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We study tetraquark resonances with lattice QCD potentials computed for a static b̄ b̄ pair in the presence
of two lighter quarks ud, the Born-Oppenheimer approximation and the emergent wave method. As a proof
of concept we focus on the system with isospin I ¼ 0, but consider different relative angular momenta l of
the heavy quarks b̄ b̄. For l ¼ 0 a bound state has already been predicted with quantum numbers
IðJPÞ ¼ 0ð1þÞ. Exploring various angular momentawe now compute the phase shifts and search for S and T
matrix poles in the second Riemann sheet. We predict a tetraquark resonance for l ¼ 1, decaying into two B
mesons, with quantum numbers IðJPÞ¼0ð1−Þ, massm¼10576þ4

−4 MeV and decay width Γ¼112þ90
−103MeV.
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I. INTRODUCTION

A long standing problem in particle physics is to
understand exotic hadrons, i.e., hadrons which have a
structure more complicated than a quark-antiquark pair
or a triplet of quarks [1]. The problem of identifying exotic
hadrons, say tetraquarks, pentaquarks, hexaquarks, hybrids
or glueballs—expected since the onset of QCD—turned out
to be much harder than initially expected [2]. The observed
candidates are resonances high in the spectrum, not only
difficult to observe, but also technical to address in quark or
hadron models. They possibly require the development of
new techniques, potentially relevant to other areas of
physics, to be studied theoretically from first principles,
e.g., with lattice QCD [3,4].
Our main motivation is to investigate tetraquarks by

combining lattice QCD and quantummechanics techniques.
We specialize in systems with two heavy antiquarks, which
are expected to form bound states, when sufficiently heavy
[5–15]. The starting point are potentials of two static
antiquarks in the presence of two light quarks, which can
be computed with state of the art lattice QCD techniques
(cf., e.g., [16–21]). If the masses of the two heavy quarks
are much larger than the scale of QCD, which is the case for
two b̄ quarks, their dynamics can then be described by a
quantum mechanical Hamiltonian with the aforementioned
lattice QCD potentials. This two-step approach is the Born-
Oppenheimer approximation [22]. Using this approach,
a udb̄ b̄ tetraquark bound state with quantum numbers

IðJPÞ ¼ 0ð1þÞ has recently been predicted [20,21,23–25]
and confirmed by a lattice QCD computation with four
quarks of finite mass [26]. So far, however, resonances have
not been studied in this framework.
Notice there are two classes of double-heavy tetraquarks.

The tetraquarks with one heavy quark and one heavy
antiquark including the Zc and Zb are easier to detect
experimentally. Their observation at Belle [27–29], Cleo-C
[30], BESIII [31–35], and LHCb [36] collaborations turned
tetraquarks into a main highlight of particle physics in
recent years. But since they have more coupled channels we
opt here to study tetraquarks with two heavy antiquarks (or
quarks), which are theoretically simpler. This “theoretical
simplicity” is convenient for a first study of resonances
with lattice QCD potentials. Moreover, with the recent
observation at LHCb of hadronic systems with two heavy
quarks [37,38] we expect this second class of tetraquarks to
be observed in the near future.
In this work we extent the previous Born-Oppenheimer

studies with lattice QCD potentials, reviewed in Sec. II. We
utilize the emergent wave method, a technique from
scattering theory detailed in Sec. III, to compute phase
shifts, S and T matrix poles in the second Riemann sheet
and the corresponding resonance masses and decay widths.
For the first time, we apply this technique with lattice QCD
potentials, and our results are presented in Sec. IV. We
conclude in Sec. V.

II. LATTICE QCD POTENTIALS OF TWO
STATIC ANTIQUARKS IN THE PRESENCE

OF TWO LIGHT QUARKS AND PREDICTION
OF A STABLE udb̄ b̄ TETRAQUARK

In preceding papers we have computed potentials VðrÞ
of two static antiquarks Q̄ Q̄ in the presence of two light
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quarks qq using lattice QCD. The computations have been
carried out for many different quantum numbers including
light flavor combinations qq with q ∈ fu; d; s; cg, parity P
and total angular momentum of the light quarks and gluons
j (cf., e.g., [21,24]). There are both attractive and repulsive
channels. Most promising with respect to the existence
of tetraquark bound states or resonances are attractive
potentials with light quarks q ∈ fu; dg, since they are
rather wide and deep. There are two such potentials, with
quantum numbers ðI¼0;j¼0Þ and ðI ¼ 1; j ¼ 1Þ, where
I denotes isospin.
We have used creation operators

O½f; f0; Γ; ~Γ� ¼ ðCΓÞABðC ~ΓÞCD
¼ ðQ̄a

Cðr1Þψ ðfÞa
A ðr1ÞÞðQ̄b

Dðr2Þψ ðf0Þb
B ðr2ÞÞ;

ð1Þ

where r ¼ jr2 − r1j, a, b denote color and A, B, C, D spin
indices and ψ ðfÞψ ðf0Þ ¼ ud − du for I ¼ 0 and ψ ðfÞψ ðf0Þ ∈
fuu; udþ du; ddg for I ¼ 1. For the ðI ¼ 0; j ¼ 0Þ poten-
tial Γ ¼ ð1þ γ0Þγ5, while for the ðI ¼ 1; j ¼ 1Þ potential
Γ ¼ ð1þ γ0Þγj (j ¼ 1, 2, 3). Since the potentials are
independent of the static quark spins, one can choose
arbitrarily ~Γ ∈ fð1 − γ0Þγ5; ð1 − γ0Þγjg. As usual in lattice
QCD hadron spectroscopy we have extracted the potentials
from the asymptotic exponential decay in the temporal
separation t of correlation functions

hΩjO½f; f0;Γ; ~Γ�†ðtÞO½f; f0;Γ; ~Γ�ð0ÞjΩi: ð2Þ

Example plots for lattice spacing a ≈ 0.079 fm and u=d
quark masses corresponding to a pion massmπ ≈ 340 MeV
are shown in Fig. 1.
Since it is known that the existence of a stable tetraquark as

well as its binding energy exhibits a sizable dependence on
the light quark mass [24], we have performed computations
of the potentials for three different u=d quark masses
corresponding to mπ ∈ f340 MeV; 480 MeV; 650 MeVg.
Thenwe have used these results to extrapolate to the physical
u=d quark mass corresponding to mπ ¼ 140 MeV. More-
over, we have crudely estimated systematic errors due to the
finite lattice spacing a ≈ 0.079 fm by performing the com-
putationswith twodifferentWilson twistedmass latticeQCD
discretizations. We have found that discretization errors are
negligible compared to the current statistical uncertainties
(for more details cf. [21]). Similarly, effects due to the finite
spatial volume of the lattice are expected to be negligible
as well.
To search for bound states and resonances we para-

metrize the potentials by a screened Coulomb potential,

VðrÞ ¼ −
α

r
e−r

2=d2 þ V0: ð3Þ

This ansatz is inspired by one-gluon exchange at small Q̄ Q̄
separations r and a screening of the Coulomb potential due to
the formation of two B mesons at large r, as illustrated in
Fig. 2. The ansatz, even though phenomenologically moti-
vated, is consistent with our lattice QCD results, which are
based on first principles, i.e., a fit of (3) to the latticeQCDdata
yields an acceptable χ2=dof ≲ 1. Vice versa, parametrizing
the latticeQCDdata by using ansätze different from (3) leads,
e.g., to similar results for masses of tetraquark bound states.
The values of the two parameters α and d as determined in
[21] are listed in Table I. Clearly, the ðI ¼ 0; j ¼ 0Þ potential
is more attractive than the ðI ¼ 1; j ¼ 1Þ potential. Note that
there is also an uncertainty associatedwith the lattice spacing,
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FIG. 1. (a) ðI ¼ 0; j ¼ 0Þ potential. (b) ðI ¼ 1; j ¼ 1Þ potential.

(a) (b)

FIG. 2. (a) At small separations the static antiquarks Q̄ Q̄
interact by perturbative one-gluon exchange. (b) At large sepa-
rations the light quarks qq screen the interaction and the four
quarks form two rather weakly interacting B mesons.
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a ¼ 0.079ð3Þ fm (cf. [39]), which is not included in the
parameter d in Table I. We investigate the effect of this
uncertainty at the end of our analysis in Sec. IV.
Finally we have applied the Born-Oppenheimer approxi-

mation, where Eq. (3) is used as a potential for two heavy
antiquarks, i.e., b̄ b̄, in the presence of two light quarks ud
or for two heavy-light mesons, i.e., Bð�ÞBð�Þ. Solving the
Schrödinger equation for the ðI ¼ 0; j ¼ 0Þ potential and
angular momentum l ¼ 0 of the two b̄ quarks a bound state
has been predicted with binding energy 90þ43

−36 MeV and
quantum numbers IðJPÞ ¼ 0ð1þÞ [21].
The use of the Born-Oppenheimer approximation entails

a systematic error from quantizing the b̄ b̄ system with the
kinetic energy only. The kinetic energy naturally emerges in
the next to leading term in a nonrelativistic series expansion.
However, the spin dependent terms of the potential are of the
same nonrelativistic expansion order of the kinetic energy
and so far we have not taken them into account directly.
Nevertheless, in Ref. [25] the spin effects have been
estimated and they have little effect on the binding energy
of the tetraquark. Finally, very recent computations in lattice
QCD with nonrelativistic bottom quarks, which account for
both the kinetic and spin effects, confirmour previous results
for the binding energy, obtainedwith theBorn-Oppenheimer
approximation [40]. Thuswe expect that the use of the Born-
Oppenheimer approximation is adequate for our study.

III. THE EMERGENT WAVE METHOD

We now summarize the emergent wave method,
explained in detail for instance in Ref. [2], which is suited
to study phase shifts and resonances. Let us consider the
same Schrödinger equation utilized in the bound state
study,

ðH0 þ VðrÞÞΨ ¼ EΨ: ð4Þ

The first step is to split the wave function into two parts,

Ψ ¼ Ψ0 þ X; ð5Þ

where Ψ0 is the incident wave, a solution of the free
Schrödinger equation,

H0Ψ0 ¼ EΨ0; ð6Þ

and X is the emergent wave. Substituting Eq. (5) into
Eq. (4) and using Eq. (6) we obtain

ðH0 þ VðrÞ − EÞX ¼ −VðrÞΨ0: ð7Þ

For any energy E we can use this equation to calculate
the emergent wave X by providing the corresponding Ψ0

and fixing the appropriate boundary conditions. From the
asymptotic behavior of X we then determine the phase
shifts, the S matrix and the T matrix.
The problem can be continued to complex energies in a

straightforward way and we can, therefore, find the poles of
the S matrix and the T matrix in the complex plane. We
identify a resonance with a pole, when located in the second
Riemann sheet at m − iΓ=2, where m is the mass and Γ is
the decay width of the resonance.

A. Partial wave decomposition

The Hamiltonian describing the two heavy antiquarks
b̄ b̄ at vanishing total momentum, i.e., in the rest frame of
the system, is

H ¼ H0 þ VðrÞ ¼ −
ℏ2

2μ
△þ VðrÞ ð8Þ

with reduced mass μ ¼ M=2, whereM ¼ 5280 MeV is the
mass of the B meson from the PDG [41]. For simplicity we
omit the additive constant 2M in Eq. (8), i.e., all resulting
energy eigenvalues are energy differences with respect to
2M. We consider an incident plane wave Ψ0 ¼ eik·r, which
can be expressed as a sum of spherical waves,

Ψ0 ¼ eik·r ¼
X

l

ð2lþ 1ÞiljlðkrÞPlðk̂ · r̂Þ; ð9Þ

where jl are spherical Bessel functions, Pl are Legendre
polynomials and the relation between energy and momen-
tum is ℏk ¼ ffiffiffiffiffiffiffiffiffi

2μE
p

. For a spherically symmetric potential
VðrÞ as in Eq. (3) and an incident wave Ψ0 ¼ eik·r the
emergent wave X can also be expanded in terms of
Legendre polynomials Pl,

X ¼
X

l

ð2lþ 1Þil χlðrÞ
kr

Plðk̂ · r̂Þ: ð10Þ

Inserting Eq. (9) and Eq. (10) into Eq. (7) leads to a set of
ordinary differential equations for χl,

�
−
ℏ2

2μ

d2

dr2
þ lðlþ 1Þ

2μr2
þ VðrÞ − E

�
χlðrÞ

¼ −VðrÞkrjlðkrÞ: ð11Þ

TABLE I. Parameters α and d of the potential of Eq. (3) for two
static antiquarks Q̄ Q̄, in the presence of two light quarks qq with
quantum numbers I and j, as determined in [21].

I j α d in fm

0 0 0.34þ0.03
−0.03 0.45þ0.12

−0.10

1 1 0.29þ0.05
−0.06 0.16þ0.05

−0.02
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B. Solving the differential equations
for the emergent wave

The potentials VðrÞ, Eq. (3), are exponentially screened,
i.e., VðrÞ ≈ 0 for r ≥ R, where R ≫ d. For large separa-
tions r ≥ R the emergent wave is, hence, a superposition of
outgoing spherical waves, i.e.,

χlðrÞ
kr

¼ itlh
ð1Þ
l ðkrÞ; ð12Þ

where hð1Þl are the spherical Hankel functions of first
kind.
Our aim is now to compute the complex prefactors tl,

which will eventually lead to the phase shifts. To this end
we solve the ordinary differential equation (11). The corres-
ponding boundary conditions are the following:

(i) At r ¼ 0: χlðrÞ ∝ rlþ1.
(ii) For r ≥ R: Eq. (12).

Note that the boundary condition for r ≥ R depends on tl.
For a given value of the energy E this boundary condition is
only fulfilled for a specific corresponding value of tl.
In other words the boundary condition for r ≥ R fixes tl as
a function of E.
The numerical solution of the differential Eq. (11) is

rather straightforward. To check our results and to exclude
any numerical artefacts we implemented two different
approaches: (1) a fine uniform discretization of the
interval ½0; R�, which reduces the differential equation
to a large set of linear equations, which can be solved
rather efficiently, since the corresponding matrix is tri-
diagonal; (2) a standard 4th order Runge-Kutta shooting
method.

C. Phase shifts and S and T matrix poles

The quantity tl is a T matrix eigenvalue (cf. standard
textbooks on quantummechanics and scattering, e.g., [42]).
From tl we can calculate the phase shift δl and also read off
the corresponding S matrix eigenvalue sl [43],

sl ≡ 1þ 2itl ¼ e2iδl : ð13Þ

Moreover, note that both the S matrix and the T matrix
are analytical in the complex plane. They are well-defined
for complex energies E. Thus, our numerical method can as
well be applied to solve the differential Eq. (11) for
complex E. We find the S and T matrix poles by scanning
the complex plane ðReðEÞ; ImðEÞÞ and applying Newton’s
method to find the roots of 1=tlðEÞ. The poles of the S and
the T matrix correspond to complex energies of resonances.
Note the resonance poles must be in the second Riemann
sheet with a negative imaginary part both for the energy E
and the momentum k.

IV. RESULTS FOR PHASE SHIFTS, SMATRIXAND
T MATRIX POLES, AND RESONANCES

We first consider the more attractive udb̄ b̄ potential
corresponding to isospin I ¼ 0 and light spin j ¼ 0
(cf. Sec. II). We compute tl and via Eq. (13) the phase
shift δl for real energy E and angular momenta l ¼
0; 1; 2;…A very clear signal for a resonance would be a
fast increase of the phase shift δl as a function of E from 0
to ≈π, almost like a step function. However, we do not find
such a pronounced increase (cf. Fig. 3). Thus, we must
search more thoroughly for possibly existing resonances.
Starting with angular momentum l ¼ 1 we first search

for clear resonance signals by making the potential more
and more attractive. We increase the parameter α, while
keeping the parameter d ¼ 0.45 fm fixed, to preserve the
scale of the potential. The corresponding results for the
phase shift δ1 are shown in Fig. 4. Indeed, for α ≳ 0.65 we
find clear resonances with δ1 increasing from 0 to ≈ π.
Then, for α ¼ 0.72, we find a bound state, since the phase
shift δ1 starts at π and decreases monotonically to 0, when
increasing the energy E. However, from these phase shifts it
is not clear, for which values of α a resonance exists or not,
i.e., it is not possible to say, whether there is a resonance for
e.g., α ≈ 0.50 or even for the physical α ¼ 0.34.
Thus, we search directly for poles of the T matrix

eigenvalues tl. With this technique we clearly find a pole
for angular momentum l ¼ 1 and physical values of the
parameters, α ¼ 0.34 and d ¼ 0.45 fm. We show this pole
in Fig. 5 by plotting t1 as a function of the complex energy
E. The pole is clearly visible as a sharp peak.
To understand the dependence of the resonance pole on

the shape of the potential, we again scan different values of
the parameter α and determine each time the pole of the
eigenvalue t1 of the T matrix. We show the trajectory of the
pole corresponding to a variation of α in the complex plane
ðReðEÞ; ImðEÞÞ in Fig. 6. Indeed, starting with α ¼ 0.21

0 50 100 150 200
E (MeV)

0

π/2

π

δ l

l = 0
l = 1
l = 2
l = 3
l = 4

FIG. 3. Phase shift δl as a function of the energy E for different
angular momenta l ¼ 0, 1, 2, 3, 4 for the ðI ¼ 0; j ¼ 0Þ potential
(α ¼ 0.34, d ¼ 0.45 fm).
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we find a pole. This confirms our prediction of a resonance
for angular momentum l ¼ 1 and physical values of the
parameters, α ¼ 0.34 and d ¼ 0.45 fm.
Finally we perform a detailed statistical and systematic

error analysis of the pole of t1 and the corresponding values
ðReðEÞ; ImðEÞÞ. We use the same analysis method as for
our previous study of the bound state for l ¼ 0, cf. [24]. To
parametrize the lattice QCD data for the potentials, V latðrÞ,
discussed in Sec. II, we perform uncorrelated χ2 minimiz-
ing fits with the ansatz (3). To this end we minimize the
expression

χ2 ¼
X

r¼rmin;…;rmax

�
VðrÞ − V latðrÞ

ΔV latðrÞ
�

2

ð14Þ

with respect to the parameters α, d and V0 (ΔV latðrÞ denote
the corresponding statistical errors). To quantify systematic
errors, we perform a large number of fits, where we vary the
following parameters:
(1) The range of temporal separations tmin ≤ t ≤ tmax of

the correlation function (2), where V latðrÞ is read off,
according to
(a) tmax − tmin ≥ a,
(b) 4a ≤ tmin, tmax ≤ 9a

(a ≈ 0.079 fm is the lattice spacing).
(2) The range of spatial b̄ b̄ separations rmin ≤ r ≤ rmax

considered in the χ2 minimizing fits to determine the
parameters α, d and V0 according to
(a) rmin ∈ f2a; 3ag,
(b) rmax ∈ f8a; 9a; 10ag.

We obtain a large number of different, but similar potential
parametrizations VðrÞ characterized by sets of values for α,
d, and V0. For each potential parametrization we determine
the position of the pole of t1, i.e., ðReðEÞ; ImðEÞÞ as
discussed above and shown as a cloud of blue points in
Fig. 6. For both ReðEÞ and ImðEÞ we construct a distri-
bution by considering all corresponding results weighted
by expð−χ2=dofÞ with χ2 from Eq. (14). The central values
of ReðEÞ and ImðEÞ are then defined as the medians of the
corresponding distributions and the lower/upper systematic
uncertainties are given by the differences of the 16th/84th
percentiles to the medians. To also include statistical errors,
we compute the jackknife errors of the medians of ReðEÞ
and ImðEÞ and add them in quadrature to the corresponding
systematic uncertainties. With our combined statistical and
systematic error analysis we find a resonance energy
ReðEÞ ¼ 17þ4

−4 MeV and a decay width Γ ¼ −2ImðEÞ ¼
112þ90

−103 MeV. Using the Pauli principle and considering

0 20 40 60 80 100
E (MeV)

0

π/2

π
δ 1

α = 0.34
α = 0.40
α = 0.45
α = 0.50
α = 0.55
α = 0.60
α = 0.65
α = 0.70
α = 0.71
α = 0.72
α = 0.73

FIG. 4. Phase shift δ1 as a function of the energy E for different
parameters for the potential. For illustration, we vary parameter α
only while fixing d ¼ 0.45 fm at the value of the ðI ¼ 0; j ¼ 0Þ
potential. Fixing d and varying α produces comparable results.

FIG. 5. T matrix eigenvalue t1 as a function of the complex
energy E for the ðI¼ 0;j¼ 0Þ potential (α¼ 0.34, d ¼ 0.45 fm).
Along the vertical axis we show the norm jt1j, while the phase
argðtlÞ corresponds to different colors.

-10 0 10 20 30 40
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-120

-100

-80
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 E

 (
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eV
)

α = 0.72

α = 0.34

α = 0.21

FIG. 6. Locations for the pole of the eigenvalue t1 of the T
matrix in the complex plane ðReðEÞ; ImðEÞÞ. We illustrate with a
cloud of diamond points the computation of the systematic error
of the α and d parameters of the ðI ¼ 0; j ¼ 0Þ potential, utilizing
the technique of Ref. [24]. We also depict (solid line) the
trajectory of the pole corresponding to a variation of the potential
parameters, varying α for d ¼ 0.45 fm.
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the symmetry of the quarks with respect to color, flavor,
spin and their spatial wave function one can determine the
quantum numbers of the resonance, which are IðJPÞ ¼
0ð1−Þ. The resonance will decay into two B mesons and,
hence, its mass is m ¼ 2M þ ReðEÞ ¼ 10576þ4

−4 MeV.
Note that there is also an uncertainty associated with the

lattice spacing, a ¼ 0.079ð3Þ fm (cf. Ref. [39] for details),
which has not been taken into account so far. We have
investigated the impact of this uncertainty on our final
results for the resonance energy ReðEÞ and the decay width
Γ. We have found that both quantities exhibit only a mild
dependence on the lattice spacing a and the propagation of
the uncertainty of a has a negligible effect on the results for
ReðEÞ and Γ quoted above within the current combined
systematic and statistical errors.
In what concerns angular momenta l ≠ 1, we find no

clear signal for a resonance pole (except for the bound state
pole for l ¼ 0). We also find no poles for any l in the less
attractive case of ðI ¼ 1; j ¼ 1Þ.

V. CONCLUSIONS AND OUTLOOK

As a case study for the investigation of resonances above
the BB meson pair threshold, we have explored the udb̄ b̄
four-quark system. We have utilized lattice QCD potentials
computed for two static antiquarks in the presence of two
light quarks, the Born-Oppenheimer approximation and the
emergent wave method for the BB system. First we have
computed scattering phase shifts. Then we have performed
the analytic continuation of the S matrix and the T matrix to

the second Riemann sheet and have searched for poles as
signals of resonances.
From these results we have predicted a new resonance,

with quantum numbers IðJPÞ ¼ 0ð1−Þ. Performing a care-
ful statistical and systematic error analysis has led to a
resonance mass m ¼ 10576þ4

−4 MeV and a decay width
Γ ¼ 112þ90

−103 MeV.
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