beyond the Standard Model.
We will first review Dynamic AdS/QCD [43], which we

use to describe strongly coupled gauge theories. We will
then review the multitrace prescription for NJL operators
[47,50]. Armed with these tools, we will first present a
hologram of a top condensation model. We show the
critical behavior for chiral symmetry breaking and the
fine-tuning needed to achieve mt ≪ Λ. Holography should
be trusted where strong interactions are dominating the
dynamics. In top condensation, the NJL operator is strong
in a regime where all other interactions are weak and the
holographic description of the quarks is less secure. AdS/
QCD models pass muster in the weakly coupled regime
because they contain a memory of N ¼ 4 SYM theory
which, like the perturbative gauge theory, is near conformal
and protects the anomalous dimensions of the operators
considered to their perturbative values. In fact, the memory
of supersymmetry means that the effective potential is flat
with quark mass in the absence of running in our holo-
graphic model—the expected fermion loop contributions to
the effective potential are absent (they have canceled
against the squark contribution in the origin theory).
When running is introduced, supersymmetry is broken,
and an effective potential that falls to large quark mass
develops, allowing the behavior we have described. The
effective potential is dominated by “cracked egg” diagrams
where gluons are exchanged across the fermion loop. Given
this distinction from the basic NJL description of top
condensation, one does not realize exactly the same critical
coupling, but all the characteristic behaviors are present.
There is also a phenomenological parameter, κ (a five-
dimensional gauge coupling) which is unfixed in the model
and determines fπ for a given mt—for order 1 values of κ,
the top mass can not generate sufficient fπ to explain the
electroweak symmetry breaking vacuum expectation value
as one expects.
Our second model is a one electroweak doublet extended

technicolor model. Dynamic AdS/QCD allows us to study
an SUðNTCÞ gauge group with a varying number of flavors,
Nf. Our input in each case is the running anomalous
dimension of the quark bilinear, γ, taken from the two loop
perturbative running of the technicolor coupling αTC. The
IR fixed point in this approximation crosses through the
point γ ¼ 1where chiral symmetry breaking is triggered for
Nf ≃ 4Nc (the “edge” of the conformal window [46]). In
the gravity dual, this transition corresponds to where the
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Breitenlohner-Freedman (BF) [51] bound is violated in the
IR by the running mass of the scalar dual to the quark
condensate. We will study the NTC ¼ 3 case and vary Nf.
At higher NTC, one can sample very similar running
profiles with less discrete jumps, but the NTC ¼ 3 case
suffices to show the main features. For higher NTC, similar
examples can be found by appropriate choices of Nf.
Here, we assume extra techniquarks beyond the single

electroweak doublet (contributing Nf ¼ 2) are electroweak
singlets, which allows us to impose walking behaviors for
the running on a minimal electroweak sector. These models
are perhaps most likely to be compatible with the electro-
weak S parameter [7]. The S parameter essentially counts
electroweak doublets, and perturbatively a doublet con-
tributes 1=6π ≃ 0.05 to be compared with an experimental
upper limit of 0.3. QCD-like strong dynamics are known to
increase this contribution by a factor of 2 or more, so with
NTC ¼ 3 copies of a single doublet, the bound is close to
saturation. It is possible walking dynamics alleviates this
issue [11]. This drop in S as one approaches the edge
of the conformal window can be modeled in the dynamic
AdS/QCD model by allowing the parameter κ of the model
to fall to zero as Nf → 4Nc [43]. The contribution to S in
dynamic AdS/QCD can be found in Fig 10 of Ref. [43]–we
will not address this issue further here. The need for a low S
motivates our restriction to NTC ¼ 3 also, though.
In this model, since technicolor is strong (even out to the

ETC scale in the walking cases), the cracked egg diagram
domination of the effective potential ismore appropriate, and
the holographic description of the NJL interaction is hope-
fully sensible. We put in the four fermion operators of a
classic ETC unification to generate the top mass—they link
the top to the tecnhi-U quark but not the techni-D quark. We
begin by finding solutions for the NJL and TC couplings that
generate some given top mass while correctly generating the
electroweak scale fπ ¼ 246 GeV. Generically, there are two
solutions. One matches to the usual weakly coupled ETC
regime—for low top masses, the technicolor dynamics
dominates electroweak symmetry breaking, and the ETC
coupling is small. A second set of solutions exists, though, in
which technicolor plays a subdominant role to the ETC
interactions which generate most of fπ by being supercritical
and generating masses that strongly break isospin in the
technidoublet. These latter solutions are strongly ruled out by
the δρ=T parameter, so we do not explore them in much
detail. The more normal solutions can be followed to larger
topmasses where theNJL interaction is strong.We find there
is a maximum top mass (here, the two branches of solutions
merge) that is compatiblewith the electroweak scalewhich is
a little above 500 GeV for a QCD-like, low Nf model. For
models with larger Nf, the enhancement of the techniquark
condensate by walking allows a given top mass to be
generated with a weaker ETC coupling, and significantly
largermt can be achieved. These results confirm the ability to
compute with both walking and strong NJL interactions
present.

We then concentrate on models withmt ¼ 175 GeV. We
track the growing strength of the NJL coupling with a rising
ETC scale. Walking’s enhancement of the condensate
allows solutions at lower ETC coupling for a given ETC
scale. Phenomenologically, the key question is whether
these solutions are compatible with the tight δρ parameter
constraint (it must be less than 0.4%). There are two
contributions to δρ [19,20]. The first is a direct contribution
in which a single ETC gauge boson is exchanged across a
techniquark loop contributing to the W and Z masses. The
contribution to δρ is expected to be

δρ ¼ g2v4

Λ2
; ð3Þ

where here g also includes any group theory factors from
the ETC model. This bound can be evaded by pushing
the ETC mass scale up above 3 TeV or so, although it is
easier to avoid in walking (large Nf) models where the
ETC interactions can be smaller. A second contribution is
harder to avoid, though [22]. The isospin breaking ETC
interactions tend to generate mass splitting between the
techni-U and techni-D quarks. This mass splitting gives δρ
contributions. For a perturbative doublet, with NTC degen-
eracy, this mass splitting gives

δρ ¼ 0.4%NTC

�
Δm2

ð175 GeVÞ2
�
: ð4Þ

The holographic model allows us to plot the self-energy
function of the quarks against renormalization group (RG)
scale. We find typical mass splittings between 20 and a few
100 GeV. Interestingly, extreme walking models generate
the largest IR mass splitting. When the technicolor inter-
actions are strong at the ETC scale, the dynamics are much
more sensitive to the high scale NJL isospin violation.
Models with Nf ¼ 3–8 are compatible with both the δρ
bounds as estimated so far for ETC scales out to 30 TeVor
above. One would hope that the holographic model would
allow a nonperturbative estimate of δρ to move beyond (4).
This is a little subtle because holographically mixed flavor
states are described by strings. For very small splittings, the
non-Abelian Dirac-Born-Infeld (DBI) action [52,53] of a
collection of branes would give a field theoretic compu-
tation for these states in which the background metric
becomes some average over the two flavor embeddings. It
is not clear this is valid for the large isospin breaking that is
needed for the top, but we estimate fπ� in this fashion. The
resulting computation shares much with Pagel-Stokar type
estimates [25], depending not just on the value of the self-
energy but also its derivatives. Here, that enlarges the δρ
estimates substantially (by as much as an order of magni-
tude), and the maximum ETC scale compatible with the
constraints lies between 5 and 15 TeV depending on Nf. A
judicious choice of a low ETC scale (∼5 TeV), some
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walking (Nf ¼ 8), and strong ETC does appears compat-
ible. The tension with δρ has, of course, been previously
observed (although we hope the holographic model pro-
vides a more robust framework for the observation) and
was the motivation for top condensation assisted techni-
color [26–29]. Here, a separate NJL interaction is intro-
duced for the top quark to generate its mass independently
of the electroweak breaking technicolor sector, which
removes the isospin breaking from the technicolor sector.
We briefly show this mechanism at work in the holographic
model where the ETC interaction can be switched off as the
top condensation coupling grows while still achieving a
fixed mt.
Finally, for completion, we consider a one family ETC

model with an SU(3) technicolor group, Nf ¼ 8 (there are
now four electroweak doublets, so the strain on S would be
high). We compute the ETC coupling as a function of the
ETC scale. The model faces worse constraints on the mass
splitting in the technidoublet since there are three colors of
techni-U quarks. The holographic description does, though,
allow the model to evade these constraints for ETC scales
between 3 and 7 TeV.

II. DYNAMIC ADS/QCD

In this section, we review the Dynamic AdS/QCD model
[43] which we will use to describe the technicolor (and
QCD) dynamics. The model is based on holographic “top-
down” D7 probe models of chiral symmetry breaking
[33,35,38,54]. The models are surprisingly simple with a
single field (the brane embedding) describing the quark
condensate. The dynamics of the gauge theory manifests in
the DBI action of the probe brane as scale (radially)
dependent mass squared for the field. Chiral symmetry
breaking occurs if there is a violation the BF bound
[39–41]. This occurs when the anomalous dimension of
the quark bilinear grows to 1. It is natural model building to
replace the running of the mass squared with a phenom-
enological guess to realize the phenomenology of a wider
range of theories which is our approach here (at the level of
the DBI action, this could be done by picking a form for the
background dilaton field for example).
The essential dynamics of the model is encoded in a field

X of mass dimension 1. The modulus of this field describes
the quark mass and condensate. Fluctuations in jXj around
its vacuum configurations will describe the Higgs-like σ
meson. The π fields are the phase of X,

X ¼ LðρÞe2iπaTa
: ð5Þ

Here, ρ is the holographic coordinate (ρ ¼ 0 is the IR, and
ρ → ∞ the UV), and jXj ¼ L enters into the effective radial
coordinate in the space, i.e. r2 ¼ ρ2 þ jXj2. This allows the
quark condensate to generate a soft IR wall: when L is
nonzero, the theory will exclude the deep IR at r ¼ 0. This
implementation is taken directly from the D3/probe-D7

model where L is the embedding of the D7 brane in the
AdS spacetime. Fluctuations on the brane then see the
pulled back metric on the D7 world volume.
We work with the five-dimensional metric

ds2 ¼ dρ2

ðρ2 þ jXj2Þ þ ðρ2 þ jXj2Þdx2; ð6Þ

which will be used for contractions of the spacetime
indices.The five-dimensional action of our effective holo-
graphic theory is

S ¼
Z

d4xdρTrρ3
�

1

ρ2 þ jXj2 jDXj2

þΔm2

ρ2
jXj2 þ 1

2κ2
ðF2

V þ F2
AÞ
�
; ð7Þ

where FV and FA are vector fields that will describe the
vector (V) and axial (A) mesons. Note that we have not
written the

ffiffiffiffiffiffi−gp
factor in the metric as r3 but just ρ3. Again,

this is driven by the D7 probe action in which this factor is
ρ3; maintaining this form is crucial to correctly implement-
ing the soft wall behavior. Finally, κ is a constant that will
determine the V − A mass splitting and enter into the fπ
computation; we will fix its value and Nf dependence in
our model below. The model presented is phenomenologi-
cal in nature, and we have included the bare minimum of
content to reproduce the broad physics we expect. Thus, for
example, we include a mass term for X so that we may
encode the running of the anomalous dimension of the
quark bilinear, but we neglect higher order terms in X.
The vacuum structure of the theory is found by setting all

fields except jXj ¼ L to zero. We further assume that Lwill
have no dependence on the x coordinates. The action for L
is given by

S ¼
Z

d4xdρρ3
�
ð∂ρLÞ2 þ Δm2

L2

ρ2

�
: ð8Þ

Now, if we rewrite L ¼ ρϕ and integrate the first term by
parts, we arrive at

S ¼
Z

d4xdρðρ5ð∂ρϕÞ2 þ ρ3ð−3þ Δm2Þϕ2Þ; ð9Þ

which is the form for a canonical scalar in AdS5. The usual
AdS relation between the scalar mass squared and the
dimension of the field theory operator applies
[m2 ¼ ΔðΔ − 4Þ]. If Δm2 ¼ 0, then the scalar describes
a dimension-3 operator and dimension-1 source as is
required for it to represent q̄q and the quark mass m. In
the UV, the solution for the ϕ equation of motion
is ϕ ¼ m=ρþ q̄q=ρ3.
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The Euler-Lagrange equation for the determination of L,
in the case of a constant Δm2, is

∂ρ½ρ3∂ρL� − ρΔm2L ¼ 0: ð10Þ

We can now Ansatz an r dependent Δm2 to describe the
running of the dimension of q̄q (we do this at the level of
the equation of motion). If the mass squared of the scalar
violates the BF bound of −4 (Δm2 ¼ −1), then we expect
the scalar field L to become unstable and settle to some
nonzero value. To enact a realization of various gauge
theories, we will use the perturbative running from SUðNcÞ
gauge theories with Nf flavors since the two loop results
display a conformal window—this is where we include the
dynamics of a particular gauge theory.
The two loop running of the gauge coupling in QCD is

given by

μ
dα
dμ

¼ −b0α2 − b1α3; ð11Þ

where

b0 ¼
1

6π
ð11Nc − 2NFÞ; ð12Þ

and

b1 ¼
1

24π2

�
34N2

c − 10NcNf − 3
N2

c − 1

Nc
NF

�
: ð13Þ

Asymptotic freedom is present, provided Nf < 11=2Nc.
There is an IR fixed point with value

α� ¼ −b0=b1; ð14Þ

which rises to infinity at Nf ∼ 2.6Nc.
The one loop result for the anomalous dimension is

γ ¼ 3C2

2π
α ¼ 3ðN2

c − 1Þ
4Ncπ

α: ð15Þ

So, using the fixed point value α�, the condition γ ¼ 1
occurs at Nc

f ∼ 4Nc (this is the edge of the conformal
window in the model).
We will identify the RG scale μ with the AdS radial

parameter r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ L2

p
in our model. Note it is important

that L enters here. If it did not and the scalar mass were only
a function of ρ, then were the mass to violate the BF bound
at some ρ, it would leave the theory unstable however large
L grew. Including L means that the creation of a nonzero
but finite L can remove the BF bound violation, leading to a
stable solution. Again, this has a natural origin in the D3/
D7 system.

Working perturbatively from the AdS result m2 ¼
ΔðΔ − 4Þ, we have

Δm2 ¼ −2γ ¼ −
3ðN2

c − 1Þ
2Ncπ

α: ð16Þ

This will then fix the r dependence of the scalar mass
through Δm2 as a function of Nc and Nf.
To find numerical solutions, we need an IR boundary

condition. In top down models, L0ð0Þ ¼ 0 is the condition
for a regular solution. Since we do not wish to describe IR
physics below the quark mass (where the quark contribu-
tion to the running coupling will decouple), we use a
very similar on-shell condition—we shoot from points
Lðρ ¼ L0Þ ¼ L0 with L0ðL0Þ ¼ 0.
The spectrum of the theory is determined by looking at

linearized fluctuations of the fields about the vacuum. The
normalizations of the fluctuations are determined by
matching to the gauge theory in the UV of the theory.
External currents are associated with the non-normalizable
modes of the fields in AdS. In the UV, we expect jXj ∼ 0,
and we can solve the equations of motion for the scalar,
L ¼ KSðρÞe−iq:x, vector Vμ ¼ ϵμKVðρÞe−iq:x, and axial
Aμ ¼ ϵμKAðρÞe−iq:x fields. Each satisfies the same equation

∂ρ½ρ2∂ρK� − q2

ρ
K ¼ 0: ð17Þ

The UV solution is

Ki ¼ Ni

�
1þ q2

4ρ2
lnðq2=ρ2Þ

�
; ði ¼ S; V; AÞ; ð18Þ

where Ni are normalization constants that are not fixed by
the linearized equation of motion. Substituting these
solutions back into the action gives the scalar correlator
ΠSS, the vector correlator ΠVV, and the axial-vector
correlator ΠAA. Performing the usual matching to the
UV gauge theory requires us to set

N2
S ¼

NcNf

24π2
; N2

V ¼ N2
A ¼ κ2NcNf

24π2
: ð19Þ

As an example, the axial meson spectrum is determined
from the equation of motion for the spatial pieces of the
axial-vector gauge field. In the Az ¼ 0 gauge, we write
Aμ ¼ Aμ⊥ þ ∂μϕ. The appropriate equation with Aμ⊥ ¼
ϵμAðρÞe−iq:x with q2 ¼ −M2 is

∂ρ½ρ3∂ρA� − κ2
L2
0ρ

3

ðL2
0 þ ρ2Þ2 Aþ ρ3M2

ðL2
0 þ ρ2Þ2 A ¼ 0: ð20Þ

We again impose A0ð0Þ ¼ 0 in the IR and require in the UV
that A ∼ c=ρ2. To fix c, we normalize the wave functions
such that the vector meson kinetic term is canonical:
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Z
dρ

ρ3

κ2ðρ2 þ L2
0Þ2

A2 ¼ 1: ð21Þ

We fix κ following the discussion in Ref. [47]:

κ2 ¼ 7.6ðNf − Nc
fÞ: ð22Þ

The numerical factor gives a sensible fit to QCD with
Nc ¼ 3, Nf ¼ 2, and the Nf dependence is assumed to
restore ρa degeneracy at the edge of the conformal window.
This latter condition is not clear cut but helps reduce the
electroweak S parameter in walking technicolor. The choice
is not crucial for our analysis below since we do not tune
extremely close to the edge of the conformal window.
The pion decay constant can be extracted from the

expectation that ΠAA ¼ f2π . From the fA kinetic term with
two external (non-normalizable) axial currents at Q2 ¼ 0,
we obtain

f2π ¼
Z

dρ
1

κ2
∂ρ½ρ3∂ρKAðq2 ¼ 0Þ�KAðq2 ¼ 0Þ: ð23Þ

For other states and decay constants, the procedure is
given in detail in Ref. [43].

III. NJL OPERATORS

Wewill wish to introduce four fermion operators into the
technicolor models we will study to feed the techniquark
condensate down to give the top quark a mass. At least in
some cases, these operators will be near or supercritical in
the sense of the Nambu–Jona-Lasinio model [49]. Here, we
will very briefly review the NJL model and show how to
enact it in our holographic setting [50].
Consider a free fermion with a four fermion interaction

g2=Λ2q̄LqRq̄RqL. In the standard NJL approximation, there
are two contributions to the effective potential. First, there
is the one loop Coleman-Weinberg potential for the free
quarks

Veff ¼ −
Z

Λ

0

d4k
ð2πÞ4 Tr logðk

2 þm2Þ: ð24Þ

This falls with growing m and is unbounded, although
normally one treats m as a fixed parameter, so one would
not seek to minimize this term. When we add the four
fermion term, we allow m to become dynamically deter-
mined, but there is the extra term from the four fermion
interaction evaluated on m ¼ ðg2=Λ2Þhq̄qi,

ΔVeff ¼
Λ2m2

g2
: ð25Þ

This makes the effective potential bounded and ensures a
minimum. For small g, the extra term is large, and the

minimum is at m ¼ 0. When g rises above 2π, the
minimum lies away from m ¼ 0 and is given by the
“gap equation” condition

1 ¼ g2

4π2

�
1 −

m2

Λ2
log

�
Λ2 þm2

m2

��
: ð26Þ

The phase transition is second order.
Next, we will understand how to include the same

NJL operator in a holographic model using Witten’s
multitrace operator prescription [48]. Consider the
Dynamic AdS/QCD model with no running (Δm2 ¼ 0),

S ¼
Z

d4xdρρ3ð∂ρLÞ2: ð27Þ

Varying the action gives

δS ¼ 0 ¼
Z

dρ

�
∂ρ

∂L
∂L0 −

∂L
∂L

�
δLþ ∂L

∂L0 δL
����
UV;IR

: ð28Þ

Since the action only depends on L0, there is a conserved
quantity −2c from which we learn

L0 ¼ −2c
ρ3

; ð29Þ

and hence

L ¼ mþ c
ρ2

: ð30Þ

The standard holographic interpretation is thatm represents
a source, here the quark mass, and c represents the operator
q̄q condensate.
Normally, one fixes m in the UV as a parameter of the

theory so δLjUV ¼ 0, and then we require ∂L
∂L0 jIR¼ρ3L0¼0,

which is satisfied when L0 ¼ 0. The equation of motion
and both UV and IR boundary conditions vanish. We have
arrived at the solution L ¼ m.
Witten’s prescription for including the NJL operator is

simply to require at the UV scale that m ¼ g2

Λ2 c. We can
achieve this by adding a UV boundary action term,

ΔSUV ¼ L2Λ2

g2
: ð31Þ

Now, at the UV boundary, we no longer require after
variation of L δL ¼ 0 but allow L to change and instead
impose

0 ¼ ∂L
∂L0 þ

2LΛ2
UV

g2
: ð32Þ

This gives the required c, m relation at leading order for
large ΛUV where L≃m. The prescription maintains the IR
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boundary condition L0 ¼ 0. Note that the term added to the
effective potential (31) with L≃m is exactly that in (25).
Now, in the model of (27), the solution L ¼ m still solves

the equation of motion, and it still satisfies the IR boundary
condition when c ¼ 0. The only solution that then satisfies
the UV boundary condition is m ¼ c ¼ 0. The fact that no
matter how large g ism ¼ 0 is the only solution is the puzzle
that Ref. [50] resolved. It is clear from the effective potential:
the action (27) evaluated on L ¼ m vanishes for all m.
Interpreting this as the effective potential and adding (25)
clearly leads to the minimum m ¼ 0. The point is that the
action (27) has failed to reproduce (24). The reason is that the
simplemodel has been taken from anN ¼ 2 supersymmetric
construction in which the vacuum energy vanishes for all
theories no matter what the quark supermultiplet mass is. In
Ref. [50], it was shown that supersymmetry breaking in the
N ¼ 2model leads to a nontrivial potential from the bulk and
standard NJL behavior returns. In Ref. [47], we set the scene
for the analysis here by breaking supersymmetry by the
running of Δm2 in Dynamic AdS/QCD, representing the
gauge dynamics, and showed that in the presence of an NJL
term the NJL transition is smoothed from first to second
order. TheUVNJL term enhances the IR symmetry breaking
of the gauge theory enlarging the mass gap. Formally, the
absence of (24) might look serious in a weakly coupled
theory, but at strong coupling, the effective potential will be
dominated by loops with gluon exchange (cracked egg
diagrams), and our models will include these. In the next
section, we look at the simplest example where the NJL
model, rather than the gauge dynamics, is responsible for the
bulk of chiral symmetry breaking.

IV. HOLOGRAM OF TOP CONDENSATION

The simplest model of NJL operators within Dynamic
AdS/QCD is top condensation. We consider the case with
the quark anomalous dimension running with Nc ¼ 3 and
Nf ¼ 6massless quarks to represent the six standard model
quarks and their QCD interactions. This running breaks the
conformal symmetry of the model and introduces a bulk
contribution to the effective potential in analogy to (24). We
set αsðeGeVÞ ¼ 0.39 so the BF bound is violated at 1 GeV
setting the scale ΛQCD. Without an NJL operator, the strong
force becomes strong at the few hundred MeV scale where
it breaks chiral symmetry and generates an IR quark mass
for all six quarks of ∼350 MeV.
We will then include the four fermion interaction

g2

Λ2
ðψ̄LtRt̄RψL þ H:c:Þ: ð33Þ

Note this is for one flavor, the top, only; ψL is the SUð2ÞL
top-bottom multiplet, but only the top quark mass is
influenced since only tR enters.
To impose the presence of the NJL operator in the

holographic model, we require that the embedding function
for the top quark at the cutoff Λ takes the form

Lt ¼ mt þ
ct
ρ2

; mt ¼
g2ct
Λ2

: ð34Þ

To numerically extract mt and ct, we perform a numerical
fit of this form to LðρÞ in a small range in ρ just below Λ.
The five remaining quarks play only a spectator role

contributing to the form of the running of γ. For these, we
require L → 0 at the cutoff so they are massless. They also
make a negligible contribution to the electroweak fπ of
order 100 MeV.
We proceed by picking the IR boundary value of Lt for

the top, which we interpret as the IR value of the top mass,
mphys

t . We then numerically evolve by shooting to the UV
boundary Λ. There, we can read off the UV values of mt
and ct and impose the NJL condition (34) to extract g. In
Fig. 1, we show the resulting plot forΛ ¼ 10 TeV. It shows
the classic NJL behavior of the presence of a critical value
of the coupling at which a second order transition occurs (in
fact, because of the underlying QCD dynamics, the IR mass
does not fully switch off below the critical coupling, but it
does fall to just 350 MeV). To achieve mphys

t ≪ Λ requires
one to live fine-tuned to the critical coupling as one would
expect. It is interesting that here, because we choose the
IR top mass, numerically there is no difficult tuning to be
done—it emerges once one computes g for those solutions.
In Fig. 2, we show the resulting computation of fπ in this

model. It again shows critical NJL behavior. The precise
value depends on the choice of the parameter κ. One might
usually fix κ from the ρ − amass splitting inQCD, but this is
a low energy estimate of κ which could change by scales as
enormous as 10 TeV. The usual expectation in top con-
densation models is that the observed top mass (which
corresponds to the largest values of g shown in Figs. 1
and 2) is insufficient to generate the electroweak fπ , and this
is borne out here by choices of κ of order 1 as shown.
Henceforth, in describing the top sector, we will take κ ¼ 1.
In Fig. 3, we display the dependence of fπ on the cutoff
scale—here at each value of Λ, we have arranged g to

FIG. 1. The top condensation model with Λ ¼ 10 TeV: the IR
top mass against NJL coupling showing critical value of the
coupling. Note below the critical value the mass rises from
365 MeV at g ¼ 0 from the underlying QCD dynamics.
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generate thephysical topmass. Thevalue asymptotes to fixed
values with higher Λ. For κ ≃ 1, fπ cannot achieve the
electroweak scale, the usual failure of top condensation.
We can also compute the mass of the scalar bound state

of the top quark, σ, and we find the value of its mass is very
stable with Λ at ≃590 GeV. This is the state which in a
pure top condensation model would correspond to the
Higgs boson.

V. HOLOGRAM OF ONE DOUBLET ETC

Wewill next describe a “classic” dynamical model of the
top mass—technicolor plus extended technicolor inter-
actions to generate the top mass.
Consider a model with an SUðNTCÞ gauge group under

which a single electroweak doublet of techniquarks ðU;DÞ
transform in the fundamental representation. In addition,
there may be extra electroweak singlet techniquarks that
allow us to dial Nsing

f and hence change the running. This
sector is simply described by dynamic AdS/QCD with the
running fixed by NTC and Nf ¼ 2þ Nsing

f . The only
remaining freedom [given the choice of κ in (22)] is the
value of αTC at some scale (we have found it numerically
useful to set this parameter at the scale e2TeV) which one
dials to generate the correct fπ for electroweak symmetry
breaking. A naive model such as this of the technicolor

sector preserves custodial isospin—the ETC sector will
break that.
A simple ETC model places the top quark [tR and

ψL ¼ ðt; bÞL] and the techniquarks [UR andΨL ¼ ðU;DÞR]
in the fundamental representation of an SU(6) ETC gauge
group that is broken at some scale (by dynamics we do not
specify) to SUð3ÞTC ⊗ SUð3ÞQCD generating a mass, Λ, for
the ETC gauge bosons associated with the broken gen-
erators. The ETC boson exchange associated with broken
step up and down operators of the SU(6) ETC group form
the four fermion operators

g2

2Λ2
ETC

Ψ̄α
LU

α
Rt̄

i
Rψ

i
L; ð35Þ

here, α is a technicolor index, and i is a QCD color index,
each of which are summed over. There is also a broken
diagonal generator,

Tdiag ¼
1ffiffiffiffiffi
12

p diagð1; 1; 1;−1;−1;−1Þ;

which gives us

g2

12Λ2
Ψ̄α

LU
α
RŪ

β
RΨ

β
L þ g2

12Λ2
ψ̄ i
Lt

i
Rt̄

j
Rψ

j
L: ð36Þ

Holographically, we will describe the QCD quark sector
including the top as in the top condensation model: we take
a second Dynamic AdS/QCD sector with Nc ¼ 3 to
represent QCD and Nf ¼ 6 to represent the six quarks.
We set α so that the BF bound is violated at the 1 GeV scale
to represent QCD becoming strongly coupled. In this
model, we solve numerically for the embedding function
LðρÞ for the top quark subject to LIR

t ¼ mphys
t . This function

is now fixed, and from it, we can read off the UV
embedding parameters mt and ct at any scale Λ by fitting
to the form L ∼ ðmt þ ct=ρ2ÞjΛ. The remaining quark
masses are so small that we leave them as massless
spectators at the electroweak scale.
In the Dynamic AdS/QCD description of the technicolor

sector, we now split the embedding functions for the U and
D techniquarks. The D quark’s embedding function, LDðρÞ,
must fall to zero at the UV cutoff scale—we will find this
unique function for each choice of αTCðe2TeVÞ and Λ. The
U techniquark embedding function LU, though, will be
allowed to have nonzero mU at the UV scale, and we will
read off mU and cU in the same fashion as for the top. For
each choice of the IR value of LU, which leads to a UV pair
ðmU; cUÞ, we must also pick αTCðe2TeVÞ so that the sum of
the U, D and top contributions to fπ match the electroweak
scale (fπ ¼ 246 GeV). Alternatively, one can chose a value
of αTCðe2TeVÞ and allow LIR

U to vary to match fπ .
The job now is to find the choice of αTCðe2TeVÞ and

mU at the UV scale that is consistent with the desired top

FIG. 2. The top condensation model, Λ ¼ 10 TeV: top con-
tribution to fπ against NJL coupling showing the critical value of
the coupling. Here for κ ¼ 1, 5, 15 from bottom to top.

FIG. 3. The top condensation model tuned to mphys
t ¼

175 GeV: fπ=mtop against Λ for κ ¼ 1, 5, 15 from bottom to top.
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mass given the ETC interactions we have chosen.
Holographically, the multitrace prescriptions for our NJL
operators are

mU ¼ g2

12Λ2
cU þ g2

2Λ2
ct ð37Þ

and

mt ¼
g2

12Λ2
ct þ

g2

2Λ2
cU: ð38Þ

Thus, at each choice of Λ, we must plot the value of g
extracted from each of these equations as we vary the
LIR
U =αTCðe2TeVÞ pair, each time getting different ðmU; cUÞ

pairs. We seek the point where both equations return the
same value of g and are self-consistent. An example of this
fit is shown in Fig. 4. Note that generically there are two
solutions. The left-hand cross-point at higher g is an “NJL
dominated”model of electroweak symmetry breaking—the
technicolor interaction is rather weak, and the techni-down
quark plays almost no role in generating the electroweak
fπ . The top and techni-up quark are both heavy and
contribute dominantly to the electroweak scale. These
solutions, while interesting, are at odds with experiment.
They have very large isospin breaking between the U and D
techniquarks, which is certainly ruled out experimentally.
The right-hand solution at lower ETC coupling is a more
technicolor dominated model. The techniquarks provide
most of the electroweak scale and are, at least somewhat,
degenerate. We will concentrate on these latter solutions
below. Note that as the cutoff is increased or the desired top
mass raised the two curves in Fig. 4 pass through each
other—the two solutions move together and will eventually

coalesce into a single solution before at higher mt or Λ
there is no physical solution. The critical solution is where
both strong ETC and TC are working together hardest to
generate the largest possible top mass while still maintain-
ing the physical weak scale.
In Fig. 5, we show an example of the evolution of the two

solutions with varying mphys
t . Here, the model has NTC ¼ 3

andNsing
f ¼ 0 (thus a totalNf ¼ 2model), and we solve for

g to generate different values of the top mass with an ETC
scale of 5 TeV. We see that at generic mphys

t there are two
branches—the lower weakly coupled ETC branch merges
to g ¼ 0 at mphys

t ¼ 0, and that is the standard weakly
coupled ETC behavior. For higher mphys

t , there are two
solutions with one having a larger ETC coupling—these
solutions are where the D’s contribution to fπ is much
smaller than the U’s. At mphys

t ≃ 500 GeV, the two
branches merge, and this is the maximum achievable top
mass in the model with these parameters (higher mphys

t
could be achieved if fπ were raised above the physical
value). Henceforth, we will neglect the upper branch since
it is phenomenologically unacceptable due to the huge
isospin breaking in the techniquark sector. Note here the
experimental top mass is achievable.
We are now ready to explore how g must be chosen to

generate the observed top mass for any given choice of
ΛETC and Nsing

f . Two mechanisms have been proposed for
how to obtain the 175 GeV physical top mass with an ETC
scale of a few TeV or above in this system. The first is to
allow the ETC interactions to become strong. The second is
to enhance the techniquark condensate by walking dynam-
ics. We can see both mechanisms at work here.
Let us again consider the model with NTC ¼ 3 and

Nsing
f ¼ 0, which has a very running gauge coupling and so

we expect to need to depend on strong ETC to generate the
175 GeV top quark mass. For smaller top mass values,
naively one would consider ETC to be weakly coupled and
just use the last term in (38), and it is interesting to see how

FIG. 4. One doublet model (NTC ¼ 3, Nf ¼ 2) with
Λ ¼ 5 TeV. We use an embedding for the top quark with
LIR
t ¼ 175 GeV. We vary αTCðe2TeVÞ and then determine

LDðρÞ that vanishes at the cutoff and the value of LIR
U that

ensures the correct electroweak fπ . We then plot the value of g
from each of (37) and (38). The crossing points mark a self-
consistent solution and determine g. The left point is an NJL
dominated solution, and the right-hand one is TC dominated.

FIG. 5. Plots of g vs mphys
t for consistent solutions in the one

doublet model with Nc ¼ 3 and Nf ¼ 2 at Λ ¼ 5 TeV showing
both TC and NJL dominated branches.
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badly that approximation fares at large ETC coupling. To
test this, we can study the theory at Λ ¼ 5 TeV—again, we
fit for g as a function of the top quark masses, mphys

t , in our
model (in each case requiring the 246 GeV value of fπ).
The results are repeated as the top curve/points in Fig. 6.
The solid line is the prediction of g from just the final term
in (38)—here, we neglect the top mass in computing fπ and
determine the condensate in a fully isospin symmetric TC
model. The points are the full data from our model. In fact,
they lie reasonably close except near the highestmt value—
that highest value is a nonperturbative prediction of the
model. Note at least a part of the reason that the full model
requires a larger ETC coupling for high top mass is that the
top is contributing significantly to fπ , which drives the TC
scale and condensate down.
The walking argument [10] says that if we tune Nf to the

critical number of flavors for chiral symmetry breaking
then the running will leave the theory with an anomalous
dimension for the quark condensate close to 1 up to large
scales approaching the ETC cutoff. The dimension-3
condensate will then be given by the enlarged
hq̄qi≃ 4πv2Λ. For Nf ¼ 3, the edge of the conformal
window is just below 12 in the approximations we make. In
Fig. 6, we repeat the above computation for Nf ¼ 4, 8 and

11 (Nsing
f ¼ 2, 6, 9). These are, in order, the curves below

the Nf ¼ 2 case in the figure. The enhancement of the
condensate is apparent with the ETC coupling values
falling by 2 or more as Nf grows. If one allowed fractional
Nf values above 11, the condensate could be driven
arbitrarily higher yet, which reflects the ability to tune
further if one introduced higher Nc values. The model does
therefore incorporate the walking solution for generating
the top mass, too.
It is worth stressing that here we are only seeing the

beginning of walking behavior. If one plots the running
coupling for Nf ¼ 11, then it is rising noticeably slower

than at Nf ¼ 2, but nevertheless, in these cases by scales of
Λ ¼ 3–5 TeV, the anomalous dimension has returned to a
small value. If one were to tune Nf fractionally to the edge
of the conformal window, then the running near the critical
coupling would become essentially flat. Then, the anoma-
lous dimension of the techniquark condensate would be
large at the ETC scale. The four fermion operators would
then be suppressed by smaller powers of Λ enhancing the
strength of ETC for a given g. To incorporate this holo-
graphically, one should equally adjust the powers of Λ in
(37) and (38). Note this would tend to enhance the
techniquark self-interaction relative to the feed down
interaction to the top quark. Reducing the powers of Λ
in the denominator will further suppress g in the deep
walking regime. For this analysis, we have assumed that the
techniquark anomalous dimension is small at the ETC scale
and written the ETC coupling assuming perturbative
scaling dimensions. It might be interesting to investigate
the extreme walking regime in the future, although this
regime is hard to study numerically since it is very highly
fine-tuned.
We stress that independently, of the phenomenology we

will next discuss, it is a success to be able to compute in a
model that incorporates both strong NJL operators and the
walking enhancement of the quark condensate.
Next, we can study the ability of the theories to generate

the experimental top mass at different ETC mass scales.
Now, fixing mphys

t ¼ 175 GeV, we search for the ETC
coupling g in each of the theories at different cutoffs. We
display the results in Fig. 7—the curves are for Nf ¼ 2, 4,
8, 11 coming down the plot. The plot again nicely
illustrates the two mechanisms at work here. The curves
bend down to the right from straight because the strong
ETC dynamics is enhancing the top mass. As Nf increases,
the coupling needed to generate the physical top mass falls
because walking is enhancing the condensate.
Are these solutions phenomenologically acceptable,

though? The worry as we stressed in the Introduction is

FIG. 6. Plots of g vs mphys
t in the one doublet model with Nc ¼

3 and Nf ¼ 2, 4, 8, 11 (from the top down). The points are data
from the holographic model. The curves are the result of
computing just using the simple ETC formula from just the last
term in (38). For the first three cases, the final point is the largest
value of mt achievable.

FIG. 7. g vs UV cutoff Λ for consistent solutions with the
physical top mass on the TC dominated branch for Nc ¼ 3,
Nf ¼ 2, 4, 8, 11 from the top down. The shaded region is
excluded by the two loop δρ contribution.
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the δρ parameter that must lie below 0.4%. The first
concern is the two loop contribution to the W and Z
masses from the exchange of a single diagonal ETC gauge
boson across the techniquark loop contributing to MZ
[19,20]. Naively, this gives a contribution,

δρ ¼ g2v4

12Λ2
: ð39Þ

We plot the excluded range from this estimate in Fig. 7 as
the shaded region. In fact, the group theory coefficient of
1=12 enables this bound to be evaded even for Λ≃ 3 TeV.
The generic lesson, though, is that moving to a larger cutoff
with a strengthening ETC coupling or moving to a larger
Nf to enhance walking both move the model away from the
excluded region.
Even in these cases which escape the first contribution

to δρ, there is a secondary contribution that can dominate
[22]. The ETC interaction that breaks isospin strongly to
generate the top-bottom mass splitting can also enter into
the techni-U and techni-D masses generating a large
splitting there also. This we can calculate here explicitly
and compare to the result in (4). This equation places
a bound of 100 GeVon the mass splitting. We will attempt
a holographic nonperturbative computation to compare
below.
Let us first plot a sample of the embedding functions

LðρÞ for the techniquarks, U and D—see Fig. 8. It is good
intuition, for comparison to gap equation analysis, to treat
these as the self-energy function ΣðpÞ for the quark.
Broadly, the IR is dominated by the TC dynamics, and
the self-energies of the U and D are degenerate there, while
in the UV, the four fermion interaction generates a UVmass
splitting. The scales of these are set by fπ and mphys

t
respectively. In Fig. 8, we have shown examples forNf ¼ 2

and 11 to show there is some Nf dependence. In particular,
the walking theory where the TC coupling is stronger in the
UV leads to the IR theory displaying more isospin
breaking.

To study this further, we plot the mass splitting between
the U and D in the UVas a function of Nf and Λ in Fig. 9.
TheNf ¼ 2 curve is at the top, Nf ¼ 4, 8 is central, and the
Nf ¼ 11 curve is lower. This ordering reflects the growth
of the condensate due to walking. The NJL interaction is
weaker in walking theories to generate a given mphys

t . Note
all of these values lie below the 100 GeV naive bound.
In Fig. 10, we show the deep infrared mass splitting

between the U and D techniquarks for the solutions at each
ΛETC and for Nf ¼ 2, 4, 8, 11. Here, Nf ¼ 2 is the lower
plot, andNf ¼ 11 is the higher curve (the reverse of the UV
behavior). In the strongly running theories at low Nf, the
symmetry breaking is dominated at low scales, and the UV
physics is suppressed since it lives in the asymptotically
free regime of the theory—there is little IR mass splitting in
the technisector. As we increase the anomalous dimension
at the UV scale by walking, we make the UV physics more
important to the IR symmetry breaking, and the NJL
interaction plays a bigger role in enhancing the IR mass
splitting. This model suggests that the gain of less splitting
in the UV with walking is more than compensated by extra
splitting in the IR. By Nf ¼ 11, the mass splitting in the

FIG. 8. The self-energy function LðρÞ for the U (higher) and D
(lower) techniquarks against RG scale ρ for solutions with the
physical top mass, Nc ¼ 3, Nf ¼ 2 (lower two curves in the IR)
and 11 (higher two curves in the IR). Here, Λ ¼ 10 TeV.

FIG. 9. The UV cutoff difference in the mass of the U and D
techniquarks for solutions with the physical top mass, Nc ¼ 3,
Nf ¼ 4, 8, 11 from top to bottom.

FIG. 10. The difference in the mass of the U and D techniquarks
in the deep IR for solutions with the physical top mass, Nc ¼ 3,
Nf ¼ 4, 8, 11 from bottom to top. The shaded region is excluded
by the perturbative mass splitting computation of δρ.
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techniquark sector is greater than the 100 GeV perturbative
bound (shown as the shaded area in the plot).
Naively, at this stage, the Nf ≤ 8 theories at a cutoff

scale up to 30 TeV appear to avoid all the δρ bounds: both
that in Fig. 7 and with the mass splitting in the technisector
being below 100 GeVat all scales as shown Figs. 9 and 10.
Ideally, one would like to compute the δρ contribution

directly in our holographic model. Technically, it is hard to
compute fπ� holographically because in full string models
ŪD states are described by true strings stretching between
the U and D flavor branes. The spirit, as can be seen from
the non-Abelian Dirac-Born-Infeld action (which is only
known for very small mass splittings) [52,53], would be
that the fπ� calculation would be some smearing over the
two brane geometries. A reasonable proposal for this
computation at the field theory level would be to replace
(40) (for the pion) with

∂ρ½ρ3∂ρA� − κ2
1
4
ðLU þ LDÞ2ρ3

ðL2
U þ ρ2ÞðL2

D þ ρ2ÞA ¼ 0: ð40Þ

We then have

δρ ¼ f2π0 − f2π�
f2π0

: ð41Þ

We can compute this for the cases we have considered—the
results for Nf ¼ 2, 4, 8, 11 as a function of Λ are shown in
Fig. 11 where it can be seen that the result is considerably
larger than the perturbative estimate in (4) suggests. The
holographic computation of fπ depends on more than just
the magnitude of the self-energy functions and also
depends on derivatives, etc. (in this sense, it is like the
Pagel-Stoker formula [25] used with gap equations), and so
can reasonably produce a larger result. There is also no
clear pattern of behavior with Nf, which is directly
attributable to the fact that the IR mass splitting grows
with Nf while the UV splitting falls. Nevertheless, the
Nf ¼ 8 theory with a judicious amount of walking and

moderately strong ETC appears able to survive constraints
until a cutoff of 15 TeV.

VI. TOP CONDENSATION ASSISTED
TECHNICOLOR

The difficulties of hiding the top mass generation
mechanism from the δρ parameter are not new, although
our computational framework clearly presents them.
Previously, it has been suggested that the problem can
be alleviated by an additional top self-interaction as in top
condensation models [26–29]. Clearly, if a separate NJL
model does the work of generating the top quark mass, then
the ETC interactions that feed that mass back into the
techniquark masses will be reduced. Top color [55] is an
example of a model underlying such a mechanism.
In the one doublet models, we can just include a top self-

interaction with coupling gt in (38),

mt ¼
g2

12Λ2
ETC

ct þ
g2

2Λ2
ETC

cU þ g2t
Λ2
ETC

ct: ð42Þ

For example, we can compute with Nf ¼ 2 at
Λ ¼ 5 TeV, setting mphys

t ¼ 175 GeV in the IR. At each
value of αTC, we tune the UV mass of the U embedding to
give the physical fπ and then read off g from (37). gt then
follows from (42). In Fig. 12, we plot the g vs gt line that
achieves the physical top mass and electroweak scale. As
advertised, one can trade the strength of the ETC inter-
actions for a stronger top NJL coupling. In principle, this
can be used in any case to solve the δρ problem from the
technisector.
Another phenomenologically interesting question is the

mass of the pseudo-Goldstone bosons in top condensate
assisted models. Without ETC interactions, there would be
a separate global, axial SU(2) symmetry on each of the top/
bottom and techni-up/-down doublets. Top condensation
and techniquark condensation alone would break, each

FIG. 11. The holographic computation of δρ for solutions with
the physical top mass, Nc ¼ 3. Moving down the right-hand side
of the plot are the curves for Nf ¼ 2, 4, 11, 8. The shaded region
is experimentally excluded.

FIG. 12. The top condensate coupling against the ETC coupling
for solutions with the physical top mass, Nc¼3, Nf ¼ 2 Λ ¼
5 TeV.
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giving a total of six massless states of which only three
would be eaten by the electroweak gauge bosons. The ETC
interactions, though, feed the mass of one sector to the
other and turn the remaining three states into massive
pseudo-Goldstone states.
Formally, one should analyze this issue using the non-

Abelian algebra, but it is instructive to look at the
U(1) sector (ignoring anomalies) of just the top and
techni-up quarks. Here, it is straightforward to see the
true Goldstone holographically. Under the two global
transformations

ct → eiαctcU → eiβcU ð43Þ

from (42), we can then see that if we set α ¼ β then ct, cU,
and mt all rotate together. The embedding Lt is just a phase
rotation of the original solution. Since the action (7) is
independent of the phase of Xt, this moves us along a flat
direction in the potential, and the associated physical state
will be massless.
The pseudo-Goldstones are associated with α ¼ −β

when the two contributions to the top mass, that from ct
and that from cU rotate with opposite phase. In Dynamic
AdS/QCD, as described in Ref. [43], the pions are
associated with the coupled equations for the phase of X
and the axial-vector component ϕ. The relevant linearized
equations of motion are

∂ρ½ρ3∂ρϕ
a� − κ2

ρ3L2

ðρ2 þ L2Þ2 ðπ
a − ϕaÞ ¼ 0; ð44Þ

−q2∂ρϕ
a þ κ2L2∂ρπ

a ¼ 0: ð45Þ

Note here there are versions of these equations for the top
and techni-up sectors linked by identification of π and ϕ
between the sectors. In one sector (e.g., top), one can
numerically solve these equations for M2

π ¼ −q2. One sets
ϕ0ðmtÞ ¼ 0, and then one can vary the ratio of ϕ=π also in
the IR—one seeks the solution which gives the correct
ratio of π0=π in the UV to represent the rotation desired
(note the linearized fluctuation is δX ≃ Ltπ). We have not
yet fixedM2

π since this can be achieved for any value. Each
different M2 though gives a different value of π=ϕ in the
UV. Now, one must repeat the process in the other
sector (e.g., techni-up) and then by matching the value
of π=ϕ in the UV pick out a particular M2

π. This is quite an
involved numerical process which we will not pursue here.
It would be interesting in the future to extended this
thinking to the SU(2) case and compute the spectrum while
seeking a theory with a phenomenological acceptable
Higgs mass (note the σ particles of the two sectors would
also mix).

VII. HOLOGRAM OF ONE FAMILY
TECHNICOLOR

Another classic ETC configuration is to have a full
family of technifermions (Ui, Di, E, N, i.e.Nf ¼ 8), each in
the fundamental representation of SUðNTCÞ. The minimal
ETC group to generate just the top mass is to place Ψi

L ¼
ðUi;DiÞL and ψ i

L ¼ ðti; biÞL and tiR in the fundamental
representation of an SUðNTC þ 1Þ ETC group that is then
broken at the scale Λ to the technicolor group. The broken
step generators lead to the four fermion operators

g2

2
Ψ̄i

Lt
i
RŪ

i
Rψ

i
L; ð46Þ

and the diagonal generator for NTC ¼ 3 (1=
ffiffiffiffiffi
24

p
diagð1; 1;

1;−3Þ) gives

g2

24
Ψ̄i

LU
i
RŪ

i
RΨi

L þ 9g2

24
ψ̄ i
Lt

i
Rt̄

i
Rψ

i
L; ð47Þ

where here the color index i is not summed over.
The holographic description is as follows. The QCD

sector is described by Dynamic AdS/QCDwithNc ¼ 3 and
Nf ¼ 6—the model predicts the quark condensate at the
ETC scale which we must divide by 3 to get the condensate
contribution from a single QCD color of quark. In
principle, one ought to adjust the QCD running above
the techniquark mass; however, since this is in the slow
running perturbative regime for the QCD coupling where
the top quark mass runs very slowly, we neglect this
complication.
The technicolor sector is described by a dynamic AdS/

QCD model with NTC ¼ 3 and Nf ¼ 8. As before, we
require the mD ¼ mE ¼ mN ¼ 0 at the ETC scale. These
five fermions contribute degenerately to fπ . We can then
dial αTCðe2TeVÞ and mIR

U to generate configurations with
the correct electroweak fπ ¼ 246 GeV—the three colors
of techni-Us and the top also contribute here. To determine
the correct combination of top and techni-up embeddings,
we now require at the UV scale that

mU ¼ g2

24Λ2
cU þ g2

2Λ2

ct
Nc

ð48Þ

and

mt ¼
9g2

24Λ2

ct
Nc

þ g2

2Λ2
cU: ð49Þ

We again plot g vs Λ for the model in Fig. 13, where we
see that strong ETC values of g are required to generate
mphys

t ¼ 175 GeV. There is again a second NJL dominated
branch of solutions which we do not show—as in the one
doublet model, these have very large isospin breaking in the
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techniquark doublet. We plot the mass splittings in the
techniquark doublets ΔmIR (evaluated in the IR) andΔmUV
(evaluated at the ETC scale) against Λ for the technicolor
dominated solutions in Fig. 14. The splittings are between
10 and 70 GeV. Remember here that there are three
electroweak doublets with this splitting contributing to
δρ, so much of the range is excluded again even by the
pertubative estimate of δρ—the excluded region is shaded

in the plot. Finally, in Fig. 15 we plot the values of δρ from
the holographic computation of fπ� which are considerably
larger and exclude the model for ETC scales above 7 TeV.
In conclusion, the one family model struggles more on

all phenomenological fronts from S to δρ ¼ αT. Of course,
a direct top condensation NJL interaction could again be
used to decouple the techniquark sector from the isospin
breaking of the top mass.

VIII. DISCUSSION

Holographic models provide a calculationally efficient
tool to study the broad behaviors of strongly coupled gauge
theories. They incorporate the ideas of walking dynamics
very directly since the AdS mass of states translates to the
running anomalous dimension of the quark condensate, γ.
The Dynamic AdS/QCD model we have used here is a very
simple crystallization of these ideas inspired by top-down
string models. It allows the study of the mesonic sector of
any theory if a sensible guess is made for the running of γ—
here, we have used the two loop running of the gauge
coupling which incorporates the physics of the conformal
window, chiral symmetry breaking when γ ¼ 1, walking
for theories just above that point in Nf and then QCD-like
dynamics for smaller Nf.
Four fermion NJL operators can be included using

Witten’s multitrace prescription, and the critical behavior
of the NJL model can be realized. Here, we have included
NJL operators in Dynamic AdS/QCD and again shown
traditionally NJL like behavior (see also Ref. [47]). We
have designed descriptions of dynamical symmetry break-
ing models of the electroweak sector. A pure NJL model
can be used to generate a top quark condensate—in Fig. 1,
we show the rise of the top mass above some critical NJL
coupling (close to the perturbative 2π value for the
coupling).
We then studied the interplay between a strongly coupled

technicolor gauge theory and the top quark, linking the two
sectors by extended technicolor NJL operators. In our first
model, we used NJL operators inspired by a one doublet
technicolor model (with Nc ¼ 3) and the simplest extended
technicolor unification of the top quark. We allowed for
possible electroweak singlet techniquarks to vary the total
Nf of the gauge theory. We studied solutions where the
elctroweak fπ and various values of the top mass were
achieved. There are two possible solutions. One is an NJL
dominated solution where the four fermion operators drive
the majority of the electroweak breaking and technicolor is
relatively weak; these models have large isospin breaking
in the technicolor sector and are ruled out by precision data
for δρ. The second set of solutions matches traditional
technicolor dominated electroweak symmetry breaking and
weak ETC for small top masses. The dynamics can be
followed here to strong ETC couplings and large top
masses. A maximum top mass is possible without creating
too large an fπ . For theories at low Nf, this top mass value

FIG. 14. U-D mass splittings in the one family TC model
against Λ. On the right of the plot, the top line is the IR mass
splitting, and the lower line is the UV splitting.

FIG. 13. The ETC coupling against the ETC scale in the one
family TC model.

FIG. 15. δρ in the one family model as a function of the ETC
scale. The yellow region is excluded by the experimental bound.
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is close to 500 GeV, but it increases significantly as Nf

approaches the edge of the conformal window and walking
enhances the techniquark condensate. When we studied
solutions with the physical value of the top mass, the
holographic model allows us to study the IR and UV mass
splittings in the techniquark sector induced by the isospin
violating ETC interactions. These splittings lie between 20
and a few hundred GeV and taken naively with the
perturbative expression for δρ (4) suggest models may
be compatible with electroweak data. However, we also
used the holographic model to estimate fπ� and directly
determine δρ, and these estimates were up to an order of
magnitude larger (due to isospin violating structure in
the derivatives of the techniquark self-energy), ruling out
larger ETC scales. A judicious choice of the ETC scale near
3–15 TeV, a modicum of walking (too much enhances the
isospin breaking effects of the UV ETC interactions) and
strong ETC should pass the experimental bounds, though.
In conclusion, the holographic model provides a clean
computational framework that emphasizes the roles of
walking dynamics and strong ETC interactions in the
top mass ETC generation mechanism. A separate NJL
interaction to generate the top mass can be used (as in top

color models) to isolate the isospin breaking of the top mass
from the technicolor sector.
Finally, we studied a one family technicolor model with

Nc ¼ 3 and Nf ¼ 8 and observed the same structure of
solutions. Here, because of the three QCD colors of
techniquarks, the isospin splitting in the techniquark sector
makes a larger contribution to δρ, and these models are
harder to reconcile with experiment, although an ETC scale
between 3–7 TeV seems possible.
While many of the phenomenological conclusions of this

analysis have been previously intuited in other ways, we
believe that the holographic approach to the problem
provides a simple and revealing computational tool that
has made it worth studying independently of the precise
phenomenology. We hope that holographic models can
play an important part in understanding strongly coupled
sectors of beyond the standard model sectors in the future.
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