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We present results for the isospin-0 ππ s-wave scattering length calculated with Osterwalder-Seiler
valence quarks on Wilson twisted mass gauge configurations. We use three Nf ¼ 2 ensembles with unitary
(valence) pion mass at its physical value (250 MeV), at 240 MeV (320 MeV) and at 330 MeV (400 MeV),
respectively. By using the stochastic Laplacian Heaviside quark smearing method, all quark propagation
diagrams contributing to the isospin-0 ππ correlation function are computed with sufficient precision. The
chiral extrapolation is performed to obtain the scattering length at the physical pion mass. Our result
MπaI¼0

0 ¼ 0.198ð9Þð6Þ agrees reasonably well with various experimental measurements and theoretical
predictions. Since we only use one lattice spacing, certain systematics uncertainties, especially those arising
from unitary breaking, are not controlled in our result.

DOI: 10.1103/PhysRevD.96.054516

I. INTRODUCTION

Quantum chromodynamics (QCD) is established as the
fundamental theory of the strong interactions. QCD at low
energies is largely determined by chiral symmetry, which is
spontaneously broken. The effective theory of QCD at low
energies is chiral perturbation theory (χPT) [1–3], repre-
senting a systematic expansion in the quark masses and
momenta. Elastic ππ scattering provides an ideal testing
ground for the mechanism of chiral symmetry breaking.
Since only the pions—the pseudo-Goldstone bosons of
SU(2) chiral symmetry—are involved, the expansion is
expected to converge rapidly. In fact, the s-wave scattering
length in the weakly repulsive isospin-2 channel can be
reproduced by leading order (LO) χPT [4] with a deviation
of only 0.5% when compared to the results obtained from
experiments combined with Roy equations [5].
However, in the isospin-0 channel the situation is different:

the interaction is attractive and much stronger than in the

isospin-2 channel. The agreement between LO χPT and
experiments for the s-wave scattering length in the isospin-0
channel ismuch less impressive: they deviate by around 30%
[4–6]. Moreover, this channel accommodates the lowest
QCD resonance—themysterious σ or f0ð500Þ scalar meson.
Although it plays a crucial role in some fundamental features
of QCD, its existence was disputed for a long time. Only
recently it was established unambiguously with dispersive
analyses and new experimental data, seeRef. [7] for a review.
This makes a nonperturbative, ab initio computation of

ππ interaction properties in the isospin-0 channel directly
from QCD highly desirable. Lattice QCD is the only
available method to perform such a computation with
controlled systematic uncertainties. Lüscher showed that
the infinite volume scattering parameters can be related to
the discrete spectrum of the eigenstates in a finite-volume
box [8,9]. This allows one to compute scattering properties
in lattice QCD, which is necessarily implemented in a finite
volume and Euclidean space-time.
For the isospin-2 channel, many lattice results have

become available. See Refs. [10–13] for the most recent
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ones. For the isospin-0 channel the situation is more
complicated mainly due to the fermionic disconnected
diagrams contributing here, which are challenging to
compute in lattice QCD. To date there are only two full
lattice QCD computations dedicated to this channel
[11,14]. In Ref. [11], the s-wave scattering length was
computed for three unphysically large pion masses. An
extrapolation to the physical point was performed to obtain
the scattering length at physical pion mass. The authors of
Ref. [14] on the other hand extracted many energy
eigenstates in the corresponding channel and obtained
the scattering amplitudes for two values of pion mass—
236MeVand 391MeV. The information about the σ meson
is deduced from the pole structure in the scattering
amplitudes at the two unphysical pion masses, respectively.
In this work we compute the scattering length of the

isospin-0 ππ channel in twisted mass lattice QCD [15] and
Lüscher’s finite volume method [8,9]. As discussed in
Ref. [16], the explicit isospin breaking of the twisted mass
quark action makes it prohibitively complicated to study
this channel with this action. To circumvent this compli-
cation we use a mixed action approach with Osterwalder-
Seiler quarks [17] in the valence sector, which preserves
isospin symmetry. This approach introduces additional
lattice artefacts due to unitarity breaking. These lattice
artefacts are of Oða2Þ and will vanish only in the con-
tinuum limit. In particular, due to isospin breaking in the
sea there is possibly residual mixing with I ¼ 2, Iz ¼ 0.
Since we use only one value of lattice spacing, systematic
uncertainties in our results are not fully controlled. Further
calculations are needed to explicitly address these uncer-
tainties. However, they are beyond the scope of this work.
This paper is organized as follows. The lattice setup is

discussed in Sec. II. Lüscher’s finite volume method is
introduced in Sec. III. In Sec. IV we present the compu-
tation of the finite volume spectrum of the isospin-0 ππ
system. The result for the scattering length is given in
Sec. V. The last section is devoted to a brief summary and
discussions.

II. LATTICE ACTION

The results presented in this paper are based on the gauge
configurations generated by the European Twisted Mass
Collaboration (ETMC) with Wilson clover twisted mass
quark action at maximal twist [15]. The gauge action is the
Iwasaki gauge action [18]. We use three Nf ¼ 2 ensembles
with pion mass at the physical value, at 240 MeV and at
330 MeV, respectively. The lattice spacing is a ¼
0.0931ð2Þ fm for all three ensembles, as found in
Ref. [19] up to Oða2Þ lattice artefacts. In Table I we list
the three ensembles with the relevant input parameters, the
lattice volume and the number of configurations. More
details about the ensembles are presented in Ref. [19].
The sea quarks are described by the Wilson clover

twisted mass action. The Dirac operator for the light quark

doublet consists of the Wilson twisted mass Dirac operator
[15] combined with the clover term (in the so-called
physical basis)

Dl ¼ ~∇ − iγ5τ3

�
Wcr þ

i
4
cswσμνF μν

�
þ μl; ð1Þ

with ~∇ ¼ γμð∇�
μ þ∇μÞ=2, ∇μ and ∇�

μ the forward and
backward lattice covariant derivatives. Here csw is the so-
called Sheikoleslami-Wohlert improvement coefficient [21]
multiplying the clover term and Wcr ¼ −ra∇�

μ∇μ þmcr,
with mcr the critical mass. μl is the average up/down
(twisted) quark mass. a is the lattice spacing and r ¼ 1 the
Wilson parameter. Dl acts on a flavor doublet spinor
ψl ¼ ðu; dÞT . In our case the clover term is not used for
OðaÞ improvement but serves to significantly reduce the
effects of isospin breaking [19].
The critical mass has been determined as described in

Refs. [20,22]. This guarantees automatic OðaÞ improve-
ment [23], which is one of the main advantages of the
Wilson twisted mass formulation of lattice QCD.
In the valence sector we introduce quarks in the so-called

Osterwalder-Seiler (OS) discretization [17]. The corre-
sponding up and down single flavor lattice Dirac operators
read

D�
l ¼ ~∇� iγ5

�
Wcr þ

i
4
cswσμνF μν

�
þ μOSl : ð2Þ

From this definition it is apparent that OS up and down
quarks have explicit SU(2) isospin symmetry if for both e.g.
Dþ

l was used. The matching of OS to unitary actions
is performed by matching the quark mass values, i.e.
μOSl ¼ μl. The value of mcr in the OS action can be shown
to be identical to the unitary one and OðaÞ improvement
stays valid [17]. Moreover, we have shown in Ref. [24] that
in such a mixed action approach disconnected contributions
to η and η0 mesons can be computed and the results agree
with the unitary ones [25] in the continuum limit.
Therefore, this mixed action approach should works also
in the case of ππ scattering, where disconnected contribu-
tions can be expected to be less important, since OZI
suppression is in place. However, there is a potential
complication arising from the double poles in flavor-neutral

TABLE I. The gauge ensembles used in this study. The labeling
of the ensembles follows the notations in Ref. [19,20]. In addition
to the relevant input parameters we give the lattice volume
ðL=aÞ3 × T=a and the number of evaluated configurations Nconf .

ensemble β csw aμl ðL=aÞ3 × T=a Nconf

cA2.09.48 2.10 1.57551 0.009 483 × 96 615
cA2.30.48 2.10 1.57551 0.030 483 × 96 352
cA2.60.32 2.10 1.57551 0.060 323 × 64 337
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meson propagators present in a quenched or partially
quenched theory [26]. The scalar correlators with discon-
nected diagrams suffer from unphysical contributions due
to the double poles. The unphysical contributions to the a0
and ππ correlators have been studied in Refs. [27–30]. In
this work, we are not going to consider this problem since
the formula of these unphysical contributions for our
partially quenched approach is not available. Also, as will
be presented in Sec. IV, our numerical results do not
indicate large unphysical contributions. All the correlators
we computed numerically are positive within the obtained
statistics and are well described by a single exponential
function of t=a in a reasonably large time range. This
would not be the case if there were large unphysical
contributions as shown in Refs. [27–30]. Nevertheless,
one should keep in mind that the effects of the double poles
may cause uncertainties that are not considered in our
results.
Masses computed with OS valence quarks differ from

those computed with twisted mass valence quarks by lattice
artefact of Oða2Þ, in particular

ðMOS
π Þ2 − ðMπÞ2 ¼ Oða2Þ:

For twisted clover fermions this difference is much reduced
as compared to twisted mass fermions [19], however, the
effect is still sizable. We use the OS pion mass in this paper,
with the consequence that the pion mass value of the
cA2.09.48 ensemble takes a value larger (around 250MeV)
than the physical one.
As a smearing scheme we use the stochastic Laplacian

Heavyside (sLapH) method [31,32] for our computation.
The details of the sLapH parameter choices for a set of
Nf ¼ 2þ 1þ 1 Wilson twisted mass ensembles are given
in Ref. [13]. The parameters for the ensembles used in this
work are the same as those for Nf ¼ 2þ 1þ 1 ensembles
with the corresponding lattice volume.

III. LÜSCHER’S FINITE VOLUME METHOD

Lüscher’s finite volume method provides a direct relation
between the energy eigenvalues of a two-particle system in
a finite box and the scattering phase shift of the two
particles in the infinite volume. Considering two particles
with massm1 andm2 in a cubic box of size L, the energy of
this system in the center-of-mass frame reads

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ k⃗2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ k⃗2
q

; ð3Þ

where k⃗ is the scattering momentum. For the following
discussion, it is convenient to define a dimensionless
variable q via

q2 ¼ k⃗2L2

ð2πÞ2 ; ð4Þ

which differs from an integer due to the interaction of the
two particles.
The general form of Lüscher’s formula reads [9]:

det

�
e2iδlδll0δnn0 −

MΓ
ln;l0n0 þ i

MΓ
ln;l0n0 − i

�
¼ 0; ð5Þ

where δl is the phase shift of the partial wave with angular
momentum flg, Γ denotes an irreducible representation
(irrep) of the cubic group. The matrix in the determinant is
labeled by the pair ðl; nÞ, in which flg are the angular
momenta subduced into the irrep Γ and n is an index
indicating the nth occurrence of that l in the irrep. The
matrix element MΓ

ln;l0n0 is a complicated function of q but
can be computed numerically.
In this work we are interested in the s-wave low energy

scattering in the isospin-0 ππ channel. Therefore, we will
compute only the lowest energy level in the center-of-mass
frame. In this case one should consider the irrep Aþ

1 .
Assuming that the effects of the partial waves with l ≥ 4 are
negligible, the matrix in the determinant of Eq. (5) becomes
one-dimensional and the equation reduces to

q cot δ0ðkÞ ¼
Z00ð1; q2Þ

π3=2
; ð6Þ

where Z00ð1; q2Þ is the Lüscher zeta-function which can be
evaluated numerically for given value of q2. Using the
effective range expansion of s-wave elastic scattering near
threshold, we have

k cot δ0ðkÞ ¼
1

a0
þ 1

2
r0k2 þOðk4Þ; ð7Þ

where a0 is the scattering length and r0 is the effective
range parameter. Once the finite volume energy E is
determined from lattice QCD simulations, the scattering
length a0 can be calculated from the following relation

2π

L
Z00ð1; q2Þ

π3=2
¼ 1

a0
þ 1

2
r0k2 þOðk4Þ: ð8Þ

It should be pointed out that Lüscher’s formulas presented
here, i.e. Eqs. (5) and (6), are for the scattering processes
with k2 > 0. The phase shift δ0ðkÞ in the continuum is only
defined for positive k2. In the case of negative k2, one can
introduce a phase σ0ðkÞwhich is related to δ0ðkÞ by analytic
continuation of tan σ0ðkÞ ¼ −i tan δ0ðkÞ [9]. Only when
there is a bound state at the corresponding energy, the phase
σ0ðkÞ has physical interpretation and its value equals to
−π=4 (moduloπ) in the continuumand infinite volume limit.
For the purpose of this paper—calculating the scattering
length, we will only consider the lowest energy level in the
center-of-mass frame. Since the interaction in the isospin-0
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ππ channel is attractive, this energy level is below the
threshold, i.e. k2 < 0. For convenience, in the following we
will always use the notation k cot δ0ðkÞ, which is understood
as the analytically continued form for k2 < 0. Please note
that Eq. (8) holds for both positive and negative k2 as long as
the modulus of k2 is close to zero.

IV. FINITE VOLUME SPECTRUM

In lattice QCD, the discrete spectra of hadronic states are
extracted from the correlation functions of the interpolating
operators that resemble the states. Due to the isospin
symmetry breaking of the twisted mass quark action, it is
difficult to investigate the isospin-0 ππ channel directly in
unitary twisted mass lattice QCD [16]. For this reason we
use a mixed action approach with the OS action [17] in the
valence sector and choose Dþ

l in Eq. (2) for both up and
down quarks, so that the isospin symmetry is guaranteed in
the valence sector. In this section we describe our method-
ology to calculate the energies of the isospin-0 ππ system.

A. Computation of the correlation functions

We define the interpolating operator that represents the
isospin-0 ππ state in terms of OS valence quarks

OI¼0
ππ ðtÞ ¼ 1ffiffiffi

3
p ðπþπ−ðtÞ þ π−πþðtÞ þ π0π0ðtÞÞ; ð9Þ

with single pion operators summed over spatial coordinates
x to project to zero momentum

πþðtÞ ¼
X
x

d̄ γ5uðx; tÞ;

π−ðtÞ ¼
X
x

ū γ5dðx; tÞ;

π0ðtÞ ¼
X
x

1ffiffiffi
2

p ðūγ5u − d̄γ5dÞðx; tÞ: ð10Þ

Here u and d represent the OS up and down quarks,
respectively. With OS valence quarks all three pions are
mass degenerate and will be denoted as MOS

π .
The energy of the isospin-0 ππ state can be computed

from the exponential decay in time of the correlation
function

CππðtÞ ¼
1

T

XT−1
tsrc¼0

hOI¼0
ππ ðtþ tsrcÞðOI¼0

ππ Þ†ðtsrcÞi; ð11Þ

where T is the temporal lattice extend. The four diagrams
contributing to this correlation function, namely the direct
connected diagram DðtÞ, the cross diagram XðtÞ, the box
diagram BðtÞ and the vacuum diagram VðtÞ, are depicted in
Fig. 1(a)–(d). The correlation function can be expressed in
terms of all relevant diagrams as

CππðtÞ ¼ 2DðtÞ þ XðtÞ − 6BðtÞ þ 3VðtÞ: ð12Þ
Cππ and the contributions from individual diagramsD, X, B
and V are plotted in Fig. 2 for the three ensembles.
Even though we have full SU(2) isospin symmetry in the

valence sector when using OS valence quarks as described
above, we have to consider effects of unitarity breaking.
This may in particular happen due to the vacuum diagram
VðtÞ. There is no symmetry available to prevent this
diagram to couple for instance to intermediate states of
n ≥ 1 unitary neutral pions (the neutral pion has vacuum
quantum numbers in maximally twisted mass lattice QCD),
since parity is not a good quantum number for our action.
Since the neutral pion is the lightest meson in the spectrum
with Wilson twisted mass fermions at finite value of the
lattice spacing, the appearance of such states with n ¼ 1
(and maybe n ¼ 2) will dominate the large Euclidean time
behavior of the correlation function Cππ , if the overlap of
the used interpolating operators with these states is non-
zero. In order to resolve this mixing, we build a 2 × 2
matrix of correlation functions

a D t b X t c B t d V t

e f g

FIG. 1. Diagrams contributing to the correlation functions. (a)–(d) represent the usual contributions to Cππ , while (e)–(f) need to be
taken into account due to unitarity breaking effects.
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CijðtÞ ¼
1

T

XT−1
tsrc¼0

hOiðtþ tsrcÞO†
jðtsrcÞi ð13Þ

with i, j labeling the operator OI¼0
ππ and the unitary neutral

pion operator

π0;uniðtÞ ¼
X
x

1ffiffiffi
2

p ðūγ5u − d̄0γ5d0Þðx; tÞ; ð14Þ

where u and d0 are the (unitary) Wilson clover twisted mass
up and down quarks. We use d0 to distinguish it from OS
down quark in Eq. (10). The twisted mass up quark
coincides with the OS up quark with our matching scheme
of the OS to the unitary action.
The diagrams contributing to the correlation function

of the unitary neutral pion operator are depicted in
Fig. 1(e)–(f). The two operators couple solely via the
vacuum diagram, see Fig. 1(g).
The computation of the disconnected diagrams, e.g.

Fig. 1(c), (d), (f), and (g), requires the quark propagator
from a time slice t to the same time for every t. This has

been a challenge in lattice QCD for decades. By using the
stochastic LapH quark smearing method [31,32], we have
all-to-all propagators available. The disconnected diagrams
can be computed directly from those propagators.
We can reduce lattice artefacts in the vacuum diagrams

following the ideas worked out in Ref. [24]. In the
continuum limit the difference between uþ (dþ) quarks
corresponding to Dþ

l and u− (d−) quarks corresponding to
D−

l vanishes [17]. Therefore, we can write

OðaÞ ¼ hūþdþðxÞd̄þuþðyÞ − ū−d−ðxÞd̄−u−ðyÞi
¼ TrfSþðx; yÞSþðy; xÞg − TrfS−ðx; yÞS−ðy; xÞg
¼ TrfSþðx; yÞSþðy; xÞg − TrfðSþðx; yÞSþðy; xÞÞ†g
¼ 2iImTrfSþðx; yÞSþðy; xÞg;

where S� ≡ ðD�
l Þ−1 are the OS quark propagators and we

have used ðSþÞ† ¼ γ5S−γ5. This shows that the imaginary
part of the loop needed in the contraction of the vacuum
diagram V is a pure lattice artefact and we will drop it in the

FIG. 2. Correlation functions of the operator OI¼0
ππ and the single diagrams D, X, B, V for the three ensembles listed in Table I.
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computation. The same argument holds for the vacuum
diagrams shown in Fig. 1(f) and (g).

B. Determination of the energies

Due to the finite temporal extend T of the lattice, the
correlation functions of multiparticle operators are polluted
by so-called thermal states [33]. In the case of interest here,
there is a constant contribution to CππðtÞ of the form

∝ jhπ�;0jOI¼0
ππ jπ�;0ij2 · e−MOS

π T;

which vanishes in the infinite volume limit T → ∞.
However, at finite T-values it will dominate the correlation
function at large Euclidean time. To remove this artefact we
define a shifted correlation matrix

~CðtÞ ¼ CðtÞ − Cðtþ δtÞ: ð15Þ

The new matrix ~C is then free of any constant pollution
from the thermal states. The value of δt can be adjusted for
optimal results. We take δt ¼ 4 in our analysis. Note that
the shifting procedure also subtracts any constants stem-
ming from vacuum expectation values.
The energy levels can then be obtained by solving the

generalized eigenvalue problem (GEVP) [34]

~CðtÞvnðt; t0Þ ¼ λnðt; t0Þ ~Cðt0Þvnðt; t0Þ: ð16Þ

The eigenvalues λnðt; t0Þ are expected to have the following
time dependence

λnðt; t0Þ ¼ An sinh
��

T
2
− t −

δt
2

�
En

�
: ð17Þ

The sinh-like behavior comes from the shifting of the
correlation functions in Eq. (15). The energies En are then
obtained by fitting the above functional form to the
eigenvalues λnðt; t0Þ in the range where the effective energy
shows a plateau. The value of t0 should be chosen such that
the correlation function at t0 is dominated by the states we
are interested in. We tried various t0 values in the range of 1
to 7 and found negligible differences in the energies. In the
following we set t0 ¼ 1. With the two operators used here,
we obtain two energy levels, one of which is far below the
other one. The lower one agrees with the unitary neutral
pion mass, while the higher one is close to 2MOS

π . Hence,
we identify the higher one to be the isospin-0 ππ state. In
principle, multi neutral and charged unitary pion states
could also appear in the spectrum. To resolve these states,
more operators need to be included. We have tried so and
merely found increased statistical errors of the I ¼ 0 ππ
state. Therefore, we cannot finally exclude possible
contaminations from such states.
As an example, the effective energies of the two

eigenvalues for ensemble cA2.09.48 are shown in
Fig. 3(a). The fitted energies and fit ranges are indicated
by the grey bands in the plot.
To further improve our results we adopt a method to

remove the excited state contaminations [35], which we
have recently used successfully to study η and η0 mesons
[25,36]. It is based on the assumption that vacuum
diagrams are only sizeable for low lying states, but
negligible for higher excited states. Of course, the validity
of this assumption must be checked in the Monte-Carlo
data. In our case we know there is a very sizable
disconnected contribution to the unitary neutral pion, which
represents a pure lattice artefact [37]. A similar contribution
has not been found to any other unitary correlation

FIG. 3. Effective energies for the ensemble cA2.09.48. The grey bars indicate the fitted values of the energies and the fit ranges. The
left and right panels correspond to before and after removing the excited state contaminations, respectively.
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function. For the ππ correlation function there are indica-
tions that the disconnected contribution is already small by
itself [11].
The connected contractions contributing to ~C are com-

puted with sufficient precision, so we can reliably deter-
mine the ground states in the connected correlators and
subtract the excited state contributions. We then build a
correlation matrix ~Csub from the subtracted connected and
the original disconnected correlators. If disconnected con-
tributions were relevant only for the ground states, one
should find—after diagonalizing ~Csub—a plateau for both
states from small values of t on. Note that with this
procedure only the small t behavior of the correlation
functions is altered.
To be more specific, the connected contributions to the

correlation function CππðtÞ is given by

Ccon
ππ ðtÞ ¼ 2DðtÞ þ XðtÞ − 6BðtÞ: ð18Þ

We fit the functional form Eq. (17) to the shifted correlator
~Ccon
ππ ðtÞ ¼ Ccon

ππ ðtÞ − Ccon
ππ ðt − δtÞ. After obtaining the

parameters A and Econ
ππ from the fit, the connected correlator

is reconstructed as

~Ccon;sub
ππ ðtÞ ¼ A sinh

��
T
2
− t −

δt
2

�
Econ
ππ

�
; ð19Þ

in which the excited state contaminations are subtracted.
We repeat the fit to the data of ~Ccon

ππ ðtÞ for many different fit
ranges. The expectation values of the fit parameters are
computed as the weighted median over these many fits
[13]. By doing this, the systematics arising from different

fit ranges is expected to be taken into account. The full
correlator is then given by ~Csub

ππ ðtÞ ¼ ~Ccon;sub
ππ ðtÞ þ 3 ~VðtÞ,

where ~VðtÞ is the shifted vacuum correlator ~VðtÞ ¼
VðtÞ − Vðtþ δtÞ. The same procedure is performed for
the unitary π0 correlation function.
In Fig. 3(b), we present the effective energies of the two

eigenvalues of the subtracted correlator matrix ~Csub for the
same ensemble as in Fig. 3(a). Clearly a plateau appears at
much earlier t-value compared to Fig. 3(a), while the fitted
energies agree very well. Therefore, we use this procedure
—which allows us to determine in particular the interacting
energy Eππ with much higher accuracy—for the results
presented here.
The effective energies after removing the exited states for

the ensembles cA2.30.48 and cA2.60.32 are shown in
Fig. 4. In Table II, we collect the values of Eππ and the
unitary π0 massMπ0 obtained from the procedure described
above. The unitary charged pion massMπ� and the OS pion
mass MOS

π are added for convenience.
In order to estimate possible artefacts from the mixing

with the unitary π0, we also determined the energy Êππ

by fitting to only the single correlator ~Csub
ππ ðtÞ, without

including the operator for the unitary neutral pion. The
values are given in the last column of Table II. One can
see that the mean value of Êππ is slightly lower than Eππ for
all three ensembles, but they agree very well with each
other considering the statistical error. Keeping in mind
that π0 mixing is purely a lattice artefact, the agreement
between Eππ and Êππ indicates that we are not likely to
suffer severe lattice artefact here. This can be also seen in
the small mass splitting between the unitary charged and
neutral pions.

FIG. 4. Effective energies after removing the excited states contaminations for the ensembles cA2.30.48 and cA2.60.32.
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V. RESULTS

A. Scattering length

The scattering momentum k2 is calculated from Eq. (3)
with the energies Eππ and the OS pion masses listed in
Table II. Then the scattering length can be obtained from
Eq. (8). Considering the relatively strong interaction in the
isospin-0 ππ channel, one has to investigate the contribu-
tion of Oðk2Þ and higher order terms in the effective range
expansion. Since we only have one energy level for each
pion mass, we are not able to determine the effective range
r0 with our lattice simulations. We rely on the r0 values
determined from χPT [2]. See Appendix A for the details of
the r0 values used in our analysis.
The values of k2, k cot δðkÞ and 1

2
r0k2 in lattice units for

all three ensembles are given in Table III. For the ensembles
cA2.09.48 and cA2.30.48 the scattering momentum is
small due to the large volume. Therefore, the contribution
of 1

2
r0k2 is expected to be small. As visible from Table III,

the value of 1
2
r0k2 is indeed less than 3% of k cot δðkÞ for

these two ensembles. We compute the scattering length
from Eq. (8) by ignoring the Oðk4Þ term, which is well
justified for the ensembles cA2.09.48 and cA2.30.48. The
values of MOS

π aI¼0
0 for these two ensembles are also given

in Table III. The first error is the statistical error and the
second error comes from the uncertainty of the effective
range r0.
As for the ensemble cA2.60.32, the value of 1

2
r0k2 is

rather large compared to k cot δðkÞ. This indicates that the
effective range expansion up to Oðk2Þ might not be a good
approximation and the Oðk4Þ term might not be negligible.
Since the contribution of Oðk4Þ is unclear, we refrain from
giving the scattering length for this ensemble. There are
two possible reasons for the invalidity of the effective range
expansion. First, due to the relatively small volume of the
ensemble cA2.60.32, the value of k2 is not small enough to
make the expansion converge rapidly. Second, at the pion

mass around 400 MeV, which is the OS pion mass of the
ensemble cA2.60.32, there might be virtual or bound state
poles appearing in the isospin-0 ππ scattering amplitude
[38–43]. The appearance of such states will give a very
large scattering length—positively (negatively) large if it
was a virtual (bound) state. Hence, the leading order in the
effective range expansion, i.e. 1

a0
, becomes very small

compared to the higher orders. In this case the NLO term
1
2
r0k2 can contribute significantly compared to the LO term

even when k2 is small. Assuming that the contribution of
Oðk4Þ term is not bigger than the Oðk2Þ term, we can
qualitatively estimate the scattering length for this ensem-
ble to be a very large positive number, which features a
virtual state. However, we do not exclude the possibility of
a bound state because we do not include single meson
operators when we compute the matrix of correlation
functions. Including these operators might change the
resulting spectrum and thus the scattering length.

B. Chiral extrapolation

In order to obtain the scattering length at the physical
pion mass, one needs to perform a chiral extrapolation. ππ
scattering has been studied extensively in χPT in the
literature [2,4,44–46]. Since we only have two data points,
we fit the NLO χPT formula, which contains one free
parameter, to our data. When expressed in terms of Mπ

and fπ computed from lattice simulations, the formula
reads [11]

MπaI¼0
0 ¼ 7M2

π

16πf2π

�
1 −

M2
π

16π2f2π

�
9 ln

M2
π

f2π
− 5 − lI¼0

ππ

��
;

ð20Þ

where lI¼0
ππ is a combination of the low energy coefficients

l̄i’s:

TABLE II. Pion masses and the ππ interacting energies in lattice units for the three ensembles.

Ensemble aMπ� aMπ0 aMOS
π aEππ aÊππ

cA2.09.48 0.06212(6) 0.058(2) 0.11985(15) 0.2356(4) 0.2350(4)
cA2.30.48 0.11197(7) 0.108(2) 0.15214(11) 0.3010(3) 0.3009(3)
cA2.60.32 0.15781(15) 0.149(2) 0.18844(24) 0.3647(5) 0.3645(5)

TABLE III. The values of squared scattering momentum k2, k cot δðkÞ, 1
2
r0k2 (see appendix), MOS

π aI¼0
0 and

MOS
π =fOSπ for the three considered ensembles. Values for k2, k cot δ and r0k2 are in lattice units. The first error is the

statistical error, the second error comes from the uncertainty of r0, see Appendix A.

Ensemble ðakÞ2 ak cot δðkÞ 1
2
ar0k2 MOS

π aI¼0
0 MOS

π =fOSπ

cA2.09.48 −0.00049ð4Þ 0.168(19) 0.0037(3)(2) 0.730(83)(1) 1.86(2)
cA2.30.48 −0.00050ð4Þ 0.167(19) 0.0042(3)(2) 0.94(11)(0) 2.21(1)
cA2.60.32 −0.00224ð9Þ 0.074(7) 0.0224(9)(22) – 2.63(1)
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lI¼0
ππ ¼ 40

21
l̄1 þ

80

21
l̄2 −

5

7
l̄3 þ 4l̄4 þ 9 ln

M2
π

f2π;phy
: ð21Þ

In this expression, the renormalization scale is set to be the
physical pion decay constant fπ;phy. Note that we work in
the normalization with fπ;phy ¼ 130.4 MeV. By using the
formula in Eq. (20), we have ignored the effects of unitarity
breaking. In principle, we should use mixed action χPT to
perform the chiral extrapolation. The χPT for the mixed
action with twisted mass sea quarks and OS valence quarks
is presented in Ref. [47]. However, using the two data
points at one value of lattice spacing, we are not able to
implement the mixed action χPT formula. With this caveat
in mind, we proceed with our analysis.
The OS pion decay constant fOSπ has not been deter-

mined by ETMC yet. We compute fOSπ for the three
ensembles used in this paper. The values of MOS

π =fOSπ
are collected in the last column of Table III. The details of
their computation are presented in Appendix B. We recall
that the OS pion mass values are larger than their unitary
counterpart, see Table II, such that our lowest OS pion mass
value is at around 250 MeV.
The method we are applying here is valid only in the

elastic region. Therefore, the pionmass valuesmust be small
enough to be below threshold where the σ meson becomes
stable. This threshold is not known exactly, but results
obtainedwith the 1-loop inverse amplitudemethod [40] (see
also Refs. [38,39,48]) suggest that Mπ < 400 MeV should
be safe [41]. Our two data points are obtained at pion mass
around 250MeVand 320 MeV respectively, both are below
this threshold. Furthermore, the pionmass value should also
be small enough to make the chiral expansion valid. To be
safe, we perform the chiral extrapolation using only the data
point with the lower pion mass (250 MeV). The results of
this extrapolation are given in Table IVas fit-1 and illustrated
in Fig. 5. The results of the fit with the two data points, which

are given in Table IVas fit-2, agree with fit-1 within errors.
We take the difference as an estimate of the systematics
arising from chiral extrapolation. This leads to our final
result for the scattering length:

MπaI¼0
0 ¼ 0.198ð9Þstatð6Þsys: ð22Þ

We remark here that the extrapolation is strongly constrained
sinceMOS

π aI¼0
0 must vanish in the chiral limit. This explains

the small statistical uncertainty on the value extrapolated to
the physical point.
We compare our result in Table V to other results

available in the literature. Our result for MπaI¼0
0 is lower,

but within errors still compatible with most recent exper-
imental, lattice and Roy equations results. Due to our
comparably low value forMπaI¼0

0 , the value for lI¼0
ππ is also

relatively low. This is a direct consequence of the NLO χPT
description we are using.

VI. DISCUSSION AND SUMMARY

In this paper, the isospin-0 ππ scattering is studied with
Lüscher’s finite volume formalism in twisted mass lattice
QCD. We use a mixed action approach with the OS action
in the valence sector to circumvent the complications
arising from isospin symmetry breaking in the twisted
mass quark action. The stochastic LapH quark smearing
method is used to compute all-to-all quark propagators,
which are required to compute the quark disconnected
diagrams contributing to the isospin-0 ππ correlation
function. The lowest energy level in the rest frame is
extracted for three Nf ¼ 2 ensembles with three different
pion mass values. The scattering length is computed with
Lüscher’s formula for the two ensembles with the lowest

FIG. 5. Chiral extrapolation using only the data point with
lower pion mass. The grey band represents the uncertainty. The
red point indicates the extrapolated value at physical pion mass.

TABLE IV. Results of the NLO chiral fit. fit-1 includes only
one data point, namely cA2.09.48, while fit-2 includes both,
cA2.09.48 and cA2.30.48.

fit-1 fit-2

MπaI¼0
0 (Phy.) 0.198(9) 0.192(5)

lI¼0
ππ 30(8) 24(4)

χ2=dof – 0.75=1

TABLE V. Comparison of results available in the literature for
MπaI¼0

0 and lI¼0
ππ .

MπaI¼0
0 lI¼0

ππ

This work 0.198(9)(6) 30(8)(6)
Fu [11] 0.214(4)(7) 43.2(3.5)(5.6)
Weinberg [4] 0.1595(5) –
CGL [46] 0.220(5) 48.5(4.3)
NA48/2 [5] 0.220(3)(2)
E865 [6] 0.216(13)(2) 45.0(11.2)(3.5)
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pion mass values. For the third ensemble with the largest
pion mass value the scattering length cannot be determined
reliably. In the computation of the scattering length we
include the Oðk2Þ term in the effective range expansion
using values for the effective range, which we compute
using χPT. The chiral extrapolation ofMπaI¼0

0 is performed
using NLO χPT. Extrapolated to the physical value of
Mπ=fπ, our result is MπaI¼0

0 ¼ 0.198ð9Þð6Þ, which is
compatible within errors with the newer experimental
and theoretical determinations available in the literature.
Since we work at a single lattice spacing value only, we

cannot estimate lattice artefacts in our result. In particular, we
cannot exclude that our result is affected by residual system-
atic uncertainties stemming from unitarity breaking, which
will vanish in the continuum limit. Moreover, the control
over higher order contributions from χPT is rather limited.
We cannot exclude that such contributions are sizable.
For these reasons a future study should include several

lattice spacing values and ideally ensembles at the physical
point. In order to avoid isospin breaking and unitarity
breaking effects, we will repeat this computation with an
action without isospin breaking.
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APPENDIX A: EFFECTIVE RANGE FROM χPT

In order to investigate the contribution of the Oðk2Þ term
in the effective range expansion, we need to know the value
of the effective range r0. As explained in Sec. VA, we
estimate r0 from χPT.
In Ref. [2], the chiral expansion of the threshold

parameter b00 to NLO is given as

b00 ¼
1

2πf2π

�
1þM2

π

f2π

�
−

13

12π2
ln
M2

π

μ2
þ 32lr1

þ 24lr2 þ 4lr4 −
13

96π2

��
; ðA1Þ

where μ is the renormalization scale, lr1, l
r
2 and lr4 are the

renormalized, quark mass independent couplings. In this
expression, we have replaced the low energy parametersM
and F with their (lattice) physical values Mπ and fπ using
the NLO chiral expansions of M2

π and fπ , which are given
in the same reference. Please also note that our convention
of fπ (∼130 MeV) is different from the Fπ (∼92.4 MeV)
used in Ref. [2].
The effective range r0 is related to b00 as r0 ¼ −2b00Mπ .

In order to avoid the uncertainty in lattice scale setting, we
write r0 in lattice units as a function of the dimensionless
parameters aMπ and M2

π=f2π:

r0
a
¼ −

2b00M
2
π

aMπ

¼ −
1

aMπ

M2
π

πf2π

�
1þM2

π

f2π

�
−

13

12π2
ln
M2

π

f2π
þ 32lr1

þ 24lr2 þ 4lr4 −
13

96π2

��
:

Here the renormalization scale μ is set to be the physical
pion decay constant fphyπ . To write the formula as a function
of Mπ=fπ, we have replaced fphyπ with fπ . The corrections
due to this replacement appear at next-to-next-to-
leading order.
We take the values of the scale independent couplings l̄1,

l̄2 and l̄4 determined in Ref. [53]:

l̄1 ¼ −0.4� 0.6; l̄2 ¼ 4.3� 0.1; l̄4 ¼ 4.3� 0.3:

ðA2Þ

From the relations between lri and l̄i

lri ¼
γi

32π2

�
l̄i þ ln

M2
π

μ2

�
ðA3Þ

with γ1 ¼ 1=3, γ2 ¼ 2=3 and γ4 ¼ 2, we calculate the
values of lri at μ ¼ fphyπ :

lr1 ¼ −0.0003ð6Þ; lr2 ¼ 0.0094ð2Þ; lr4 ¼ 0.0281ð19Þ:
ðA4Þ

The effective range is calculated with the lri ’s in Eq. (A4)
and the values of aMOS

π and MOS
π =fOSπ in Table II and

Table III. The results of r0=a for the three ensembles are
presented in Table VI. The errors are estimated from the

TABLE VI. The effective range in lattice unit.

Ensemble cA2.09.48 cA2.30.48 cA2.60.32

r0=a −14.9ð0.8Þ −17ð1Þ −20ð2Þ

L. LIU et al. PHYSICAL REVIEW D 96, 054516 (2017)

054516-10



errors of lri ’s and the statistical uncertainties of aMOS
π

and MOS
π =fOSπ .

APPENDIX B: DETERMINATION OF
THE OS f π VALUES

The chiral extrapolation of the I ¼ 0 scattering length is
most conveniently performed inMπ=fπ . For this reason we
need to compute also the OS pion decay constant. It is
given by the following relation [54]

fOSπ ¼ ZA
h0jA0jπi
MOS

π
; ðB1Þ

with the (OS valence quark) axial vector component
A0 ¼ ūγ5γ0d. The corresponding renormalization constant
ZA has been determined in Ref. [55] for the action and
β-value used here. It reads

ZA ¼ 0.7910ð6Þ:

The matrix element h0jA0jπi can be determined from
suitable correlation functions. We used the operator

OA ¼
X
x

ū γ5γ0dðx; tÞ

together with πþ from Eq. (10) to build a 2 × 2 correlation
matrix. For the matrix element we need local operators,
hence, we cannot use sLapH. Instead, we performed
dedicated inversions with local operators and the one-
end-trick [56]. Since the off-diagonal correlators have a
sinh-like behavior, we perform a constrained fit to this
correlator matrix to determine the ground state energy and
the corresponding matrix element at large Euclidean times.
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