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I. INTRODUCTION

It is known that in continuum relativistic gauge theories
coupled with fermions some of the currents conserved in
classical mechanics become nonconserved ones in quantum
mechanics due to vacuum quantum fluctuations; the
divergences of some currents are equal to a certain local
functions of the gauge field called “anomaly,” which are
generally not zero.

Consider, for example, four-dimensional (4D) Euclidean
Yang-Mills theory. The following formulas are well known:
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Let us integrate the last equation in Eq. (1.1) over space. We
obtain

d<4>x\1';,0y5 Py,
Ny :ew, =0
2

= —3;[2 g / d9xtrF,F), =q  (1.2)

since the modes Wy and y°¥, are mutually orthogonal
for ey # 0. Here, ¢ = 0, %1, ... is a topological charge of
the Yang-Mills field instanton. Now, the Atiyah-Singer
index theorem is obtained if we substitute for y° its
decomposition > = (1/2)(1 +y) = (1/2)(1 —y°) into
the left-hand side of Eq. (1.2):
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Here, n, (n_) is the number of right (left) fermion zero
modes associated with the instanton with the topological
charge q.

It is seen from this consideration that the existence of
fermion zero modes associated with the instanton in Yang-
Mills theory is provided by the existence of anomaly in
divergence of the corresponding fermion axial current (1.1).

But the problem of the anomalies and their connection
with fermion zero modes in lattice gauge theories is
qualitatively more complicated one (see Ref. [1]). Note
that all lattice theories under consideration possess the
common fundamental property: lattice theories transform
into corresponding continuum relativistic theories at the
naive long-wavelength limit.

Let us consider first the Yang-Mills instanton in a lattice
theory. The configuration of the Yang-Mills instanton field
is smooth at each region of space-time. This property is
very important for the validity of the second equality in
Eq. (1.1). Indeed, this equality is obtained correctly only
for long-wavelength (as compared to fermion field wave-
lengths) gauge fields. Therefore, the second equality in
Eq. (1.1) is valid in the lattice theories in the naive long-
wavelength limit. This property of the Yang-Mills theory
implies very important physical consequences. In particu-
lar, it follows from here that the irregular ultrashort
(doubled) fermion quanta with low energy also exist [1]
in addition to soft regular long-wavelength fermion quanta.

The gravity equivalent of the second equality in Eq. (1.1)
fails since the gravitational instanton field configuration is
singular near the center of the instanton (see Sec. III) in
lattice gravity theory. Therefore, a proof of the existence of
the lattice fermion zero mode associated with the instanton
would be significantly different from the above exposed
method. We use here the method that has been successful in
solving lattice pure gravity self-dual equations with given
boundary conditions [2] (lattice instanton).

The method makes it possible to establish the main result
of the paper: a proof of the existence of the fermion zero
mode associated with a lattice gravitational instanton. Here,
we emphasize that the lattice approach developed in
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Ref. [2] and used here cannot be extended to usual
continuum field theories since any finite space-time region
contains an innumerable set of variables in such theories.

The following extremely important point is in order. The
Eguchi-Hanson continuous solution (see Refs. [3,4]) is
valid for the manifold M with a boundary as r — oo, which
is the cotangent bundle of the complex plane, P, (C) ~ S%:

M =T(P\(C)),

oM = S0(3) = $3/Z,. (1.4)
The manifold M is smooth. On the other hand, the discrete
analog of the Eguchi-Hanson solution [2] and Dirac zero
mode exist on a triangulation of manifold R*. which can be
considered as S of extra-large r including its interior. This
triangulation is designated as K’ (see Sec. III), OK’ ~ S°.
Evidently, the topologies of the manifold M and simplicial
complex K’ are different.

The organization of the paper is as follows. In Secs. II
and III, the early obtained results that are necessary here, the
definition of lattice gravity theory and self-dual solution on
the lattice, are shortly outlined. In Sec. IV, the asymptotic
behavior on a long-wavelength limit of the fermion zero
mode is studied. In Sec. V, the existence of the lattice
fermion zero mode associated with the self-dual solution is
proved with the help of the method used for the proof of
existence lattice self-dual solution [2].

II. LATTICE GRAVITY MODEL

Let’s introduce some designations:
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o%are Pauli matrices.

It is necessary to sketch out the model of lattice gravity,
which is used here. A detailed description of the model is
given in Refs. [1,5,6].

The orientable four-dimensional simplicial complex and
its vertices are designated as & and ay, and the indices
V=12,....9M — oo and W enumerate the vertices and
4-simplices, correspondingly. We assume here that & ~ R*
in a topological sense. It is necessary to use the local
enumeration of the vertices ay attached to a given
4-simplex: all five vertices of a 4-simplex with index W

(2.1)
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are enumerated as ayy;, i = 1, 2, 3, 4, 5. The later notations
with extra index WV indicate that the corresponding
quantities belong to the 4-simplex with index W.
The Levi-Civita symbol within pairs different indices
ewijiim = =1 depending on whether the order of vertices
s;‘/v = ayyayyjayradyyayy, defines the positive or negative
orientation of 4-simplex s3,,.

An element of the group Spin(4) and an element of the
Clifford algebra,

ab . ab
O Wyy;js

NS

_0o-l _ —
Qyij = Qyy;; = exp(@yyij), Wyyij =

5 PN - — 5 —1
ewij = Sy = €yy;r" = =iy (2.2)
are assigned for each oriented 1-simplex ay;ayy;. The

Dirac spinors ¥, and ‘PL, each of the components of which
assumes values in a complex Grassman algebra, are
assigned to each vertex ay,. In the case of the Euclidean
signature, the spinors ¥, and ‘P,T, are independent variables
and are interchanged under the Hermitian conjugation.

Thus, the used representation realizes automatically the
separation of a total gauge group into two subgroups:
Spin(4) ~ Spin(4) ) ® Spin(4)_). For example,

| (o w?—&-)Wij 0
2= W)
Dywij

1
Dlowij = {i“’%zj 5 Eapy V{liij}' (2.3)

The underwritten lattice instanton solution and fermion
zero mode are described in terms of the subgroup

The considered lattice action has the form

oA = A, + Ay,

1
2[!]:—75'24'2'122 Z EWijkim

P W ijklm

(2.4)

X UVSQWmiQWijQij EWmk€Wmi» (2.5)

1
Wy = 500 Z Z EWijkim

Wi jklm

5A A N N
X try G)V\/mieVijeVmGeV\/mIv

A i
Oyij = Eya(lp;f/wyaQWij‘PWj - ‘PI/VjQWjiVa‘PWi)

= @%Uya, (2.6)

This action is invariant relative to the gauge transformations
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ewij = Sywiewij Sy

” _wt ol
Py = PhyiSyyi

Quij = SwiQwisSi;-
‘iJWi = Swi%ai.

Syyi € Spin(4). (2.7)

The action (2.4) reduces to the continuum action of
gravity in a four-dimensional Euclidean space in the limit
of slowly varying fields, minimally connected with a
Dirac field.

Consider a certain 4D subcomplex of complex & with

the trivial topology of the four-dimensional disk. Realize
geometrically this subcomplex in R*. Suppose that the
geometric realization is an almost smooth four-dimensional
surface [7]. Thus, each vertex of the subcomplex acquires
the coordinates x* that are the coordinates of the vertex
image in R*:
Xy = X = xF(ayy;) = ¥ (ay), u=12734(2.8)
We stress that these coordinates are defined only by their
vertices rather than by the higher-dimension simplices to
which these vertices belong; moreover, the correspondence
between the vertices from the considered subset and the
coordinates (2.8) is one to one.

The four vectors

dx”Wﬁ = x4 —x”Wj, i=1,2,3,4 (2.9)
are linearly independent, and
dx1]/\/m 1 dxlz/Vm 1 dx?/\/m 1
=0, (2.10)
dxll/\/m4 dx%/Vm4 dx?/\/mél

depending on whether the frame (X)), ...,X,) is pos-
itively or negatively oriented. Here, the differentials of
coordinates (2.9) correspond to one-dimensional simplices
ayy;ayy; so that if the vertex ayy; has coordinates xJ,, j» then
the vertex ayy; has the coordinates xy,; + dxj), ;.

In the continuous limit, the holonomy group elements
(2.2) are close to the identity element so that the quantities
i} tend to zero being of the order of O(dx*). Thus, one
can consider the following system of equations for wyy,,,,:

OWmg X i = Oy i=1,2,3,4. (2.11)
In this system of linear equations, the indices ¥V and m are
fixed, the summation is carried out over the index y, and the
index runs over all its values. Since the determinant (2.10)
is nonzero, the quantities wyy,,, are defined uniquely.
Suppose that a one-dimensional simplex X)) belongs to
four-dimensional simplices with indices Wy, W,, ..., W.,..
Introduce the quantity
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1 1
w, E(XW’" +xp) | = ;{wwlmﬂ + o oWt

(2.12)

which is assumed to be related to the midpoint of the
segment [x},, . x4, |. Recall that the coordinates x),,; as well
as the differentials (2.9) depend only on vertices but not on
the higher-dimensional simplices to which these vertices
belong. According to the definition, we have the following
chain of equalities:

(2.13)

OW mi = OW,mi = -+« = OW i+

It follows from Egs. (2.9) and (2.11)—(2.13) that

1
C()M <me + desz) d‘XﬂWmi = DWi- (214)

The value of the field element @, in Eq. (2.14) is uniquely
defined by the corresponding one-dimensional simplex.

Next, we assume that the fields @, smoothly depend on
the points belonging to the geometric realization of each
four-dimensional simplex. In this case, the following
formula is valid up to O((dx)?) inclusive,

1
Qi QWi Qywjim = €xXp |5 Ry (Xyym )Xy, dxsy, |

2
(2.15)
where
— 1 absp ab
R, = 0,0, - 0,0, + [0, 0] = 2 R,
Rab = ER,‘jfdx” A dx”. (2.16)

In exact analogy with Eq. (2.11), let us write out the
following relations for a tetrad field without explanations:

~ A “_ a
ewmﬂdx#Wmi =Cymi — € = eﬂdxﬂ- (217)

Using Egs. (2.2), (2.9), and (2.11), we can rewrite the
1-form (2.6) as
N [
®Wij =7y B [‘P'J’apulp - (Duq')TJ’alP}dxﬁij
= 0%y, (2.18)

to within O(dx); here,

¢

’Dﬂ‘PzﬁﬂlP—f—a)ﬂlP, ‘P: <}7

), (2.19)

and the smooth field ¥(x) takes the values ¥(x)y;) = Y-
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Applying formulas (2.15)—(2.18) to the discrete action
(2.4) and changing the summation to integration, we obtain
in the continuum limit the well-known gravity action:

1 1
?[:/gabcd —RDPNENT——O NP N Ne? p
Iy 6
(2.20)
Thus, in the naive continuum limit, the action (2.4)

proves to be equal to the gravity action in the Palatini
|
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form minimally coupled to a Dirac field with Euclidean
signature.

Another way of constructing Dirac fermions on simpli-
cial complexes is stated in Ref. [8].

III. LATTICE GRAVITATIONAL INSTANTON

Let us consider first the instanton field configuration far
apart from the instanton center where the continuous limit
is valid (Eguchi-Hanson solution).

The designations

o' =(c',6%,06%i), dx*=(d0, dop, dy, dr), a=1,2,3,4,
0y siny cosy 0 0
0, —sinfcos sin @ sin —cos@ 0
aﬂE ’ 5 glz v 5 ng v 5 g3= ) €4E (31)
0y 0 0 -1 0
0, 0 0 0 1
for the row and column matrices are used. We have
dxte; = (d6, de, dy, dr)x (%rgl, %rgz, %rgg3, g '),
4
a
=4\/1-— 3.2
g a (3.2)
for the Eguchi-Hanson self-dual solution to continuous Euclidean gravity [3,4].
The 4 x 4 matrix, which is the inverse of that in (3.2), is of the form
rlsing —(rsin@)~'cosy rlcotfcosy 0
r~! cos rsin@)~! sin —r~!cot@sin 0
=2 x v (rsing)"siny v (3.3)
0 0 —(rg)~! 0
0 0 0 g/2

For the instanton gravitational field, we have

1 ab . ab __ ic” a)?JF)ﬂ 0
2gwﬂ_2< o),

%dx”(a)a %) :%

(+)u
+(2-P)F).

(3.4)

(do, dp. dy, dr)(gs'e' + gs*o?

(3.5)

Now, we describe the lattice self-dual gravitational field
configuration [2,9].

The following notations are used below: ¥ C & means a
finite subcomplex containing the center of the instanton with
the boundary OfxS3: ] CK is an extra-large but finite
subcomplex with the boundary 0K’ ~ S° containing the
center of the instanton and vertices ay, € &', V=1,2,...
' > 1 so that the long-wavelength limit is valid and the
continuous solution (3.2)—(3.5) approximates correctly the

[
exact lattice solution in a wide vicinity of OK’; the hyper-
surface K’ is given by the equation » = R = Const — co.
The Euler characteristics y(f) = y(&') = y(&) = L.

It has been proven in Ref. [2] that there exists the
solution of the system of equations and boundary
conditions

Uy /S0y, =0, U/, =0,

Wmi
a)((x—)Wmi =0 Qyp; =1, (3.6)
o |
— (), > U"dU as r— o, (3.7)

2

where

- 3 ;2 ;3
U =exp (—%(p) exp <%9> exp <—%y/), (3.8)
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and

Qupwiy==1, sy €L

ViV, — ¢?}2 — ¢]a/1’ ay ay, S f, ay ay, f ot

(3.9)

on ¥ (ay,ay, is a 1-simplex). The solution of Egs. (3.6)-
(3.9) is the lattice analog of the Eguchi-Hanson self-dual

solution. It is denoted as e?inst)v,vz'

Q(inst)V|V2>
IV. ASYMPTOTIC BEHAVIOR OF FERMION
ZERO MODE ASSOCIATED WITH
GRAVITATIONAL INSTANTON

To begin with, we define the lattice variant of the (right)
neutrino action. For that purpose. it is necessary to extract
from the quantity (2.6) the part interacting with the field
Q(yw;j only [10]:

1
AWy =————5= EWijkimEabed
HRTIIPIY
X ®[(l+)Wmie1Ij\/mje1c/mGe§le’
1 +
®?+)Wij = E(’ﬂ/\)i W11¢W/+¢W] le( ) nWi)'
(4.1)

It is convenient to write the continuous variant of the
introduced fermion lattice action (4.1) in the form

1
Ay —/d(4>x|(detef{)|{§ea[q oDy M¢+cc]}

i
D(Jr)/l Eaﬂ +§Ua(l)a

(Hu (4.2)

The set of independent fermion variables is described

by {¢.n.¢".n"}.

Uo“U™' = 6Aj
(cos@cos @ cosy — sing siny)
PR (cos @sin @ cosy + cos @ siny)
B sin @ cos y
0

as a result of direct calculations. Further, according to Egs.

—r~lsing —r'cotfcosg
—1 -1 .
Al — r-cosep —r~ ' cot@sing
0 —r1
0 0
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The actions (4.1), (4.2) can be interpreted as the
lattice and continuous variants of (right) neutrino actions,
correspondingly.

Further, it is believed that the gravitational fields in
Eq. (4.1) are the lattice instanton solutions (3.6)—(3.8), and
the gravitational fields in Eq. (4.2) are the corresponding
fields in the long-wavelength limit (3.2)—(3.5).

At the limit » — oo, we have g = 1. Let us introduce the
designations for the case g = 1:

(N

56 a)(+)ﬂ EE |g 1 _E(glal +9'202+g363)y,
PO — a(0)
Dl =0 +50%0,,.

So, we have

o i
Do =D}y, + 5 ((I=g)le’ + (1 -g)c*c?

+ (1 - 92)g363)”-

It is easy to see that [the definition of U € SU(2) is given in
(3.3)]

(4.3)

P —u-h,U.

o, (4.4)

Combining Eqgs. (4.3) and (4.4), we rewrite the Dirac-Wey]
operator in (4.2) as follows:

oD, = U—I(UaaU—l)e’;{a,, +%U((1 —g)s'!

+(1-g)g?e* + (1 = F)g’0”) U‘I}U.

(4.5)

One can obtain the row matrix

—(cosB@cos @ siny + singpcosy) —sinfcos g

0
(—cos@singsiny + cosgcosy) —sinfsing 0
0

1

—sin@siny cos
0 0
(4.6)
(3.3) and (4.6),
(rsin@)~! cos p(cos?d + g~'sin?0) 0
(rsin@)~! sin (cos?d + g~'sin%9) (4.7
1 (1=g ") coso 0 .
0 g/2
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Using the aforementioned formulas, we transform the operator (4.5) into the form

2 /-1y I B
a ZD =U-lilZ —_
weini, = i3 (00 ) 4o,

2 ) ' 0 i@ 2i 1 0 0 1+2g-3¢
0 + g 'sin’0 ~(1=g! 0 —i— — U,
+ [r Sin6?(cos + g 'sin )<ei‘/’ 0 > +—(1—=g")cos (0 4 lal// + rg

9 R 9
- iz —etin( 4+ 9 9
I3 la(ﬂ, I, =e < 89+100t68¢)’
U ly] = Floy [l 1] = 2L, (4.9)

We see that the operator in curly brackets in (4.8) does
not depend on the variable y. Therefore, it is natural to take
the simplest ansatz for the zero mode in the form

n=U"q.
(0/0w)n = 0.

¢=U"9,
(0/0w)p =0, (4.10)

Thus, the operator (4.8) for the zero mode problem for
r > a reduces effectively to

2 (-1l I 9,
oDy, = U‘H’[—( > +—] U, (4.11)
(+)ﬂ r l+ l3 ar

and the effective action describing the fermion zero mode
configuration takes the form

Ay = / 73 sin @drd@depdy

i [2/-z [ o7~
x{yﬁ&(h l3>+5}¢+c.0.} (4.12)

because of

|(det e?)|d®x = 73 sin @drdddepdy (4.13)
for the instanton field solution.

Note that the frequently used operator 2ls in hydrogen
atom physics has the form

L, L
2ls = ( 3 >
I, -1

and it differs from that in Eq. (4.12).
The action stationarity condition relative to variable 7"
gives the zero mode equation

2/ L\ 9)-
- TG, =0.
{r(u 13>+ar}¢0

(4.14)

(4.8)

The stationarity condition of the action (4.12) relative to
variable ¢ yields

g_IS l_”‘—§+g”
r\ 1L, L o= 1\7 or To-

Equations (4.14) and (4.15) imply that the functions &50
and 7, are the eigenfunctions of the operator

(0 x)
I, L

with the common eigenvalue 1. Otherwise, the action (4.12)
would be equal to zero identically since the operator (4.16)

is Hermitian.
Let us consider the ansatz

- _io® \ [ h(0)/V5in0
¢o—f(r)le><p( ch)(k(g)/m)]. (4.17)

(4.15)

(4.16)

The equation

(D) (59

o3 h(0 0
— 2| exp <—”’(p> (6)/Vsin (4.18)
2 k(0)/+/sin 0
is satisfied when and only when
dk 1 dh 1
—=—|A-=|h, —=|A-= |k 4.1
do < 2) do < 2) (4.19)

To have the acceptable boundary conditions at § = 0, z,
one must consider only the eigenvalues A=(n-+1/2),
n=0,%1,.... Equation (4.14) shows that the eigenvalues
are acceptable only for n > 1. Otherwise, the mode ¢,
would be non-normalizable. On the other hand, the
function 5, would be O(r>"=V) as r — oo for n>2
according to Eq. (4.15); i.e., it would be non-normalizable.
Therefore, the only acceptable eigenvalue is A = 3/2.
Then, Eqgs. (4.14) and (4.15) give

054512-6



FERMION ZERO MODE ASSOCIATED WITH ...

d 3 Const
<a+;>f—o—>f~ }"3 R (420)
0 .
5110:0 as r — oo. (4.21)

There are only two solutions,
ANSY sin ANEY cos
- \/E bl = \/5 bl
< k ) cos @ k —sind

(4.22)
for 4 = 3/2. Combining Egs. (3.8), (4.10), (4.17), (4.20),
(4.21), and (4.22), we obtain two asymptotic solutions:
(1) _ Const i3 tan (6/2)
) =—exp (v ,
r y/cot(0/2)
() <i63 ) tan (6/2)
1y~ = Const-exp | —y ,
2 y/cot(0/2)

o2 = Const exp <m3 l//> cot (6/2)
’ r 2 —Van (0/2) )

() — Const - ex ﬁ cot (6/2)
o Const-exp ( 2 W) (—\/tan(G/Z) . (423)

It is known that two spinors ¢ and (ic?¢)* transform
identically under the gauge transformations Spin(4)

[11]. Here, the upper index * means complex conjugation.
But we have

oy = (ic®))".

This equality leads to the conclusion that there is only one
independent smooth fermion zero mode associated with the
lattice gravitational instanton. Therefore, any linear combi-
nation of the solutions (4.23) can be considered as
asymptotic behavior of the zero mode.

It will be proved that the corresponding lattice solution is
normalizable.

Note that there is a great number of other solutions of the
equation e} Dy (1o = 0. We give an example of a
series of the operator (4.18) eigenfunctions with eigenval-
ues A # 3/2:

b = 1) <i03 ) imo 5in ) cot (0/2)

= fi(r)exp | — ?(sin@)™ ,

’ PL2Y)|¢ —y/tan (6/2)
A= (m+3/2), m=1,2,...

As was shown above, the eigenvalues 1 # 3/2 are not
acceptable.
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V. EXISTENCE OF LATTICE FERMION
ZERO MODES

We must solve lattice equations
OU /5y =0,  8Ay/om, =0  (5.1)

as well as their complex conjugate equations [12] for
the action (4.1) taken on the self-dual gravitational
solution (3.6)—(3.9) (ins)y, v, efmst)vlvz with the boundary
conditions (4.23) as r — oo.

To solve the problem, we use the method that has been
successful in solving lattice pure gravity self-dual equations
with given boundary conditions [2]. The method can be
applied to lattice theory, but it is fundamentally unaccept-
able in the case of continuous theories. The reason is that
the number of variables (degrees of freedom) associated
with finite space-time volume is finite in any lattice theory,
while the number of variables per volume is infinite
(uncountable) in continuous theories.

Introduce the following Lagrange function on &' [see the
text between Egs. (3.5) and (3.6)] depending on the

variables {y, ny, ¢l 51V =1,..., N

1

L= T5.6.24 E EWijkimEabed
Wisiveﬁ’ i.j.k,0,m

X G?Jr)Wmie)b/ije?/mGengl — AN — 1)

— { A 20 o1 +c.c.}. (5.2)
V:iapyedK' s=1.2

Here, {1} are Lagrange multipliers.
The constraints

q,(qs)_( ¢ M >

Vs Py(xy) P (xvy))
@('7) — ( 'I{/ _ I/ISVO )
Vs no(xy) ’l(s)(xvo))
ay) (S 8R/, aVo ¢ 8§/ (53)

fix the boundary conditions (4.23) near the hypersurface
ORK'. Here, x), and xy, are the coordinate values at the
vertices ay and ay,, correspondingly [see Eq. (2.8)]; ay, is
a fixed vertex from the immediate neighborhood of hyper-
surface 9K’ so that there is a 1-simplex ay, a), for some
vertex ay € OK'; index s = 1, 2 enumerates the compo-
nents of Weyl spinors ¢, ¢.
The constraints

o= > wymr-1)

Viapye(K\OK') s=12

) = < Z Uvz Iyl = 1)

Viapye(R\OK') s=12

(5.4)
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mean that the fermion field configurations are normalizable

on K/,

1
Uy = g E Dy, (55)
W:ay,eW
1
_ 12 3 4
Uy = 47EWijklmeWmieijekaeWml‘ (5.6)

The expression (5.6) means the oriented volume of the
4-simplex sy, factor 1/4! is required since the volume of a
four-dimensional parallelepiped with generatrices e{,\,mi,
Yy > Eymer and ey, is 4! times larger than the volume of
a 4-simplex with the same generatrices. The expression vy,
in Eq. (5.5) is the sum of the volumes vy, for that
W-4-simplices which contain the vertex ay, the factor
1/5 is necessary due to the fact that all five vertices of each
simplex are taken into account independently in Eq. (5.4).
So, the volume (5.5) is the specific volume per vertex. In
the long-wavelength limit, the constraints (5.4) transform
into (the same is true for ®)

D) — </ <Z¢“’(x)|2>el ANerneAet— 1>,
8 \sZ12

ed = ede”.

Since the subcomplex &' contains a finite number N’ of
vertices, the Lagrange function (5.2) depends on a finite
number of classical variables {qﬁL,qﬁV}, V=1,...,N <.
For “not-patologic” complexes &, the estimation

N ~R* (5.7)
is valid.

The problem is as follows: the local maxima and minima
of Lagrange function (5.2) constrained by the constraints
(5.3) and (5.4) need to be studied. The simplicity of the
constraints very much simplifies the problem: the con-
straints can be solved evidently. Thus, the constraints (5.3)
give

s ¢‘6(Xv)> s o (’7‘6(%)) s
# <¢8(Xvo)) P noCo)) ™

ay) S 8@’, avo ¢ 65%’

(5.8)

It is useful to divide the Lagrange function (5.2) into two
terms:

L=L+0L. (5.9)
Here, £’ does not depend on the variables (¢, .17y, ,qﬁ,o ,nLO),

while 0L is a homogeneous linear form for these variables.
Evidently, 0L depends only on the variables associated with
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vertices from the immediate neighborhood of hypersur-
face OK’.

Realization of the constraints (5.4) converts the Lagrange
function (5.2) into a smooth function defined on the compact
metric finite-dimensional manifold C without boundary. It is
well known for this case that the Lagrange function is a
bounded one and it has the local maximum (maxima) and
minimum (minima) at some points p; € C. Moreover, since
the space C is without boundary, the total differentials of the
Lagrange function at the points p, are equal to zero.

It should be emphasized that the total differential of the
Lagrange function must be calculated with respect to
independent variables. The variables associated with the
vertices ay, € 0K’ are expressed evidently in terms of
independent variables ¢y, 7y, according to Egs. (5.8).
Let ay, & 0K’ be a fixed vertex from the immediate
neighborhood of hypersurface 9K'. The constraints (5.4)
will be resolved if we express, for example, the real
component of ¢]1,] and n{,l in terms of the rest of the

independent variables,

1 /
Repl, =+—— |1- > vyl
Vi \/ Viaye(8N\08").5=1.2

and analogously for Renlljl. Here, the prime above the sum

(5.10)

means that the variable Reqﬁ%,1 is absent. Thus,

6R6¢1 v N
W ;(V) ¢V1 : (5.11)
Oy, vy, Reqﬁv1
Therefore, one should replace
9 9 vy ((f?v)*] 9
— 5= ¥ 5.12
Oy - Oy T KUVI) Regy, | ORedpy, (5-12)
and so on.

Let us consider the stationarity condition for the
Lagrange function (Lagrange multipliers can be put equal
to zero) relative to the variable 7,

< (2) et
on, vy, ) Re(n')y, | ORe(n")y,

For V = V), we have the same equation, but it is convenient
to divide the Lagrange function according to (5.9):

oL’ 0(0L) vy v, oL
N o Re(r L | BReGAL =0
Ony, — Ony, vy, /) Re(n )V, e(n )V,

(5.13)

(5.14)

Now, pass to the limit R — oo in Egs. (5.13)—(5.14).
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We have

UV/UV] ~ 1 (515)

for the not-patologic complex. There is also the estimation

e~ O(R)

RO (5.16)

as a consequence of the boundary condition (4.21). Finally,
the estimation

or
ORe(n")s,

1

~O(R) (5.17)

is true since the quantity 9L/0Re(n"), depends linearly
only on a limited number (of the order of 1) of the variables
¢y and due to the boundary condition (4.20).

The estimation of the second term on the left-hand side of
Eq. (5.14) can be obtained if we take into account Egs. (5.8)
and the definition of the quantity 0L [see Eq. (5.9)]. The
angular dependence of the boundary variables is defined
according to Eq. (5.8). Therefore, this quantity resides in
the stationary point relative to the angular variations by
definition of OL. So. the derivative 0/ 8;7{,0 comes to the
derivative with respect to r acting into variables ¢, for
vertices ay, from the immediate neighborhood of hypersur-
face OK’, and OL is the sum of the quantities that are of the
order of O(R™*), but the number of these quantities (the
number of the vertices on OK’) is of the order of R3. Thus,

0(0L)
811LO

~O(R™). (5.18)

Using the estimations (5.17) and (5.18), we obtain
estimations

a—6~O(R‘3), %~O(R"). (5.19)
ony, 8’71/0
From (4.21) and (5.4), it follows that
n, ~O(R™2). (5.20)

As a result of estimations (5.19) and (5.20), we obtain

El ~ "]V a—T
Viape(|R\OK). VA, 9Ny

~O(R*) - O(R™2)-O(R™®) ~O(R™). (5.21)

Now, one should consider the stationary point of the
Lagrange function (5.2) relative to the variables ¢y. For this

purpose, it is enough to make a replacement 11; — ¢y in
Egs. (5.13) and (5.14). The estimation
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oL
—~0(R™?)
Oy

is true since the quantity 9L/ 8Re¢]1,] depends linearly only

(5.22)

on a limited number (of the order of 1) of the variables iﬂ,
and due to the estimation (5.20). Further, since the
derivative (8;71; /Or) is negligibly small in the neighbor-
hood of hypersurface 0K’ [see (4.21)], the quantity

a(0L)
Oy,

is also negligibly small. Therefore, the estimation (5.22) is
valid for all a), € K'\OK'.

Now, one should pass to the limit R — oo. It follows from
the estimations (5.19) and (5.22) that the problem (5.1)—
(5.2) possess a solution. Besides, according to Eq. (5.21), the
action (4.1) is equal to zero in this solution. This means that
the discussed solution really is a fermion zero mode.

VI. DISCUSSION: THE NUMBER OF LATTICE
ZERO MODES AND THEIR NATURE

The important question is unanswered; how many lattice
solutions for zero modes do exist? We cannot prove
rigorously here that there exist two linearly independent
lattice zero modes, but we formulate the conjecture.

Hypothesis.—There exist two linearly independent
lattice fermion zero modes associated with the lattice
gravitational instanton. One of them possesses the proper-
ties of a usual smooth mode, and another can be charac-
terized as a singular mode [1].

We give here only some reasoning to justify the
hypothesis.

Suppose that the subcomplex £ (center of the instanton)
is large enough, i.e., the number of 4-simplices s?,v efisa
large number. According to Eqgs. (4.1) and (3.9), the
contribution to the fermion action that is associated with
subcomplex f is

1
Ui =5 5 ez Do Do EWikin€aea

Wishet injklLm

X (ni‘}vma"qﬁwi + C.c.)e{’,\,mjef,\}mke%ml. (6.1)

Let wus consider two adjacent 4-simplices s;‘,\, =
ayyiayyjawidyyayy, and s?/v, = Ay Ay Ay ayydyy, With
common 3-simplex s° = ayyjayayay,, and different
vertices ay; and ayy;. Evidently, s}, and s},, have the
opposite orientations. Therefore,

(6.2)

EWijkim = —EW'I jkim-

This implies that the contribution into Eq. (6.1) associated
with 3-simplex s =ayy;ayyawayy, vanishes for ¢yy; =
¢y . Note that there are no cavities in & (and hence in ¥)
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by definition. This means that each 3-simplex s =

ayy @y ayay, € (E\0F) belongs to two and only two
adjacent 4-simplices s, = ayyiayjawiayay, € ¥ and
S?/v’ = ayyi Ay Ay ayy, € E. It follows from this con-
sideration that the contribution (6.1) vanishes on the
configuration

¢y = Const on ¥\Of. (6.3)

In other words, the configuration (6.3) satisfies Eq. (5.1)
on £\0t.

This consideration leads to the hypothesis that the
configuration (6.3) is a part of the configuration of a
regular zero mode on the instanton interior.

According to the hypothesis, the irregular zero mode
(doubled fermion in the Wilson sense) does exist also.

The hypothesis is proved mathematically rigorously in
the case of the Dirac zero modes for the Yang-Mills smooth
instantons. The idea of the proof is based on the fact that the
normal smooth fermion modes give the known anomaly
contribution into the chiral current. But a trivial conse-
quence of our definition of lattice Dirac fermions is the fact
that the lattice fermion measure does not contain an axial
anomaly. This means that the Dirac irregular modes
compensate completely the contribution of the smooth
fermion modes into anomaly. Since in the Yang-Mills
theory the Dirac zero modes and anomalous contributions
into axial current are inextricably connected (concerning
the smooth modes, the statement is demonstrated in the
Introduction), both normal and anomaly zero modes must
exist. The detailed calculations are given in Ref. [1].

The problem formulated here as a hypothesis requires a
detailed study as well as the physical consequences of the
fermion zero mode existence.

For a final matter, we give some comments regarding the
Wilson fermion doubling problem. It is well known that the
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lattice Dirac fermions possessing the chiral symmetry
property possess also the Wilson fermion doubling prop-
erty. The statement is valid for regular lattices [13,14] as
well as for irregular lattices (simplicial complexes) [1].
However, there is a qualitative difference between the
phenomena on regular and irregular lattices. In the case
of the regular lattice, there are 16 doublers, and all of the
quanta of all doublers propagate identically like free
particles (in free theory). But there is a qualitative differ-
ence between the dynamics of soft regular and soft irregular
quanta in the case of the irregular lattice. While the regular
quanta propagate as free particles since they have lost the
information about the lattice, the irregular doubled quanta
cannot propagate in the space-time for the reason that the
irregular quanta wave functions are determined essentially
by the irregular “breathing” lattice [15]. Therefore, the
irregular quanta cannot be observed directly but only by
means of some physical effects taking place due to the
existence of irregular quanta (more detailed comments on
the question are contained in Ref. [1]). In a sense, the
irregular quanta are not observable since they are not
relevant for most of physics. We note also that the number
16 for the doublers for the cubic lattice is related with the
cubic symmetry. Since general irregular lattices (simplicial
complex) have no symmetries, the irregular quanta enu-
meration problem remains unsolved.

Note also that the zero modes differ from soft modes
qualitatively; the zero mode is localized in the vicinity of
the instanton and annihilates the Dirac operator precisely,
while the soft mode is an eigenmode of the Dirac operator
with nonzero eigenvalue.
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