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We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions
solved on the dynamical Nf ¼ 2þ 1þ 1 highly improved staggered quark sea-quark ensembles generated
by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are
shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved
staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is
mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes.
We have created an interface to this optimized QUDA solver in CHROMA. We provide tuned parameters of
the action and performance of QUDA using ensembles with the lattice spacings a≃ f0.15; 0.12; 0.09g fm
and pion masses mπ ≃ f310; 220; 130g MeV. We have additionally generated two new ensembles with
a ∼ 0.12 fm and mπ ∼ f400; 350g MeV. With a fixed flow time of tgf ¼ 1 in lattice units, the residual
chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all
ensembles, mres ≲ 0.1 ×ml, with moderate values of the fifth dimension L5 and a domain-wall height
M5 ≤ 1.3. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon
mass extrapolation of FK�=Fπ� and demonstrate our results are independent of flow time and consistent
with the FLAG determination of this quantity at the level of less than one standard deviation.
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I. INTRODUCTION

QCD [1,2] is the fundamental theory of the strong
interaction and one of the three gauge theories of the
Standard Model of particle physics. QCD encodes the
interactions between quarks and gluons, the constituents of
strongly interacting matter, which both carry color charges
of QCD. At short distances, the quarks and gluons
perturbatively interact with a coupling strength that runs
to zero in the UV limit [3,4]. Conversely, at long distance/
low energy, the IR regime, the coupling becomesOð1Þ, and
QCD becomes a strongly coupled theory. Consequently,
the quarks and gluons are confined into the colorless
hadrons we observe in nature, such as the proton, neutron,

pions, etc. In order to compute properties of nucleons,
nuclei, and other strongly interacting matter directly from
QCD, we must therefore use a nonperturbative regulariza-
tion scheme.
Asymptotic freedom, the property in which the gauge

coupling becomes perturbative in the UV, makes the theory
perfectly amenable to a numerical approach. QCD can be
constructed on a discrete, Euclidean spacetime lattice,
with a technique known as lattice QCD (LQCD). As the
discretization scale is made sufficiently fine and the
coupling becomes perturbative, the lattice action can be
matched onto the continuum action to a desired order in
perturbation theory. To aid the matching, effective field
theory (EFT) [5] can be used to perform an expansion of the
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lattice action in powers of the discretization scale, typically
denoted a, which is referred to as the Symanzik expansion
[6,7]. There are many different choices for constructing the
discretized action, each of which corresponds to a different
lattice action. As the continuum limit is taken, the differ-
ence between these lattice actions vanishes as the only
dimension-4 operators allowed by the symmetries are those
of QCD; the discretization effects, which include Lorentz
violating interactions, are all described by irrelevant
operators in the Symanzik expansion. An important test
of this universality is to perform calculations of various
physical quantities, with different lattice actions, and show
consistency between them in the continuum limit. This is
now routinely done for mesonic quantities and reviewed
every two to three years by the FLAGWorking Group, with
the latest review in Ref. [8].
Lattice gauge theory began with the formulation of

gauge fields on a spacetime lattice as originally proposed
by Wilson [9]. The inclusion of fermions presents further
challenges. The naive discretization of the fermion action
leads to the fermion doubling problem, in which there are
2D fermions in D dimensions for each fermion field
implemented. These doublers arise from the periodicity
of the lattice action in momentum space and the single
derivative in the Dirac equation. Wilson proposed the
original method, now known as the Wilson fermion action,
to remove these doublers by adding an irrelevant operator
to the action which provides an additive mass to the
doublers which scales as 1=a. This irrelevant operator
breaks chiral symmetry and requires fine-tuning the bare
fermion mass to simulate a theory with light fermions, such
as QCD with light up and down quarks. Despite (or
because of) its simplicity, the Wilson fermion action is still
one of the most popular in use. These days, the leading
OðaÞ discretization corrections are removed perturbatively
or nonperturbatively through an additional dimension-5
operator, the clover operator cSWaq̄σμνGμνq, in what is
known as the Wilson-Clover or Clover fermion action. The
parameter cSW is the Sheikholeslami-Wohlert coefficient
[10], which can be tuned to remove the OðaÞ discretization
effects from correlation functions. The idea has also been
extended to twisted mass Wilson fermions [11], in which a
complex quark-mass term is used, allowing for automatic
OðaÞ improvement of physical observables provided the
theory is computed at maximal twist [12].
Another common lattice action is known as the Kogut-

Susskind or staggered fermion action [13,14]. This action
reduces the number of fermion doublers by exploiting a
symmetry of the naive fermion action. A suitable space-
time-dependent phase rotation of the fermion fields allows
for the Dirac equation to be diagonalized, thereby reducing
the number of doublers from 16 to 4, in four spacetime
dimensions. To perform numerical simulations with just
one or two light fermion flavors, a fourth or square root of
the fermion determinant is used [15]. This rooting leads to

nonlocal interactions at finite lattice spacing [16–18];
however, perturbation theory [19,20], the renormalization
group [21–23], and numerical simulations [24–26] have
been used to argue that these nonlocal effects vanish in the
continuum limit. While this has not been proven non-
perturbatively, some of the potential sicknesses of the
theory can be shown to be the same as those of partially
quenched lattice QCD [27], which wewill discuss briefly in
short order. While not universally accepted, all numerical
evidence suggests that rooted-staggered LQCD is in the
same universality class as QCD as the continuum limit is
taken [8,28–30].
Determining a nonperturbative regulator that both pre-

serves chiral symmetry and has the correct number of light
degrees of freedom is challenging. It has been shown that in
four spacetime dimensions, one cannot simultaneously have
all four of the conditions: chiral symmetry, ultralocal action,
undoubled fermions, and the correct continuum limit. This is
known as the Nielsen-Ninomiya no-go theorem [31–33].
However, one can extend the definition of chiral symmetry at
finite lattice spacing: if the lattice Dirac operator,D, satisfies
the Ginsparg-Wilson relation [34]

fγ5; Dg ¼ aDγ5D; ð1Þ

it will respect chiral symmetry even at finite lattice spacing
[35]. One consequence is the theory will be automatically
OðaÞ improved as the only nontrivial dimension-5 operator
that cannot be removed through field redefinitions and
equations of motion is the clover operator, which explicitly
breaks chiral symmetry and is thus not allowed. There are
two lattice actions which satisfy the Ginsparg-Wilson
relation: the domain-wall (DW) fermion action [36–38]
and the overlap fermion action [39–41]. The DW fermion
action is formulated with a finite fifth dimension of extent
L5, where the left and right chiral modes are bound to
opposite ends of the fifth dimension. The gluon action is a
trivial copy of the four-dimensional (4D) action on each
fifth-dimensional slice with unit link variable between the
slices, and so the fermions have only a simple kinetic action
in the fifth dimension. At finite L5, the left and right modes
have a nonvanishing overlap due to fermion modes which
propagate into the fifth dimension. The massive modes
decay exponentially in the fifth dimension, while the fermion
zero modes have only a power-law falloff. This small overlap
leads to a small, residual breaking of chiral symmetry at
finite L5, characterized by a quantity known as mres. The
overlap fermion action can be shown to be equivalent to the
domain-wall action as L5 → ∞ [42,43] and respects chiral
symmetry to a desired numerical precision.
The numerical cost of generating lattice ensembles with

domain-wall and overlap actions is 1 or more orders of
magnitude greater than the cost of generating ensembles
with Wilson-type or staggered fermion actions [44]. This
has led to interest in, and the development of, mixed lattice
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actions or mixed-actions (MA) [45], in which the valence
and sea-quark lattice actions are not the same at finite lattice
spacing. In the most common MALQCD calculations, the
dynamical sea-quark action is generated with a numerically
less expensive discretization scheme, such as staggered- or
Wilson-type fermions, while the valence-quark action,
which is used to construct correlation functions, is imple-
mented with domain-wall or overlap fermions, thus retain-
ing the full chiral symmetry in the valence sector. The first
implementation of a MALQCD calculation was performed
by the Lattice Hadron Physics Collaboration [46] utilizing
DW fermions on the publicly available asqtad (a2 tadpole
improved) [47,48] rooted staggered ensembles generated
by the MILC Collaboration [30,49]. A number of important
results were obtained with this particular MALQCD setup,
including the first dynamical calculation of the nucleon
axial charge with light pion masses [50] and more general
nucleon structure [51,52], the first dynamical calculation of
two-nucleon elastic scattering [53], a precise calculation of
the I ¼ 2ππ scattering length [54], a detailed study of the
quark-mass dependence of the light baryon spectrum [55],
a calculation of the kaon bag parameter with fully con-
trolled uncertainties [56], and many more.
The predominant reason for the success of these

MALQCD calculations is the good chiral symmetry proper-
ties of the DWaction, which significantly suppresses chiral
symmetry breaking from the staggered sea fermions and
discretization effects. EFT can be used to understand the
salient features of such MALQCD calculations. Chiral
perturbation theory (χPT) [57–59] can be extended to
incorporate discretization effects into the analytic formulas
describing the quark-mass dependence of various hadronic
quantities. The procedure is to first construct the local
Symanzik action for a given lattice action and then to use
spurion analysis to construct all operators in the low-energy
EFT describing such a lattice action, including contribu-
tions from higher-dimension operators [60]. The MA EFT
[61] for DW valence fermions on dynamical rooted
staggered fermions is well developed [62–69]. The use
of valence fermions which respect chiral symmetry leads to
a universal form of the MA EFT extrapolation formulas at
next-to-leading order (NLO) in the dual quark-mass and
lattice spacing expansions [65,68]. This universal behavior
follows from the suppression of chiral symmetry breaking
discretization effects from the sea sector when constructing
correlation functions from valence fermions. Further,
quantities which are protected by chiral symmetry are free
of new low-energy constants (LECs) at NLO provided on-
shell renormalized quantities are used in the extrapolation
formulas [64,65]. This universality allows for the derivation
of NLO MA EFT formula directly from their partially
quenched χPT [70–78] counterparts, provided they are
known [79–86]. MALQCD calculations with DW valence
quarks on the asqtad rooted staggered ensembles have been
stress tested through a comparison of quantities which are

directly sensitive to the unitarity violations present in
MALQCD calculations, in particular the a0 meson corre-
lation function [87,88]. There are a few other MA con-
structions that have been tested but only a few others that
are actively used. The HPQCD Collaboration utilizes
highly improved staggered quark (HISQ) valence fermions
on the asqtad ensembles; for example, see Refs. [89,90].
The χQCD Collaboration utilizes overlap valence fermions
on the dynamical Nf ¼ 2þ 1 domain-wall ensembles
[91–93] generated by the RBC/UKQCD Collaboration
[94,95]. The work in Refs. [96–99] uses valence overlap
fermions on the Nf ¼ 2þ 1þ 1 HISQ ensembles [100].
The PNDME Collaboration has utilized clover improved
valence fermions on the Nf ¼ 2þ 1þ 1 HISQ ensembles
[100,101]. While this MA choice is economical, it does not
benefit from the suppression of chiral symmetry breaking
discretization effects as with the DW on asqtad or overlap
on DW MALQCD calculations.
Given the successes described above, MALQCD pro-

vides an economical means of performing LQCD calcu-
lations in which chiral symmetry breaking effects are
highly suppressed by utilizing a valence fermion action
that respects chiral symmetry in combination with a set of
LQCD ensembles that do not but are less numerically
expensive to generate. In this article, we motivate a new
MALQCD action and present numerical evidence for
salient features of the action.

II. MÖBIUS DOMAIN-WALL FERMIONS ON
GRADIENT-FLOWED HISQ ENSEMBLES

Present-day LQCD calculations for mesonic quantities
are performed with multiple lattice spacings, multiple
volumes, and physical pion masses, allowing for complete
control over all LQCD systematics; see Ref. [8] for many
examples. The simplest single baryon properties are also
computed with multiple lattice spacings/volumes and near-
physical and sometimes physical pion masses [102–105],
including the first calculation of the nucleon axial charge
with both physical pion masses and a continuum limit [106]
and isospin violating corrections [106–109]. If one is
interested in a set of ensembles allowing for this much
control over LQCD systematics, there are only two such
sets publicly available, both of which are generated and
provided by the MILC Collaboration: the Nf ¼ 2þ 1
asqtad ensembles [30] and the Nf ¼ 2þ 1þ 1 HISQ
[110] ensembles generated more recently [111,112].
The HISQ ensembles have taste splittings in the pseudo-
scalar sector that are one generation finer in discretization
[112], such that the a ∼ 0.15 fm HISQ ensemble taste
violations are similar in size to the a ∼ 0.12 fm asqtad
ensembles. There is a vast set of HISQ ensembles with
130≲mπ ≲ 310 MeV, strange and charm quark masses
tuned near their physical values and lattice spacings
of a ∼ f0.15; 0.12; 0.09; 0.06; 0.042; 0.03g fm, including
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multiple spatial volumes and lighter than physical strange
quark masses. In addition to the publicly available
HISQ ensembles, we have generated two additional sets at
a ∼ 0.12 fm and mπ ≈ 350; 400 MeV with fixed volume in
lattice units such that mπL ≥ 5.1. In Table I, we list the
HISQ ensembles utilized in the present work as well as
ensembles for which we have tuned the Möbius DW
fermion (MDWF) parameters for future work.
Given the great success of the MA DW fermion on

asqtad LQCD calculations [50–56], we have chosen to use
DW fermions for the present MALQCD calculations as
well. In the present work, we have chosen to use the
MDWF action [113–115] which offers reduced residual
chiral symmetry breaking at fixed fifth-dimensional extent,
L5. With the introduction of two new parameters, b5 and c5,
the Möbius kernel can be smoothly interpolated between
the Shamir [37] and the Neuberger/Boriçi [42,43,116,117]
kernels. Following Ref. [115], the Möbius kernel can be
expressed as

DMöbiusðM5Þ ¼
ðb5 þ c5ÞDWilsonðM5Þ

2þ ðb5 − c5ÞDWilsonðM5Þ
: ð2Þ

Alternatives include a polar decomposition to the sign
function [118–120] or other methods of approximating the
sign function [121]. In this work, we have always chosen
values of b5 and c5 with the constraint b5 − c5 ¼ 1, such
that the Möbius kernel is a rescaled version of the Shamir
kernel

DMöbiusðM5Þ ¼
αDWilsonðM5Þ

2þDWilsonðM5Þ
≡ αDShamirðM5Þ: ð3Þ

It was demonstrated in Ref. [115] that this rescaling factor,
α, exponentially enhances the suppression of residual chiral
symmetry breaking as

mres ∼ e−αL5 ; ð4Þ

provided the action is in a regimewhere these exponentially
damped terms are the dominant contribution tomres and α is
not too large, but of the order α ∼ 2–4. With the constraint
b5 − c5 ¼ 1, the rescaling factor is given by α ¼ b5 þ c5.

III. GRADIENT-FLOW SMEARING

From the DWon asqtad action [122], it is known that the
asqtad gauge fields required additional levels of smearing
to reduce the residual chiral symmetry breaking. For that
action, Hypercubic (HYP) smearing [123–126] was uti-
lized for this purpose. In this work, we choose to investigate
the use of the gradient flow [127–129] as a smearing
method. The gradient flow is a nonperturbative, classical
evolution of the original fields in a new parameter, the flow
time, that drives those fields toward a classical minimum.
In real space, this corresponds to smearing out the degrees
of freedom through an infinitesimal stout-smearing
procedure [130].
Gradient flow smearing introduces a new scale, of the

order lgf ∼
ffiffiffiffiffiffiffiffi
8tgf

p
a, where tgf is the (dimensionless) flow

time. Correlation functions depend upon this new scale,
which can serve as a nonperturbative, rotationally invariant
UV regulator that provides the possibility for improved
renormalization procedures for various LQCD matrix
elements [131–137]. Here, however, we are interested in
the gradient flow as a smearing algorithm [138,139].
To ensure that the continuum limit of LQCD matrix

elements is free of any flow-time dependence, one must use
a fixed flow time in lattice units such that all flow-time
dependence extrapolates to zero as the continuum limit
is taken.
In this work, we have found that moderate values of the

flow time allow for a reduction of the residual chiral sym-
metry breaking such that mres < 0.1 ×mdwf

l for moderate

TABLE I. The HISQ ensembles used in this work and planned for future MALQCD calculations. In addition to the pion mass and
lattice spacing, we list the number of configurations used in the present work, Ncfg as well as the Monte Carlo time, ΔτMC, by which the
configurations were separated in this work. The short name, introduced in Ref. [101], is for brevity. The last two HISQ ensembles were
generated at LLNL targeting heavier pion masses to test the radius of convergence of the chiral extrapolation in future MALQCD
calculations.

Short
name Ensemble amHISQ−5

π amHISQ−5
ss Volume

∼a
(fm)

∼mπ

(MeV) mπL Ncfg ΔτMC

a15m310 l1648f211b580m013m065m838a 0.23646(17) 0.51858(17) 163 × 48 0.15 310 3.78 196 50
a12m310 l2464f211b600m0102m0509m635a 0.18931(10) 0.41818(10) 243 × 64 0.12 310 4.54 199 25
a09m310 l3296f211b630m0074m037m440e 0.14066(13) 0.31133(12) 323 × 96 0.09 310 4.50 196 24
a15m220 l2448f211b580m0064m0640m828a 0.16612(08) 0.51237(10) 243 × 48 0.15 220 3.99 199 25
a12m220 l3264f211b600m00507m0507m628a 0.13407(06) 0.41559(07) 323 × 64 0.12 220 4.29 199 25
a09m220 l4896f211b630m00363m0363m430a 0.09849(07) 0.30667(07) 483 × 96 0.09 220 4.73 � � � � � �
a15m130 l3248f211b580m00235m0647m831a 0.10161(06) 0.51427(05) 323 × 48 0.15 130 3.25 � � � � � �
a12m130 l4864f211b600m00184m0507m628a 0.08153(04) 0.41475(05) 483 × 64 0.12 130 3.91 � � � � � �
a12m400 l2464f211b600m0170m0509m635a 0.24398(12) 0.41970(12) 243 × 64 0.12 400 5.86 � � � � � �
a12m350 l2464f211b600m0130m0509m635a 0.21376(13) 0.41923(13) 243 × 64 0.12 350 5.13 � � � � � �
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values of L5. The resulting flow-time dependence ofmres at
fixed pion mass demonstrates that the gradient flow highly
suppresses the zero-mode contributions tomres, such that an
exponential dependence ofmres on L5 is recovered. Further,
we have observed that gradient-flow smearing has allowed
us to use small values of the DW height, withM5 ≤ 1.3 on
all ensembles used in this work. This is important because
with the larger values of M5 used in the DW on asqtad
calculations, there was strong contamination of the UV
modes with an oscillatory time behavior, modes which are
known to decouple asM5 → 1 [140]. With the values ofM5

used in this work, there is no discernible contamination
from these modes at larger flow times.
We finally settled on a gradient flow time of tgf ¼ 1.0,

which provided significant suppression of residual chiral
symmetry breaking without introducing a large flow-time
length scale. In the next section, we present detailed
calculations showing the flow-time dependence of various
quantities. This action has been used to compute the
π− → πþ matrix element relevant for neutrinoless double
beta decay [141] and also to perform an exploratory
calculation of an improved method of computing hadronic
matrix elements [142] and an application to gA [143].

A. Tuning the action

Before showing results, we describe how to match the
valence MDWF action and the HISQ action. With a given
flow time, our general algorithm for choosing values of the
MDWF action parameters is:

(i) For a fixed value of L5, optimizeM5 to minimize the
resulting value of mres.

(ii) Vary the values of L5, b5, and c5 under the con-
straints b5 − c5 ¼ 1 and mres ≤ 0.1mdwf

l while min-
imizing L5.

(iii) Tune mdwf
l and mdwf

s such that mdwf
π ≃mHISQ-5

π and
mdwf

ss ≃mHISQ-5
ss within Oð2%Þ or less where

HISQ-5 denotes the taste-5 pseudoscalar mass of
the dynamical HISQ action and mss is the mass of
the connected s̄γ5s pseudoscalar meson.

This procedure required just a few iterations to converge to
the desired results. For this work, we have used the
definition of mres from the Shamir kernel as the residual
chiral symmetry breaking between Shamir and Möbius
becomes the same in the continuum limit [115],

mresðtÞ ¼
P

xhQ̄ðt;xÞγ5Qðt;xÞq̄ð0; 0Þγ5qð0; 0ÞÞiP
xhq̄ðt;xÞγ5qðt;xÞq̄ð0; 0Þγ5qð0; 0ÞÞi

; ð5Þ

where Q is a quark field in the midpoint of the fifth
dimension and q is a quark field bound to the domain wall.
In Table II, we list the resulting MDWF parameters at the

chosen gradient flow time of tgf ¼ 1. These parameters
were used in Refs. [141,143].

IV. FLOW TIME DEPENDENCE
OF VARIOUS QUANTITIES

To study the efficacy of this action, we compute the flow-
time dependence of various quantities. In the next section,
we will show that the continuum limits of various ratios of
physical quantities are flow-time independent. In order to
test the flow-time dependence, we tune the input quark
masses to hold the pion mass and the connected ss
pseudoscalar meson masses fixed within Oð2%Þ. In the
Appendix (Table VII), we list the tuned values of the input
quark masses for various flow times on the ensembles used
in this work. We also list the resulting values of the
plaquette, mres, and the values of ZA determined as
described below. In Fig. 1, we show the effective masses
of the pion and nucleon, respectively, on the a15m310
ensemble for all flow times. We observe that the contami-
nation from oscillatory modes is suppressed at larger
flow times.
From the input quark masses used at fixed pseudoscalar

masses, and the average values of the plaquettes, one
observes a substantial flow-time dependence of UV quan-
tities. This is expected as the gradient flow smearing filters
out the UV modes of the gauge fields. It is important to
check the flow-time dependence of hadronic quantities and
verify the continuum limit is flow-time independent. This
can easily be checked with ratios of hadronic quantities. In
Table VIII, we list values of the meson massesmπ ,mK, and
mss as well as the decay constants Fπ and FK and the
nucleon mass mN . We also provide the ratios of FK=Fπ

and mN=Fπ .

A. Fit functions

To determine the value of mres, we fit the correlation
function described by Eq. (5) to a constant.
The meson correlation functions were folded in time to

double the statistics while the nucleon correlation functions
were averaged between the forward propagating positive
parity interpolating operator and the backward propagating

TABLE II. Tuned MDWF parameters for our MALQCD
calculations. Some of the ensembles are used, for example, in
Refs. [141,143].

Ensemble M5 L5 b5 c5 tgf ammdwf
l ammdwf

s

a12m400 1.2 8 1.25 0.25 1.0 0.02190 0.0693
a12m350 1.2 8 1.25 0.25 1.0 0.01660 0.0693
a15m310 1.3 12 1.50 0.50 1.0 0.01580 0.0902
a12m310 1.2 8 1.25 0.25 1.0 0.01260 0.0693
a09m310 1.1 6 1.25 0.25 1.0 0.00951 0.0491
a15m220 1.3 16 1.75 0.75 1.0 0.00712 0.0902
a12m220 1.2 12 1.50 0.50 1.0 0.00600 0.0693
a09m220 1.1 8 1.25 0.25 1.0 0.00449 0.0491
a15m130 1.3 24 2.25 1.25 1.0 0.00216 0.0902
a12m130 1.2 20 2.00 1.00 1.0 0.00195 0.0693
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negative parity interpolating operator, constructed as in
Refs. [144,145]. The fit Ansatz describing a q̄1q2-meson
correlation functions is given by

Cq1q2
2pt ðtÞ ¼

X
n

zq1q2n zq1q2†n ðe−Eq1q2
n t þ e−E

q1q2
n ðT−tÞÞ

þ ð−1Þtzosczosc†ðe−Eosct þ e−E
oscðT−tÞÞ; ð6Þ

where we define zn as the overlap factor of the nth state
with energy En and the superscript osc. denotes the overlap
and energy of the oscillating mode.
In order to determine the pseudoscalar decay constants,

we utilize the five-dimensional (5D) Ward identity relating
the renormalized decay constants to various correlation
functions including those used to determine the values of
mres [146,147],

Fq1q2 ¼ zq1q2p
mq1 þmq1

res þmq2 þmq2
resffiffiffiffiffiffiffiffiffiffi

Eq1q2
0

3
p ; ð7Þ

where zp denotes the point-sink overlap factor. This
normalization is such that the physical pion decay constant
is Fπ ¼ 92.2 MeV.

In order to determine the axial renormalization constants,
we can also compute the bare values of Fq1q2 using the 4D
axial-vector current,

Cq1q2
axial ¼ ∂4h0jA4ðtÞPSð0Þj0i

¼ −
X
n

fq1q2n zq1q2s;n ðe−Eq1q2
n t þ e−E

q1q2
n ðT−tÞÞ

− ð−1Þtfosczoscs ðe−Eosct þ e−E
oscðT−tÞÞ; ð8Þ

where fq1q20 ¼ ffiffiffiffiffiffiffiffiffiffi
Eq1q2
0

p
Fq1q2=ZA with renormalization coef-

ficient ZA and zs is the same ground-state overlap factor
determined in the two-point function.
For the nucleon two-point correlation function, we use

the fit Ansatz analogous to Eq. (6) without the oscillating
state and wraparound terms.

B. Analysis strategy

The correlator analysis is performed using the PYTHON
package LSQFIT [148]. We perform a chained fit [149] to the
light and strange mres correlator; the pion, kaon, and s̄s-
meson two-point and axial correlators; and the nucleon
two-point correlator. In particular, as part of the chained fit,
we perform a simultaneous fit to the pseudoscalar two-
point (point- and smeared-sink) and axial correlators and to
the nucleon point- and smeared-sink correlators. The
chained fit implementation in LSQFIT preserves all corre-
lations by numerically implementing the propagation of
error under the assumption that all parameters are Gaussian
distributed. We use the resulting correlated posterior dis-
tributions to propagate all subsequent uncertainties (e.g.,
ratios) without performing any bootstrap resampling.
For the pseudoscalar correlators, we truncate the fit Ansatz

at 2þ 1 states, where theþ1 denotes the oscillating state. For
the nucleon correlator, we perform a two-state fit. For the
pseudoscalar correlators, in an independent analysis, using
similar fit regions, we observe using three states without
oscillating modes results in a consistent determination of the
ground-state masses and overlap factors. Further, using an
unconstrained, single-state fit in the late time region also
results in consistent ground-state parameters.
We choose unconstraining ground-state priors such that

the prior widths are at least an order of magnitude wider
than the width of the posterior distribution. The oscillating-
state energy splitting is chosen to be at the lattice cutoff
scale. The first excited-state energy splitting is chosen to be
at the two-pion threshold. Details on our prior choices are
given in Table IX.
The fit region is chosen such that tmin ∼ 1 fm and tmax ∼

2.3 fm for all pseudoscalar correlators. For the nucleon
correlator analysis, tmin ∼ 0.6 fm and tmax ∼ 1.4 fm are
chosen for all ensembles. It is necessary to fit the nucleon
correlator closer to the origin due to the poorer signal-to-
noise ratio when compared to the pseudoscalar observables.
Explicit fit regions in lattice units are given in Table X. We

FIG. 1. Effective mass of the pion (top) and proton (bottom) as
a function of the Euclidean time t, at different flow times on the
a15m310 ensemble. The different flow-time values are slightly
shifted horizontally for visual clarity.
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observe that all final correlator fits are in the region of
stability for varying tmin and tmax, including the more
aggressive nucleon analysis, indicating that the results are
free of excited-state contamination.

C. Observations about flow-time dependence

From our calculations, there are a few substantial
benefits one observes from the use of the gradient-flow
smearing. Before discussing these, we first comment on the
strong oscillations observed at small flow time in the
pseudoscalar correlators. In Fig. 1, we observe a strong
signal for an oscillating excited state with ð−1Þt behavior
(where t is the Euclidean time) at small flow times, most
notably for tgf ¼ 0.2. These oscillating modes become
completely damped out for tgf ≥ 0.6, with the statistics
used in this work.
The first significant benefit observed is that as the flow

time is increased a dramatic reduction of the chiral
symmetry breaking properties of the valence MDWF action
is achieved. This can be observed in the significant
reduction in mres at fixed pion mass or, similarly, the
values of ZA approaching 1 for all gauge couplings, both of
which are depicted in Fig. 2. With the tuning we have
chosen, to hold the pion mass, as well as L5,M5, b5, and c5,

fixed as we vary the flow time, we observe an exponential
reduction in mres as the flow time is increased. Though not
depicted in these figures or tables, we also studied the
dependence of mres on L5 as the flow time was varied. We
find that for small flow time, the reduction in mres as L5

increases is power law, indicating the 5D zero-mode
contributions are dominating the residual chiral symmetry
breaking. As we increase the flow time, mres begins to fall
off exponentially in L5, indicating the gradient-flow smear-
ing suppresses these zero-mode contributions.
Another significant benefit we observe is that stochastic

fluctuations become smaller for increasing flow time
because the gradient flow smearing procedure suppresses
the ultraviolet noise. This is observed from the sample
effective mass plots of the nucleon and pion in Fig. 1. The
gradient flow is applied in all four spacetime directions, so
the neighboring time slices become more correlated, render-
ing a direct comparison of the effective mass plots more
complicated. However, the list of fitted quantities in
Table VIII demonstrates the correlated stochastic uncertain-
ties are reduced for increasing flow time. Comparing the
tgf ¼ 1 to tgf ¼ 0.2 results, we observe approximately a
factor of

ffiffiffi
2

p
reduction of the stochastic uncertainty for equal

computing cost for all quantities other than the pseudoscalar
meson masses.

V. FLOW TIME INDEPENDENCE
OF CONTINUUM LIMIT

In Fig. 3, we show a continuum study of mN=Fπ and
FK=Fπ on themπ ∼ 310 MeV ensembles, for all flow times
used. We explore four different continuum extrapolation
Ansätze for a quantity f:

fða=w0Þ ¼

8>>>>>><
>>>>>>:

f0; constant;

f0 þ f2 a2

w2
0

; linear in a2;

f0 þ αsf02
a2

w2
0

; linear in αsa2;

f0 þ f4
a4

w4
0

; quadratic in a2:

ð9Þ

The gradient flow scale w0 was first defined in Ref. [150],
and a value of w0½150� ¼ 0.1755ð18Þð04Þ fm was deter-
mined. The value determined in Ref. [151] is similar with a
slight discrepancy, w0½151� ¼ 0.1714ð15

12
Þ fm. We use this

value as we are using the same ensembles on which it was
determined. With only three lattice spacings, we choose not
to perform an extrapolation in both a2 and either αsa2 or a4

simultaneously. However, we observe the value of f2 for
both mN=Fπ and FK=Fπ to be small and often consistent
with zero. This motivates exploring the linear in αsa2 and
a4 fits as estimates of systematic uncertainties in the
continuum extrapolation. We find all four continuum
extrapolations show consistency at the 1-sigma level, both
between all four different fit Ansätze and also between the

FIG. 2. ZA (top) andmres
l (bottom) as a function of flow time on

the mπ ≃ 310 MeV ensembles. The results of ZA are slightly
shifted horizontally for visual clarity.
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various flow-time extrapolations. In Fig. 3, we display the
continuum extrapolation using the Ansatz linear in
ða=w0Þ2. The quark-mass-independent values of a=w0

and αs are taken from Ref. [151].
For mN=Fπ, we observe minimal discretization correc-

tions with a very small slope in ða=w0Þ2. For FK=Fπ, a
quantity which is determined much more precisely for
equal stochastic sampling, we observe mild, though still
quite small, discretization corrections. While the discreti-
zation corrections are basically flow-time independent for
mN=Fπ , they seem to become more pronounced for FK=Fπ

as the flow time is increased. There is an indication of the
presence of higher order quartic in a=w0 corrections, but we
are not able to resolve these with the numerical results in
this work. Previous studies of the heavy-light decay
constants observed that large amounts of APE smearing
[152] could induce significant higher order discretization
effects [153]. It is possible that the larger tgf smearings are
having a similar effect on the strange quark, and thus the
value of FK , at the subpercent level. These potential
systematic uncertainties should be explored in more detail
for a subpercent calculation of FK=Fπ using this action.

A. Mixed-meson mass corrections

In order to use the MA EFTextrapolation formulas, there
are a few additional quantities which must be determined
from the MALQCD calculations. At NLO in the MA EFT
expansion, one needs to know the masses of the mixed
valence-sea mesons which propagate in virtual loops and
the value of the partial quenching parameter which controls
the unitarity violating contributions [65,68]. In a general
MALQCD calculation with a chirally symmetric valence
action, one has

m2
vs ¼

1

2
ðm2

vv þm2
ssÞ þ a2 ~ΔMix;

Δ2
PQ ¼ m2

ss −m2
vv; ð10Þ

where mvv is the mass of the pseudoscalar valence-valence
meson, mss is the mass of the pseudoscalar sea-sea meson
including possible additive discretization corrections, and
a2 ~ΔMix is an additional additive discretization correction to
the mass of a meson composed of one valence and one sea
quark. For our MALQCD calculations, these two quantities
are given by [65,68,69]

m2
vs ¼

1

2
ðm2

vv þm2
ss;5Þ þ a2 ~ΔMix;

a2 ~ΔMix ¼ a2ΔMix þ
a2

8
ΔA þ 3a2

16
ΔT þ a2

8
ΔV þ a2

32
ΔI;

a2ΔMix ¼
8a2CMix

F2
;

Δ2
PQ ¼ m2

ss;5 þ a2ΔI −m2
vv; ð11Þ

where mss;5 is the mass of the taste-5 pseudoscalar meson,
a2ΔB are the taste splittings between the other taste-meson
and the taste-5 meson, a2ΔB ¼ m2

B −m2
5, F is the leading

order pion decay constant, and CMix is the LEC of a new
operator present in the MA EFT Lagrangian at Oða2Þ. The
mixed-meson mass splitting, a2ΔMix, is universal at leading
order in the MA EFT expansion [62], regardless of the taste
of the staggered sea-quark partnered with the DW quark. In
Ref. [66], it was observed that there is a noticeable quark-
mass dependence of the mixed-meson splitting, as defined,
e.g., for the pion

Δm2
vs ≡m2

π;vs −
1

2
ðm2

π;DW þm2
π;5Þ: ð12Þ

There are three common methods of incorporating these
discretization corrections:

(i) Power-series expand the discretization corrections
about a ¼ 0, and use a continuum EFTextrapolation
enhanced by general corrections of the form a2,
a2αS, etc.

(ii) Extrapolate these mixed-meson discretization cor-
rections to the chiral limit, and use a uniform
correction for all mixed mesons with the full MA
EFT expressions.

FIG. 3. Flow time (in)dependence ofmN=Fπ and FK=Fπ on the
mπ ∼ 310 MeV ensembles. The filled in symbols are the results
of our calculations, and the open symbols clustered at a=w0 ¼ 0
are the continuum extrapolated results using the simple Ansatz of
a constant plus an ða=w0Þ2 term. The results are slightly shifted
horizontally for visual clarity.
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(iii) Use the on-shell renormalized mixed-meson masses
as they are on each ensemble with the full MA EFT
expressions.

Provided the discretization corrections are under control, all
three methods should agree in the continuum limit. It is
useful, therefore, to determine the mixed-meson masses for
all combinations of valence and sea quarks used in the
MALQCD calculations.
In order to compute the mixed-meson spectrum, we need

to construct pseudoscalar mesons composed of one MDWF
and one HISQ fermion propagator. To compute the MDWF
propagators, we have used the QUDA library interfaced
from CHROMA with solutions generated with gauge-covar-
iant Gaussian smeared sources [154]. To compute the HISQ
propagators, we utilized the MILC code. To minimize the
gauge noise, we similarly used a gauge-covariant source for
the staggered fermions. This source was created in CHROMA,
with routines added to the DEVEL branch to support writing a
source file readable as a VECTOR_FIELD source by the MILC

code. The MDWF fermions were converted to the DD_PAIRS
format to be read by MILC, which was used to compute the
mixed-meson and HISQ-HISQ pseudoscalar spectrum. To
further reduce the gauge noise, the mixed-meson correlation
functions were constructed with interpolating operators

Ovs ¼ q̄valγ5qsea ð13Þ
as well as their Hermitian conjugates. The real parts of the
averaged conjugate pairs of correlation functions were then
used to determine the spectrum. Correlation functions were
computed with all possible pairings of light and strange
quarks with one MDWF- and one HISQ-type quark
propagator.
In Table III, we list the masses of mixed mesons

computed in this work, using only flow time tgf ¼ 1
ensembles. In Table IV, we list the values of the splittings

Δm2
vs, defined as in Eq. (12), and mvv and mss are the

pseudoscalar masses of the valence-valence and sea-sea
mesons, respectively. The values are listed in w0 units
where the quark-mass-independent values w0=a are taken
from Ref. [151]. We use the notation of Ref. [73] and
denote the various mixed mesons as

ϕuj ¼ pion∶ val light ¼ u; sea light ¼ j;

ϕur ¼ kaon∶ val light ¼ u; sea strange ¼ r;

ϕsj ¼ kaon∶ val strange ¼ s; sea light ¼ j;

ϕsr ¼ s̄γ5s∶ val strange ¼ s; sea strange ¼ r: ð14Þ

VI. BENCHMARK CALCULATION OF FK�=Fπ�

After demonstrating the flow-time independence of
mN=Fπ and FK=Fπ in the continuum limit and observing
the advantages of larger smearing flow times tgf, we provide
a benchmark computation with all systematic errors esti-
mated. In particular, we assess the effects of the extrapo-
lation to the physical pion mass as well as to the continuum
and infinite volume limit of FK=Fπ . At NLO in the three-
flavors chiral expansion, this quantity depends upon only a
single LEC,L5 [155]. Therefore, with the limited number of
ensembles used in this work, we can perform a full
extrapolation to the physical point. Further, FK=Fπ is
obtained with great precision from many different LQCD
calculations, and it is one of the quantities reviewed in depth
by the FLAGWorkingGroup [8]. A comparison serves as an
important benchmark calculation of our lattice action.

A. χPT extrapolation at different gradient flow times

We have three lattice spacings and two pion masses with
different values of mπL. Following our findings for the
continuum extrapolation at mπ ∼ 310 MeV, our chiral-
continuum extrapolation is performed with the form

FK

Fπ
¼ 1þ 5

8

m2
π

Λ2
χ
lπ −

1

4

m2
K

Λ2
χ
lK −

3

8

m2
η

Λ2
χ
lη

þ 4ðm2
K −m2

πÞ
Λ2
χ

ð4πÞ2
�
L5ðΛχÞ þ

a2

w2
0

La

�
: ð15Þ

In this expression, we have used the relation valid at NLO
in the SUð3Þ chiral expansion, m2

η ¼ 4m2
K=3 −m2

π=3, and
the definitions lϕ ¼ lnðm2

ϕ=Λ2
χÞ (ϕ ∈ fπ; K; ηg) and Λ2

χ ¼
ð4πÞ2FKFπ . We have also included the finite volume
corrections from the radiative pion loops predicted at
one loop in χPT [156,157], but we find they have
an irrelevant effect on the fit with the precision we have.
The discretization corrections are flavor independent, and
so they must vanish in the SUð3Þ flavor limit where
FK=Fπ ¼ 1 exactly. Therefore, we parametrize the discre-
tization correction through an unknown LEC that accom-
panies a term proportional to ðm2

K −m2
πÞða=w0Þ2.

TABLE III. The mixed-meson mass spectrum determined on
ensembles used in this work, with flow time tgf ¼ 1.

Ensemble amuj amsj amur amsr

a15m310 0.300(6) 0.432(4) 0.444(5) 0.549(2)
a12m310 0.216(2) 0.334(2) 0.339(2) 0.430(1)
a09m310 0.150(1) 0.243(1) 0.247(1) 0.315(1)
a15m220 0.255(3) 0.416(3) 0.430(3) 0.543(1)
a12m220 0.178(2) 0.321(2) 0.335(2) 0.428(1)

TABLE IV. The mixed-meson mass splittings [Eq. (12)] de-
termined on ensembles used in this work, with flow time tgf ¼ 1.
The values of w0=a are determined from Ref. [151].

Ensemble w2
0Δm2

uj w2
0Δm2

sj w2
0Δm2

ur w2
0Δm2

sr

a15m310 0.0439(41) 0.0298(40) 0.0440(59) 0.0422(28)
a12m310 0.0214(17) 0.0123(29) 0.0199(30) 0.0206(22)
a09m310 0.0102(09) 0.0038(18) 0.0102(19) 0.0085(14)
a15m220 0.0488(38) 0.0341(58) 0.0488(60) 0.0410(36)
a12m220 0.0279(13) 0.0142(20) 0.0334(30) 0.0212(20)
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Using the expression in Eq. (15), we fit the five
ensembles used in this work for each flow-time independ-
ently. We then extrapolate these results to the isospin
symmetric physical point, as determined by FLAG [8]
with mπ ¼ 134.8ð3Þ MeV and mK ¼ 494.2ð3Þ MeV. In
order to compare with the FLAG determination, we must
correct these results from the isospin symmetric point to the
ratio of the charged decay constants, as prescribed in Eqs.
(62) and (63) of the most recent FLAG review. In Fig. 4, we
display our resulting values of FK�=Fπ� for each flow time.
We observe good quality in all our fits, as defined by the
Q-value, which is the Bayesian analog to the p-value
defined in Eq. (B4) of Ref. [158]. For comparison, we plot
the FLAG determination of FK�=Fπ� from the average of

results using Nf ¼ 2þ 1þ 1 ensembles. At the 1-sigma
level, our results are self-consistent (flow-time indepen-
dent) and also consistent with the FLAG average value.
There is a trend of FK=Fπ with tgf observed in Fig. 4.
However, we do not believe this is statistically significant
because the continuum, chiral analysis using different, but
consistent, correlation function analysis results as input
results in values of FK=Fπ which do not have a trend.

B. MA EFT extrapolation at tgf = 1

While the numerical results are sufficient to constrain the
unknown LECs, we note that for larger flow times the
quality of the fit decreases, hinting at missing dependence
upon the input parameters. For tgf ¼ 1, we have also
computed the mixed-meson masses, and so we can perform
the full MA EFT extrapolation. The NLO MA EFT
expressions for fπ ¼

ffiffiffi
2

p
Fπ and fK are provided in Eqs.

(C1) and (C2) of Ref. [65], respectively. In our case, we
have tuned the valence quark masses such that the pion
mass matches the taste-5 HISQ pion mass, which implies
Δju ¼ Δrs ¼ 0 in the reference expressions. Further, the
mixed-meson mass splitting is independent of quark mass
at LO, allowing us to simplify the extrapolation formula. To
simplify transcribing the expression, we define

ϵ2π ¼
m2

π

Λ2
χ
; ϵ2ju ¼

m2
π þ a2 ~ΔMix

Λ2
χ

;

ϵ2K ¼ m2
K

Λ2
χ
; ϵ2ru ¼ ϵ2sj ¼

m2
K þ a2 ~ΔMix

Λ2
χ

;

ϵ2ss ¼
m2

ss

Λ2
χ
; ϵ2rs ¼

m2
ss þ a2 ~ΔMix

Λ2
χ

;

δ2PQ ¼ a2ΔI

Λ2
χ
; ϵ2X ¼ 4

3
ϵ2K −

1

3
ϵ2π þ δ2PQ;

and Λ2
χ ¼ 16π2FπFK: ð16Þ

The resulting MA EFT expression is

FK

Fπ
¼ 1þ 1

2
ϵ2julju þ

1

8
lπ

�
ϵ2π −

δ2PQðϵ2X þ ϵ2πÞ
ϵ2X − ϵ2π

þ δ4PQϵ
2
X

3ðϵ2X − ϵ2πÞ2
−

4δ4PQϵ
2
π

3ðϵ2X − ϵ2πÞðϵ2ss − ϵ2πÞ
�
−
1

2
ϵ2sjlsj þ

1

4
ϵ2rulru −

1

4
ϵ2rslrs

þ lss

4

�
ϵ2ss þ

δ2PQð3ϵ4ss þ 2ðϵ2K − ϵ2πÞϵ2X − 3ϵ2ssϵ
2
XÞ

3ðϵ2X − ϵ2ssÞ2
−
δ4PQð2ϵ4ss − ϵ2Xðϵ2ss þ ϵ2πÞÞ
3ðϵ2X − ϵ2ssÞ2ðϵ2ss − ϵ2πÞ

�

−
3

8
ϵ2XlX

�
1 −

2δ2PQ=3

ðϵ2X − ϵ2πÞ
þ δ2PQ½4ðϵ2K − ϵ2πÞ þ 6ðϵ2ss − ϵ2XÞ�

9ðϵ2X − ϵ2ssÞ2
þ δ4PQ=9

ðϵ2X − ϵ2πÞ2
−
2δ4PQð2ϵ2ss − ϵ2π − ϵ2XÞ
9ðϵ2X − ϵ2ssÞ2ðϵ2X − ϵ2πÞ

�

þ δ2PQðϵ2K − ϵ2πÞ
6ðϵ2X − ϵ2ssÞ

þ δ4PQ=24

ðϵ2X − ϵ2πÞ
−

δ4PQ=12

ðϵ2X − ϵ2ssÞ
−
δ2PQ
8

þ 4ðϵ2K − ϵ2πÞð4πÞ2L5ðΛχÞ: ð17Þ

In this expression, we have only included the NLO counterterm, which is the same as in SUð3Þ χPT,L5. We observe that with
thisMA expression, the a2ðm2

K −m2
πÞ term is no longer needed to fit the data.When it is included, the fit returns a value of this

FIG. 4. Flow time (in)dependence of FK�=Fπ� at the physical
pointmπ ≈ 135 MeV in the continuum limit. The colored symbols
are the results of our calculations extrapolated to the continuum
limit and to the physical point using Eq. (15). The benchmark
FLAG result is the leftmost black point, and it is consistent with
our results at all flow times within 1-sigma (horizontal gray band).
The linear trend in flow time observed is not present in the full
continuum, chiral extrapolation analysis of different, but consis-
tent, analysis of pseudoscalar correlation functions, so we believe
this observed trend is not statistically significant.
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LEC2orders ofmagnitude smaller thanwhenusingEq. (15).
For this analysis, we have taken the values of w2

0Δm2
ju from

Table IV, combined with the values of a=w0 from Ref. [151]
todetermine thevaluesofa2 ~ΔMix.Wehaveused thevaluesof
r21a

2ΔI and r1=a from Ref. [112] to convert them to lattice
units and combine them to form the necessary quantities in
Eq. (16). We observe that the MA expression is approx-
imately 150 timesmore likely to reproduce the observed data
when compared to SUð3Þ χPT, as determined by the Bayes
factors given in Table V, providing very strong evidence that
the MA expression provides the more correct physical point
extrapolation. We leave further investigation ofFK=Fπ with
more statistics and more ensembles to future work.

VII. MDWF IN QUDA: OPTIMIZATIONS
AND PERFORMANCE

In order to efficiently perform the MDWF solves, we
utilize the GPU implementation of the MDWF operator and
solver [159] from the highly optimized QUDA library
[160,161].We added the application programming interface
(API) for accessing this solver to the CHROMA [122] pack-
age, which is publicly available in the most recent version.
The MDWF calculations were performed on three dif-

ferent GPU-enabled machines, Surface and RZHasGPU at
Lawrence Livermore National Laboratory (LLNL) and
Titan at Oak Ridge Leadership Computing Facility
(OLCF).1 The Surface cluster is composed of dual
NVIDIA Tesla K40 cards with Intel Xeon E5-2670 CPU
nodes. The RZHasGPU cluster is composed of dual
NVIDIA Tesla K80 cards with Intel Xeon E5-2667 v3
CPU nodes. The Titan supercomputer is composed of single
NVIDIA Tesla K20X cards with Advanced Micro Devices
(AMD) Opteron CPU nodes. An interesting feature of the
Titan nodes is the use of two eight-core NUMA nodes per
node. We have found that we can provide two Message

Passing Interface (MPI) ranks per GPU, by using both non-
uniform memory access (NUMA) nodes, and achieve an
approximately 69% performance boost with otherwise
identical parameters. In Table VI, we list the sustained
performance on the three machines achieved with the
present implementation of the double-half mixed-precision
MDWF solver. The single node performance is notable, and
we are at present working on improving the strong scaling of
the MDWF solver in QUDA through better overlapping of
communication and computation.Additionally, a significant
reduction of the condition number for the symmetric
implementation of the MDWF operator has been observed
[162]. QUDA supports both the symmetric and asymmetric
implementations of the MDWF operator. Currently,
CHROMA only supports the asymmetric operator, but we
plan to investigate possible reduction in the time to solution
from switching to the symmetric implementation.

VIII. CONCLUSIONS

In this work, we have motivated a new mixed lattice
QCD action: Möbius domain-wall valence fermions solved
with the dynamical Nf ¼ 2þ 1þ 1 HISQ sea fermions
after a gradient smearing algorithm is used to filter out UV
modes of the gluons. To retain the correct continuum limit,
the gradient flow time is held fixed in lattice units, such that
any dependence upon this new scale also vanishes in the
continuum limit. We demonstrate the flow-time independ-
ence of the continuum limit by computing two sample
quantities, FK=Fπ and mN=Fπ . An extrapolation of FK=Fπ
to the continuum, infinite volume, and physical pion and
kaon mass point is consistent with the FLAG average of the
Nf ¼ 2þ 1þ 1 LQCD results for all flow times explored
in this work.
For flow time of tgf ¼ 1, we estimate the total systematic

error from different chiral and continuum fits to be smaller
than our current statistical uncertainty. Of particular note, we
also demonstrate that the gradient flow smearing highly
suppresses sources of residual chiral symmetry breaking in
the action for moderate values of the flow time: the axial

TABLE V. Physical extrapolation from the FK=Fπ analysis.
The Q-value is the Bayesian analog of the p-value defined in
Eq. (B4) of Ref. [158]. The logGBF denotes the log of the
Gaussian Bayes factor and is used to select models under the
Bayesian framework. The Bayes factors are suppressed for tgf
less than 1.0 since model comparisons are only sensible within
the same data set.

tgf Function 103 × L5 FK=Fπ Q-value logGBF

0.2 Eq. (15) 5.55(1.17) 1.2102(105) 0.836 � � �
0.4 Eq. (15) 4.79(1.03) 1.2034(93) 0.808 � � �
0.6 Eq. (15) 4.05(1.02) 1.1968(92) 0.686 � � �
0.8 Eq. (15) 3.88(96) 1.1952(87) 0.448 � � �
1.0 Eq. (15) 3.27(93) 1.1898(84) 0.278 6.915
1.0 Eq. (17) 3.35(33) 1.1905(32) 0.296 11.947

TABLE VI. Performance of the double-half mixed precision
MDWF solver in QUDA on the various compute nodes used with
2, 4 and 1 GPU per node on the Surface, RZHasGPU and Titan
computers. The % of peak performance is obtained by comparing
our sustained to the theoretical single-node single-precision
performance. On Titan, we oversubscribe the GPUs by using
1 MPI rank per NUMA node, which amounts to 2 MPI ranks per
GPU, resulting in a ∼69% performance boost.

Computer GPUs MPI Geometry Performance [GFlops]
ranks Total per node % of peak

Surface 2 2 1 1 1 2 1250 1250 44%
RZHasGPU 4 4 1 1 1 4 1785 1785 48%
Titan 8 16 1 1 2 8 2885 0361 25%
Titan 16 32 1 2 2 8 4720 0295 20%
Titan 32 64 1 2 4 8 8500 0266 18%

1Some of the early tuning and flow-time dependence studies
were performed at the JLab High Performance Computing Center
and at the Fermilab Lattice Gauge Theory Computational
Facility.
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renormalization constant becomes effectively lattice spacing
independent and close to 1 for all ensembles at a flow time of
tgf ¼ 1; the residual chiral symmetry breaking,measured by
the quantity mres, is exponentially damped with increasing
flow time and less than 10%of the input light quarkmass for
all ensembles, including thephysical quark-mass ensembles,
with tgf ¼ 1 and moderate values of L5.
This action, coupled with the use of the highly optimized

QUDA library, provides an economical method of perform-
ing LQCD calculations with an action that respects chiral
symmetry to a high degree. The MILC Collaboration has a
long history of making their configurations freely available
to all interested parties. Thebreadth of parameters used in the
generation of the HISQ ensembles allows users to fully
control all LQCD systematics: notably the continuum, and
infinite volume extrapolations, as well as a physical quark-
mass interpolation.
We have plans to use this action for computing various

quantities relevant to fundamental nuclear and high-energy
physics research, detailed, for example, in the Nuclear
Science Advisory Committee (NSAC) Long Range Plan
for Nuclear Science and the High Energy Physics Advisory
Panel (HEPAP) P5 Strategic Plan for U.S. Particle Physics.
So far, we have used this mixed action to demonstrate the
benefits of a new method for computing hadronic matrix
elements [142], applied this method to a precise determi-
nation of gA [143], and we have computed the π− → πþ
transition matrix elements relevant for the scenario in
which heavy lepton-number violating physics beyond the
Standard Model contributes to the hypothesized neutrino-
less double beta decay of large nuclei [141].
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APPENDIX A: TABLES OF FLOW-TIME
DEPENDENCE

Here, we provide tables of the various quantities com-
puted in this work on the different flow times used. Tuned
quark masses and measured renormalization constants are
reported in Table VII, while hadron masses and meson
decay constants are summarized in Table VIII.
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TABLE VII. The tuned values of the MDWF light and strange quark masses on various ensembles for various flow times. We also list
the values of the average plaquette after applying the gradient flow as well as mres and the renormalization constants.

Ensemble M5 L5 b5 c5 tgf Plaquette ammdwf
l

amres
l Zll

A ammdwf
s amres

s Zls
A

a15m310 1.3 12 1.5 0.5 0.2 0.87701(2) 0.00970 0.003882(38) 0.8668(36) 0.06810 0.003022(31) 0.8740(13)
0.4 0.95521(1) 0.01160 0.002290(29) 0.8993(34) 0.07380 0.001668(22) 0.9074(12)
0.6 0.97723(1) 0.01250 0.001656(26) 0.9274(26) 0.08000 0.001163(19) 0.9389(12)
0.8 0.98560(1) 0.01480 0.001287(24) 0.9498(24) 0.08520 0.000880(17) 0.9608(11)
1.0 0.98964(1) 0.01580 0.001022(23) 0.9645(21) 0.09020 0.000685(15) 0.9760(09)

a12m310 1.2 8 1.25 0.25 0.2 0.89320(1) 0.00680 0.004298(22) 0.9007(23) 0.05300 0.003416(18) 0.9034(10)
0.4 0.96401(1) 0.00960 0.001922(18) 0.9201(20) 0.05830 0.001352(15) 0.9243(07)
0.6 0.98251(1) 0.01086 0.001332(17) 0.9418(18) 0.06280 0.000860(13) 0.9464(07)
0.8 0.98925(0) 0.01176 0.001019(15) 0.9565(18) 0.06650 0.000615(11) 0.9608(07)
1.0 0.99242(0) 0.01260 0.000804(14) 0.9660(17) 0.06930 0.000467(09) 0.9705(06)

a09m310 1.1 6 1.25 0.25 0.2 0.91073(0) 0.00543 0.002704(07) 0.9319(18) 0.03880 0.002359(05) 0.9343(05)
0.4 0.97236(0) 0.00798 0.000616(05) 0.9444(16) 0.04330 0.000459(04) 0.9452(06)
0.6 0.98721(0) 0.00850 0.000364(04) 0.9577(15) 0.04500 0.000251(03) 0.9590(05)
0.8 0.99239(0) 0.00921 0.000280(04) 0.9659(13) 0.04780 0.000189(02) 0.9679(04)
1.0 0.99478(0) 0.00951 0.000242(04) 0.9719(13) 0.04910 0.000169(02) 0.9739(04)

a15m220 1.3 16 1.75 0.75 0.2 0.87718(1) 0.00425 0.002254(18) 0.8634(38) 0.06810 0.001699(17) 0.8713(12)
0.4 0.95535(1) 0.00532 0.001356(16) 0.8892(33) 0.07380 0.000953(14) 0.9064(12)
0.6 0.97735(1) 0.00615 0.000966(14) 0.9221(31) 0.08000 0.000658(11) 0.9398(13)
0.8 0.98570(1) 0.00668 0.000733(11) 0.9456(27) 0.08520 0.000492(10) 0.9617(11)
1.0 0.98973(1) 0.00712 0.000567(10) 0.9610(26) 0.09020 0.000374(09) 0.9765(09)

a12m220 1.2 12 1.5 0.5 0.2 0.89332(1) 0.00365 0.001562(11) 0.8923(25) 0.05480 0.001085(10) 0.9026(21)
0.4 0.96410(0) 0.00456 0.000935(09) 0.9132(22) 0.05880 0.000582(07) 0.9240(17)
0.6 0.98259(0) 0.00522 0.000673(08) 0.9409(37) 0.06280 0.000391(06) 0.9466(14)
0.8 0.98931(0) 0.00575 0.000511(07) 0.9546(28) 0.06660 0.000286(05) 0.9621(12)
1.0 0.99248(0) 0.00600 0.000390(05) 0.9615(22) 0.06930 0.000216(04) 0.9718(11)

TABLE VIII. Various hadronic quantities determined at different flow times. The posterior distributions related to meson and baryon
correlation functions are extracted using a 2þ 1-state fit Ansatz for mesons and two states for the nucleons, as described in Secs. IVA
and IV B. The meson two-point correlation functions are fit simultaneously with the 4D axial-vector current, and then a chained fit [149]
is used to propagate all remaining correlations. The entire fit strategy is implemented under the Bayesian framework with LSQFIT [148].

Ensemble tgf amπ amK amss aFπ aFK amN FK=Fπ mN=Fπ

a15m310 0.2 0.2352(13) 0.4025(12) 0.51904(87) 0.07781(85) 0.08724(85) 0.845(28) 1.1212(66) 10.86(38)
0.4 0.2327(13) 0.4014(12) 0.51710(89) 0.07720(69) 0.08572(64) 0.834(15) 1.1103(61) 10.80(22)
0.6 0.2286(11) 0.4004(12) 0.51673(91) 0.07599(54) 0.08439(53) 0.823(13) 1.1107(58) 10.84(19)
0.8 0.2363(11) 0.4028(12) 0.51673(92) 0.07543(53) 0.08343(49) 0.826(11) 1.1059(53) 10.95(17)
1.0 0.2367(12) 0.4046(12) 0.51858(94) 0.07436(51) 0.08239(46) 0.821(10) 1.1080(51) 11.05(16)

a12m310 0.2 0.18876(60) 0.3233(07) 0.41835(61) 0.06385(65) 0.07137(63) 0.673(32) 1.1177(57) 10.54(51)
0.4 0.18842(62) 0.3233(07) 0.41773(60) 0.06306(53) 0.07008(47) 0.649(35) 1.1113(48) 10.29(56)
0.6 0.18837(64) 0.3232(07) 0.41754(59) 0.06243(48) 0.06911(40) 0.641(34) 1.1070(46) 10.26(54)
0.8 0.18833(65) 0.3234(07) 0.41776(58) 0.06196(44) 0.06832(36) 0.641(30) 1.1027(45) 10.35(49)
1.0 0.18911(65) 0.3232(07) 0.41721(58) 0.06142(41) 0.06755(34) 0.642(27) 1.0999(44) 10.46(44)

a09m310 0.2 0.13982(42) 0.2411(04) 0.31227(36) 0.04578(45) 0.05174(47) 0.485(20) 1.1302(52) 10.60(45)
0.4 0.14017(39) 0.2423(04) 0.31392(36) 0.04590(36) 0.05159(35) 0.489(18) 1.1239(46) 10.66(41)
0.6 0.13860(38) 0.2396(04) 0.31041(37) 0.04568(33) 0.05113(31) 0.488(16) 1.1195(46) 10.69(37)
0.8 0.14026(38) 0.2416(04) 0.31280(37) 0.04550(31) 0.05090(29) 0.488(14) 1.1186(45) 10.71(33)
1.0 0.13978(38) 0.2405(04) 0.31129(38) 0.04521(30) 0.05047(28) 0.485(13) 1.1163(44) 10.72(31)

a15m220 0.2 0.16707(94) 0.3838(09) 0.51227(74) 0.07616(82) 0.08794(70) 0.788(37) 1.1546(74) 10.35(49)
0.4 0.16668(82) 0.3848(09) 0.51195(72) 0.07521(74) 0.08638(58) 0.794(34) 1.1485(74) 10.56(47)

(Table continued)
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APPENDIX B: PRIORS FOR CORRELATOR FITS

In Table IX, we summarize the Bayesian priors used in the analysis of the mesonic two-point functions, together with the
ones for the nucleon correlator and mres. Notice that the priors are chosen to be independent of the gradient flow time.

TABLE IX. Priors for correlator fits in lattice units. The priors are all Gaussian distributed and listed as mean (standard deviation). The
oscillating and first excited-state energies are defined as splitting from the ground state, where Δi ≡ lnðEi − E0Þ. This leads to a log-
normal distributed energy splitting, which is positive definite, and as a result enforces a strict hierarchy of states. The priors are chosen to
be flow-time independent.

Ensemble Eπ
0 zπ0;p zπ0;s EK

0 zK0;p zK0;s Ess
0 zss0;p zss0;s

a15m310 0.2360(236) 0.255(255) 0.025(25) 0.4050(405) 0.198(198) 0.0198(198) 0.520(52) 0.182(182) 0.0185(185)
a12m310 0.190(19) 0.19(19) 0.02(2) 0.3220(322) 0.148(148) 0.0159(159) 0.4180(418) 0.142(142) 0.0152(152)
a09m310 0.140(14) 0.122(122) 0.0047(47) 0.2420(242) 0.1(1) 0.0039(39) 0.3120(312) 0.1(1) 0.0037(37)
a15m220 0.1660(166) 0.325(325) 0.031(31) 0.3850(385) 0.2(2) 0.02(2) 0.5150(515) 0.18(18) 0.0184(184)
a12m220 0.1340(134) 0.224(224) 0.0115(115) 0.310(31) 0.15(15) 0.0079(79) 0.4150(415) 0.137(137) 0.0073(73)

Ensemble Δπ
osc: zπosc:;p zπosc:;s ΔK

osc: zKosc:;p zKosc:;s Δss
osc: zssosc:;p zssosc:;s

a15m310 0(1.45) 0(0.255) 0(0.0125) 0(1.45) 0(0.198) 0(0.01) 0(1.45) 0(0.182) 0(0.009)
a12m310 0(1.67) 0(0.19) 0(0.01) 0(1.67) 0(0.148) 0(0.008) 0(1.67) 0(0.142) 0(0.008)
a09m310 0(1.96) 0(0.122) 0(0.00235) 0(1.96) 0(0.1) 0(0.0018) 0(1.96) 0(0.1) 0(0.0018)
a15m220 0(1.8) 0(0.325) 0(0.015) 0(1.8) 0(0.2) 0(0.01) 0(1.8) 0(0.18) 0(0.009)
a12m220 0(2) 0(0.224) 0(0.0057) 0(2) 0(0.15) 0(0.004) 0(2) 0(0.137) 0(0.004)

Ensemble Δπ
1 zπ1;p zπ1;s ΔK

1 zK1;p zK1;s Δss
1 zss1;p zss1;s

a15m310 −0.75ð70Þ 0(0.255) 0(0.0125) −0.75ð70Þ 0(0.198) 0(0.01) −0.75ð70Þ 0(0.182) 0(0.009)
a12m310 −0.97ð70Þ 0(0.19) 0(0.01) −0.97ð70Þ 0(0.148) 0(0.008) −0.97ð70Þ 0(0.142) 0(0.008)
a09m310 −1.26ð70Þ 0(0.122) 0(0.00235) −1.26ð70Þ 0(0.1) 0(0.0018) −1.26ð70Þ 0(0.1) 0(0.0018)
a15m220 −1.1ð7Þ 0(0.325) 0(0.015) −1.1ð7Þ 0(0.2) 0(0.01) −1.1ð7Þ 0(0.18) 0(0.009)
a12m220 −1.3ð7Þ 0(0.224) 0(0.0057) −1.3ð7Þ 0(0.15) 0(0.004) −1.3ð7Þ 0(0.137) 0(0.004)

Ensemble fπ0 fπosc: fπ1 fK0 fKosc: fK1 fss0 fssosc: fss1

a15m310 0.0387(387) 0(0.0387) 0(0.0387) 0.054(54) 0(0.054) 0(0.054) 0.0648(648) 0(0.0648) 0(0.0648)
a12m310 0.028(20) 0(0.028) 0(0.028) 0.04(4) 0(0.04) 0(0.04) 0.0485(485) 0(0.0485) 0(0.0485)
a09m310 0.0175(175) 0(0.0175) 0(0.0175) 0.0256(256) 0(0.0256) 0(0.0256) 0.0318(318) 0(0.0318) 0(0.0318)
a15m220 0.0309(309) 0(0.0309) 0(0.0309) 0.0522(522) 0(0.0522) 0(0.0522) 0.0636(636) 0(0.0636) 0(0.0636)
a12m220 0.0221(221) 0(0.0221) 0(0.0221) 0.0375(375) 0(0.0375) 0(0.0375) 0.047(47) 0(0.047) 0(0.047)

Ensemble EN
0 zN0;p zN0;s ΔN

1 zN1;p zN1;s ml
res ms

res

a15m310 0.820(82) 0.0112(55) 4.1(4.1)E-4 −0.75ð70Þ 0(0.112) 0(0.0021) 0(1) 0(1)
a12m310 0.670(67) 0.006(3) 2.6(2.6)E-4 −1.0ð7Þ 0(0.06) 0(0.0013) 0(1) 0(1)
a09m310 0.50(5) 0.0024(12) 2.2(2.2)E-5 −1.27ð68Þ 0(0.024) 0(1.1)E-4 0(1) 0(1)
a15m220 0.760(76) 0.011(5) 4.2(4.2)E-4 −1.1ð7Þ 0(0.11) 0(0.0021) 0(1) 0(1)
a12m220 0.610(61) 0.0054(27) 7.9(7.0)E-5 −1.3ð7Þ 0(0.054) 0(4)E-4 0(1) 0(1)

TABLE VIII. (Continued)

Ensemble tgf amπ amK amss aFπ aFK amN FK=Fπ mN=Fπ

0.6 0.16683(79) 0.3852(08) 0.51184(70) 0.07425(67) 0.08481(51) 0.787(18) 1.1422(72) 10.60(27)
0.8 0.16647(76) 0.3853(09) 0.51195(70) 0.07343(63) 0.08338(45) 0.776(29) 1.1355(71) 10.57(41)
1.0 0.16629(85) 0.3866(09) 0.51388(70) 0.07231(61) 0.08205(42) 0.766(28) 1.1348(72) 10.59(40)

a12m220 0.2 0.13305(58) 0.3080(12) 0.41732(56) 0.05732(63) 0.06618(84) 0.629(28) 1.154(12) 10.97(50)
0.4 0.13370(54) 0.3086(11) 0.41636(72) 0.05773(53) 0.06610(76) 0.581(48) 1.145(12) 10.06(85)
0.6 0.13354(96) 0.3088(10) 0.41583(55) 0.05784(51) 0.06582(63) 0.620(27) 1.138(10) 10.73(48)
0.8 0.13491(75) 0.3103(07) 0.41690(53) 0.05778(47) 0.06572(38) 0.621(23) 1.1374(69) 10.74(41)
1.0 0.13424(66) 0.3097(07) 0.41618(52) 0.05731(45) 0.06514(35) 0.619(19) 1.1367(69) 10.80(36)
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APPENDIX C: CORRELATOR
ANALYSIS FIT REGIONS

A summary of the fit regions for the two-point function
analysis is shown in Table X for the three different
ensembles used in this work. q1q2 superscripts identify
mesonic states (π, ss, and K.)

APPENDIX D: TOPOLOGICAL
CHARGE EVOLUTION ON

HISQ ENSEMBLES

In this Appendix, we provide additional details for the
Nf ¼ 2þ 1þ 1 HISQ ensembles at heavy pion masses
(mπ ≈ 350 and 400 MeV). The ensembles have a lattice
spacing of ≈0.12 fm, and we expect the topological
charge to fluctuate along the molecular dynamics
trajectory and be Gaussian distributed. This behavior
is plotted in Fig. 5 for both ensembles. Each of the new
ensembles is obtained by combining configurations from
eight independent streams (collected after each stream
has thermalized), and they are plotted together in Fig. 5.
We solve the gradient flow equations with the Symanzik
action to smooth out the HISQ gauge fields, with a step
size of ϵ ¼ 0.03 and up to n ¼ 166 iterations. We use
the symmetric Clover discretization of the bosonic
topological charge density operator Gμν

~Gμν.

FIG. 5. Topological charge of the a12m350 and a12m400
ensembles at flow time tgf ¼ 0.99. The topological charge
randomly fluctuates and shows no long correlation as a function
of configuration number (Monte Carlo time) for both ensembles.
The histograms show that the fluctuations are centered around
zero, indicating the absence of CP violation, and are Gaussian
distributed, indicating that the volumes are sufficiently large.

TABLE X. Fit range in lattice units. The fit region is chosen to
be approximately the same in physical units for all pseudoscalar
correlator fits, as well as among the nucleon correlator fits. The
nucleon correlation functions are fit closer to the origin because
of the poorer signal-to-noise ratio as compared to pseudoscalar
observables.

a Cq1q2 tmin Cq1q2 tmax CN tmin CN tmax

0.15 fm 7 15 4 10
0.12 fm 8 19 5 12
0.09 fm 12 25 7 16
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