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We present a lattice determination of the vector and scalar form factors of the D → πlν and D → Klν
semileptonic decays, which are relevant for the extraction of the CKMmatrix elements jVcdj and jVcsj from
experimental data. Our analysis is based on the gauge configurations produced by the European Twisted
Mass Collaboration with Nf ¼ 2þ 1þ 1 flavors of dynamical quarks, at three different values of the
lattice spacing (a≃ 0.062; 0.082; 0.089 fm) and with pion masses as small as 210 MeV. Quark momenta
are injected on the lattice using nonperiodic boundary conditions. The matrix elements of both vector and
scalar currents are determined for plenty of kinematical conditions in which parent and child mesons are
either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the
data and included in the decomposition of the current matrix elements in terms of additional form factors.
After the extrapolations to the physical pion mass and to the continuum limit, we determine the vector
and scalar form factors in the whole kinematical region from q2 ¼ 0 up to q2max ¼ ðMD −MπðKÞÞ2
accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at
high values of q2 where some deviations are visible. A set of synthetic data points, representing our results

for fDπðKÞ
þ ðq2Þ and fDπðKÞ

0 ðq2Þ for several selected values of q2, is provided and also the corresponding
covariance matrix is available. At zero four-momentum transfer, we get fD→πþ ð0Þ ¼ 0.612ð35Þ and
fD→Kþ ð0Þ ¼ 0.765ð31Þ. Using the experimental averages for jVcdjfD→πþ ð0Þ and jVcsjfD→Kþ ð0Þ, we extract
jVcdj ¼ 0.2330ð137Þ and jVcsj ¼ 0.945ð38Þ, respectively. The second row of the CKM matrix is found to
be in agreement with unitarity within the current uncertainties: jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 0.949ð78Þ.
DOI: 10.1103/PhysRevD.96.054514

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2]
describes the quark flavor mixing in the electroweak sector
of the standard model (SM). It represents the only source
of CP violation in the quark sector and the origin of its
hierarchical structure, which describes so precisely the
relative strength of the flavor-changing weak quark cur-
rents, is still unexplained. In the SM, the CKM matrix is
unitary, so we have that VCKM × V†

CKM ¼ 1. This gives rise
to unitarity conditions between the elements of its rows and
columns, which are represented by diagonal constraints and
“unitarity triangles,”whose investigation has been the focus
of much of the experimental and theoretical efforts in flavor
physics during recent years. On the one hand, inconsis-
tencies in the CKM picture would indicate the presence of
new physics beyond the SM. On the other hand, if all the
precision tests of the SM performed so far are in agreement
with the CKM paradigm, the absence of deviations pro-
vides stringent constraints on nonstandard phenomena and

their energy scale. It is, therefore, important to determine
all CKM matrix elements as precisely as possible by
studying flavor-changing processes both experimentally
and theoretically.
The golden modes for testing the unitarity of the second

row of the CKM matrix, namely jVcdj2 þ jVcsj2 þ
jVcbj2 ¼ 1, are represented by the leptonic and semilep-
tonic decays of charmed D and Ds mesons, which probe
the c → d and c → s quark transitions, respectively.
Combining the experimental measurements of the branch-
ing fractions of these processes with the theoretical
calculations of the relevant hadronic matrix elements, i.e.
the leptonic decay constants fD and fDs

and the semi-
leptonic vector form factors at zero four-momentum trans-
fer fD→πþ ð0Þ and fD→Kþ ð0Þ, the CKM entries jVcdj and jVcsj
can be determined. The CKM matrix element jVcbj, being
of the order Oð10−2Þ, is irrelevant for the second-row
unitarity test at the current level of precision. According to
the V − A structure of the SM weak currents, leptonic and
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semileptonic D and Ds decays should provide consistent
results for the CKM elements jVcdj and jVcsj.
As is well known, the theoretical calculations of had-

ronic matrix elements based entirely on first principles can
be properly carried out by simulating the fundamental
theory of the strong interaction, QCD, on a lattice. Thanks
to the remarkable progress in algorithms and computing
machines Lattice QCD (LQCD) has entered the precision
era and the accuracy of numerical computations is becom-
ing comparable to that of experiments. For some relevant
hadronic quantities in flavor physics, the goal of the percent
level of precision has been already achieved (see, e.g., the
FLAG review [3]).
In this work, we present the first Nf ¼ 2þ 1þ 1 LQCD

calculation of the vector and scalar form factors fDπðKÞ
þ ðq2Þ

and fDπðKÞ
0 ðq2Þ governing the semileptonic D → πðKÞlν

decays, using the gauge configurations generated by the
European Twisted Mass Collaboration (ETMC) with
Nf ¼ 2þ 1þ 1 dynamical quarks, which include in the
sea, besides two light mass-degenerate quarks, also the
strange and charm quarks with masses close to their
physical values [4,5]. The same ensembles have already
been used to determine the leptonic decay constants fD and
fDs

, which have provided our leptonic determinations
of jVcdj and jVcsj [6], using the experimental values for
jVcdjfD and jVcsjfDs

.
At variance with most of the existing LQCD calculations

(see, e.g., Ref. [3]) that provide only the value of the vector
form factor at zero four-momentum transfer, we have
evaluated both the vector and scalar form factors in the
whole accessible range of values of q2 in the experiments,
i.e. from q2 ¼ 0 up to q2max ¼ ðMD −MπðKÞÞ2. In our
calculations, quark momenta are injected on the lattice
using nonperiodic boundary conditions [7,8] and the matrix
elements of both vector and scalar currents are determined
for plenty of kinematical conditions, in which parent and
child mesons are either moving or at rest.
The data coming from different kinematical conditions

exhibit a remarkable breaking of Lorentz symmetry due to
hypercubic effects (see Refs. [9,10] for preliminary results)
for both D → π and D → K semileptonic form factors. We
also show evidence that the hypercubic artifacts may be
largely affected by the difference between the parent and
the child meson masses. This may represent an important
warning in the case of the determination of the form factors
governing semileptonic B-meson decays.
We present the subtraction of the hypercubic artifacts

and the determination of the Lorentz-invariant semileptonic
vector and scalar form factors after the combined extrap-
olations to the physical pion mass and to the continuum
limit. A set of synthetic data points, representing our results

for fDπðKÞ
þ ðq2Þ and fDπðKÞ

0 ðq2Þ for several selected values of
q2, is provided (see Tables IVand V) and the corresponding
covariance matrix is available upon request. Our results are

compared with the momentum dependence of the exper-
imental data from BELLE [11], BABAR [12,13], CLEO
[14] and BESIII [15], and a good overall agreement is
obtained. Some deviations are nevertheless visible at high
values of q2 for both D → πlν and D → Klν decays.
At zero four-momentum transfer, the results of our

study are

fD→πþ ð0Þ ¼ 0.612 ð35Þ; fD→Kþ ð0Þ ¼ 0.765 ð31Þ: ð1Þ

Using the updated experimental values for jVcdjfD→πþ ð0Þ ¼
0.1426ð19Þ and jVcsjfD→Kþ ð0Þ ¼ 0.7226ð34Þ, obtained by
the Heavy Flavor Averaging Group (HFAG) in Ref. [16],
the following values of the CKMmatrix elements jVcdj and
jVcsj are derived:

jVcdj ¼ 0.2330 ð133Þlatð31Þexp ¼ 0.2330 ð137Þ; ð2Þ

jVcsj ¼ 0.945 ð38Þlatð4Þexp ¼ 0.945 ð38Þ; ð3Þ

where the errors are from the lattice calculation and from
experiment, respectively, showing that the dominant error is
the theoretical one.
Including the determination of jVcbj from B-meson

decays [17], the unitarity test of the second row of the
CKM matrix yields

jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 0.949 ð78Þ; ð4Þ

which confirms unitarity at the level of several percent.
The physics described by our simulations and used

throughout this work corresponds to the isospin symmetric
limit of QCD, where mu ¼ md ¼ mud, and the quark
electric charges are neglected. Therefore, isospin breaking
and electromagnetic corrections have to be added sepa-
rately in phenomenological analyses.
The paper is organized as follows. In Sec. II, we describe

the simulation details. In Sec. III, we present the compu-

tation of the vector and scalar form factors fDπðKÞ
þ ðq2Þ and

fDπðKÞ
0 ðq2Þ using the matrix elements of the weak vector

and scalar quark currents relevant for the D → πðKÞ
transition, obtained from two- and three-point correlation
functions. In Sec. IV, the evidence of Lorentz symmetry
breaking in the momentum dependence of the form factors
is presented and discussed. In Sec. V, we describe the
strategy adopted in order to extract the physical, Lorentz
invariant, vector and scalar form factors. This is based on a
global fit of all the data corresponding to the time and
spatial components of the vector current and to the scalar
current for all the lattice ensembles, studying simultane-
ously the dependence on q2, the light-quark mass ml and
the lattice spacing a, and using a phenomenological ansatz
to describe the hypercubic effects. In Sec. VI, the results for

fDπðKÞ
þ ðq2Þ and fDπðKÞ

0 ðq2Þ from the global fit are shown
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and compared with experimental data. The extraction of the
CKM matrix elements jVcdj and jVcsj is also presented
together with the test the unitarity of the second row of the
CKM matrix. Finally, our conclusions are summarized in
Sec. VII.

II. SIMULATION DETAILS

The gauge ensembles used in this work have been
generated by the ETMC with Nf ¼ 2þ 1þ 1 dynamical
quarks, which include in the sea, besides two light mass-
degenerate quarks, also the strange and the charm quarks
[4,5]. The ensembles are the same adopted in Ref. [18] to
determine the up, down, strange and charm quark masses,
using the experimental value of the pion decay constant fπ
to set the lattice scale.1 They have been used also to
determine the leptonic decay constants fK, fD and fDs

in
Ref. [6] and the vector and scalar form factors of the
semileptonic K → πlν decay in Ref. [19].
The gauge fields are simulated using the Iwasaki gluon

action [20], while sea quarks are implemented with the
Wilson twisted mass action at maximal twist [21–23]. In
order to avoid the mixing of strange and charm quarks in
the valence sector, we have adopted the nonunitary setup
described in Ref. [24], in which the valence strange quarks
are regularized as Osterwalder-Seiler (OS) fermions [25],
while the valence up and down quarks have the same action
of the sea. The use of different lattice regularizations for the
valence and sea heavy quarks avoids completely the effects
of the strange and charm mixing without modifying the
renormalization pattern of operators in massless schemes
and produces only a modification of discretization effects.
Moreover, since we work at maximal twist, an automatic
OðaÞ-improvement [23,24] is guaranteed also for our
nonunitary setup.
The QCD simulations have been carried out at three

different values of the inverse bare lattice coupling β, to
allow for a controlled extrapolation to the continuum limit,
and at different lattice volumes. For each gauge ensemble
we have used a number of gauge configurations corre-
sponding to a separation of 20 trajectories to avoid
autocorrelations. We have simulated quark masses in the
range from ≃3mud to ≃12mud in the light sector, from
≃0.7ms to ≃1.2ms in the strange sector, and from≃0.7mc
to ≃1.2mc in the charm sector, where mud, ms and mc are
the physical values of the average up/down, strange and
charm quark masses respectively, as determined in
Ref. [18]. The lattice spacings are found to be a ¼
f0.0885ð36Þ; 0.0815ð30Þ; 0.0619ð18Þgfm at β ¼ f1.90;
1.95; 2.10g respectively, the lattice volume goes from
≃2 to ≃3 fm and the pion masses, extrapolated to the

continuum and infinite volume limits, range from ≃210 to
≃450 MeV (see Ref. [18] for further details).
In our study of the semileptonicD → πlν andD → Klν

form factors, we make use of the input parameters (values
of quark masses and lattice spacings) obtained from the
eight branches of the analysis carried out in Ref. [18].
The various branches differ by (i) the choice of the scaling
variable, which was taken to be either the Sommer
parameter r0=a [26] or the mass of a fictitious pseudoscalar
(PS) meson made of two strangelike quarks aMs0s0 , (ii) the
fitting procedures, which were based either on chiral
perturbation theory (ChPT) or on a polynomial expansion
in the light quark mass (for the motivations, see the
discussion in Sec. 3.1 of Ref. [18]), and (iii) the choice
between two methods, denoted as M1 and M2 which differ
by Oða2Þ effects (see, e.g., Ref. [27]), used to determine
nonperturbatively the values of the mass renormalization
constant (RC) Zm ¼ 1=ZP [18]. Throughout this work
the results corresponding to the various branches of the
analysis are combined to form our averages and errors
according to Eq. (28) of Ref. [18].
The basic simulation parameters and the masses of the π,

K and D mesons corresponding to each ensemble used in
this work are collected in Table I.

III. LATTICE CALCULATION OF THE VECTOR
AND SCALAR MATRIX ELEMENTS

The matrix element of the weak vector current V̂μ

between an initial D-meson state and a πðKÞ-meson final
state decomposes, as required by the Lorentz symmetry,
into the two form factors fþðq2Þ and f−ðq2Þ:

hV̂μi≡ hPðpPÞjV̂μjDðpDÞi
¼ ðpD þ pPÞμfþðq2Þ þ ðpD − pPÞμf−ðq2Þ; ð5Þ

where P ¼ πðKÞ can be either the pion or the kaon and the
four-momentum transfer q is given by q≡ pD − pP. The
scalar form factor f0 is then defined as

f0ðq2Þ ¼ fþðq2Þ þ
q2

M2
D −M2

P
f−ðq2Þ; ð6Þ

so that the kinematic identity fþð0Þ ¼ f0ð0Þ is satisfied
by definition. The scalar form factor is proportional to
the four-divergence of hV̂μi so that, thanks to the Ward-
Takahashi identity (WTI), f0 can be determined from
the matrix element of the scalar density Ŝ between the
D-meson and the πðKÞ-meson states:

hŜi≡ hPðpPÞjŜjDðpDÞi ¼
M2

D −M2
P

mc −mx
f0ðq2Þ; ð7Þ

where x ¼ lðsÞ.

1With respect to Ref. [18], the number of independent gauge
configurations adopted for the ensemble D15.48 has been
increased to 90 to improve the statistics.

SCALAR AND VECTOR FORM FACTORS OF … PHYSICAL REVIEW D 96, 054514 (2017)

054514-3



From Eqs. (5) and (7), it turns out that the determination
of the scalar and vector form factors can be carried out by
computing the matrix elements hV̂μi and hŜi. These two
quantities can be extracted from the large (Euclidean) time
distance behavior of a convenient combination of 2- and
three-point correlation functions in lattice QCD, which are
defined as

CDðPÞ
2 ðt0; p⃗DðPÞÞ ¼

1

L3

X
x⃗;z⃗

h0jPDðPÞ
5 ðxÞPDðPÞ†

5 ðzÞj0i

× e−ip⃗DðPÞ·ðx⃗−z⃗Þδt0;ðtx−tzÞ; ð8Þ

CDP
Γ̂ ðt; t0; p⃗D; p⃗PÞ ¼

1

L6

X
x⃗;y⃗;z⃗

h0jPP
5 ðxÞΓ̂ðyÞPD†

5 ðzÞj0i

× e−ip⃗D·ðy⃗−z⃗Þþip⃗P·ðy⃗−x⃗Þδt;ðty−tzÞδt0;ðtx−tzÞ;

ð9Þ

where t0 is the time distance between the source and the
sink, t is the time distance between the insertion of the
current Γ̂ ¼ fV̂μ; Ŝg and the source, while PD

5 ¼ ic̄γ5u and

PπðKÞ
5 ¼ id̄ðs̄Þγ5u are the interpolating fields of the D and

πðKÞ mesons. The Wilson parameters r of the two valence
quarks in any PS meson are always chosen to have opposite
values, rc ¼ rs ¼ rd ¼ −ru, so that the squared PS mass
differs from its continuum counterpart only by terms of
Oða2mΛQCDÞ [23].
The statistical accuracy of the correlators (8)–(9) is

significantly improved by using the all-to-all quark

propagators evaluated with the so-called “one-end” stochas-
tic method [28], which includes spatial stochastic sources at
a single time slice chosen randomly (see Ref. [29] where the
degenerate case of the electromagnetic pion form factor is
discussed in details). Statistical errors on the quantities
directly extracted from the correlators are always evaluated
using the jackknife procedure, while cross-correlations are
taken into account by the use of the eight bootstrap
samplings (with Oð100Þ events each) corresponding to
the eight analyses of Ref. [18] (see Sec. II).
In the case of charm quarks it is a common procedure to

adopt Gaussian-smeared interpolating fields [30] for both
the source and the sink in order to suppress faster the
contribution of the excited states, leading to an improved
projection onto the ground state at relatively small time
distances. For the values of the smearing parameters we set
kG ¼ 4 and NG ¼ 30. In addition, we apply APE-smearing
to the gauge links [31] in the interpolating fields with
parameters αAPE ¼ 0.5 and NAPE ¼ 20. The Gaussian
smearing is applied as well also for the light and strange
quarks. The values of Mπ and MK reported in Table I are
consistent within the statistical errors with the correspond-
ing ones listed in the Table I of Ref. [19], computed using
local interpolating fields.
As is well known, at large time distances two- and three-

point correlation functions behave as

CDðPÞ
2 ðt0; p⃗DðPÞÞ !

t0≫a

jZDðPÞj2
2EDðPÞ

½e−EDðPÞt0 þ e−EDðPÞðT−t0Þ�;

ð10Þ

TABLE I. Summary of the simulated sea and valence quark bare masses, of the π, K and D meson masses, of the lattice size L and of
the product MπL for the various gauge ensembles used in this work. The values of MK and MD do not correspond to the simulated
strange and charm bare quark masses shown in the fifth and sixth columns, but to the renormalized strange and charm masses
interpolated at the physical values mphys

s ðMS; 2 GeVÞ ¼ 99.6ð4.3Þ MeV and mphys
c ðMS; 2 GeVÞ ¼ 1.176ð39Þ GeV determined in

Ref. [18].

Ensemble β V=a4 aμsea ¼ aμl aμs aμc Mπ (MeV) MK (MeV) MD (MeV) L (fm) MπL

A30.32 1.90 323 × 64 0.0030 f0.0180;
0.0220;
0.0260g

f0.21256;
0.25000;
0.29404g

275 569 2015 2.84 3.96
A40.32 0.0040 315 578 2018 4.53
A50.32 0.0050 351 578 2018 5.04

A40.24 243 × 48 0.0040 324 584 2024 2.13 3.49
A60.24 0.0060 386 599 2022 4.17
A80.24 0.0080 444 619 2037 4.79
A100.24 0.0100 495 639 2042 5.34

B25.32 1.95 323 × 64 0.0025 f0.0155;
0.0190;
0.0225g

f0.18705;
0.22000;
0.25875g

258 545 1950 2.61 3.42
B35.32 0.0035 302 556 1944 3.99
B55.32 0.0055 375 578 1959 4.96
B75.32 0.0075 436 600 1965 5.77

B85.24 243 × 48 0.0085 467 611 1974 1.96 4.63

D15.48 2.10 483 × 96 0.0015 f0.0123;
0.0150;
0.0177g

f0.14454;
0.17000;
0.19995g

220 526 1928 2.97 3.31
D20.48 0.0020 254 533 1933 3.83
D30.48 0.0030 308 547 1939 4.65
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CDP
Γ̂ ðt; t0; p⃗D; p⃗PÞ⟶

t≫a;ðt0−tÞ≫a

ZPZ�
D

4EPED
hPðpPÞjΓ̂jDðpDÞi

× e−EDte−EPðt0−tÞ; ð11Þ

where ZD and ZP are the matrix elements h0jPD
5 ð0ÞjDðp⃗DÞi

and h0jPP
5 ð0ÞjPðp⃗PÞi, which depend on the meson

momenta p⃗D and p⃗P because of the use of smeared
interpolating fields, while ED and EP are the energies of
the D and P mesons. These energies and matrix elements
can be extracted directly by fitting the exponential behav-
ior, given by the r.h.s of Eq. (10), of the corresponding two-
point correlation functions. The time intervals ½tmin; tmax�
adopted for the fit (10) are listed in Table II. We have
checked that the extracted values of EDðPÞ are nicely
reproduced (within the statistical errors) by the continuum-

like dispersive relation Edisp
DðPÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

DðPÞ þ jp⃗DðPÞj2
q

, where

MDðPÞ is the meson mass extracted from the two-point
correlator corresponding to the meson at rest. We decided
to use for the analysis the energy values Edisp

DðPÞ instead of

those directly extracted from the fit.
As for the three-point correlators (11), the usual choice

of the time distance t0 between the source and the sink is to
maximize it, i.e. to put t0 ¼ T=2. Since we are using
smeared interpolating fields, it is convenient to choose
smaller values of t0, which allow us to decrease signifi-
cantly the statistical noise satisfying at the same time the
dominance of the ground-state signals. We have optimized
the choice of the values of t0 for the various lattice spacings
and volumes, which can be read off in the last column of
Table II.
In our lattice setup, we employ maximally twisted

fermions and therefore the vector and scalar currents, V̂μ

and Ŝ, renormalize multiplicatively [23]. Introducing the
local bare currents Vμ ¼ c̄γμq and S ¼ c̄q, where
q ¼ dðsÞ, and keeping the same value for the Wilson
parameters of the initial and final quarks, one has

V̂μ ¼ ZV · Vμ ¼ ZVc̄γμq; ð12Þ

Ŝ ¼ ZP · S ¼ ZPc̄q; ð13Þ

where ZV and ZP are the renormalization constants (RCs)
of the vector and pseudoscalar densities for standard
Wilson fermions, respectively. The twisted quark masses
renormalize multiplicatively with a RC Zm given by Zm ¼
1=ZP [23], which means that the product ðmc −mqÞhŜi is
renormalization group invariant. Therefore, according to
Eq. (7), the scalar form factor f0ðq2Þ is related to the (bare)
matrix element hSi by

hSi≡ hPðpPÞjSjDðpDÞi ¼
M2

D −M2
P

μc − μq
f0ðq2Þ; ð14Þ

where μq and μc are the bare light (strange) and charm
quark masses, respectively.
As in the case of the semileptonic Kl3 decay [19], the

matrix elements hSi and hV̂μi [see Eq. (5)] can be extracted
from the time dependence of the ratios Rμ (μ ¼ 0, 1, 2, 3)
and RS of two- and three-point correlation functions,
defined as in Eqs. (8)–(9) but using the local bare currents
Vμ and S, namely

Rμðt; p⃗D; p⃗PÞ

≡ 4pDμpPμ

CDP
Vμ

ðt; t0; p⃗D; p⃗PÞCPD
Vμ

ðt; t0; p⃗P; p⃗DÞ
CPP
Vμ
ðt; t0; p⃗P; p⃗PÞCDD

Vμ
ðt; t0; p⃗D; p⃗DÞ

; ð15Þ

RSðt; p⃗D; p⃗PÞ

≡ 4EDEP
CDP
S ðt; t0; p⃗D; p⃗PÞCPD

S ðt; t0; p⃗P; p⃗DÞ
~CD
2 ðt0; p⃗DÞ ~CP

2 ðt0; p⃗PÞ
; ð16Þ

where the correlation functions ~CDðPÞ
2 ðtÞ are given by

~CDðPÞ
2 ðt; p⃗DðPÞÞ

≡ 1

2

2
64CDðPÞ

2 ðt; p⃗DðPÞÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CDðPÞ
2 ðt; p⃗DðPÞÞ2 − CDðPÞ

2

�
T
2
; p⃗DðPÞ

�
2

s 3
75; ð17Þ

which at large time distances behave as

~CDðPÞ
2 ðt; p⃗DðPÞÞ!

t≫a

ZDðPÞ
2EDðPÞ

e−EDðPÞt; ð18Þ

i.e. without the backward signal. Note that the denominator
of Eq. (15) is nothing but the numerator evaluated in the
mass-degenerate limit for the valence quarks in the current.
Such mass-degenerate quarks have the same lattice

TABLE II. Time intervals adopted for the extraction of the PS
meson energies EDðPÞ and the matrix elements ZDðPÞ from the
two-point correlators in the light (l), strange (s) and charm (c)
sectors. The last column contains the values of the time distance t0
between the source and the sink adopted for the three-point
correlators (11).

β V=a4 ½tmin; tmax�ðll;lsÞ=a ½tmin; tmax�ðlcÞ=a t0=a

1.90 323 × 64 [12, 31] [8, 16] 18
243 × 48 [12, 23] [8, 17] 18

1.95 323 × 64 [13, 31] [9, 18] 20
243 × 48 [13, 23] [9, 18] 20

2.10 483 × 96 [18, 40] [12, 24] 26
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regularization of the corresponding ones in the numerator,
so that the RC ZV is the same for the two terms in the ratio
and, therefore, it cancels out.
At large time distances, one has

Rμðt;p⃗D;p⃗PÞ

⟶
t≫aðt0−tÞ≫a

4pDμpPμ
hPðpPÞjV̂μjDðpDÞihDðpDÞjV̂μjPðpPÞi
hPðpPÞjV̂μjPðpPÞihDðpDÞjV̂μjDðpDÞi

¼ jhV̂μij2; ð19Þ

RSðt; p⃗D; p⃗PÞ⟶
t≫aðt0−tÞ≫a

jhPðpPÞjSjDðpDÞij2

¼ jhSij2; ð20Þ

so that, up to lattice artifacts, the renormalized quantity
jhV̂μij2 and the bare one jhSij2 can be extracted directly
from the plateau of Rμ and RS, independently of the
matrix elements ZD and ZπðKÞ of the interpolating fields.
In the rhs of Eq. (19), we have used the fact that, due
to the charge conservation, hPðpPÞjV̂μjPðpPÞi ¼ 2pPμ and
hDðpDÞjV̂μjDðpDÞi ¼ 2pDμ. Taking the square root
of Rμ and RS we can get the absolute value of the matrix
elements hV̂μi and hSi, while their sign can be easily
inferred from those of the correlators CDP

Vμ
ðt; t0; p⃗D; p⃗PÞ and

CDP
S ðt; t0; p⃗D; p⃗PÞ in the relevant time regions.
When a spatial component of the momentum of

either the parent or the child meson is vanishing, the
corresponding matrix element hPðpPÞjVijPðpPÞi (or
hDðpDÞjVijDðpDÞi) (i ¼ 1, 2, 3) is also vanishing
and the correlator CPP

Vi
(or CDD

Vi
), cannot be used in the

denominator of the r.h.s of Eq. (15). In these cases, the
quantity 2pPi=hPðpPÞjVijPðpPÞi (or 2pDi=hDðpDÞjVij
DðpDÞi) is replaced by 2EP=CPP

V0
(or 2ED=CDD

V0
).

When both the pion (kaon) and the D meson are at rest,
only two ratios, RS and R0, can be constructed, providing
two independent determinations of the scalar form factor
f0ðq2Þ at the kinematical end point q2max ¼ ðMD −MPÞ2,
which may differ by lattice artifacts.
In order to inject momenta on the lattice we use the same

procedure adopted in Ref. [19] for the Kl3 decays. In
particular, for the valence quark fields, we impose twisted
boundary conditions (BCs) [7,8,32] in the spatial directions
and antiperiodic BCs in time. The sea dynamical quarks, on
the contrary, have been simulated with periodic BCs in
space and antiperiodic ones in time. The choice of using
twisted BCs for the valence quark fields is crucial in order
to remove the strong limitations, resulting from the use
of periodic BCs, to the accessible kinematical regions of
momentum-dependent quantities like, e.g., form factors.
Furthermore we remark that, as shown in Refs. [33,34],
for physical quantities which do not involve final state
interactions (like, e.g., meson masses, decay constants and

semileptonic form factors), the use of different BCs for
valence and sea quarks produces only finite size effects
(FSEs) which are exponentially small.
The quark three-momentum is then given by

p ¼ 2π

L
ðθ þ nx; θ þ ny; θ þ nzÞ; ð21Þ

where nx;y;z are integers and the θ values, adopted for the
different gauge ensembles and democratically distributed
along the three spatial directions, are collected in Table III.
They have been chosen in order to obtain momenta with
values ranging from ≈150 to ≈650 MeV for all the various
lattice spacings and volumes.2

The three-point correlation functions CDP
Vμ

ðt; t0; p⃗D; p⃗PÞ
and CDP

S ðt; t0; p⃗D; p⃗PÞ have been simulated imposing
periodic BCs to the spectator light quark and partially
twisted BCs (21) to the initial c and final uðsÞ quarks.
With this choice, the π-, K- and D-meson (spatial)
momenta are given by p⃗D ¼ ð2π=LÞðθD; θD; θDÞ and
p⃗πðKÞ ¼ ð2π=LÞðθπðKÞ; θπðKÞ; θπðKÞÞ, where θD and θπðKÞ
can assume for each gauge ensemble the values of the
parameter θ given in Table III.
As described in Ref. [23], the use of two kinematics with

opposite spatial momenta of the initial and final mesons,
given by opposite signs of the corresponding θ, allows for
an OðaÞ improvement on the matrix elements hV̂μi and hSi
performing the following average:

hV̂0iimp ≡ 1

2
½hPðEP; p⃗PÞjV̂0jDðED; p⃗DÞi

þ hPðEP;−p⃗PÞjV̂0jDðED;−p⃗DÞi�; ð22Þ

hV̂iiimp ≡ 1

2
½hPðEP; p⃗PÞjV̂ijDðED; p⃗DÞi

− hPðEP;−p⃗PÞjV̂ijDðED;−p⃗DÞi�; ð23Þ

TABLE III. Values of the parameter θ, appearing in Eq. (21), for
the various ETMC gauge ensembles of Table I.

β V=a4 θ

1.90 323 × 64 0.0;�0.200;�0.467;�0.867
243 × 48 0.0;�0.150;�0.350;�0.650

1.95 323 × 64 0.0;�0.183;�0.427;�0.794
243 × 48 0.0;�0.138;�0.321;�0.596

2.10 483 × 96 0.0;�0.212;�0.493;�0.916

2The correlators used in this work have been calculated within
the PRACE project PRA067 “First Lattice QCD study of B-
physics with four flavors of dynamical quarks.” The values of the
quark momentum were not chosen having in mind the inves-
tigation of hypercubic effects in the semileptonic form factors. In
particular, the use of spatially symmetric values of the quark
momentum (see Table III) is not ideal for such a purpose.
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hSiimp ≡ 1

2
½hPðEP; p⃗PÞjSjDðED; p⃗DÞi

þ hPðEP;−p⃗PÞjSjDðED;−p⃗DÞi�: ð24Þ

Furthermore since we are using democratically distributed
momenta in the three spatial directions, the matrix elements
of the spatial components of the vector current hV̂iiimp are
equal to each other. Therefore, in order to improve the
statistics, we average them to get

hV̂spiimp ≡ 1

3
½hV̂1iimp þ hV̂2iimp þ hV̂3iimp�: ð25Þ

The quality of the plateau for the matrix elements
hV̂0iimp, hV̂spiimp and hSiimp is illustrated in Fig. 1 in the
case of the D → π transition. The time intervals adopted
for fitting Eqs. (19)–(20) are symmetric around t0=2 (see
Table II for the values of t0 for each specific gauge
ensemble) and equal to ½t0=2 − 2; t0=2þ 2�. These values
are compatible with the dominance of the π, K and D
mesons ground-state observed along the time intervals of
Table II for the two-point correlation functions.
Thus, from the two- and three-point lattice correlators we

are able to extract the threeOðaÞ-improved matrix elements
hV̂0iimp, hV̂spiimp and hSiimp. The standard procedure for
determining the scalar and vector form factors f0ðq2Þ and
fþðq2Þ is to assume the following Lorentz-covariant
decomposition

hPðpPÞjV̂μjDðpDÞi

¼ Pμfþðq2Þ þ qμ
M2

D −M2
P

q2
½f0ðq2Þ− fþðq2Þ� þOða2Þ;

ð26Þ

hPðpPÞjSjDðpDÞi ¼
M2

D −M2
P

μc − μq
f0ðq2Þ þOða2Þ ð27Þ

with Pμ ≡ ðpD þ pPÞμ. Explicitly one has

hV̂0iimp ¼ ðED þ EPÞfþðq2Þ þ ðED − EPÞ
M2

D −M2
P

q2

× ½f0ðq2Þ − fþðq2Þ� þOða2Þ; ð28Þ

hV̂spiimp ¼
2π

L

�
ðθD þ θPÞfþðq2Þ þ ðθD − θPÞ

M2
D −M2

P

q2

× ½f0ðq2Þ − fþðq2Þ�
�
þOða2Þ; ð29Þ

hSiimp ¼
M2

D −M2
P

μc − μq
f0ðq2Þ þOða2Þ; ð30Þ

which represent a redundant mathematical system consist-
ing of three equations depending on just two form factors.
We then determine f0ðq2Þ and fþðq2Þ by minimizing

the χ2-variable constructed using Eqs. (28)–(30). In the
next section, we present and discuss the result of this
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FIG. 1. Matrix elements hV̂spiimp, hV̂0iimp and hSiimp for the D → π case extracted from the ratios Rμ and RS [see Eqs. (19) and (20)]
for the ensemble D20.48 with β ¼ 2.10, L=a ¼ 48, aμl ¼ 0.0020, aμc ¼ 0.17, p⃗D ¼ −p⃗π and jp⃗Dj≃ 150 MeV. The meson masses
areMπ ≃ 254 andMD ≃ 1933 MeV. The horizontal red lines correspond to the plateau regions used to extract the matrix elements and
to their central values and statistical errors.
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determination in which, as anticipated, we found evidence
for Lorentz symmetry breaking terms.

IV. FORM FACTORS AND
HYPERCUBIC EFFECTS

After a small interpolation of our lattice data to the
physical values of the strange and charm quark masses,
mphys

s ð2 GeVÞ ¼ 99.6ð4.3Þ MeV and mphys
c ð2 GeVÞ ¼

1.176ð3.9Þ GeV taken from Ref. [18], we determine the

vector and scalar form factors fDπðKÞ
þ and fDπðKÞ

0 for each
gauge ensemble and for each choice of parent and child
meson momenta. The momentum dependencies of the

semileptonic form factors fDπðKÞ
þ and fDπðKÞ

0 are illustrated
in the upper (lower) panels of Fig. 2, where different
markers and colors correspond to different values of the
child meson momentum for the ETMC ensemble A60.24,
i.e. at fixed values of the parent and child meson masses as
well as of the lattice spacing and volume. Therefore, if the
Lorentz-covariant decomposition (26)–(27) were adequate
to describe our data, the extracted form factors would
depend only on the squared four-momentum transfer q2.
This is not the case and an extra dependence on the value of

the child meson momentum is clearly visible in Fig. 2
beyond the statistical uncertainties.
As is well known, the lattice breaks Lorentz symmetry

and is invariant only under discrete rotations by multiple
of 90° in each direction of the Euclidean space-time.
Therefore, the matrix elements (22)–(25), and consequently
the form factors extracted from Eqs. (28)–(30), may depend
also on hypercubic invariants.3 Hypercubic effects are
known to affect lattice calculations and they have been
discussed for instance in Refs. [35,36]. It is, however, the
first time that these effects are observed in the D-meson
semileptonic form factors. In Refs. [37] and [38,39],

Nf ¼ 2þ 1 results for the fDπðKÞ
þ form factor have been

obtained by FNAL/MILC and HPQCD Collaborations,
respectively, using only a limited number of kinematic
conditions, restricted in particular to the parent D meson
at rest. Also the ETMC reported Nf ¼ 2 results for the
D-meson semileptonic form factors in Ref. [40], but the
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FIG. 2. Momentum dependence of the vector fDπþ (upper left panel), fDKþ (lower left panel) and scalar fDπ
0 (upper right panel), fDK

0

(lower right panel) form factors in the case of the gauge ensemble A60.24 [18]. Different markers and colors distinguish different values
of the child meson momentum. The simulated meson masses areMπ ≃ 386,MK ≃ 599 andMD ≃ 2022 MeV, while the lattice spacing
and spatial size are a≃ 0.0885 fm and L≃ 2.13 fm, respectively (see Table I).

3Hypercubic symmetry is also broken on our lattices because
of the different length of the temporal and spatial dimensions.
This effect, however, is expected to be subdominant and will be
neglected in what follows.
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kinematics were limited to the Breit-frame (p⃗D ¼ −p⃗P).
Recently, in Ref. [41], both the D → π and D → K semi-
leptonic transitions have been investigated using Nf ¼
2þ 1 domain-wall fermions assuming the D meson at rest,
while in Ref. [42] the FNAL/MILC Collaboration has
addressed the determination of the semileptonic form
factors, using Nf ¼ 2þ 1þ 1 MILC ensembles with
HISQ fermions and tuning properly the child meson
momentum to reach directly q2 ¼ 0, but working only in
the reference frame where the D meson is at rest. We argue
that all these choices may obscure the presence of hyper-
cubic effects in the lattice data.
The behavior observed in Fig. 2 might be (at least

partially) related to finite size effects (FSEs) (see, e.g.,
Ref. [43] for the case of Kl3 decays). The possible impact
of FSEs has been investigated by comparing the results
corresponding to the two gauge ensembles, A40.24 and
A40.32, which share the same pion mass and lattice
spacing, but have different lattice sizes, L ¼ 24a and
L ¼ 32a, respectively, as illustrated in Fig. 3. It can clearly
be seen that, for the D → πðKÞ semileptonic vector and
scalar form factors, FSEs appear to be negligible within the
current statistical uncertainties, except for the slope of the

D → π scalar form factor (upper right panel in Fig. 3).
Hypercubic effects for the two gauge ensembles A40.24
and A40.32 are found to be comparable and they do not
appear to depend on the lattice size L.
Thus, since in our setup all the current matrix elements

are OðaÞ-improved, the breaking of the Lorentz invariance
is expected to be produced by Oða2Þ hypercubic effects,
whose subtraction will be discussed in the next section in
order to get the Lorentz-invariant semileptonic vector and
scalar form factors.
Before closing the section, it is worth noting that no

evidence of hypercubic effects within the current statistical
uncertainties was found in the case of the K → πlν
semileptonic form factors analyzed in Ref. [19], where
the same gauge configurations and the same parent and
child momenta were adopted.4 This suggests that the
hypercubic artifacts may be governed by the difference
between the parent and the child meson masses. Such an
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FIG. 3. Results for the vector (left panels) and scalar (right panels) form factors in the case of the D → π (upper panels) and D → K
(lower panels) semileptonic decays versus q2 for the gauge ensembles A40.24 and A40.32, which correspond to a≃ 0.0885 fm,
Mπ ≃ 320, MK ≃ 580, MD ≃ 2020 MeV and two different lattice volumes L=a ¼ 24 (empty markers) and L=a ¼ 32 (filled markers),
respectively. The different shape and color of the markers distinguish between different values of the child meson momentum.

4In Ref. [19] the vector and scalar form factors for the Kl3
decays have been constructed using local interpolating fields for
both the pion and the kaon. We have checked that no hypercubic
effects are visible also in the case of smeared interpolating fields.
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indication is confirmed by the results given in Fig. 4, where
the transition between two charmed PS mesons with
masses close to the D-meson one has been considered.
The momentum dependencies of the corresponding form
factors show no evidence of hypercubic effects within the
statistical uncertainties. The dependence of hypercubic
artifacts upon the mass difference between the parent
and the child mesons is clearly a very important issue,
which warrants further investigations. It may represent an
important warning in the case of the determination of the
form factors governing semileptonic B-meson decays into
lighter mesons.

V. SUBTRACTION OF THE
HYPERCUBIC EFFECTS

As shown in the previous section, the form factors fþ
and f0 for both the D → π and D → K decays exhibit a
sizeable Lorentz-symmetry breaking due to hypercubic
effects generated at finite lattice spacing. Let’s start by
introducing Euclidean 4-momenta defined, in the case of
the four-momentum transfer qμ ¼ ðq0; q⃗Þ, as

qEμ ¼ ðq⃗; q4Þ ¼ ðq⃗; iq0Þ ð31Þ

so that
P

μq
E
μqEμ ¼ −q2. Hypercubic invariants can be con-

structed using the twomomenta qEμ andPE
μ ¼ ðpD þ pPÞEμ as

q½n�P½m� ≡X
μ

ðqEμ ÞnðPE
μ Þm: ð32Þ

For nþm ¼ 2 there are three invariants, which are Lorentz
invariants, namely q2, q · P and P2. The three invariants can
be rewritten in terms of q2 and the parent and child meson
masses. For nþm ¼ 4 there are five hypercubic invariants:
q½4�, q½3�P½1�, q½2�P½2�, q½1�P½3�, P½4�, where q½4� (P½4�) stands for
q½4�P½0� (q½0�P½4�).

As already shown in Fig. 2, the form factors fþ;0

calculated using Eqs. (28)–(30) do not depend on q2 only.
A possible way to describe the observed hypercubic effects
is to address them directly on the vector and scalar matrix
elements. We start by considering the following decom-
position of the vector matrix elements:

hPðpPÞjV̂E
μ jDðpDÞi ¼ hV̂E

μ iLor þ hV̂E
μ ihyp; ð33Þ

where hV̂E
μ iLor is the Lorentz-covariant term

hV̂E
μ iLor ¼ PE

μfþðq2; a2Þ þ qEμ
M2

D −M2
P

q2

× ½f0ðq2; a2Þ − fþðq2; a2Þ�; ð34Þ

while hV̂E
μ ihyp is given by

hV̂E
μ ihyp ¼ a2½ðqEμ Þ3H1 þ ðqEμ Þ2PE

μH2 þ qEμ ðPE
μ Þ2H3

þ ðPE
μ Þ3H4� ð35Þ

and the quantities Hi (i ¼ 1, 2, 3, 4) are additional
hypercubic form factors. Note that in the Lorentz-covariant
term (34) we have explicitly considered that the form
factors fþ;0 can be affected by discretization errors of order
Oða2Þ, which are unrelated to hypercubic effects and may
depend on q2 as well as on the parent and child meson
masses.
Equation (35) is the most general structure, up to order

Oða2Þ, that transforms properly under hypercubic rotations
and is built with third powers of the components of the
two momenta qEμ and PE

μ . The Lorentz-invariance breaking
effects are encoded in the four structures ðqEμ Þ3, ðqEμ Þ2PE

μ ,
qEμ ðPE

μ Þ2 and ðPE
μ Þ3 as well as in the hypercubic form

factors Hi, which, we assume, depend only on q2 and the
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FIG. 4. Momentum dependence of the vector (left panel) and scalar (right panel) form factors regulating the semileptonic decay in
which the parent and child mesons are two charmed PS mesons, D1 and D2, with masses close to theD-meson one. In this plot we have
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parent and child meson masses. Note that the decompo-
sition (33)–(35) implies that the form factors fþ;0 calcu-
lated using Eqs. (28)–(30) do depend not only on q2, but
also on the five hypercubic invariants q½4�, q½3�P½1�, q½2�P½2�,
q½1�P½3�, P½4�.
For the Hi form factors we adopt a simple polynomial

form in terms of the z variable [44,45]

HiðzÞ ¼ di0 þ di1zþ di2z
2; ð36Þ

where z is defined as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ð37Þ

with tþ and t0 given by

tþ ¼ ðMD þMPÞ2;
t0 ¼ ðMD þMPÞ

� ffiffiffiffiffiffiffiffi
MD

p
−

ffiffiffiffiffiffiffi
MP

p �
2
: ð38Þ

In Eq. (36) the coefficients di0;1;2 will be treated as free
parameters.
Let’s now turn to the matrix elements of the scalar

density. We consider the following decomposition of the
scalar density matrix elements:

hPðpPÞjSjDðpDÞi ¼ hSiLor þ hSihyp; ð39Þ

where hSiLor is the Lorentz-invariant term

hSiLor ¼
M2

D −M2
P

μc − μq
f0ðq2; a2Þ; ð40Þ

while hSihyp is given by

hSihyp ¼
a2

μc − μq

h
q½4� ~H1 þ q½3�P½1� ~H2 þ q½2�P½2� ~H3

þ q½1�P½3� ~H4 þ P½4� ~H5

i
ð41Þ

and the quantities ~Hi (i ¼ 1, 2, 3, 4, 5) are additional
hypercubic form factors.
The Ward-Takahashi Identity (WTI) relates the four-

divergence of the vector current to the scalar density. Let’s
introduce the WTI breaking term Δhyp

WTI defined as

Δhyp
WTI ¼ðμc−μqÞhPðpPÞjSjDðpDÞiþqEμ hPðpPÞjV̂E

μ jDðpDÞi
¼ðμc−μqÞhSihypþqEμ hV̂E

μ ihyp ð42Þ

which implies

Δhyp
WTI ¼ a2

h
q½4�ð ~H1 þH1Þ þ q½3�P½1�ð ~H2 þH2Þ

þ q½2�P½2�ð ~H3 þH3Þ þ q½1�P½3�ð ~H4 þH4Þ
þ P½4� ~H5

i
: ð43Þ

The quantity Δhyp
WTI can be evaluated directly using the

matrix elements hV̂E
μ i and hSi. Its dependence on the parent

child momenta is illustrated in Fig. 5 in the case of the
gauge ensemble A30.32. It can be seen that the WTI-
violating term Δhyp

WTI is small, but not vanishing and it
cannot depend only on the Lorentz-invariant q2. Instead
the lattice data suggest a simple, approximate linear
dependence on the hypercubic invariant q½4� (see right
panels in Fig. 5). This implies a quite simplified structure
for Δhyp

WTI in Eq. (43) and consequently for hSihyp in
Eq. (41), namely: ~Hi þHi ¼ 0 for i ¼ 2, 3, 4, ~H5 ¼ 0

and ~H1 þH1 ¼ HS ≠ 0. In other words one has Δhyp
WTI ¼

a2q½4�HS and

hSihyp ¼
a2

μc − μq
q½4�HS −

1

μc − μq
qEμ hV̂E

μ ihyp; ð44Þ

where, for the hypercubic form factor HS, we adopt the
simple ansatz

HS ¼ dS0 þ dS1ml; ð45Þ

with dS0;1 being free parameters.
The structure of the hypercubic artifacts is thus given by

Eqs. (35) and (44) in terms of five hypercubic form factors
Hi (i ¼ 1; 2; 3; 4; S). The latter cannot be determined by
analyzing the matrix elements of vector and scalar currents
calculated separately for each gauge ensemble in the
present work. A simultaneous, global fit of all the data
(more than one thousand lattice points corresponding to the
time and spatial components of the vector and scalar
currents for the 15 ETMC gauge ensembles of Table I)
has to be performed by considering the dependencies on q2,
ml and a2 of the form factors fþ;0 as well as the q2 and ml

dependencies of the five hypercubic form factors
Hi (i ¼ 1; 2; 3; 4; S).
For the form factors fþ;0ðq2; a2Þ, we have adopted the

modified z expansion of Ref. [46], viz.

fD→πðKÞ
þ ðq2; a2Þ

¼ fD→πðKÞð0; a2Þ þ cD→πðKÞ
þ ða2Þðz − z0Þð1þ zþz0

2
Þ

PD→πðKÞ
þ ðq2Þ

;

ð46Þ
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fD→πðKÞ
0 ðq2; a2Þ

¼ fD→πðKÞð0; a2Þ þ cD→πðKÞ
0 ða2Þðz − z0Þð1þ zþz0

2
Þ

PD→πðKÞ
0 ðq2Þ

;

ð47Þ

where we assume for the coefficients cD→πðKÞ
þð0Þ ða2Þ a

simple linear dependence on a2 and z0 ≡ zðq2 ¼ 0Þ, so
that the condition fþð0; a2Þ ¼ f0ð0; a2Þ ¼ fð0; a2Þ is
explicitly fulfilled at finite lattice spacing. In the rhs of
Eqs. (46)–(47), the terms at second order in the z variable
are constrained by the analyticity requirements described
in Ref. [46].
As for the functions Pþ;0, in the case of the D → π

transition, we adopt the single-pole expressions,

PD→πþ ðq2Þ ¼ 1 −
q2

M2
V
; ð48Þ

PD→π
0 ðq2Þ ¼ 1 − K0

FSEðLÞ
q2

M2
S
; ð49Þ

while for the D → K channel, we use

PD→Kþ ðq2Þ ¼ 1 −
q2

M2
D�

s

ð1þ Pþa2Þ; ð50Þ

PD→K
0 ðq2Þ ¼ 1: ð51Þ

In the case of the D → π pole factors (48) and (49) the
quantities MV and MS represent the vector and scalar
pole masses, respectively. They are treated as free param-
eters in the fitting procedure. In the case of the D → K
decays the data are fitted equally well even excluding the
pole term in the scalar form factor and therefore we choose
PD→K

0 ðq2Þ ¼ 1. Conversely the physical vector meson D�
s

has a mass below the cut threshold
ffiffiffiffiffi
tþ

p ¼ ðMDs
þMKÞ.

Consequently the pole factor (50), including a simple
discretization effect proportional to a2, is introduced to
guarantee the applicability of the z expansion.
In Eq. (48), the quantity K0

FSEðLÞ takes into account the
FSEs observed in Fig. 3 by adopting the following
phenomenological form

K0
FSEðLÞ ¼ 1þ C0

FSEξl
e−MπL

MπL
; ð52Þ

FIG. 5. Results for Δhyp
WTI [see Eq. (42)] versus q

2 (left panels) and q½4� (right panels) for the D → π (upper panels) and D → K (lower
panels) transitions in the case of the gauge ensemble A30.32.
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where C0
FSE is a free parameter and ξl ¼ 2Bml=ð16π2f2Þ,

with B and f being the SU(2) low-energy constants
entering the LO chiral Lagrangian and determined
in Ref. [18].
For the vector form factor at zero four-momentum

transfer, fD→πðKÞð0; a2Þ, we use the following ansatz,

fD→πðKÞð0; a2Þ ¼ Fþ
h
1þ AπðKÞξl log ξl þ b1ξl

þ b2ξ2l þDa2
i
; ð53Þ

where the coefficients Fþ, b1, b2 and D are treated as free
parameters in the fitting procedure, while AπðKÞ is the
chiral-log coefficient predicted by the hard pion SU(2)
Chiral Perturbation Theory (ChPT) [47], given by

Aπ ¼ −
3

4
ð1þ 3ĝ2Þ; AK ¼ þ 1

2
; ð54Þ

where for the coupling constant ĝ we adopt the value
ĝ ¼ 0.61 [17].
Using the ingredients described above we have per-

formed the global, combined fit of all the data for the matrix
elements hV̂0i, hV̂spi and hSi, which amount to a total of
1110 data points for both the D → π and D → K tran-
sitions. The total number of free parameters is 24 (19) in the
case of the D → πðKÞ channel, namely:

(i) in Eq. (53), 3 parameters for D → π (Fþ, b1 and D)
and 4 parameters for D → K (Fþ, b1, b2 and D);

(ii) in Eq. (46), 2 parameters for cD→πðKÞ
þ (i.e.

cþ ¼ c0þ þ c1þa2);
(iii) in Eq. (47), 2 parameters for cD→πðKÞ

0 (i.e.
c0 ¼ c00 þ c10a

2);
(iv) 1 parameter (MV) in Eq. (48) for D → π and 1

parameter (Pþ) in Eq. (50) for D → K;
(v) 2 parameters in Eqs. (49) and (52) (MS and C0

FSE)
only for D → π,;

(vi) 2 parameters in Eq. (45) for the hypercubic form
factor HS;

(vii) in Eq. (36), 3 parameters for each of the four
hypercubic form factors H1, H2, H3 and H4 for
D → π and 2 parameters (i.e. di2 ¼ 0) for D → K.

The quality of the fit is quite good obtaining χ2=d:o:f:≃
1.2 for both the D → π and D → K transitions. We have
tried to include extra terms in Eqs. (46)–(47) either
proportional to z2 (including the analyticity requirement
of Ref. [46] through an appropriate term proportional to z3)
or proportional to the light-quark mass ml in the coef-

ficients cD→πðKÞ
þ;0 . Since the differences in the results for both

the hypercubic corrections and the form factors fþ;0 are
negligible with respect to the other errors and the values
of the new parameters turn out to be consistent with 0,
such extended fits are not used for estimating systematic
uncertainties.

From the global, combined fit we obtain both the
momentum dependence of the Lorentz-invariant form
factors fþ;0 and of the five hypercubic form factors Hi

(i ¼ 1; 2; 3; 4; S). The momentum dependence of fþ;0,
extrapolated to the physical pion mass and to the continuum
and infinite volume limits, will be discussed and compared
to the experimental data in Sec. VI. Here we compute the
hypercubic form factors Hi coming from the global fit in
order to check the quality of the subtraction of the hyper-
cubic effects for each gauge ensemble, i.e. at finite lattice
spacing and volume and for the unphysical pion masses
given in Table I.
In Fig. 6, we show the same form factors given in Fig. 2

after the hypercubic contributions determined by the global
fit have been subtracted from the matrix elements hV̂μi
and hSi using Eqs. (33) and (39). It can be seen that the
hypercubic effects are properly removed and both the scalar
and the vector form factors depend now only on the four-
momentum transfer q2 within the statistical uncertainties.
In the limiting case where the parent and the child

mesons are the same, Eq. (35) reduces to a simpler
expression, namely

hDðp0ÞjV̂E
μ jDðpÞihyp¼a2

h
ðqEμ Þ2PE

μH2þðPE
μ Þ3H4

i
; ð55Þ

because only even terms under the exchange of the initial
and final PS mesons survive. In Sec. IV, we have noted that,
within the statistical uncertainties, there is no evidence of
hypercubic effects when the initial and final meson have
the same masses (see Fig. 4). This might be an indication
that the hypercubic form factors H2 and H4 can be
neglected. Thus, we have repeated the global fitting
procedure assuming H2 ¼ H4 ¼ 0, which reduces the
number of free parameters to 18 and 15 for the D → π
and D → K transitions, respectively.
The differences in the results for both the hypercubic

corrections and the form factors fþ;0, obtained including
(H2 ≠ H4 ≠ 0) or excluding (H2 ¼ H4 ¼ 0) the two
hypercubic form factors H2 and H4, are found to be
negligible within the current statistical uncertainties.
Therefore, in what follows we adopt the fitting procedure,
in which we assume H2 ¼ H4 ¼ 0, as our reference fit
for estimating the uncertainties due to various sources of
systematic errors as well as for obtaining the results for the

form factors fD→πðKÞ
þ;0 ðq2Þ, extrapolated to the physical pion

mass and to the continuum and infinite volume limits,
which will be discussed and compared to the experimental
data in Sec. VI.
We stress again that an important feature of our analysis

with respect to previous studies of the semileptonic
D → πðKÞ form factors is the use of plenty of kinematical
conditions corresponding to parent and child mesons either
moving or at rest. Using only a limited number of
kinematical conditions, for instance the Breit-frame in
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which p⃗D ¼ −p⃗πðKÞ or theD-meson at rest, the presence of
the hypercubic effects may not be manifest. This point is
illustrated in Fig. 7, which shows the subset of our data for
the scalarD → π (left panel) andD → K (right panel) form
factor f0 corresponding only to the D meson at rest both
before and after the subtraction of the hypercubic effects
determined in the global fitting procedure. Lorentz-
symmetry breaking is not manifest in the limited set of

data points with p⃗D ¼ 0, but it is not negligible. This holds
for the scalar form factor f0, while in the case of the vector
form factor fþ, we find that Lorentz-symmetry breaking
effects are less pronounced in the subset of data corre-
sponding to the D meson at rest. We stress that the
differences between the data with and without hypercubic
effects are a Oða2Þ effect proportional to hypercubic
invariants. Thus, any analysis of the data without the
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subtraction of hypercubic effects, based directly on para-
metrizations like Eqs. (46)–(47), where only discretization
effects unrelated to hypercubic invariants are considered, is
in principle inadequate and may lead to different results in
the continuum limit.

VI. RESULTS FROM THE GLOBAL FIT AND
COMPARISON WITH EXPERIMENTAL DATA

The momentum dependencies of the physical Lorentz-
invariant vector and scalar form factors, extrapolated to the
physical pion mass and to the continuum and infinite
volume limits, are shown in Fig. 8 for both the D → π
and D → K transitions. Our results exhibit a remarkable
precision in the full range of values of q2 covered by
the experiments (i.e. 0 ≤ q2 ≤ q2max ¼ ðMD −MπðKÞÞ2 ≃
3.0ð1.9Þ GeV2). Our results for the vector form factors
fDπþ ðq2Þ and fDKþ ðq2Þ can be compared with the corre-
sponding values determined by BELLE, BABAR, CLEO
and BESIII collaborations in Refs. [11–15], where the
partial decay rates have been measured (see also
Refs. [48,49] for a summary of the experimental results).
The agreement is good except at high values of q2, where
some deviations are visible.
In Fig. 9, our main results for the vector and scalar

form factors are compared with those obtained by choosing
only the kinematical configurations corresponding to the
D-meson rest frame and by performing the extrapolations
to the physical pion mass and to the continuum and infinite
volume limits without including the hypercubic terms
(35) and (41). In other words, the continuum extrapolation
is based only on the discretization terms contained in
Eqs. (46)–(47). It can be seen that the neglect of hypercubic
effects in the analysis and the use of a limited subset of data
lead to some distortions of the extrapolated form factors,

which are more pronounced in the case of the scalar form
factor. Such distortions are found to be comparable with
present global uncertainties within one standard deviation.
They may become more relevant as the precision of the data
will be increased in the future.
In Table IV, we provide a set of synthetic data points

for the vector and scalar D → π form factors, fDπþ ðq2Þ
and fDπ

0 ðq2Þ, with the corresponding total uncertainties,
calculated at eight selected values of q2 between 0 and
q2max ¼ ðMD −MπÞ2. The errors in Table IV take into
account the uncertainties induced by

(i) the statistical noise and the fitting procedure;
(ii) the errors in the determinations of the input param-

eters, namely the values of the average u=d quark
mass mud the value of the charm quark mass mc, the
lattice spacing a and the SUð2Þ ChPT LECs f and
B0, determined in Ref. [18];

(iii) the chiral extrapolation, evaluated combining the
results obtained using the SU(2) ChPT fit on all our
lattice data and a fit with b2 ¼ 0 in Eq. (53) applied
only to the data with Mπ < 390 MeV5

(iv) the FSEs, evaluated by comparing the results ob-
tained with and without the FSE factor (52);

(v) the discretization effects, calculated by comparing
our main results with those obtained including
in Eqs. (46)–(47) extra terms proportional to
ðaΛQCDÞ4. Using a value for ΛQCD equal to
≃0.35 GeV, we expect that the values of the
coefficients of the extra terms are in a natural
range of order Oð1Þ. Therefore, we adopt for the
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FIG. 8. Momentum dependencies of the Lorentz-invariant form factors fþðq2Þ (orange bands) and f0ðq2Þ (cyan bands), extrapolated
to the physical pion mass and to the continuum and infinite volume limits, for the D → π (left panel) and D → K (right panel)

transitions, including their total uncertainties. For comparison, the values of fDπðKÞ
þ ðq2Þ determined by BELLE, BABAR, CLEO and

BESIII collaborations in Refs. [11–15] are shown. The bands correspond to the total (statisticalþ systematic) uncertainty at one
standard-deviation level.

5In this case, the total number of data values reduces to 814,
since the results for the gauge ensembles A80.24, A100.24,
B85.24 and B75.32 (see Table I) are excluded from the analysis.
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coefficients of the extra terms a (conservative) prior
distribution equal to 0� 3.

Similarly, in Table V, we provide a set of synthetic data
points for the vector and scalar D → K form factors,
fDKþ ðq2Þ and fDK

0 ðq2Þ, with the corresponding total uncer-
tainties for eight selected values of q2 between 0 and
q2max ¼ ðMD −MKÞ2. Note that, at variance with the case
of the D → π transition, the uncertainty related to FSEs is
not considered, because the data for the D → K transition
do not show any visible FSE.
In order to allow a direct use of the synthetic data points

without using our bootstrap samples, we have calculated
the covariance matrix among the synthetic data points
contained either in Table IVor in Table V. The correspond-
ing covariance matrices are available upon request to allow
us to fit our synthetic data with any functional form, that
can be adopted for describing the momentum dependence
of the form factors.
For a direct use of our results for the form factors

fD→πðKÞ
þ;0 , we provide in the Appendix the values of the

parameters of the z expansions of our global fit after the
extrapolations to the physical pion point and to the
continuum and infinite volume limits, including the cor-
responding covariance matrices.
From Tables IV and V, our results at zero four-momen-

tum transfer are

fD→πþ ð0Þ ¼ 0.612 ð35Þ; fD→Kþ ð0Þ ¼ 0.765 ð31Þ; ð56Þ

which are consistent within the errors with the FLAG [3]
averages fD→πþ ð0Þ ¼ 0.666ð29Þ, based on the result of
Ref. [38], and fD→Kþ ð0Þ ¼ 0.747ð19Þ from Ref. [39].
Using the experimental values

jVcdjfDπþ ð0Þ ¼ 0.1426 ð19Þ;
jVcsjfDKþ ð0Þ ¼ 0.7226 ð34Þ; ð57Þ

given by HFAG in Ref. [16], we obtain our results for the
CKM matrix elements jVcdj and jVcsj:
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FIG. 9. Comparison of the vector and scalar form factors, extrapolated to the physical pion mass and to the continuum and infinite
volume limits, obtained either by choosing all the kinematical configurations and including the hypercubic terms (35) and (41) in the
analysis (solid lines) or by limiting to the kinematical configurations corresponding to the D-meson rest frame without considering the
subtraction of hypercubic effects (dashed lines). The bands correspond to the total uncertainty at one standard-deviation level.

TABLE IV. Synthetic data points for the transition D → π representing our results for the vector and scalar form
factors extrapolated to the physical pion point and to the continuum and infinite volume limits for eight selected
values of q2 in the range between q2 ¼ 0 and q2 ¼ q2max ¼ ðMD −MπÞ2 ≃ 3.0 GeV2. The errors correspond to the
uncertainties related to (statisticalþ fitting procedureþ input parameters), chiral extrapolation, FSEs and discre-
tization effects, respectively (see text). The errors in squared brackets correspond to the combination in quadrature of
the statistical and all systematic errors.

q2ðGeV2Þ fþðq2Þ f0ðq2Þ
0.0 0.612 (35) (4) (7) (1) [35] 0.612 (35) (4) (7) (1) [35]
0.4286 0.715 (31) (4) (6) (1) [32] 0.659 (29) (4) (5) (1) [30]
0.8571 0.840 (29) (3) (6) (1) [30] 0.713 (24) (3) (3) (1) [24]
1.2857 0.991 (29) (4) (6) (1) [30] 0.773 (18) (4) (2) (1) [19]
1.7143 1.179 (34) (10) (3) (1) [35] 0.842 (15) (4) (5) (1) [17]
2.1429 1.415 (43) (15) (8) (1) [47] 0.922 (19) (5) (8) (1) [21]
2.5714 1.721 (60) (21) (16) (1) [66] 1.017 (29) (7) (13) (1) [32]
3.0000 2.130 (86) (31) (27) (3) [96] 1.134 (45) (10) (18) (1) [49]
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jVcdj ¼ 0.2330ð133Þlatð31Þexp ¼ 0.2330ð137Þ; ð58Þ

jVcsj ¼ 0.945ð38Þlatð4Þexp ¼ 0.945ð38Þ; ð59Þ

where the errors are from the lattice calculation and from
the experiments respectively, showing that the dominant
error is the theoretical one. Our results (58) can be
compared with the determinations of jVcdj and jVcsj based
on theD andDs leptonic decay constants, fD ¼ 207.4ð3.8Þ
and fDs

¼ 247.2ð4.1Þ MeV, obtained in Ref. [6] using the
same ETMC gauge configurations. Using the experimental
values of fDjVcdj ¼ 46.06ð1.11Þ and fDs

jVcsj ¼
250.66ð4.48Þ MeV from Ref. [50], one gets

jVcdj ¼ 0.2221ð41Þlatð54Þexp ¼ 0.2221 ð68Þ; ð60Þ

jVcsj ¼ 1.014ð17Þlatð18Þexp ¼ 1.014 ð25Þ; ð61Þ

where again the errors are from the lattice calculation and
from the experiments, respectively. At variance with the
semileptonic case, the theoretical uncertainties of jVcdj and
jVcsj, obtained from the leptonic decays, are comparable to
(or even smaller than) the experimental ones.
An alternative way to extract the CKM matrix elements

jVcdj and jVcsj is to combine directly the momentum
dependence of the semileptonic form factors obtained from
lattice QCD simulations with the experimental q2-bins of
the differential D → πðKÞlνl decay rates. The application
of such a strategy using the form factors determined in this
work will be presented elsewhere [51].
The results (58)–(61) are presented in Fig. 10 as ellipses

in the jVcdj − jVcsj plane corresponding to a 68% proba-
bility contour. In Fig. 10 also the ellipses corresponding to
the leptonic and semileptonic FLAG averages [3] for jVcdj

and jVcsj are shown, as well as the constraint imposed by
the second-row unitarity, indicated by a dashed line.
Using jVcbj ¼ 0.0360ð9Þ from Ref. [17] we can perform

the check of the unitarity of the second row of the CKM
matrix. We find

jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 0.949ð78Þ
from semileptonic decays;

jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 1.079ð54Þ
from leptonic decays; ð62Þ

which test the second-row unitarity at the level of several
percent for both semileptonic and leptonic modes.

VII. CONCLUSIOS

We have presented the first lattice Nf ¼ 2þ 1þ 1

determination of the vector and scalar form factors of
the D → πlν and D → Klν semileptonic decays, which
are relevant for the extraction of the CKM matrix elements
jVcdj and jVcsj from experimental data.
Our analysis is based on the gauge configurations

produced by ETMC with Nf ¼ 2þ 1þ 1 flavors of
dynamical quarks at three different values of the lattice
spacing with pion masses as small as 210 MeV. Quark
momenta are injected on the lattice using nonperiodic
boundary conditions. The matrix elements of both vector
and scalar currents are determined for plenty of kinematical
conditions in which parent and child mesons are either
moving or at rest.

TABLE V. Synthetic data points for the D → K transition
representing our results for the vector and scalar form factors
extrapolated to the physical pion point and in the continuum and
infinite volume limits for eight selected values of q2 in the range
between q2 ¼ 0 and q2 ¼ q2max ¼ ðMD −MKÞ2 ≃ 1.88 GeV2.
The errors correspond to the uncertainties related to
(statistical þ fitting procedureþ input parameters), chiral extra-
polation and discretization effects, respectively (see text). The
errors in squared brackets correspond to the combination in
quadrature of the statistical and all systematic errors.

q2ðGeV2Þ fþðq2Þ f0ðq2Þ
0.0 0.765 (29) (11) (1) [31] 0.765 (29) (11) (1) [31]
0.2692 0.815 (28) (12) (1) [31] 0.792 (26) (10) (1) [28]
0.5385 0.872 (28) (13) (1) [31] 0.820 (23) (10) (1) [25]
0.8077 0.937 (28) (15) (1) [32] 0.849 (21) (9) (1) [23]
1.0769 1.013 (29) (17) (1) [34] 0.879 (19) (9) (1) [21]
1.3461 1.102 (32) (21) (1) [38] 0.911 (17) (9) (1) [19]
1.6154 1.208 (36) (26) (1) [44] 0.944 (17) (8) (1) [19]
1.8846 1.336 (43) (32) (1) [54] 0.979 (17) (8) (1) [19]

FIG. 10. Results for jVcdj and jVcsj obtained from leptonic and
semileptonic D- and Ds-meson decays, represented, respectively,
by green and red ellipses corresponding to a 68% probability
contour. The solid ellipses are the results of Ref. [6] and of this
work, obtained with Nf ¼ 2þ 1þ 1 dynamical quarks. The
striped ellipses correspond to the latest FLAG results [3], which
for the semileptonic decays are based on the LQCD results
obtained in Refs. [38,39] with Nf ¼ 2þ 1 dynamical quarks.
The dashed line indicates the correlation between jVcdj and jVcsj
that follows if the CKM-matrix is unitary.
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Lorentz symmetry breaking due to hypercubic effects is
clearly observed in the data and included in the decom-
position of the current matrix elements in terms of addi-
tional form factors. We found evidence that the hypercubic
artifacts may be governed by the difference between the
parent and the child meson masses. This represents a very
important issue, which warrants further investigations,
since it might become particularly relevant in the case of
the determination of the form factors governing semi-
leptonic B-meson decays into lighter mesons.
In the present work the values of the quark momentum

were not chosen having in mind the investigation of hyper-
cubic effects in the semileptonic form factors. In particular,
the use of spatially symmetric values of the quark momen-
tum is not ideal for such a purpose. We have planned to
perform new calculations of the semileptonic form factors
removing the above constraint and optimizing the choice of
the nonperiodic boundary conditions. Nevertheless, we
stress that the main structure of the hypercubic effects on
thematrix elements of the vector and scalar currents has been
understood in the present work.
After the extrapolations to the physical pionmass and to the

continuum limit we determine the vector and scalar form
factors in the whole kinematical region from q2 ¼ 0 up to
q2max ¼ ðMD −MπðKÞÞ2 accessible in the experiments,
obtaining a good overall agreement with experiments.
Some deviations are visible at high values of q2 for bothD →
πlν and D → Klν decays. A set of synthetic data points,

representing our results for fDπðKÞ
þ ðq2Þ and fDπðKÞ

0 ðq2Þ for
several selected values of q2, is provided, including also the
covariance matrix for the data at different values of q2.
At zero four-momentum transfer, we get

fD→πþ ð0Þ ¼ 0.612 ð35Þ; ð63Þ

fD→Kþ ð0Þ ¼ 0.765 ð31Þ: ð64Þ

Using the experimental values (57) for jVcdjfD→πþ ð0Þ and
jVcsjfD→Kþ ð0Þ from HFAG [16], we determine

jVcdj ¼ 0.2330 ð137Þ; ð65Þ

jVcsj ¼ 0.945 ð38Þ: ð66Þ

Including also the determination of jVcbj from B-meson
decays [17], the test of the second row of the CKM
matrix is

jVcdj2 þ jVcsj2 þ jVcbj2 ¼ 0.949 ð78Þ: ð67Þ
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APPENDIX: THE Z EXPANSION OF THE
PHYSICAL VECTOR AND SCALAR FORM

FACTORS

After the extrapolations to the physical pion point and to
the continuum and infinite volume limits, the z expansions
of the vector and scalar form factors, adopted in this work,
are written in the case of the D → π transition as

fD→πþ ðq2Þ ¼ fD→πð0Þ þ cD→πþ ðz − z0Þð1þ zþz0
2
Þ

1 − PVq2
; ðA1Þ

TABLE VI. Values of the parameters appearing in the z expansions of the vector and scalar form factors (A1)–
(A2) in the case of the D → π transition.

fD→πð0Þ cD→πþ PVðGeV−2Þ cD→π
0 PSðGeV−2Þ

0.6117(354) −1.985ð347Þ 0.1314(127) −1.188ð256Þ 0.0342(122)

TABLE VII. Covariance matrix corresponding to the z expansions of the vector and scalar form factors (A1)–(A2)
in the case of the D → π transition.

fD→πð0Þ cD→πþ PV cD→π
0

PS

fD→πð0Þ 1.25642 × 10−3 7.18296 × 10−3 6.77051 × 10−3 3.66997 × 10−5 2.87257 × 10−5

cD→πþ 7.18296 × 10−3 6.56690 × 10−2 6.30124 × 10−2 1.73569 × 10−3 8.43689 × 10−4

PV 6.77051 × 10−3 6.30124 × 10−2 1.20371 × 10−1 2.24220 × 10−3 3.25631 × 10−3

cD→π
0 3.66997 × 10−5 1.73569 × 10−3 2.24220 × 10−3 1.48010 × 10−4 9.60595 × 10−5

PS 2.87257 × 10−5 8.43689 × 10−4 3.25631 × 10−3 9.60595 × 10−5 1.60179 × 10−4
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fD→π
0 ðq2Þ ¼ fD→πð0Þ þ cD→π

0 ðz − z0Þð1þ zþz0
2
Þ

1 − PSq2
: ðA2Þ

The values of the five parameters fD→πð0Þ, cD→πþ , PV , cD→π
0

and PS are collected in Table VI, with the corresponding
covariance matrix given in Table VII.
Analogously, in the case of the D → K transition, the z

expansions of the vector and scalar form factors read as

fD→Kþ ðq2Þ ¼ fD→Kð0Þ þ cD→Kþ ðz − z0Þð1þ zþz0
2
Þ

1 − q2=M2
D�

s

; ðA3Þ

fD→K
0 ðq2Þ ¼ fD→Kð0Þ þ cD→K

0 ðz − z0Þ
�
1þ zþ z0

2

�
;

ðA4Þ

where the values of the three parameters D→Kð0Þ, cD→Kþ and
cD→K
0 are collected in Table VIII, with the corresponding
covariance matrix given in Table IX.
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