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We perform a direct calculation of the gluon momentum fraction of the nucleon, taking into account the
mixing with the corresponding quark contribution. We use maximally twisted mass fermion ensembles
with Nf ¼ 2þ 1þ 1 flavors at a pion mass of about 370 MeV and a lattice spacing of a ≈ 0.082 fm and
with Nf ¼ 2 flavors at the physical pion mass and a lattice spacing of a ≈ 0.093 fm. We employ stout
smearing to obtain a statistically significant result for the bare matrix elements. In addition, we perform a
lattice perturbative calculation including two levels of stout smearing to carry out the mixing and the
renormalization of the quark and gluon operators. We find, after conversion to the MS scheme at a scale of
2 GeV, hxiRg ¼ 0.284ð27Þð17Þð24Þ for pion mass of about 370 MeVand hxiRg ¼ 0.267ð22Þð19Þð24Þ for the
physical pion mass. In the reported numbers, the first parenthesis indicates statistical uncertainties. The
numbers in the second and third parentheses correspond to systematic uncertainties due to excited states
contamination and renormalization, respectively.
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I. INTRODUCTION

The lattice calculation of moments of quark distribution
functions hasmaturedmuch in the last years, as can be seen in
the reviews of [1,2], for instance. In order to include
disconnected singlet contributions, present works employ
large statistics [3,4] and even computations for nucleon
observables directly at the physical value of the pionmass [5].
For these moments, a complete non-perturbative renorm-

alization program has been developed and applied in
practice. Furthermore, first attempts to compute the quark
distributions directly on the lattice have recently been
initiated [6–8]. All these activities by lattice groups work-
ing on nucleon structure open the exciting prospect that
lattice calculations will eventually provide precise results
for various nucleon moments, charges and form factors
with high statistics and systematic effects under control.
While the computations concerning the quark distribu-

tion functions are approaching a satisfactory situation, the
case of the gluon contributions is much less advanced. In
fact, presently only a few quenched results for the gluon
momentum fraction (GMF) exist [9–12].1 This is a rather
unfortunate situation since the analysis of phenomenologi-
cal data on parton distribution functions [14] suggests that
at a scale of 6.25 GeV2, for instance, all the quarks only
contribute a fraction of about 60% to the total nucleon
momentum. This implies that gluons carry an essential part
of the nucleon momentum, in order to satisfy the sum rule

X
q

hxiq þ hxig ¼ 1: ð1Þ

Moreover, the phenomenological estimates of hxig have a
significantly larger uncertainty than the corresponding
quark moments. The GMF will also be an important input
for the computation of the gluon contribution to the
nucleon spin.
In this work we perform a calculation of the lowest

moment hxig of the gluon distribution function fgðxÞ using
lattice QCDwithin the maximally twisted mass formulation
[15,16]. We will use gluon field configurations at a pion
mass of about 370 MeV but also at the physical pion mass.
The key to obtain results for the GMF is a combination

of high statistics, the use of smeared operators (cf. [17]) and
the application of a suitable renormalization scheme that
takes the mixing of the gluon operator with the correspond-
ing quark singlet operator into account. The last step is
presently done perturbatively but could be extended non-
perturbatively in the future. We will see that employing
these steps will allow us to provide a quantitative result for
hxig with dynamical quarks for the first time. A first
account of our results has been discussed in Ref. [18].

II. THEORETICAL SETUP

The gluon momentum fraction of a nucleon state hPj
with 4-momentum Pμ can be extracted from matrix
elements of the gluonic QCD energy momentum tensor,
see e.g. [19]

1There has been a recent paper addressing the gluon spin
contribution in the nucleon [13].
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hPjTfμνg
g jPi ¼ 2hxigPfμPνg; ð2Þ

where the normalization hPjPi ¼ 2EN is used and f� � �g
represents symmetrization and subtraction of the trace. EN
is the energy of the nucleon. The gluonic energy momen-
tum tensor itself is defined as

Tfμνg
g ¼ 1

4
gμνGαβGαβ −GμσGν

σ; ð3Þ

where Gμν ¼ TaGa
μν is the field strength tensor.

Based on the conventions used in [9], we construct the
gluon operator2

Oμν ¼ 2Tr½GμσGνσ� ð4Þ

which contains the vector OAi and scalar OB operators

OAi ¼ Oi4 and OB ¼ O44 −
1

3
Ojj: ð5Þ

Here and in the following equations there is an implicit
trace over the color indices of the field strength tensor and
later also the plaquette term. With Eq. (2) the matrix
elements of these operators can be directly related to the
GMF as

hPjOAijPi ¼ i4ENPihxig ð6Þ

hPjOBjPi ¼
�
−4E2

N −
2

3
P2

�
hxig: ð7Þ

Equation (6) indicates that in order to extract the GMF from
matrix elements of OA, a nonzero momentum for the
nucleon fields is required, whereas the kinematic factor
for the operator OB stays finite for zero momentum. Thus,
for zero momentum the form factor can be extracted as

hPjOBjPi
hPjPi ¼ −2mNhxig: ð8Þ

Earlier calculations, see e.g. [20,21], showed that
employing a nonzero momentum in the definition of the
operator corresponding to the first moment of the quark
distribution leads to a significantly enhanced noise-to-
signal ratio. We therefore have chosen the operator OB
for the current calculation. We nevertheless plan a test of
the operator OA in the future.
Utilizing Eq. (4), the operator OB can be expressed in

terms of the field strength tensor as

OB ¼ −
4

3

�X
j<k

G2
jk −

X
i

G2
4i

�
: ð9Þ

This expression can now be transferred to the lattice
definition of the GMF using the operator OB through
plaquette terms,

OB ¼ −
4

9

β

a4

�X
i

ReðUi4Þ −
X
i<j

ReðUijÞ
�
: ð10Þ

The operator in Eq. (10) involves two terms which are very
similar in magnitude and have to be subtracted. This points
to the expectation that in order to obtain a precise result a
high statistics and an estimate of the correlation between
these two terms are required.

III. LATTICE CALCULATION

In [18] we discussed the approach of employing the
Feynman-Hellmann theorem to compute the gluon momen-
tum fraction. We demonstrated that using the Feynman-
Hellmann theorem is in principle feasible but it would
require a substantial effort to obtain accurate results. Thus,
we instead follow the path of using the direct computation
of the left-hand side of Eq. (8). This amounts to computing
the ratio of a three- and a two-point correlation function

Rðt; τ; t0Þ ¼ −
1

2mN

C3ptðt; τ; t0;P ¼ 0Þ
C2ptðt; t0;P ¼ 0Þ ¼t<τ<t0hxig: ð11Þ

The space-time points ðx; tÞ; ðx0; t0Þ; ðy; τÞ denote the sink,
source and operator insertion, respectively.
For the GMF, the relevant three-point function is the

expectation value of two nucleon fields and the operatorOB
from Eq. (5), and the two-point function is defined in the
usual way,

C3ptðt; τ; t0;P ¼ 0Þ ¼
X
x;y

ΓþhNðxÞOBðyÞN̄ðx0Þi; ð12Þ

C2ptðt; t0;P ¼ 0Þ ¼
X
x

ΓþhNðxÞN̄ðx0Þi; ð13Þ

where Γþ ¼ 1þγ4
2

is the parity plus projector and the
standard definition for the nucleon interpolating fields is
used (cf. [5]). A schematic picture of the structure of the
three-point function is shown in Fig. 1.
Because there are no quark fields in the operator, the

three-point function can be written as the expectation value
of a product of a nucleon two-point function with a gauge-
link-dependent operator. Generally, we call this a discon-
nected correlation function. Consequently, already existing
two-point functions can be reused while only the gluon
operator has to be calculated on the very same configura-
tions with a relatively small computational effort. In order

2A factor of -2 was added in order to match the correct
decomposition of the energy-momentum tensor.
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to have an improved signal-to-noise ratio, we subtract the
vacuum expectation value of OB from the ratio, although
strictly speaking this is not necessary since the expectation
value of OB vanishes.
To extract the matrix element of interest three methods

have been employed. The simplest one is the plateau
method, where one must identify a time-independent
window in the ratio of Eq. (11). This method assumes
just one-state dominance. The second method is the two-
state method, where the first excited state is taken into
account. Inserting a complete set of states and keeping
terms up to the first excited state, the ratio becomes

Rðt; τ; t0Þ

¼ A00 þ A01ðe−δE1ðt−τÞ þ e−δE1ðτ−t0ÞÞ þ A11e−δE1ðt−t0Þ

1þ c1e−δE1ðt−t0Þ ;

ð14Þ

where A00 is the matrix element of interest and δE1 is the
energy gap between the ground state and the first excited
state. The third method, which allows us to control better
the excited states, is called the summation method.
Summing over the insertion time τ of the ratio in
Eq. (11), we obtain

Rsumðt − t0Þ ¼
Xðt−1Þ

τ¼t0þ1

Rðt; τ; t0Þ

¼ Cþ ðt − t0ÞA00 þOðe−δE1ðt−t0ÞÞ; ð15Þ

where the unphysical contact terms are discarded from the
sum. From the slope of the linear fit one can extract the
matrix element.

IV. LATTICE SETUP

Our first benchmark calculation is based on 2298 gluon
field configurations on a 323 × 64 lattice from an ETMC
(European Twisted Mass Collaboration) production ensem-
ble [22], labeled B55.32. It features Nf ¼ 2þ 1þ 1

flavors of maximally twisted mass fermions, i.e. two mass
degenerate light quarks and nondegenerate strange and
charm quarks. The ensemble has a bare coupling corre-
sponding to β ¼ 1.95, which yields a lattice spacing
of a ≈ 0.082 fm [23] and the twisted mass parameter
aμ ¼ 0.0055, which corresponds to a pion mass of
mPS ≈ 370 MeV. For the two-point function, 15 different
source positions are used on each of the 2298 gauge field
configurations. This sums up to 34470 measurements, each
for proton, neutron and two different time directions.
We also include a second ensemble obtained at the

physical value of the pion mass [24], which is labeled
cA2.09.48. HereNf ¼ 2 flavors of maximally twisted mass
fermions are employed, together with a clover term with
coefficient csw ¼ 1.57551 on a 483 × 96 lattice. The bare
coupling corresponds to β ¼ 2.1, which leads to a lattice
spacing of a ≈ 0.093 fm, set with the nucleon mass [5]. The
twisted mass parameter is set to aμ ¼ 0.0009, which
corresponds, within errors, to a setup with physical pion
masses. The analysis is done on 2094 configurations with
100 different source positions each, which amounts to a
total of 209400 measurements. For the quark fields that
make up the nucleon interpolating field, standard smearing
methods [Gaussian and Array Processor Experiment
(APE)] were used, which are known to increase the overlap
of the interpolating fields with the nucleon ground state
while decreasing the overlap with excited states and thus
improving the results for nucleon spectroscopy and struc-
ture, cf. [25] and references therein.

V. BARE RESULTS AND STOUT SMEARING

In our first attempt to compute the GMF directly we
applied the gluon operator OB from Eq. (10) without any
additional smearing. However, in this setup we were not
able to detect any signal despite the large statistics of 34470
measurements on the B55.32 ensemble, cf. Table I, see
Fig. 2 in [18].
One possible solution to overcome the low signal-to-noise

problem has been suggested in [17], where the authors
propose to use Hypercubic (HYP) smearing [26] for the
gauge links in the gluon operator. However, HYP smearing

FIG. 1. Schematic picture of Wick contractions for the three-
point functions with a disconnected gluon loop.

TABLE I. Parameters of two different gauge ensembles that are used in the computation of the GMF. We also give the number of
measurements used for the computation.

Nf β L=a; T=a csw κ aμ mPS (MeV) a (fm) Measurements

B55.32 2þ 1þ 1 1.95 32, 64 0 0.161 236 0.0055 370 0.082 344 70
cA2.09.48 2 2.1 48, 96 1.575 51 0.137 29 0.0009 130 0.093 209 400
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is a nonanalytic procedure; this fact raises some conceptual
issues, and it also implies that the perturbative lattice
calculation for the desired renormalization functions would
be very cumbersome. In the framework of this workwe have
tested both HYP (up to 5 steps) and stout smearing (up to 10
steps). Results with increased stout smearing are compatible
with result produced with a smaller number of HYP
smearing steps. Increasing the number of smearing steps
may result in contact-term contamination, which should be
also assessed. Furthermore, the influence of contact terms
will be reduced by increasing the source-sink separation. To
test for this effect we take ts up to 15a and we find that the
results are compatible with smaller value, e.g. ts ¼ 10a.
Thus, we expect that contact-term contamination is small.
Thus, we switch to stout smearing of the gauge links, as

introduced in [27]. This is an analytic link smearing
technique where the gauge links are smeared according to

Uðnþ1Þ
μ ¼ exp ðiQðnÞ

μ ÞUðnÞ
μ ; ð16Þ

where Qμ is a particular linear combination of
perpendicular gauge link staples that are weighted with
the factor3 ω, cf. [27] for details. Here, we use the isotropic
four-dimensional scheme and ω is tuned so that the
plaquette reaches a maximal value for a given number of
smearing steps.
We tested the effect of stout smearing on the signal-to-

noise ratio by applying up to 14 smearing steps. To this end,
we computed the average error of the plateau values for
each level of smearing normalized by the plateau value that
was extracted using 10 steps of smearing. The inverse
signal-to-noise ratio as a function of the number of stout
smearing steps is shown in Fig. 2.

From the analysis described above it can be observed
that indeed with an increasing number of stout smearing
steps the signal-to-noise ratio can be substantially
improved. While the improvement for a smaller number
of smearing steps is quite significant, one notices a
saturation for a larger number of steps. For the B55.32
ensemble, 10 steps of stout smearing with the parameter
ω ¼ 0.1315 are used. The results for the ratio leading to
GMF from this ensemble are shown in Figs. 3 and 4.
In order to study the excited state effects we compute the

ratio of Eq. (11) for various source-sink time separations.
In Fig. 3 we present the ratios from where we extract the
matrix element using four separations as one varies the
insertion time slice using the B55.32 ensemble. We identify

FIG. 2. Inverse signal-to-noise ratio as a function of the number
of stout smearing steps. The ratio shown here is the average error
of plateau values divided by the result of a plateau fit for 10 steps
of smearing. All results are given for a source-sink separation of
ts=a ¼ 10. Here the B55.32 ensemble was used, cf. Table I.

FIG. 3. Results for the effective GMF from the B55.32
ensemble as a function of the insertion time slice τ for four
source-sink time separations. Red circles, blue squares, green
triangles and magenta stars correspond to separations ts=a ¼ 8,
10, 12, 14, respectively. The blue band shows the extracted value
using the plateau method with fit range specified by the band.
Results from the two-state (summation) method are shown with
grey (brown) band spanning the whole x axis.

FIG. 4. Extracted values for hxibareg from the B55.32 ensemble
using the plateau, two-state and summation methods. The left
column shows the extracted values from the plateau method
varying the source-sink separation. The open red circle is the
value we take as our final value. The right column shows the
extracted values using the summation method (green triangles)
and two-state fits (blue squares) as one varies the low fit range.

3This parameter is called ρ in the original work, but in recent
works and also here it is labeled as ω.
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a window where excited states are sufficiently suppressed
to perform a constant fit using the plateau method and we
seek for convergence of this value to the ones extracted
using the two-state and summation methods. Our findings
are summarized in Fig. 4, where several fit ranges are
analyzed. We take as our final value the one for the smallest
ts which is compatible with the value extracted from the
two-state method. The summation method usually has
larger errors producing results compatible with the two-
state method. Therefore, to be conservative we provide as a
systematic error due to the excited states the difference
between the plateau value and that extracted from the two-
state fit.
The results for the second ensemble with a physical value

of the pion mass are presented in Figs. 5 and 6. In this case
we applied 20 steps of stout smearing with ω ¼ 0.1315.
There is no evidence of a large influence of excited states
within the statistics employed here. For the ensemble at the
physical point, we extract the value of the GMF using the
same procedure as the B55.32 ensemble. Our results are as
follows:

B55.32∶ hxibareg ¼ 0.290ð27Þð17Þ;
cA2.09.48∶ hxibareg ¼ 0.311ð22Þð20Þ; ð17Þ

where the number in the first parenthesis is statistical,
and the second is a systematic due to the excited states
contamination. As mentioned above, the systematic uncer-
tainty is the difference between the plateau method at
ts=a ¼ 10 and the two-state fit.

VI. RENORMALIZATION: FINAL RESULTS

Yet another challenge regarding the computation of the
physical value of the gluon momentum fraction is the fact
that the lattice result has to be renormalized. Since the
gluon operator is a flavor singlet operator, it will certainly
mix with others, the quark singlet operator, for instance. In
total, mixing with operators that are gauge invariant,
Becchi-Rouet-Stora (BRS) variations, or vanish by the
gluon equations of motion [28] also appears. Due to this
mixing, appropriate renormalization conditions require
computation of more than one matrix element, in order
to extract the renormalization factors from a nonperturba-
tive lattice calculation. This places additional difficulties
compared to the renormalization procedure for other
operators that are relevant for nucleon structure [29].
Consequently, a different approach has to be found, and
in the framework of this paper we employ a one-loop
perturbative renormalization procedure. In this section we
briefly describe the setup of the calculation and final results
needed to renormalize the GMF. Complete results will
appear in a following publication [30].
The basis of operators that mix with each other (to one

loop) is (see e.g. [31])

Oμν
1 ¼ 2Tr½GfμρGνgρ� ð18Þ

Oμν
2 ¼ ψ̄γfμD

↔νg
ψ ð19Þ

Oμν
3 ¼ 1

α

�
ð∂μAν þ ∂νAμÞð∂ρAρÞ − 1

2
δμνð∂ρAρÞ2

�

þ ghost terms ð20Þ

Oμν
4 ¼ 1

α

�
−ð∂μAν þ ∂νAμÞð∂ρAρÞ − 1

2
δμνAρ∂ρ∂σAσ

�

þ ghost terms ð21Þ

Oμν
5 ¼ Aν δS

δAμ þ Aμ δS
δAν −

1

2
δμν

X
ρ

Aρ δS
δAρ ð22Þ

where D
↔ ¼ ðD⃗ − D⃖Þ=2. Oμν

1 is the gluon operator under
study, Oμν

2 is the corresponding quark operator, Oμν
3 and

Oμν
4 are BRS variation (they only differ by a total

derivative) and Oμν
5 vanishes by the equations of motion.

The ghost parts of operators Oμν
3 and Oμν

4 are irrelevant for
this one-loop computation and are not presented here. Note
that in the calculation we employed traceless operators, and
in such a case there are no lower-dimensional two-index
traceless symmetric tensors. Furthermore, we sum over the
spatial position of the operator insertion, resulting in a

FIG. 5. Results for the effective GMF from the cA2.09.48
ensemble. The notation is as in Fig. 3.

FIG. 6. Extracted values for hxibareg from the cA2.09.48 en-
semble. The notation is as in Fig. 4.
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momentum conservation when Fourier transforming in the
momentum space. The external legs of the one-loop
Feynman diagrams carry the same momentum.
From this point forward we concentrate on the singlet

case, μ ¼ ν, and we drop the Lorentz indices, that is, Oi ≡
Oμμ

i (i ¼ 1;…; 5). Furthermore, we indicate by O1 the
combination resulting OB, in order to have the correct
mixing coefficients. To identify and extract the multipli-
cative renormalization function of the gluon operator O1,
one must construct a mixing matrix with elements that are
appropriate Green’s functions of the above operators.
However, mixing with O3 and O4 vanishes at the one-
loop level and the matrix elements of the operator O5

between physical states vanish; the mixing matrix sim-
plifies considerably. In particular, the only Feynman dia-
grams that enter our one-loop calculation are those of the
operatorsO1 andO2, within external quarks and gluons. As
we are interested in the renormalization of the operator O1

only, we present the relevant Feynman diagrams in Figs. 7
and 8.
The most important consequence of the vanishing

physical matrix elements of O3–O5 is that the ratio shown
in Eq. (8) is a linear combination of contributions from only
O1 and O2. Note, however, that to correctly identify the
multiplicative renormalization of O1, the operators O3–O5

must be taken into account in the perturbative renormal-
ization procedure [see Eq. (32)].
To make contact with phenomenological and experi-

mental data, one needs the renormalization functions in the
MS scheme. An ideal method to extract the MS results is to
perform the computation in both dimensional (DR) and
lattice (L) regularizations; one then extracts all relevant

renormalization functions by demanding that renormalized
lattice Green functions coincide with the corresponding
ones in (DR), in the a → 0 limit (cf. [32] for a similar
application). Thus, one avoids intermediate schemes. Let us
briefly outline this procedure below.
In cases of operator mixing, renormalized operators are

related to the bare ones via ÔR ¼ Ẑ Ô. In our case Ẑ is a
5 × 5 mixing matrix of the form

Ẑ ¼ 1̂þOðg2Þ; ð23Þ

where g is the renormalized coupling constant. In this paper
we are interested in the renormalization of the gluon
operator, O1, and we only need to compute the first row
of the mixing matrix to one-loop, which has only two
nonzero matrix elements, that is, Z11 and Z12. Alternatively,
we write

OR
α ¼

X
β

ZαβOβα; β ¼ 1; 2: ð24Þ

In a more convenient notation, the X − X bare amputated
Green’s functions [X ¼ 1ð2Þ: corresponds to a gluon-
(fermion) field] can be expressed in terms of the renor-
malized Green’s functions, that is,

hXOαXi ¼ Z−1
X

X
β

ðZ−1ÞαβhXOβXiR ð25Þ

where ZX is the renormalization function of the fermion/
gluon field, defined via

Ψ ¼ ffiffiffiffiffiffi
Zq

p
ΨR Aν ¼

ffiffiffiffiffiffi
ZA

p
AR
ν : ð26Þ

A. Dimensional regularization

Next, we present the results in dimensional regulariza-
tion for the amputated Green’s functions entering the
renormalization of the gluon operator, O1. The renormal-
ization functions in the MS scheme in DR are defined such

FIG. 8. One-loop Feynman diagrams contributing to the mixing
coefficient in O1 due to O2.

FIG. 7. One-loop Feynman diagrams contributing to the multiplicative renormalization of O1.
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as to cancel the divergent parts of the matrix elements. The
expressions related to the one-loop renormalization of the
gluon operator reduce to

Λ1−loop
11 j1=ϵ ¼ ð−zA − z11ÞΛtree

11 − z31Λtree
31 − z41Λtree

41 − z51Λtree
51

ð27Þ

Λ1−loop
12 j1=ϵ ¼ −z12Λtree

12 ð28Þ
where ΛaX ≡ hXOαXi and z’s are the one-loop contribu-
tions of the corresponding renormalization functions,
that is,

ZA ¼ 1þ zA þOðg4Þ ð29Þ
Zii ¼ 1þ zii þOðg4Þ ð30Þ
Zij ¼ 0þ zij þOðg4Þ: ð31Þ

It should be noted that, modulo a total derivative, the gluon
parts of O3 and O4 coincide (Λtree

31 ¼ Λtree
41 ) and, thus, we

cannot disentangle z31 and z41 from the Green’s functions
we study. However, this does not affect the extraction
of z11.
In our one-loop calculation we find

Λ1-loop;DR
11 j1=ϵ ¼

g2

16π2
Nc

ϵ

�
Λtree;DR
11

�
−
5

3
−
β

2

�

− ðΛtree;DR
31 þ Λtree;DR

41 Þ − 2Λtree;DR
51

�
ð32Þ

Λ1-loop;DR
12 j1=ϵ ¼

g2

16π2
N2

c − 1

ϵNc
Λtree;DR
22

�
5

3
þ β

�
: ð33Þ

By definition, the finite terms of Λ1-loop;DR
ij do not appear

in the evaluation of Z1-loop;DR
ij , but they are key elements in

obtaining ZL;MS
ij as explained below.

Let us slightly modify our notation and use the gluon and
quark momentum fraction of the nucleon, hxig and hxiq,
which are more relevant for this paper. For demonstration
purposes we will represent the mixing of physical matrix
elements as a 2 × 2 matrix

� hxigP
qhxiq

�
¼

�
Z11 Z12

Z21 Z22

�� hxibaregP
qhxibareq

�
: ð34Þ

Thus, the physical result of the gluon momentum fraction
can be related to the nonperturbative results for hxig and
hxiq by

hxiRg ¼ Z11hxig þ Z12

X
q

hxiq; ð35Þ

where a certain scheme, e.g. MS, and an energy scale μ
have to be chosen. The expressions for Z11 and Z12 in DR
and in the MS scheme are

Z11 ¼ 1þ g2Nf

16π2
2

3ϵ
ð36Þ

Z12 ¼ 0 −
g2Cf

16π2
8

3ϵ
; ð37Þ

where Cf ¼ N2
c−1
2Nc

.

B. Lattice regularization

To obtain the corresponding lattice results for Zij in the
MS scheme we will make use of the DR results, so that
an intermediate Regularization independend (RI) type
prescription is avoided. Renormalizability of the theory
implies that the difference between the one-loop renormal-
ized and bare Green’s functions is polynomial in the
external momentum (of degree 0, in our case, since no
lower-dimensional operators mix); this results in an appro-
priate definition of the momentum-independent renormal-

ization functions ZL;MS
ij . More precisely, for the operators

under study we find to one loop

hAνO1AνiDR;MS − hAνO1AνiL ¼ ðzL;MS
A þ zL;MS

11 ÞΛtree
11

þ ðzL;MS
31 þ zL;MS

41 ÞΛtree
31 þ zL;MS

51 Λtree
51 ð38Þ

hΨO1ΨiDR;MS − hΨO1ΨiL ¼ zL;MS
12 Λtree

22 : ð39Þ

It should be noted that the smearing of the operator
modifies its renormalization factor, and thus for a proper
renormalization it is required to apply the same smearing in
the perturbative calculation. The main technical difficulty
in such a case is that the smearing leads to extremely
lengthy expressions for the operator’s vertices. For exam-
ple, the 4-gluon vertex for two smearing steps with general
smearing parameters, ω1 and ω2, contains approximately
335 000 terms. This places severe limitations on the
number of smearing iterations we can apply to the operator.
In our computation we extract the vertices with up to two
stout smearing steps with distinct parameters. This allows
us to compare values of the renormalization functions for
the single- and double-smeared operator. We find that
increasing the number of smearing steps has small effect
on the renormalization functions. This is due to a combi-
nation of the small value of the smearing parameter and the
polynomial dependence on ω1 and ω2. We also note that the
perturbative calculation is performed for general action
parameters, so that the results are applicable for a variety of
gluon/fermion actions.
The general expressions for Z11 and Z12 are complicated

fourth-degree polynomials of ω1 and ω2, and cannot be
presented here. Thus, we write them in a compact form, as a

function of the quantities eðiÞ11=12 ≡ eðiÞ11=12ðω1;ω2Þ, which
also depend on the gluon action parameters
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ZL;MS
11 ¼ 1þ g2

16π2

�
eð1Þ11

Nc
þ eð2Þ11 Nf −

2Nf

3
logða2μ̄2Þ

�
ð40Þ

ZL;MS
12 ¼ 0þ g2Cf

16π2

�
eð1Þ12 þ eð2Þ12 cSW þ 8

3
logða2μ̄2Þ

�
: ð41Þ

The computation of the quantities eðiÞ11=12 is the most
laborious part of the perturbative work and required the
equivalent of approximately 40 years of computation on a
single CPU. This includes, among other parts, the integra-
tion of the internal loop momentum for several lattice sizes
and the extrapolation to the infinite volume limit. The
numerical results for the multiplicative renormalization

function, ZMS
11 and the mixing coefficient, ZMS

12 , are given
in Table II in the MS scheme at a scale of 2 GeV. The
statistical errors associated with the infinite volume
extrapolation are smaller than the accuracy presented in
the table. One can observe that the effect of additional
smearing steps tends to become suppressed. This is due to
the polynomial dependence on ω1 and ω2, combined with
the fact that their numerical value is very small. It is
expected that the effect of further smearing steps will be
smaller than the difference between the 1- and 2-stout
results shown in Table II. Thus, we employ the renorm-
alization factors using the 2-stout results to renormalize the
matrix element presented in Sec. V.
According to Eq. (35) the bare quark momentum fraction

enters the renormalization prescription of the gluon
momentum fraction. The quark contributions have been
computed for both the connected and disconnected dia-
grams for B55.32 [3,25] and cA2.09.48 [5,33,34]. Using
the bare results

B55.32∶ hxiuþd ¼ 0.603ð79Þ
cA2.09.48∶ hxiuþdþs ¼ 0.722ð96Þ; ð42Þ

we find the following values for the renormalized gluon
momentum fraction in the MS at μ ¼ 2 GeV:

B55.32∶ hxiRg ¼ 0.284ð27Þð17Þð24Þ
cA2.09.48∶ hxiRg ¼ 0.267ð22Þð19Þð24Þ: ð43Þ

The numbers in the first parenthesis correspond to the
statistical error, the second is a systematic due to the excited

states, and the third one is systematic taken as the difference
between the single- and double-smeared results; this is
within the statistical errors.
Taking into account the disconnected quark contribution

has small effect on hxiRg due to the mild mixing when stout
smearing is applied on the gluon operator. Complete results
on the quark and gluon momentum fraction appear
in Ref. [35].

VII. CONCLUSION AND OUTLOOK

In this paper we applied the direct method to compute the
average momentum fraction of the gluon in the nucleon,
hxig, taking into account the mixing with the singlet, light
quark contribution. In order to obtain statistically signifi-
cant results for the involved, purely disconnected three-
point functions, several steps of stout smearing to the gauge
links that enter the operator were employed. Nevertheless, a
substantial amount of measurements was needed to obtain a
good signal with about 10% statistical error.
We computed the average momentum fraction for two

gauge field ensembles. The first has Nf ¼ 2þ 1þ 1

flavors representing the first two quark generations at a
pion mass of about 370 MeV with 34470 measurements.
The second ensemble has Nf ¼ 2 mass degenerate up and
down quarks at the physical value of the pion mass, with
204900 measurements. The number of measurements for
the two cases allowed us to obtain statistically significant
values for the bare matrix elements [see Eq. (17)].
Since the required gluon operator is a singlet operator,

it mixes with the corresponding singlet quark operator. As
a consequence, the renormalization of the gluon operator
is highly nontrivial since this mixing has to be taken into
account. To this end, we have performed a perturbative
calculation for the mixing and the renormalization.
This has been done in the dimensional and the lattice
regularizations. Moreover, the stout smearing that we
employed in the lattice computation of the bare matrix
element had to be taken into account in the perturbative
calculation. This led to a very complicated perturbative
calculation which involved several diagrams with
Oð100 000Þ intermediate expressions. Still, we could
demonstrate that with the inclusion of two stout smearing
levels a saturation of the renormalization functions could
be observed. The renormalization functions obtained in
this manner have been used for the renormalization of
gluon and the corresponding singlet quark moments. The
final results for the renormalized gluon momentum
fraction are summarized in Eq. (43), and in Ref. [35]
for the quark singlet quantities. The values can serve for a
comparison with a phenomenological extraction of these
quantities from deep inelastic scattering experiments. Our
results also demonstrate that the gluon indeed contributes
a significant amount of the momentum fraction of
about 30%.

TABLE II. Multiplicative renormalization and mixing coeffi-
cient for the gluon operator. Results are given in the MS scheme
at a scale of 2 GeV.

ZL;MS
11 ZL;MS

12

0 stout 1 stout 2 stout 0 stout 1 stout 2 stout

B55.32 0.9481 1.0043 1.0134 0.1720 0.0278 −0.0168
cA2.09.48 0.8985 0.9506 0.9590 0.1120 −0.0070 −0.0436

CONSTANTIA ALEXANDROU et al. PHYSICAL REVIEW D 96, 054503 (2017)

054503-8



Our calculations can be extended to evaluate the spin
content of the nucleon, a topic we would like to report on in
the future. In addition, the renormalization functions com-
puted here can directly be used for the renormalization of the
corresponding average fractional momenta of the pion.
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