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I. INTRODUCTION

It is known that in continuum relativistic gauge theories
coupled with fermions some of the currents conserved in
classical mechanics become nonconserved ones in quantum
mechanics due to vacuum quantum fluctuations; the
divergences of some currents are equal to a certain local
functions of the gauge field called “anomaly,” which are
generally not zero.
Consider, for example, four-dimensional (4D) Euclidean

Yang-Mills theory. The following formulas are well known:

∂μðiΨ†γμγ5ΨÞ ¼ −2
X

N∶jϵN j<Λ→∞

Ψ†
Nγ

5ΨN

¼ e2

16π2
εμνλρtrFμνFλρ; ð1:1Þ

iγμ∇μΨN ¼ ϵNΨN;

∇μ ¼ ∂μ þ ieAμ; ½∇μ;∇ν� ¼ −ieFμν:

Let us integrate the last equation in Eq. (1.1) over space. We
obtain

X
N0∶ϵN0

¼0

Z
dð4ÞxΨ†

N0
γ5ΨN0

¼ −
e2

32π2
εμνλρ

Z
dð4ÞxtrFμνFλρ ¼ q ð1:2Þ

since the modes ΨN and γ5ΨN are mutually orthogonal
for ϵN ≠ 0. Here, q ¼ 0;�1;… is a topological charge of
the Yang-Mills field instanton. Now, the Atiyah-Singer
index theorem is obtained if we substitute for γ5 its
decomposition γ5 ≡ ð1=2Þð1þ γ5Þ − ð1=2Þð1 − γ5Þ into
the left-hand side of Eq. (1.2):

nþ − n− ¼ q: ð1:3Þ

Here, nþ (n−) is the number of right (left) fermion zero
modes associated with the instanton with the topological
charge q.
It is seen from this consideration that the existence of

fermion zero modes associated with the instanton in Yang-
Mills theory is provided by the existence of anomaly in
divergence of the corresponding fermion axial current (1.1).
But the problem of the anomalies and their connection

with fermion zero modes in lattice gauge theories is
qualitatively more complicated one (see Ref. [1]). Note
that all lattice theories under consideration possess the
common fundamental property: lattice theories transform
into corresponding continuum relativistic theories at the
naive long-wavelength limit.
Let us consider first the Yang-Mills instanton in a lattice

theory. The configuration of the Yang-Mills instanton field
is smooth at each region of space-time. This property is
very important for the validity of the second equality in
Eq. (1.1). Indeed, this equality is obtained correctly only
for long-wavelength (as compared to fermion field wave-
lengths) gauge fields. Therefore, the second equality in
Eq. (1.1) is valid in the lattice theories in the naive long-
wavelength limit. This property of the Yang-Mills theory
implies very important physical consequences. In particu-
lar, it follows from here that the irregular ultrashort
(doubled) fermion quanta with low energy also exist [1]
in addition to soft regular long-wavelength fermion quanta.
The gravity equivalent of the second equality in Eq. (1.1)

fails since the gravitational instanton field configuration is
singular near the center of the instanton (see Sec. III) in
lattice gravity theory. Therefore, a proof of the existence of
the lattice fermion zero mode associated with the instanton
would be significantly different from the above exposed
method. We use here the method that has been successful in
solving lattice pure gravity self-dual equations with given
boundary conditions [2] (lattice instanton).
The method makes it possible to establish the main result

of the paper: a proof of the existence of the fermion zero
mode associated with a lattice gravitational instanton. Here,
we emphasize that the lattice approach developed in*vergeles@itp.ac.ru
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Ref. [2] and used here cannot be extended to usual
continuum field theories since any finite space-time region
contains an innumerable set of variables in such theories.
The following extremely important point is in order. The

Eguchi-Hanson continuous solution (see Refs. [3,4]) is
valid for the manifoldM with a boundary as r → ∞, which
is the cotangent bundle of the complex plane, P1ðCÞ ≈ S2:

M ¼ T�ðP1ðCÞÞ;
∂M ¼ SOð3Þ ¼ S3=Z2: ð1:4Þ

The manifold M is smooth. On the other hand, the discrete
analog of the Eguchi-Hanson solution [2] and Dirac zero
mode exist on a triangulation of manifold R4. which can be
considered as S3 of extra-large r including its interior. This
triangulation is designated as K0 (see Sec. III), ∂K0 ≈ S3.
Evidently, the topologies of the manifold M and simplicial
complex K0 are different.
The organization of the paper is as follows. In Secs. II

and III, the early obtained results that are necessary here, the
definition of lattice gravity theory and self-dual solution on
the lattice, are shortly outlined. In Sec. IV, the asymptotic
behavior on a long-wavelength limit of the fermion zero
mode is studied. In Sec. V, the existence of the lattice
fermion zero mode associated with the self-dual solution is
proved with the help of the method used for the proof of
existence lattice self-dual solution [2].

II. LATTICE GRAVITY MODEL

Let’s introduce some designations:

γα ¼
�

0 iσα

−iσα 0

�
; γ4 ¼

�
0 1

1 0

�
; α ¼ 1; 2;3;

γ5 ≡ γ1γ2γ3γ4 ¼
�−1 0

0 1

�
;

σab ¼ 1

4
½γa; γb�; a; b;… ¼ 1; 2; 3; 4;

σα4 ¼ i
2

�
σα 0

0 −σα

�
; σαβ ¼ iεαβγ

2

�
σγ 0

0 σγ

�
;

ð2:1Þ

σαare Pauli matrices.
It is necessary to sketch out the model of lattice gravity,

which is used here. A detailed description of the model is
given in Refs. [1,5,6].
The orientable four-dimensional simplicial complex and

its vertices are designated as K and aV , and the indices
V ¼ 1; 2;…;N → ∞ and W enumerate the vertices and
4-simplices, correspondingly. We assume here thatK ≈R4

in a topological sense. It is necessary to use the local
enumeration of the vertices aV attached to a given
4-simplex: all five vertices of a 4-simplex with index W

are enumerated as aWi, i ¼ 1, 2, 3, 4, 5. The later notations
with extra index W indicate that the corresponding
quantities belong to the 4-simplex with index W.
The Levi-Cività symbol within pairs different indices
εWijklm ¼ �1 depending on whether the order of vertices
s4W ¼ aWiaWjaWkaWlaWm defines the positive or negative
orientation of 4-simplex s4W .
An element of the group Spinð4Þ and an element of the

Clifford algebra,

ΩWij ¼ Ω−1
Wji ¼ expðωWijÞ; ωWij ≡ 1

2
σabωab

Wij;

êWij ¼ ê†Wij ≡ eaWijγ
a ≡ −ΩWijêWjiΩ−1

Wij; ð2:2Þ

are assigned for each oriented 1-simplex aWiaWj. The
Dirac spinorsΨV andΨ†

V , each of the components of which
assumes values in a complex Grassman algebra, are
assigned to each vertex aV . In the case of the Euclidean
signature, the spinors ΨV and Ψ†

V are independent variables
and are interchanged under the Hermitian conjugation.
Thus, the used representation realizes automatically the

separation of a total gauge group into two subgroups:
Spinð4Þ ≈ Spinð4ÞðþÞ ⊗ Spinð4Þð−Þ. For example,

1

2
σabωab

Wij ¼
iσα

2

�ωα
ðþÞWij 0

0 ωα
ð−ÞWij

�
;

ωα
ð�ÞWij ≡

�
�ωα4

Wij þ
1

2
εαβγω

βγ
Wij

�
: ð2:3Þ

The underwritten lattice instanton solution and fermion
zero mode are described in terms of the subgroup
Spinð4ÞðþÞ.
The considered lattice action has the form

A ¼ Ag þAΨ; ð2:4Þ

Ag ¼ −
1

5 · 24 · 2 · l2P

X
W

X
i;j;k;l;m

εWijklm

× trγ5ΩWmiΩWijΩWjmêWmkêWml; ð2:5Þ

AΨ ¼ −
1

5 · 242
X
W

X
i;j;k;l;m

εWijklm

× trγ5Θ̂WmiêWmjêWmkêWml;

Θ̂Wij ¼
i
2
γaðΨ†

Wiγ
aΩWijΨWj −Ψ†

WjΩWjiγ
aΨWiÞ

≡ Θa
Wijγ

a: ð2:6Þ

This action is invariant relative to the gauge transformations
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~ΩWij ¼ SWiΩWijS−1Wj; ~eWij ¼ SWieWijS−1Wi;

~ΨWi ¼ SWiΨAi;
~Ψ†

Wi ¼ Ψ†
WiS

−1
Wi

SWi ∈ Spinð4Þ: ð2:7Þ

The action (2.4) reduces to the continuum action of
gravity in a four-dimensional Euclidean space in the limit
of slowly varying fields, minimally connected with a
Dirac field.
Consider a certain 4D subcomplex of complex K with

the trivial topology of the four-dimensional disk. Realize
geometrically this subcomplex in R4. Suppose that the
geometric realization is an almost smooth four-dimensional
surface [7]. Thus, each vertex of the subcomplex acquires
the coordinates xμ that are the coordinates of the vertex
image in R4:

xμWi ¼ xμV ≡ xμðaWiÞ≡ xμðaVÞ; μ ¼ 1; 2; 3; 4: ð2:8Þ

We stress that these coordinates are defined only by their
vertices rather than by the higher-dimension simplices to
which these vertices belong; moreover, the correspondence
between the vertices from the considered subset and the
coordinates (2.8) is one to one.
The four vectors

dxμWji ≡ xμWi − xμWj; i ¼ 1; 2; 3; 4 ð2:9Þ

are linearly independent, and��������
dx1Wm1 dx2Wm1 … dx4Wm1

… … … …

dx1Wm4 dx2Wm4 … dx4Wm4

��������
≷ 0; ð2:10Þ

depending on whether the frame ðXW
m1;…; XW

m4Þ is pos-
itively or negatively oriented. Here, the differentials of
coordinates (2.9) correspond to one-dimensional simplices
aWjaWi so that if the vertex aWj has coordinates x

μ
Wj, then

the vertex aWi has the coordinates xμWj þ dxμWji.
In the continuous limit, the holonomy group elements

(2.2) are close to the identity element so that the quantities
ωab
ij tend to zero being of the order of OðdxμÞ. Thus, one

can consider the following system of equations for ωWmμ:

ωWmμdx
μ
Wmi ¼ ωWmi; i ¼ 1; 2; 3; 4: ð2:11Þ

In this system of linear equations, the indices W and m are
fixed, the summation is carried out over the index μ, and the
index runs over all its values. Since the determinant (2.10)
is nonzero, the quantities ωWmμ are defined uniquely.
Suppose that a one-dimensional simplex XW

mi belongs to
four-dimensional simplices with indices W1;W2;…;Wr.
Introduce the quantity

ωμ

�
1

2
ðxWm þ xWiÞ

�
≡ 1

r
fωW1mμ þ � � � þ ωWrmμg;

ð2:12Þ

which is assumed to be related to the midpoint of the
segment ½xμWm; x

μ
Wi�. Recall that the coordinates xμWi as well

as the differentials (2.9) depend only on vertices but not on
the higher-dimensional simplices to which these vertices
belong. According to the definition, we have the following
chain of equalities:

ωW1mi ¼ ωW2mi ¼ … ¼ ωWrmi: ð2:13Þ

It follows from Eqs. (2.9) and (2.11)–(2.13) that

ωμ

�
xWm þ 1

2
dxWmi

�
dxμWmi ¼ ωWmi: ð2:14Þ

The value of the field element ωμ in Eq. (2.14) is uniquely
defined by the corresponding one-dimensional simplex.
Next, we assume that the fields ωμ smoothly depend on

the points belonging to the geometric realization of each
four-dimensional simplex. In this case, the following
formula is valid up to OððdxÞ2Þ inclusive,

ΩWmiΩWijΩWjm ¼ exp

�
1

2
RμνðxWmÞdxμWmidx

ν
Wmj

�
;

ð2:15Þ

where

Rμν ¼ ∂μων − ∂νωμ þ ½ωμ;ων�≡ 1

2
σabRab

μν ;

Rab ≡Rab
μνdxμ ∧ dxν: ð2:16Þ

In exact analogy with Eq. (2.11), let us write out the
following relations for a tetrad field without explanations:

êWmμdx
μ
Wmi ¼ êWmi → ea ¼ eaμdxμ: ð2:17Þ

Using Eqs. (2.2), (2.9), and (2.11), we can rewrite the
1-form (2.6) as

Θ̂Wij ¼ γa
i
2
½Ψ†γaDμΨ − ðDμΨÞ†γaΨ�dxμAij

≡ Θaγa; ð2:18Þ

to within OðdxÞ; here,

DμΨ ¼ ∂μΨþ ωμΨ; Ψ ¼
�
ϕ

η

�
; ð2:19Þ

and the smooth field ΨðxÞ takes the values ΨðxWiÞ ¼ ΨWi.
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Applying formulas (2.15)–(2.18) to the discrete action
(2.4) and changing the summation to integration, we obtain
in the continuum limit the well-known gravity action:

A¼
Z

εabcd

�
−
1

l2P
Rab∧ ec ∧ ed−

1

6
Θa ∧ eb ∧ ec ∧ ed

�
:

ð2:20Þ

Thus, in the naive continuum limit, the action (2.4)
proves to be equal to the gravity action in the Palatini

form minimally coupled to a Dirac field with Euclidean
signature.
Another way of constructing Dirac fermions on simpli-

cial complexes is stated in Ref. [8].

III. LATTICE GRAVITATIONAL INSTANTON

Let us consider first the instanton field configuration far
apart from the instanton center where the continuous limit
is valid (Eguchi-Hanson solution).
The designations

σa≡ ðσ1;σ2;σ3; iÞ; dxμ ¼ ðdθ; dφ; dψ ; dr Þ; a¼ 1;2;3;4;

∂μ≡

0
BBBB@

∂θ

∂φ

∂ψ

∂r

1
CCCCA; ς1≡

0
BBBB@

sinψ

− sinθ cosψ

0

0

1
CCCCA; ς2≡

0
BBBB@

cosψ

sinθ sinψ

0

0

1
CCCCA; ς3≡

0
BBBB@

0

−cosθ

−1
0

1
CCCCA; ς4≡

0
BBBB@
0

0

0

1

1
CCCCA ð3:1Þ

for the row and column matrices are used. We have

dxμeaμ ¼ ð dθ; dφ; dψ ; dr Þ × ð 1
2
rς1; 1

2
rς2; 1

2
rgς3; g−1ς4 Þ;

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a4

r4

r
ð3:2Þ

for the Eguchi-Hanson self-dual solution to continuous Euclidean gravity [3,4].
The 4 × 4 matrix, which is the inverse of that in (3.2), is of the form

eμa ¼ 2 ×

0
BBBB@

r−1 sinψ −ðr sin θÞ−1 cosψ r−1 cot θ cosψ 0

r−1 cosψ ðr sin θÞ−1 sinψ −r−1 cot θ sinψ 0

0 0 −ðrgÞ−1 0

0 0 0 g=2

1
CCCCA: ð3:3Þ

For the instanton gravitational field, we have

1

2
σabωab

μ ¼ iσα

2

�
ωα
ðþÞμ 0

0 0

�
; ð3:4Þ

i
2
dxμðωα

ðþÞμσ
αÞ ¼ i

2
ð dθ; dφ; dψ ; dr Þðgς1σ1 þ gς2σ2

þ ð2 − g2Þς3σ3Þ: ð3:5Þ

Now, we describe the lattice self-dual gravitational field
configuration [2,9].
The following notations are used below: k ⊂ K means a

finite subcomplex containing the center of the instanton with
the boundary ∂k≈S3; K0 ⊂K is an extra-large but finite
subcomplex with the boundary ∂K0 ≈ S3 containing the
center of the instanton and vertices aV ∈K0, V¼ 1;2;…
N0 ≫ 1 so that the long-wavelength limit is valid and the
continuous solution (3.2)–(3.5) approximates correctly the

exact lattice solution in a wide vicinity of ∂K0; the hyper-
surface ∂K0 is given by the equation r ¼ R ¼ Const → ∞.
The Euler characteristics χðkÞ ¼ χðK0Þ ¼ χðKÞ ¼ 1.
It has been proven in Ref. [2] that there exists the

solution of the system of equations and boundary
conditions

δAg=δωα
ð�ÞWmi ¼ 0; δAg=δeaWmi ¼ 0;

ωα
ð−ÞWmi ¼ 0 ↔ Ωð−ÞWij ¼ 1; ð3:6Þ

iσα

2
ωα
ðþÞ → U−1dU as r → ∞; ð3:7Þ

where

U ¼ exp

�
−
iσ3

2
φ

�
exp

�
iσ2

2
θ

�
exp

�
−
iσ3

2
ψ

�
; ð3:8Þ
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and

ΩðþÞWij ¼ −1; s4W ∈ k;

eaV1V2
¼ ϕa

V2
− ϕa

V1
; aV1

aV2
∈ k; aV1

aV2
∉ ∂k
ð3:9Þ

on k (aV1
aV2

is a 1-simplex). The solution of Eqs. (3.6)–
(3.9) is the lattice analog of the Eguchi-Hanson self-dual
solution. It is denoted as ΩðinstÞV1V2

, eaðinstÞV1V2
.

IV. ASYMPTOTIC BEHAVIOR OF FERMION
ZERO MODE ASSOCIATED WITH
GRAVITATIONAL INSTANTON

To begin with, we define the lattice variant of the (right)
neutrino action. For that purpose. it is necessary to extract
from the quantity (2.6) the part interacting with the field
ΩðþÞWij only [10]:

AðþÞ ¼ −
1

5 · 6 · 24

X
W

X
i;j;k;l;m

εWijklmεabcd

× Θa
ðþÞWmie

b
Wmje

c
Wmke

d
Wml;

Θa
ðþÞWij ¼

1

2
ðη†Wiσ

aΩðþÞWijϕWjþϕ†
WjΩðþÞWjiðσaÞ†ηWiÞ:

ð4:1Þ
It is convenient to write the continuous variant of the
introduced fermion lattice action (4.1) in the form

AðþÞ ¼
Z

dð4Þxjðdet ebλÞj
�
1

2
eμa½η†σaDðþÞμϕþ c:c:�

�
;

DðþÞμ ≡ ∂μ þ
i
2
σαωα

ðþÞμ: ð4:2Þ

The set of independent fermion variables is described
by fϕ; η;ϕ†; η†g.

The actions (4.1), (4.2) can be interpreted as the
lattice and continuous variants of (right) neutrino actions,
correspondingly.
Further, it is believed that the gravitational fields in

Eq. (4.1) are the lattice instanton solutions (3.6)–(3.8), and
the gravitational fields in Eq. (4.2) are the corresponding
fields in the long-wavelength limit (3.2)–(3.5).
At the limit r → ∞, we have g ¼ 1. Let us introduce the

designations for the case g ¼ 1:

i
2
σαωαð0Þ

ðþÞμ ≡
i
2
σαωα

ðþÞμjg¼1 ¼
i
2
ðς1σ1 þ ς2σ2 þ ς3σ3Þμ;

Dð0Þ
ðþÞμ ≡ ∂μ þ

i
2
σαωαð0Þ

ðþÞμ:

So, we have

DðþÞμ ¼ Dð0Þ
ðþÞμ þ

i
2
ðð1 − gÞς1σ1 þ ð1 − gÞς2σ2

þ ð1 − g2Þς3σ3Þμ: ð4:3Þ
It is easy to see that [the definition ofU ∈ SUð2Þ is given in
(3.8)]

Dð0Þ
ðþÞμ ¼ U−1∂̂μU: ð4:4Þ

Combining Eqs. (4.3) and (4.4), we rewrite the Dirac-Weyl
operator in (4.2) as follows:

σaeμaDðþÞμ ¼ U−1ðUσaU−1Þeμa
�
∂μ þ

i
2
Uðð1 − gÞς1σ1

þ ð1 − gÞς2σ2 þ ð1 − g2Þς3σ3ÞμU−1
�
U:

ð4:5Þ

One can obtain the row matrix

UσaU−1 ≡ σbAa
b

¼ ðσ1; σ2; σ3; iÞ

0
BBBB@

ðcos θ cosφ cosψ − sinφ sinψÞ −ðcos θ cosφ sinψ þ sinφ cosψÞ − sin θ cosφ 0

ðcos θ sinφ cosψ þ cosφ sinψÞ ð− cos θ sinφ sinψ þ cosφ cosψÞ − sin θ sinφ 0

sin θ cosψ − sin θ sinψ cos θ 0

0 0 0 1

1
CCCCA
ð4:6Þ

as a result of direct calculations. Further, according to Eqs. (3.3) and (4.6),

Aa
be

μ
a ¼ 2

0
BBBB@

−r−1 sinφ −r−1 cot θ cosφ ðr sin θÞ−1 cosφðcos2θ þ g−1sin2θÞ 0

r−1 cosφ −r−1 cot θ sinφ ðr sin θÞ−1 sinφðcos2θ þ g−1sin2θÞ 0

0 −r−1 r−1ð1 − g−1Þ cos θ 0

0 0 0 g=2

1
CCCCA: ð4:7Þ
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Using the aforementioned formulas, we transform the operator (4.5) into the form

σaeμaDðþÞμ ¼ U−1i

�
2

r

�−l3 l−
lþ l3

�
þ g

∂
∂r

þ
�

2

r sin θ
ðcos2θ þ g−1sin2θÞ

�
0 e−iφ

eiφ 0

�
þ 2i

r
ð1 − g−1Þ cos θ

�
1 0

0 −1

���
−i

∂
∂ψ
�
þ 1þ 2g − 3g2

rg

�
U;

ð4:8Þ

l3 ¼ −i
∂
∂φ ; l� ¼ e�iφ

�
� ∂
∂θ þ i cot θ

∂
∂φ
�
;

½l�; l3� ¼ ∓l�; ½lþ; l−� ¼ 2l3: ð4:9Þ

We see that the operator in curly brackets in (4.8) does
not depend on the variable ψ . Therefore, it is natural to take
the simplest ansatz for the zero mode in the form

ϕ ¼ U−1 ~ϕ; η ¼ U−1 ~η;

ð∂=∂ψÞ ~ϕ ¼ 0; ð∂=∂ψÞ~η ¼ 0: ð4:10Þ

Thus, the operator (4.8) for the zero mode problem for
r ≫ a reduces effectively to

σaeμaDðþÞμ ¼ U−1i

�
2

r

�−l3 l−
lþ l3

�
þ ∂
∂r
�
U; ð4:11Þ

and the effective action describing the fermion zero mode
configuration takes the form

AðþÞ ¼
Z

r3 sin θdrdθdφdψ

×

�
i
2
~η†
�
2

r

�−l3 l−
lþ l3

�
þ ∂
∂r
�
~ϕþ c:c:

�
ð4:12Þ

because of

jðdet ebλÞjdð4Þx ¼ r3 sin θdrdθdφdψ ð4:13Þ

for the instanton field solution.
Note that the frequently used operator 2ls in hydrogen

atom physics has the form

2ls ¼
�
l3 l−
lþ −l3

�
;

and it differs from that in Eq. (4.12).
The action stationarity condition relative to variable ~η†

gives the zero mode equation

�
2

r

�−l3 l−
lþ l3

�
þ ∂
∂r
�
~ϕ0 ¼ 0: ð4:14Þ

The stationarity condition of the action (4.12) relative to
variable ~ϕ yields

2

r

�−l3 l−
lþ l3

�
~η0 ¼

�
3

r
þ ∂
∂r
�
~η0: ð4:15Þ

Equations (4.14) and (4.15) imply that the functions ~ϕ0

and ~η0 are the eigenfunctions of the operator

�−l3 l−
lþ l3

�
ð4:16Þ

with the common eigenvalue λ. Otherwise, the action (4.12)
would be equal to zero identically since the operator (4.16)
is Hermitian.
Let us consider the ansatz

~ϕ0 ¼ fðrÞ
"
exp

�
−
iσ3

2
φ

� 
hðθÞ= ffiffiffiffiffiffiffiffiffi

sin θ
p

kðθÞ= ffiffiffiffiffiffiffiffiffi
sin θ

p
!#

: ð4:17Þ

The equation

�−l3 l−
lþ l3

�"
exp

�
−
iσ3

2
φ

� 
hðθÞ= ffiffiffiffiffiffiffiffiffi

sin θ
p

kðθÞ= ffiffiffiffiffiffiffiffiffi
sin θ

p
!#

¼ λ

"
exp

�
−
iσ3

2
φ

� 
hðθÞ= ffiffiffiffiffiffiffiffiffi

sin θ
p

kðθÞ= ffiffiffiffiffiffiffiffiffi
sin θ

p
!#

ð4:18Þ

is satisfied when and only when

dk
dθ

¼ −
�
λ −

1

2

�
h;

dh
dθ

¼
�
λ −

1

2

�
k: ð4:19Þ

To have the acceptable boundary conditions at θ ¼ 0; π,
one must consider only the eigenvalues λ¼ðnþ1=2Þ;
n¼0;�1;…. Equation (4.14) shows that the eigenvalues
are acceptable only for n ≥ 1. Otherwise, the mode ϕ0

would be non-normalizable. On the other hand, the
function η0 would be Oðr2ðn−1ÞÞ as r → ∞ for n ≥ 2
according to Eq. (4.15); i.e., it would be non-normalizable.
Therefore, the only acceptable eigenvalue is λ ¼ 3=2.
Then, Eqs. (4.14) and (4.15) give
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�
d
dr

þ 3

r

�
f ¼ 0 → f ∼

Const
r3

; ð4:20Þ

∂
∂r ~η0 ¼ 0 as r → ∞: ð4:21Þ

There are only two solutions,

�
h

k

�ð1Þ
¼

ffiffiffi
2

p �
sin θ

cos θ

�
;

�
h

k

�ð2Þ
¼

ffiffiffi
2

p �
cos θ

− sin θ

�
;

ð4:22Þ

for λ ¼ 3=2. Combining Eqs. (3.8), (4.10), (4.17), (4.20),
(4.21), and (4.22), we obtain two asymptotic solutions:

ϕð1Þ
0 ¼ Const

r3
exp

�
iσ3

2
ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan ðθ=2Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot ðθ=2Þp

!
;

ηð1Þ0 ¼ Const · exp

�
iσ3

2
ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan ðθ=2Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot ðθ=2Þp

!
;

ϕð2Þ
0 ¼ Const

r3
exp

�
iσ3

2
ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot ðθ=2Þp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan ðθ=2Þp

!
;

ηð2Þ0 ¼ Const · exp

�
iσ3

2
ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot ðθ=2Þp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan ðθ=2Þp

!
: ð4:23Þ

It is known that two spinors ϕ and ðiσ2ϕÞ� transform
identically under the gauge transformations Spinð4ÞðþÞ
[11]. Here, the upper index � means complex conjugation.
But we have

ϕð2Þ
0 ¼ ðiσ2ϕð1Þ

0 Þ�:

This equality leads to the conclusion that there is only one
independent smooth fermion zero mode associated with the
lattice gravitational instanton. Therefore, any linear combi-
nation of the solutions (4.23) can be considered as
asymptotic behavior of the zero mode.
It will be proved that the corresponding lattice solution is

normalizable.
Note that there is a great number of other solutions of the

equation σaeμaDinstðþÞμϕ0 ¼ 0. We give an example of a
series of the operator (4.18) eigenfunctions with eigenval-
ues λ ≠ 3=2:

ϕ0
0 ¼ f0ðrÞ exp

�
iσ3

2
ψ

�"
eimφðsin θÞm

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot ðθ=2Þp

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan ðθ=2Þp

!#
;

λ ¼ ðmþ 3=2Þ; m ¼ 1; 2;…

As was shown above, the eigenvalues λ ≠ 3=2 are not
acceptable.

V. EXISTENCE OF LATTICE FERMION
ZERO MODES

We must solve lattice equations

δAðþÞ=δϕV ¼ 0; δAðþÞ=δη
†
V ¼ 0 ð5:1Þ

as well as their complex conjugate equations [12] for
the action (4.1) taken on the self-dual gravitational
solution (3.6)–(3.9) ΩðinstÞV1V2

, eaðinstÞV1V2
with the boundary

conditions (4.23) as r → ∞.
To solve the problem, we use the method that has been

successful in solving lattice pure gravity self-dual equations
with given boundary conditions [2]. The method can be
applied to lattice theory, but it is fundamentally unaccept-
able in the case of continuous theories. The reason is that
the number of variables (degrees of freedom) associated
with finite space-time volume is finite in any lattice theory,
while the number of variables per volume is infinite
(uncountable) in continuous theories.
Introduce the following Lagrange function onK0 [see the

text between Eqs. (3.5) and (3.6)] depending on the
variables fϕV ; ηV ;ϕ

†
V ; η

†
Vg;V ¼ 1;…;N0:

L¼−
1

5 ·6 ·24

X
W∶s4W∈K0

X
i;j;k;l;m

εWijklmεabcd

×Θa
ðþÞWmie

b
Wmje

c
Wmke

d
Wml−λðϕÞΦðϕÞ−λðηÞΦðηÞ

−
� X

V∶aV∈∂K0

X
s¼1;2

ðλðϕÞV;sΦ
ðϕÞ
V;sþλðηÞV;sΦ

ðηÞ
V;sÞþ c:c:

�
: ð5:2Þ

Here, fλg are Lagrange multipliers.
The constraints

ΦðϕÞ
V;s ¼

�
ϕs
V

ϕs
0ðxVÞ

−
ϕs
V0

ϕs
0ðxV0ÞÞ

�
;

ΦðηÞ
V;s ¼

�
ηsV

ηs0ðxVÞ
−

ηsV0

ηs0ðxV0ÞÞ
�
;

aV ∈ ∂K0; aV0
∉ ∂K0 ð5:3Þ

fix the boundary conditions (4.23) near the hypersurface
∂K0. Here, xV and xV0

are the coordinate values at the
vertices aV and aV0

, correspondingly [see Eq. (2.8)]; aV0
is

a fixed vertex from the immediate neighborhood of hyper-
surface ∂K0 so that there is a 1-simplex aV0

aV for some
vertex aV ∈ ∂K0; index s ¼ 1, 2 enumerates the compo-
nents of Weyl spinors ϕ†, ϕ.
The constraints

ΦðϕÞ ¼
� X

V∶aV∈ðK0n∂K0Þ
vV
X
s¼1;2

jϕs
V j2 − 1

�
;

ΦðηÞ ¼
� X

V∶aV∈ðK0n∂K0Þ
vV
X
s¼1;2

jηsV j2 − 1

�
ð5:4Þ
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mean that the fermion field configurations are normalizable
on K0,

vV ¼ 1

5

X
W∶aV∈W

vW ; ð5:5Þ

vW ¼ 1

4!
εWijklme1Wmie

2
Wmje

3
Wmke

4
Wml: ð5:6Þ

The expression (5.6) means the oriented volume of the
4-simplex sW , factor 1=4! is required since the volume of a
four-dimensional parallelepiped with generatrices e1Wmi,
e2Wmj, e

3
Wmk, and e

4
Wml is 4! times larger than the volume of

a 4-simplex with the same generatrices. The expression vV
in Eq. (5.5) is the sum of the volumes vW for that
W-4-simplices which contain the vertex aV , the factor
1=5 is necessary due to the fact that all five vertices of each
simplex are taken into account independently in Eq. (5.4).
So, the volume (5.5) is the specific volume per vertex. In
the long-wavelength limit, the constraints (5.4) transform
into (the same is true for ΦðηÞ)

ΦðϕÞ ¼
�Z

K0

�X
s¼1;2

jϕsðxÞj2
�
e1 ∧ e2 ∧ e3 ∧ e4 − 1

�
;

ea ¼ eaμdxμ:

Since the subcomplex K0 contains a finite number N0 of
vertices, the Lagrange function (5.2) depends on a finite
number of classical variables fϕ†

V ;ϕVg;V¼ 1;…;N0 <∞.
For “not-patologic” complexes K, the estimation

N0 ∼ R4 ð5:7Þ

is valid.
The problem is as follows: the local maxima and minima

of Lagrange function (5.2) constrained by the constraints
(5.3) and (5.4) need to be studied. The simplicity of the
constraints very much simplifies the problem: the con-
straints can be solved evidently. Thus, the constraints (5.3)
give

ϕs
V ¼

�
ϕs
0ðxVÞ

ϕs
0ðxV0ÞÞ

�
ϕs
V0
; ηsV ¼

�
ηs0ðxVÞ
ηs0ðxV0ÞÞ

�
ηsV0

;

aV ∈ ∂K0; aV0
∉ ∂K0: ð5:8Þ

It is useful to divide the Lagrange function (5.2) into two
terms:

L ¼ L0 þ ∂L: ð5:9Þ

Here,L0 does not depend on thevariables ðϕV0
;ηV0

;ϕ†
V0
;η†V0

Þ,
while ∂L is a homogeneous linear form for these variables.
Evidently, ∂L depends only on the variables associated with

vertices from the immediate neighborhood of hypersur-
face ∂K0.
Realization of the constraints (5.4) converts the Lagrange

function (5.2) into a smooth function defined on the compact
metric finite-dimensional manifold Cwithout boundary. It is
well known for this case that the Lagrange function is a
bounded one and it has the local maximum (maxima) and
minimum (minima) at some points pξ ∈ C. Moreover, since
the space C is without boundary, the total differentials of the
Lagrange function at the points pξ are equal to zero.
It should be emphasized that the total differential of the

Lagrange function must be calculated with respect to
independent variables. The variables associated with the
vertices aV ∈ ∂K0 are expressed evidently in terms of
independent variables ϕV0

; ηV0
according to Eqs. (5.8).

Let aV1
∉ ∂K0 be a fixed vertex from the immediate

neighborhood of hypersurface ∂K0. The constraints (5.4)
will be resolved if we express, for example, the real
component of ϕ1

V1
and η1V1

in terms of the rest of the
independent variables,

Reϕ1
V1
¼� 1ffiffiffiffiffiffiffivV1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

X0

V∶aV∈ðK0n∂K0Þ;s¼1;2

vV jϕs
V j2

s
; ð5:10Þ

and analogously for Reη1V1
. Here, the prime above the sum

means that the variable Reϕ1
V1

is absent. Thus,

∂Reϕ1
V1

∂ϕs
V

¼ ∓
�
vV
vV1

�
ϕs
V

Reϕ1
V1

: ð5:11Þ

Therefore, one should replace

∂
∂ϕV

→
∂

∂ϕV
∓
��

vV
vV1

� ðϕVÞ�
Reϕ1

V1

� ∂
∂Reϕ1

V1

; ð5:12Þ

and so on.
Let us consider the stationarity condition for the

Lagrange function (Lagrange multipliers can be put equal
to zero) relative to the variable η†V :

∂L
∂η†V

∓
��

vV
vV1

�
ηV

Reðη†Þ1V1

� ∂L
∂Reðη†Þ1V1

¼ 0: ð5:13Þ

For V ¼ V0, we have the same equation, but it is convenient
to divide the Lagrange function according to (5.9):

∂L0

∂η†V0

þ ∂ð∂LÞ
∂η†V0

∓
��

vV
vV1

�
ηV0

Reðη†Þ1V1

� ∂L
∂Reðη†Þ1V1

¼ 0:

ð5:14Þ

Now, pass to the limit R → ∞ in Eqs. (5.13)–(5.14).
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We have

vV=vV1
∼ 1 ð5:15Þ

for the not-patologic complex. There is also the estimation

ηV
Reðη†Þ1V1

∼ OðR0Þ ð5:16Þ

as a consequence of the boundary condition (4.21). Finally,
the estimation

∂L
∂Reðη†Þ1V1

∼ OðR−3Þ ð5:17Þ

is true since the quantity ∂L=∂Reðη†Þ1V1
depends linearly

only on a limited number (of the order of 1) of the variables
ϕV and due to the boundary condition (4.20).
The estimation of the second term on the left-hand side of

Eq. (5.14) can be obtained if we take into account Eqs. (5.8)
and the definition of the quantity ∂L [see Eq. (5.9)]. The
angular dependence of the boundary variables is defined
according to Eq. (5.8). Therefore, this quantity resides in
the stationary point relative to the angular variations by
definition of ∂L. So. the derivative ∂=∂η†V0

comes to the
derivative with respect to r acting into variables ϕV for
vertices aV from the immediate neighborhood of hypersur-
face ∂K0, and ∂L is the sum of the quantities that are of the
order of OðR−4Þ, but the number of these quantities (the
number of the vertices on ∂K0) is of the order of R3. Thus,

∂ð∂LÞ
∂η†V0

∼ OðR−1Þ: ð5:18Þ

Using the estimations (5.17) and (5.18), we obtain
estimations

∂L
∂η†V

∼ OðR−3Þ; ∂L
∂η†V0

∼ OðR−1Þ: ð5:19Þ

From (4.21) and (5.4), it follows that

η†V ∼ OðR−2Þ: ð5:20Þ

As a result of estimations (5.19) and (5.20), we obtain

L0 ∼
X

V∶aV∈ðK0n∂K0Þ;V≠V0

η†V
∂L
∂η†V

∼ OðR4Þ · OðR−2Þ · OðR−3Þ ∼ OðR−1Þ: ð5:21Þ

Now, one should consider the stationary point of the
Lagrange function (5.2) relative to the variables ϕV . For this
purpose, it is enough to make a replacement η†V → ϕV in
Eqs. (5.13) and (5.14). The estimation

∂L
∂ϕV

∼ OðR−2Þ ð5:22Þ

is true since the quantity ∂L=∂Reϕ1
V1

depends linearly only

on a limited number (of the order of 1) of the variables η†V
and due to the estimation (5.20). Further, since the
derivative ð∂η†V=∂rÞ is negligibly small in the neighbor-
hood of hypersurface ∂K0 [see (4.21)], the quantity

∂ð∂LÞ
∂ϕV0

is also negligibly small. Therefore, the estimation (5.22) is
valid for all aV ∈ K0n∂K0.
Now, one should pass to the limitR → ∞. It follows from

the estimations (5.19) and (5.22) that the problem (5.1)–
(5.2) possess a solution.Besides, according toEq. (5.21), the
action (4.1) is equal to zero in this solution. This means that
the discussed solution really is a fermion zero mode.

VI. DISCUSSION: THE NUMBER OF LATTICE
ZERO MODES AND THEIR NATURE

The important question is unanswered; how many lattice
solutions for zero modes do exist? We cannot prove
rigorously here that there exist two linearly independent
lattice zero modes, but we formulate the conjecture.
Hypothesis.—There exist two linearly independent

lattice fermion zero modes associated with the lattice
gravitational instanton. One of them possesses the proper-
ties of a usual smooth mode, and another can be charac-
terized as a singular mode [1].
We give here only some reasoning to justify the

hypothesis.
Suppose that the subcomplex k (center of the instanton)

is large enough, i.e., the number of 4-simplices s4W ∈ k is a
large number. According to Eqs. (4.1) and (3.9), the
contribution to the fermion action that is associated with
subcomplex k is

AðþÞðkÞ ¼
1

2 · 5 · 6 · 24

X
W∶s4W∈k

X
i;j;k;l;m

εWijklmεabcd

× ðη†Wmσ
aϕWi þ c:c:ÞebWmje

c
Wmke

d
Wml: ð6:1Þ

Let us consider two adjacent 4-simplices s4W ¼
aWiaWjaWkaWlaWm and s4W 0 ¼ aW 0i0aWjaWkaWlaWm with
common 3-simplex s3 ¼ aWjaWkaWlaWm and different
vertices aWi and aW0i0 . Evidently, s4W and s4W 0 have the
opposite orientations. Therefore,

εWijklm ¼ −εW0i0jklm: ð6:2Þ
This implies that the contribution into Eq. (6.1) associated
with 3-simplex s3¼aWjaWkaWlaWm vanishes for ϕWi ¼
ϕW 0i0 . Note that there are no cavities in K (and hence in k)
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by definition. This means that each 3-simplex s3 ¼
aWjaWkaWlaWm ∈ ðkn∂kÞ belongs to two and only two
adjacent 4-simplices s4W ¼ aWiaWjaWkaWlaWm ∈ k and
s4W0 ¼ aW 0i0aWjaWkaWlaWm ∈ k. It follows from this con-
sideration that the contribution (6.1) vanishes on the
configuration

ϕV ¼ Const on kn∂k: ð6:3Þ
In other words, the configuration (6.3) satisfies Eq. (5.1)
on kn∂k.
This consideration leads to the hypothesis that the

configuration (6.3) is a part of the configuration of a
regular zero mode on the instanton interior.
According to the hypothesis, the irregular zero mode

(doubled fermion in the Wilson sense) does exist also.
The hypothesis is proved mathematically rigorously in

the case of the Dirac zero modes for the Yang-Mills smooth
instantons. The idea of the proof is based on the fact that the
normal smooth fermion modes give the known anomaly
contribution into the chiral current. But a trivial conse-
quence of our definition of lattice Dirac fermions is the fact
that the lattice fermion measure does not contain an axial
anomaly. This means that the Dirac irregular modes
compensate completely the contribution of the smooth
fermion modes into anomaly. Since in the Yang-Mills
theory the Dirac zero modes and anomalous contributions
into axial current are inextricably connected (concerning
the smooth modes, the statement is demonstrated in the
Introduction), both normal and anomaly zero modes must
exist. The detailed calculations are given in Ref. [1].
The problem formulated here as a hypothesis requires a

detailed study as well as the physical consequences of the
fermion zero mode existence.
For a final matter, we give some comments regarding the

Wilson fermion doubling problem. It is well known that the

lattice Dirac fermions possessing the chiral symmetry
property possess also the Wilson fermion doubling prop-
erty. The statement is valid for regular lattices [13,14] as
well as for irregular lattices (simplicial complexes) [1].
However, there is a qualitative difference between the
phenomena on regular and irregular lattices. In the case
of the regular lattice, there are 16 doublers, and all of the
quanta of all doublers propagate identically like free
particles (in free theory). But there is a qualitative differ-
ence between the dynamics of soft regular and soft irregular
quanta in the case of the irregular lattice. While the regular
quanta propagate as free particles since they have lost the
information about the lattice, the irregular doubled quanta
cannot propagate in the space-time for the reason that the
irregular quanta wave functions are determined essentially
by the irregular “breathing” lattice [15]. Therefore, the
irregular quanta cannot be observed directly but only by
means of some physical effects taking place due to the
existence of irregular quanta (more detailed comments on
the question are contained in Ref. [1]). In a sense, the
irregular quanta are not observable since they are not
relevant for most of physics. We note also that the number
16 for the doublers for the cubic lattice is related with the
cubic symmetry. Since general irregular lattices (simplicial
complex) have no symmetries, the irregular quanta enu-
meration problem remains unsolved.
Note also that the zero modes differ from soft modes

qualitatively; the zero mode is localized in the vicinity of
the instanton and annihilates the Dirac operator precisely,
while the soft mode is an eigenmode of the Dirac operator
with nonzero eigenvalue.
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