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Numerical stochastic perturbation theory is a powerful tool for estimating high-order perturbative
expansions in lattice field theory. The standard algorithms based on the Langevin equation, however, suffer
from several limitations which in practice restrict the potential of this technique. In this work we investigate
some alternative methods which could in principle improve on the standard approach. In particular, we
present a study of the recently proposed instantaneous stochastic perturbation theory, as well as a
formulation of numerical stochastic perturbation theory based on generalized hybrid molecular dynamics
algorithms. The viability of these methods is investigated in φ4 theory.
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I. INTRODUCTION

Lattice perturbation theory (LPT) is an important tool in
lattice field theory, and in particular in related renormal-
ization problems (see, e.g., [1–3] for an introduction). LPT
may be used to compute the matching of physical renorm-
alization schemes employed on the lattice and schemes
commonly used in continuum perturbative calculations,
such as the MS-scheme of dimensional regularization.1 In
addition LPT gives insight into lattice artifacts of the
theory, allowing for both the perturbative determination
of Symanzik improvement coefficients and, more gener-
ally, of the lattice artifacts in observables of interest.
LPT is technically much more involved than its con-

tinuum counterpart because of the complicated form of its
vertices and propagators, and usually requires numerical
evaluation for even simple diagrams. This is especially true
when sophisticated lattice discretizations are considered.
Additionally, in the case of gauge theories, the appearance
of new vertices at every order of perturbation theory makes
the number of diagrams grow very rapidly with the
perturbative order, leaving only low-order results accessible
to standard techniques.
Numerical stochastic perturbation theory (NSPT) was

proposed long ago [4,5] (see [6] for a detailed review, and
[7–9] for recent developments) in order to circumvent these
general difficulties, and thus enable high-order perturbative
computations in LPT. The basic idea of NSPT is the
numerical integration of a discrete version of the equations
of stochastic perturbation theory [10] (see [11] for a
review). More precisely, starting from the Langevin equa-
tion the stochastic field is expanded as a power series in the

couplings of the theory and the resulting equations are
solved order by order in these couplings. No Feynman
diagrams need to be identified or computed, but rather a
system of stochastic differential equations is integrated
numerically using Monte Carlo techniques. In this frame-
work perturbative calculations may be highly automated.
Complicated observables can be considered with no addi-
tional difficulty, and the cost of these methods scales mildly
with the perturbative order. In principle, NSPTallows high-
order perturbative determinations even in cases where the
corresponding continuum calculations are not feasible.
Of course this requires that the continuum limit can be

evaluated reliably. This is a limitation that may restrict the
applicability of NSPT. Firstly, the results at finite lattice
resolution unavoidably come with statistical uncertainties
due to their Monte Carlo estimation. In particular, the
numerical simulations suffer from critical slowing down
as the continuum limit of the theory is approached; this
significantly increases the computational effort necessary
to extract continuum results from NSPT. Secondly, this
class of algorithms is not exact: therefore a sequence of
simulations with finer and finer discretization of the
relevant equations must be performed in order to extrapo-
late away systematic errors in the results. It is thus difficult
to obtain precise results close to the continuum limit for
which both systematic and statistical errors are under
control. Without continuum extrapolation these methods
only provide lattice estimates for perturbative quantities,
which in practice may be of limited use.
Experience with conventional algorithms for nonpertur-

bative lattice field theory simulations suggests that a
different choice of stochastic process might significantly
alleviate these limitations. In particular, the class of
methods known as generalized hybrid molecular dynamics
(GHMD) algorithms have proven to be superior to

1Physical renormalization schemes are those that do not
explicitly depend on the regulator.
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Langevin algorithms in this respect; in fact the latter are a
special case of the former.
From a different perspective Lüscher recently introduced

a new form of NSPT, namely instantaneous stochastic
perturbation theory (ISPT) [12]. In this work, he discussed
how the above limitations can in principle be eliminated
completely by formulating NSPT in terms of a certain
class of trivializing fields. This method lies somewhere
between Langevin NSPT and more conventional diagram-
matic perturbation theory.
The aim of this work is to compare the standard NSPT

formulation, ISPT, and NSPT based upon GHMD algo-
rithms. Specifically, we will focus on two GHMD algo-
rithms, namely the hybrid molecular dynamics (HMD)
algorithm and Kramers algorithm.
The structure of the paper is as follows. In Sec. II we

give some general definition including the lattice action
and observables used in this study. In Sec. III we review
ISPT, paying attention to its numerical implementation.
Section IV is dedicated to a review of the standard NSPT
approach based on the Langevin equation (LSPT). In
Sec. V we introduce NSPT based on the HMD algorithm
(HSPT) and Kramers algorithm (KSPT). Finally, in
Sec. VI we present results of the numerical investigation
of the different methods, followed by our conclusions.
Preliminary results of our study appeared in [13].

II. DEFINITIONS

A. Lattice theory

We consider the simple φ4 theory, with φ a single
component real field, defined on a four-dimensional
Euclidean lattice of extent L in all directions. The theory
is specified by the lattice action,

SðφÞ ¼ a4
X
x∈Ω

�
1

2
∂μφðxÞ∂μφðxÞ þ

1

2
m2

0φðxÞ2 þ
g0
4!

φðxÞ4
�
;

ð2:1Þ
where φ is the bare field, ∂μφðxÞ ¼ ðφðxþ aμ̂Þ − φðxÞÞ=a
is the usual forward lattice derivative with μ̂ being a unit
vector in the direction μ ¼ 0;…; 3, and a is the lattice
spacing. The sum in (2.1) runs over the set Ω of all lattice
points x ¼ ðx0; x1; x2; x3Þ with xi=a ∈ ZL=a, while the field
φ satisfies the periodicity conditions φðxþ μ̂LÞ ¼ φðxÞ,
∀μ. The parameters m0 and g0 are the bare mass and
coupling constant; they are related to the renormalized
quantities m and g by

m2 ¼ m2
0 − δm2 ¼ m2

0 −
X∞
k¼1

m2
kg

k
0; ð2:2Þ

g ¼ g0 − δg ¼ g0 þ
X∞
k¼2

ckgk0; ð2:3Þ

where the coefficients m2
k and ck of the mass and coupling

counterterms δm2 and δg are determined order by order in
the coupling from the renormalization conditions; these
are discussed below.
Given these definitions the expectation value of a generic

observableOðφÞ of the field is defined as usual through the
Euclidean functional integral

hOi ¼ 1

Z

Z
Dφe−SðφÞOðφÞ; Dφ≡Y

x∈Ω
dφðxÞ; ð2:4Þ

where the constant Z is fixed by the condition h1i ¼ 1. Of
interest for the following discussion is the bare two-point
function,

χ2ðpÞ ¼ a4
X
x∈Ω

e−ipxhφðxÞφð0Þi; ð2:5Þ

where p¼ðp0;p1;p2;p3Þ, with pi ¼ 2πni=L and ni ∈
ZL=a, are the allowed momenta in a periodic box; the

set of such momenta will be denoted in the following by ~Ω.
In particular, we will consider

χ2 ≡ χ2ð0Þ and χ�2 ≡ χ2ðp�Þ; ð2:6Þ

where p� is the minimal nonzero momentum given by
p� ¼ ð2π=L; 0; 0; 0Þ.2

B. Renormalization conditions and observables

In order to study the continuum limit of the theory some
renormalization conditions must be chosen to define the
renormalized parameters and fields; we use the finite size
renormalization scheme described in [14]. For simplicity
we study the symmetric phase of the theory, although the
methods we shall present can be adapted to the sponta-
neously broken phase too.
Our definition of a renormalized mass m is obtained

from

χ2
χ�2

¼ 1þ p̂2�
m2

; ð2:7Þ

where p̂2 ¼Pμp̂
2
μ, with p̂μ ¼ 2 sinðpμ=2Þ being the usual

lattice momenta. The finite size continuum limit may then
be defined by keeping the combination

z ¼ mL ð2:8Þ

fixed.

2In general we shall consider lattice units where a ¼ 1 from
now on. Nevertheless, the lattice spacing may be included in
some formulas for clarity.
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More precisely, for a given choice of z the continuum
limit is approached by taking the lattice size L ¼ L=a → ∞
while tuning the lattice mass m ¼ am → 0, such that z has
the desired value. The possible values of z thus identify a
family of renormalization schemes.
The wave function renormalization Z ¼ Zðg0; L=a; amÞ

which defines the renormalized elementary field φRðxÞ ¼
Z−1=2φðxÞ is fixed by

Z−1 ¼ χ�−12 − χ−12
p̂2�

⇒ Z ¼ m2χ2: ð2:9Þ

Given these definitions, we introduce the renormalized
coupling

g ¼ −
χ4
χ22

m4; ð2:10Þ

where χ4 is the bare connected four-point function at zero
external momenta,

χ4 ¼
X

x;y;z∈Ω
hφðxÞφðyÞφðzÞφð0Þi − 3L4χ22: ð2:11Þ

The above renormalization conditions are a natural exten-
sion of textbook renormalization conditions for φ4 theory
in a finite lattice volume. What is relevant for the present
study is the fact that the coupling (2.10) is known to
two-loop order in lattice perturbation theory [14]: this
provides us with a nontrivial result to compare with. On the
other hand, a precise determination of (2.11) using the
Monte Carlo methods presented in the next sections is
difficult on large lattices (required to be close to the
continuum limit) due to the stochastic subtraction of the
disconnected contribution.
In order to obtain precise and simple quantities with

well-defined continuum limits we consider observables
defined through the gradient flow (see [15,16] for an
introduction). In the case of the φ4 theory the gradient
flow equations take the simple form [17,18]

∂t ~φðt; xÞ ¼ ∂2 ~φðt; xÞ with ~φð0; xÞ ¼ φRðxÞ; ð2:12Þ

where t ≥ 0 is the flow time and ∂2 ¼Pμ∂�
μ∂μ, with

∂�
μφðxÞ ¼ φðxÞ − φðx − μ̂Þ, is the usual lattice Laplacian.

In particular, products of fields at positive flow time are
automatically renormalized if the parameters of the theory
are renormalized. The dimensionless quantity

EðtÞ ¼ t2hEðt; xÞi with Eðt; xÞ ¼ ~φðt; xÞ4; ð2:13Þ

for example, is finite without any additional renormaliza-
tion, provided that the physical flow time t is held fixed as
the continuum limit of the theory is approached. Hence, we

define the finite size continuum limit of flow quantities like
(2.13) by holding the ratio [19]

c ¼
ffiffiffiffi
8t

p
=L ð2:14Þ

fixed. The continuum limit is thus taken by increasing
the lattice size L ¼ L=a and the flow time in lattice units
t ¼ t=a2 such that c is fixed to some chosen value; different
values of c define different renormalization schemes.

III. AN IMPLEMENTATION
OF ISPT IN φ4 THEORY

The first new technique we present is ISPT. Here we
limit ourselves to describing the essential features of this
approach in order to emphasize the most prominent
differences with standard NSPT techniques. This short
review will also help introduce our notation and some
concepts useful for later discussions. We recommend the
reader to the original reference [12] where a detailed
presentation is to be found.3

A. Definitions

ISPT is based on the concept of trivializing maps. In the
most general case these transform a set of Gaussian-
distributed random fields ηiðxÞ, for i ¼ 0; 1; 2;…, into a
stochastic field ϕðxÞ such that

hϕðx1Þ � � �ϕðxnÞiη ¼ hφðx1Þ � � �φðxnÞi ð3:1Þ

order by order in the couplings of the theory. Here the
expectation value on the right-hand side is defined by (2.4),
whereas that on the left-hand side is given in terms of
averages over the Gaussian random fields:

hηiðxÞiη ¼ 0; hηiðxÞηjðyÞiη ¼ δijδxy: ð3:2Þ

In perturbation theory the stochastic field ϕ can be
represented as a power series in the couplings of the
theory. In particular, in the regularized theory we can
consider an expansion in terms of the bare coupling g0,

ϕðxÞ ¼
XN
k¼0

ϕkðxÞgk0 þOðgNþ1
0 Þ: ð3:3Þ

If this is given the corresponding expansion in terms of a
renormalized coupling is easily obtained using relation (2.3)
(see Appendix A 1). On the other hand, the determination of
the coefficients ϕk in terms of the renormalized mass, instead
of the bare mass, requires explicit computation of the mass
counterterm contributions. For the numerical implementa-
tion of the method it is thus convenient to store the field as a

3Additional useful material is provided by the author of [12] in
the documentation for the publicly available package [20].
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two-dimensional array ϕk;l with the indices corresponding
to the powers of g0 and δm2:

ϕðxÞ ¼
XN
k;l¼0

ϕk;lðxÞgk0ðδm2Þl þOðgNþ1
0 Þ: ð3:4Þ

Once the expansion (2.2) is known it is trivial to pass from
the representation (3.4) to (3.3). Using the representation
(3.4) the expansion (2.2) can be determined and thus the
results obtained in terms of the renormalized mass. This is
discussed in detail in Appendix A 2; we recommend that the
reader consults this appendix only after reading the remain-
der of this section in which all the relevant definitions are
introduced.
We find at the lowest order in the coupling

ϕ0;0ðxÞ ¼
X
y∈Ω

Hðx; yÞη0ðyÞ; ð3:5Þ

whereH is the Green function for the operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂2 þm2

p
,

Hðx; yÞ ¼ 1

L4

X
p∈ ~Ω

eipðx−yÞ
ffiffiffiffiffiffiffiffiffiffiffi
~GðpÞ

q
; where

~GðpÞ ¼ 1

p̂2 þm2
: ð3:6Þ

It is easy to show that this field satisfies (3.1) at lowest order
in the coupling.
Beyond the leading order there is more freedom to

define the trivializing field. Following [12] we write this as
a linear combination of the values vðx;RiÞ of the rooted
tree diagrams Ri with coefficients cðRiÞ,

ϕk;lðxÞ ¼
X
i∈Sk;l

cðRiÞvðx;RiÞ; ð3:7Þ

where Sk;l is the set of all diagrams of order gk0 and
ðδm2Þl. Graphical representations of the rooted tree dia-
grams contributing to Oðg0Þ (kþ l ¼ 1) and Oðg20Þ
(kþ l ¼ 2) are given in Figs. 1 and 2 respectively; the
corresponding coefficients cðRiÞ are also shown. In this
representation the leaves of the trees are given by

= χi(x) =
∑

y∈Ω

H(x, y)ηi(y), ð3:8Þ

where the index i is the number adjacent to the open circle
in the graph; if no such number is displayed it is implicit
that i ¼ 0. The leaves are thus given by the lowest-order
solution (3.5) with the appropriate choice of random
field ηi.

Black circles and crosses represent the vertices of the
theory: they are the usual φ4 vertex and mass counterterm
insertions,

ð3:9Þ

These are associated with implicit factors of −g and δm2

respectively. Black lines connecting two vertices corre-
spond to the scalar propagator,

ð3:10Þ

where x and y are the positions of the two vertices
connected by the given propagator. In particular, at each
vertex the fields attached are multiplied together and the
propagator is applied to the resulting product of fields.
The root of the diagram is given by

ð3:11Þ

where x is the space-time index of the corresponding rooted
tree Ri.
To give some examples, given some η0ðxÞ and η1ðxÞ

fields, the diagram labeled 2 in Fig. 1 evaluates to

vðx;R2Þ ¼ ð−1Þ
X
y∈Ω

Gðx; yÞχ0ðyÞχ1ðyÞ2: ð3:12Þ

This contributes to ϕ1;0ðxÞ with a coefficient cðR2Þ ¼ 1=8.
Diagram 4 in Fig. 2 stands for

vðx;R4Þ ¼ ð−1Þ
X
y∈Ω

Gðx; yÞχ0ðyÞ2
X
z∈Ω

Gðy; zÞχ0ðzÞ; ð3:13Þ

and contributes to ϕ1;1ðxÞ with cðR4Þ ¼ 5=48.
Given these examples it is clear that the evaluation of the

trivializing map for a given set of random fields ηi is in
principle straightforward. Beyond the lowest perturbative
orders though the number of diagrams (as well as their
complexity) increases rapidly as indicated in Table I, so the
computation must be automated.

FIG. 1. Rooted tree diagrams contributing at Oðg0Þ; note that
δm2 ¼ Oðg0Þ.
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For this work we wrote a program that evaluates the
trivializing field ϕðxÞ up to an arbitrary order N in
the couplings for a given set of ηi fields. For the structure
of the relevant diagrams and the determination of their
coefficients we used the software package provided by
Lüscher [20]. The diagrams are given as C structs of
abstract elements, so our program visits each vertex in a
diagram using depth-first recursion starting from the root,
and evaluates the corresponding numerical expressions.
The diagrams are collected according to their order in the
couplings and the ϕk;lðxÞ fields are thus constructed. This
allows the series (3.4) to be obtained for some set of ηi
fields. Once this is done, correlation functions of the
trivializing field can be expanded order by order in the
couplings and evaluated stochastically by averaging over
different samples of the Gaussian random fields ηi. In
particular, the perturbative expansion of generic observ-
ables of the trivializing field OðϕÞ can be computed by
iterating order-by-order convolution operations of the form,

ðϕ · ϕÞðx; yÞ ¼ ϕðxÞϕðyÞ ⇒ ðϕ · ϕÞk;lðx; yÞ
¼
X
0≤i≤k

X
0≤j≤l

ϕk−i;l−jðxÞϕi;jðyÞ; ð3:14Þ

and similarly for other elementary operations. In this way
one obtains the generic stochastic perturbative field,

OðϕÞ ¼
XN
k;l¼0

Ok;lðϕ0;0;…;ϕk;lÞgk0ðδm2Þl þOðgNþ1
0 Þ

ð3:15Þ

from which the perturbative expansion of the expectation
value of the field OðφÞ in φ4 theory,

hOi ¼
XN
k;l¼0

ak;lgk0ðδm2Þl þOðgNþ1
0 Þ; ð3:16Þ

is obtained up to OðgNþ1
0 Þ corrections as

hOiη ¼ hOi ⇔ hOk;liη ¼ ak;l: ð3:17Þ

Once the expansion (3.15) is known the corresponding
expansion in terms of a given renormalized mass and
coupling (as well as any renormalization of the field O) is
easily found (see Appendix A).
We should mention some additional technical details.

First, in the diagrammatic computation the scalar propa-
gators are applied in momentum space, while the products
of fields at vertices are performed in position space. This is
implemented using the efficient numerical evaluation of
the discrete Fourier transformation provided by the FFTW

package [21]. As a result the cost of the computation of the

FIG. 2. Rooted tree diagrams contributing at Oðg20Þ; note that δm2 ¼ Oðg0Þ.

TABLE I. Number of rooted-tree diagrams appearing at a given
order in the coupling g0. The column labeled by cðRÞ ≠ 0 gives
the number of such diagrams whose coefficient cðRiÞ is non-
vanishing.

gk0 n cðRÞ ≠ 0

1 3 3
2 10 10
3 44 43
4 241 231
5 1,506 1,420
6 10,778 10,015

Total 12,582 11,722
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diagrams scales proportionally to the system size V ¼ L4

up to logarithms. Second, as already noted in [12], the
computation of the rooted tree diagrams could be organized
in such a way that identical subtrees in different graphs
are cached. How to do this efficiently is a nontrivial issue
even for φ4 theory, and we did not investigate it further.
Moreover, whether this is really worth investigating is not
clear since, as we shall see below, ISPT suffers from some
severe limitations once high-order computations are con-
sidered. Its utility might thus be limited to relatively low-
order computations where recomputation of subgraphs is
not a significant issue.
The advantages of ISPTare that its results are exact up to

statistical uncertainties and that there are no autocorrela-
tions as the coefficients ϕk;l are generated “instantane-
ously” from independent Gaussian random fields ηi.

B. A test of the method

We tested our ISPT implementation by comparing some
results with those obtained using conventional perturbative
lattice calculations (LPT). We computed the renormalized
coupling (2.10) and compared it with its two-loop deter-
mination from [14], which we evaluated for the parameters
of interest (see below). We considered both the case where
the perturbative expansion is given in terms of the renor-
malized mass (2.7), and the case where it is given in terms
of the bare mass m0.

4 The comparison was done on a tiny
lattice with L ¼ 4, where high statistics could be gathered,
and the value of the mass was chosen such that z ¼ 4. The
results of the tests are reported in Table II; for completeness
we also give the results for δm2 in the table.
As can be seen from the table there is good agreement

between the ISPT and the LPT determinations, thus
confirming the correctness of our implementation. In the
case where the mass renormalization is considered one
needs to take into account the effect of statistical errors
in the mass renormalization procedure discussed in
Appendix A 2: we did this using the jackknife method.

IV. NSPT BASED ON THE LANGEVIN EQUATION

Having introduced ISPT, in this and the following
section we discuss the other NSPT methods that we
studied. In these methods the stochastic field ϕ is generated
through a Markov process based on some stochastic
differential equation expanded up to some fixed order in
the couplings of the theory. We start from the standard
NSPT based on the Langevin equation; for later conven-
ience we shall refer to this algorithm as LSPT. This
algorithm has a long history and has been studied in great
detail over the years: we thus limit ourselves to recalling the
most relevant features for what follows, while referring
the reader to the literature for a more detailed account (see,
e.g., [6] and references therein).

A. Definition

The standard LSPT approach is based on stochastic
quantization [10,11,22–24], where the field representing
the theory is obtained as the solution of the Langevin
equation,

∂tsϕðts; xÞ ¼ −Fðϕðts; xÞÞ þ ηðts; xÞ; ð4:1Þ

where Fððϕðts; xÞÞ is the force field defined as the func-
tional derivative of the action (2.1) evaluated on the field
configuration ϕðts; xÞ,

Fðϕðts; xÞÞ ¼
δS½ϕ�

δϕðts; xÞ
¼ −∂2ϕðts; xÞ þ ðm2 þ δm2Þϕðts; xÞ
þ g0

3!
ϕðts; xÞ3: ð4:2Þ

We have written the bare mass m0 in terms of the
renormalized mass and its counterterm [see (2.2)]. In the
above equations ts is the so-called stochastic (or simula-
tion) time in which the stochastic field ϕ evolves. The field
η is a field of Gaussian random numbers satisfying5

hηðts; xÞiη ¼ 0; hηðts; xÞηðt0s; yÞiη ¼ 2δðts − t0sÞδxy:
ð4:3Þ

Through the Langevin equation (4.1) the field ϕ depends
upon the random field η. The main assertion of stochastic
quantization is that the following identity holds order by
order in perturbation theory:

lim
ts→∞

hϕðts; x1Þ � � �ϕðts; xnÞiη ¼ hφðx1Þ � � �φðxnÞi: ð4:4Þ

TABLE II. Results for the series (2.3) and (2.2) as obtained
from ISPT and conventional LPT for L ¼ 4 and z ¼ Mass × L
using 108 field configurations. The perturbative expansion for the
coupling (2.3) is obtained both in terms of the renormalized mass
m of (2.7) and the bare mass m0.

Mass c2 × 102 c3 × 103 m2
1 × 102 m2

2 × 104

LPT m −3.330 1.583 −6.4221 3.6702
ISPT m −3.332ð6Þ 1.582(4) −6.4220ð1Þ 3.6704(6)
LPT m0 −3.33 2.965
ISPT m0 −3.33ð1Þ 2.964(5)

4In ISPT the latter is simply obtained by setting δm2 ¼ 0 in the
corresponding expansion (3.15).

5We use the same notation for the random field correlation
functions as in ISPT. We believe that no confusion is possible as it
should be clear from the context, as well as from the different
indices, which field we are referring to.
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Hence, in the long stochastic time limit the equal time
correlation functions of the stochastic field ϕ converge to
the expectation values (2.4) of the Euclidean field theory
with action S; in particular the equilibrium probability
distribution of the stochastic field ϕ is proportional to
e−SðϕÞ. Equivalently, one can say that in this limit the
Langevin equation effectively trivializes the original theory
[see (3.1)].
Stochastic perturbation theory amounts to solving the

Langevin equation (4.1) order by order in the couplings of
the theory; in our case these are g0 and δm2. Substituting
the expansion of the stochastic field ϕ analogous to (3.4)
into (4.1) gives a system of equations for the fixed-order
fields,

∂tsϕ0;0ðts; xÞ ¼ ð∂2 −m2Þϕ0;0ðts; xÞ þ ηðts; xÞ;

∂tsϕ1;0ðts; xÞ ¼ ð∂2 −m2Þϕ1;0ðts; xÞ −
1

3!
ϕ0;0ðts; xÞ3;

∂tsϕ0;1ðts; xÞ ¼ ð∂2 −m2Þϕ0;1ðts; xÞ − ϕ0;0ðts; xÞ; ð4:5Þ

and so on. These equations can readily be solved for the
ϕk;l fields. Once a solution is obtained up to a given order
in the coupling, (4.4) can be used to compute the pertur-
bative expansion of any correlation function in the corre-
sponding Euclidean field theory (see [11] for explicit
examples of such calculations).
LSPT is the numerical implementation of this idea.

Stochastic time is discretized as ts ¼ nε, with n ∈ N and
ε being the step size; a solution of the (discrete) Langevin
equation is then obtained according to some given inte-
gration scheme. The simplest such solution is provided by
the Euler scheme, which is defined by the update step

ϕððnþ 1Þε; xÞ ¼ ϕðnε; xÞ − εFðϕðnε; xÞÞ þ ffiffiffi
ε

p
ηðnε; xÞ;

ð4:6Þ

where here the random field η is normalized such that
hηðnε; xÞηðn0ε; yÞiη ¼ 2δnn0δxy, and ϕð0; xÞ is some given
initial condition. The perturbative expansion of this sol-
ution is performed in an automated fashion by employing
order-by-order operations analogous to (3.14); once this
is given the expansion of a generic observable OðϕðtsÞÞ is
obtained in the same way as in (3.15). Assuming ergodicity
the average over the random field distribution in (4.4) is
replaced by an average over stochastic time, and one
obtains

lim
ts→∞

hOðtsÞiη ¼ hOi !ts¼nε
lim
T→∞

1

T

XT
n¼0

OðϕðnεÞÞ

¼ hOi þOðεpÞ: ð4:7Þ

In the above relation the equivalence between correlation
functions is valid order by order in perturbation theory [see

(3.17)], whereas the power p depends on the order of the
chosen integration scheme (see below).6

As asserted earlier, stochastic estimates of perturbative
expansions of the correlation functions of the target theory
are obtained by use of Monte Carlo sampling based on
the Langevin equation. We note that within the statistical
uncertainties the perturbative expansions so obtained are
correct only up to systematic errors due to the discretization
of the stochastic time. As anticipated in (4.7) these
corrections are expected to vanish as some power of the
step size as ε → 0 [25,26]. The rate of convergence depends
on the choice of the numerical integrator employed for the
solution of the Langevin equation. Such integrators are
normally devised in such a way that the discrete stochastic
process associated with the given integration scheme of
order p converges, for small enough ε, to an equilibrium
probability distribution P̄ðϕÞ ∝ e−S̄ðϕÞ where S̄ ¼ Sþ ΔS
with ΔS ¼ OðεpÞ. Such deviation from the desired equi-
librium distribution is the cause of the corrections in the
expectation value in (4.7) (see, e.g., [26,27] for more
details). In this work we used a second-order Runge-
Kutta integrator (RK2): its exact definition is given by
Eqs. (A.4) and (A.15) of [28].7 Using this integrator one
expects corrections of Oðε2Þ in the perturbative computa-
tion of any correlation function.
It is clear that compared to ISPT the cost of LSPT with

the perturbative order in the couplings is rather mild. This
is dictated by the order-by-order operations necessary to
integrate the discrete Langevin equation. Consequently, the
computational cost of LSPT increases (roughly) with the
square of the order in each coupling [see (3.14)]. However,
as just mentioned, the results need to be extrapolated to
zero in the step size to eliminate systematic errors in the
results. In addition, as the fields entering in the average in
(4.7) are generated by a Markov process, the successive
field configurations are correlated; this increases the
statistical error for a fixed number of field configurations.
These correlations need to be properly taken into account in
order to obtain valid error estimates for the results. Their
magnitude is expected to grow proportionally to L2 as the
continuum limit of the theory is approached (see, e.g.,
[26,29,30]). This result is valid for any perturbative order
Ok;lðϕ0;0ðtsÞ;…;ϕk;lðtsÞÞ of the generic (multiplicatively
renormalizable) stochastic field OðϕðtsÞÞ, and follows
from the remarkable property that the Langevin equation
is renormalizable [23,24] (see [30] for a discussion).
This feature allows one to infer the scaling behavior of
Langevin-based algorithms not only in the free case where
g0 ¼ 0 but also in the full interacting theory. In particular,

6In practical simulations the value of T is necessarily finite,
and one averages the fields only once the discrete stochastic
process has equilibrated.

7We note that the RK2 integrator considered here requires
three force computations per step.
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as recently shown by Lüscher [31], the renormalizability
of the Langevin equation also allows one to conclude
that the variances of these coefficients, VarðOk;lÞ ¼
limts→∞ðhO2

k;lðtsÞiη − hOk;lðtsÞi2ηÞ, are at most logarithmi-
cally divergent when taking the continuum limit. This
property is quite remarkable and is not guaranteed for other
NSPT implementations.

V. NSPT BASED ON GHMD ALGORITHMS

The idea of stochastic perturbation theory is not limited
to the Langevin equation. Any stochastic differential
equation (SDE) which satisfies an analogous property to
(4.4) can provide a way of performing stochastic perturba-
tion theory. One interesting example is given by the
stochastic molecular dynamics (SMD) equations (5.3). In
this context these were first considered in [32], and were
recently studied in detail in [30]. Similarly, one can set up
perturbation theory in terms of the hybrid molecular
dynamics (HMD) equations [30]. This observation sug-
gests the possibility of defining NSPT based on the
discretization of these SDEs or of ergodic variances of
the molecular dynamics (MD) equations, such as the
Kramers [33–36] and HMD algorithm respectively [37].
Experience with conventional nonperturbative lattice field
theory simulations would suggest the advantages of refor-
mulating NSPT in terms of these algorithms rather than
Langevin-based ones. However determining their effi-
ciency in this context, in particular their continuum scaling,
is not a trivial issue. The results for the free field theory [38]
provide a complete understanding of the lowest perturba-
tive order dynamics. On the other hand the lack of
renormalizability of the SMD and HMD equations [30]
in general precludes analytic control over the continuum
scaling of these algorithms in the interacting theory. In the
case of NSPT this means a lack of control of the behavior
of the higher-order fields. Consequently, the efficiency of
these algorithms in the context of NSPT must be addressed
numerically; in particular the situation could be substan-
tially different from both the free case and the case where
the full theory is simulated.
In this section we define NSPT in terms of the HMD

and Kramers algorithms (see [38] and references therein for
their definition). These are all inexact algorithms, as we do
not know how to add a Metropolis step that would be valid
for arbitrary values of the coupling beyond leading (free
field) order. We could consider the more general general-
ized hybrid molecular dynamics algorithm [38], but based
on both the expectations from free field theory and from
nonperturbative lattice field theory simulations the HMD
and Kramers algorithms appear to be natural subclasses of
the GHMD algorithm to consider. We shall assume the
reader to be familiar with these algorithms, and we limit
ourselves to describing the required modifications for their
NSPT formulations. These algorithms will be called HSPT
and KSPT, respectively.

A. HSPT

In the case of the HMD algorithm, the basic field
evolution is described by the MD equations,

∂tsϕðts; xÞ ¼ πðts; xÞ; ∂tsπðts; xÞ ¼ −Fðϕðts; xÞÞ;
ð5:1Þ

where Fðϕðts; xÞÞ is given by (4.2), and π is the momentum
field conjugate to ϕ. Similarly to the Langevin case
(cf. Sec. IV), in the context of NSPT both fields ϕ and
π are assumed to have an expansion of the form (3.4).
All operations in the following are thus intended to be
performed in an order-by-order fashion [see (3.14)].
As is well known an algorithm based on the MD

equations alone conserves “energy” and so is not ergodic:
the latter needs to be supplemented by an occasional
refreshment of the momentum field. Therefore the momen-
tum field π is sampled from a Gaussian distribution with
zero mean and unit variance at the beginning of each
trajectory (ts ¼ t0); the refreshed momentum initially only
has a nonzero lowest-order component. In formulas

hπ0;0ðt0; xÞiπ ¼ 0; hπ0;0ðt0; xÞπ0;0ðt0; yÞiπ ¼ δxy; ð5:2Þ

and πk;lðt0; xÞ ¼ 0 if either k > 0 or l > 0, where h� � �iπ
denotes the average over the momentum field distribution
at the beginning of a trajectory. The momentum field will
acquire higher-order components during the MD evolution
(5.1) from the time t0 at which it was refreshed to time
ts ¼ t0 þ τ, where τ is the trajectory length. Numerically
the MD evolution is determined by discretizing the sim-
ulation time as ts ¼ nδt, with n ∈ N and δt the step
size, and employing a suitable integration scheme (see
below). Expectation values of generic observables are then
obtained similarly to (4.7) by averaging over sequences of
trajectories.
For the numerical integration of the MD equations it is

convenient to rely on some reversible symplectic integra-
tion scheme, even though this is not necessary in principle.8

Symplectic integrators can systematically be improved, and
sophisticated symplectic integrators are readily available
(see [39] for a discussion). Moreover, once an efficient
symplectic integrator is found for a scalar theory, it can be
extended to non-Abelian theories in a straightforward
manner. For this work we used the fourth-order integrator
defined by Eqs. (63) and (71) of [40], which we refer to
as the OMF4 integrator.9 Given this choice of integrator
we expect Oðδt4Þ errors in the results. More precisely, we
expect in general that the equilibrium probability distribu-
tion of fields generated through the HMD algorithm with

8From here on we will refer to reversible symplectic integrators
simply as symplectic integrators.

9We note that the OMF4 integrator requires six force compu-
tations per step.
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some symplectic integrator of order p is, for small
enough step size δt, of the form P̄ðϕÞ ∝ e−S̄ðϕÞ, where S̄ ¼
Sþ ΔS with ΔS ¼ OðδtpÞ (see [41] for more details).
Consequently, sinceΔS ∝ V, one may argue that in order to
keep the step-size errors in the equilibrium distribution
(approximately) constant as the system size V is increased,
one needs to keep the quantity y≡ Vδtp fixed. It is clear
that this is feasible only if efficient high-order integrators
are employed.10 We note that although keeping y fixed
would keep systematic errors in generic correlators approx-
imately constant as the system size is increased, this is
probably an overconservative condition if one is interested
in (connected) correlation functions of local fields [25,26].
The HSPT algorithm described so far is not yet ergodic,

the problem being that the evolution of the lowest-order
(free) field ϕ0;0 is not ergodic [38,42]; this in turn affects the
evolution of the higher orders. The solution to this problem
is simple and is to randomize the trajectory length τ [42].
The choice of distribution for the trajectories’ lengths may
affect the efficiency of the algorithm. In our implementa-
tion we fixed the step size δt, while choosing the number of
steps n composing the trajectory according to a binomial
distribution with mean hni. This defines the average
trajectory length to be hτi ¼ hniδt.
We conclude by pointing out that if one chooses τ ¼ δt,

i.e., the trajectory consists of a single step, then the HMD
algorithm effectively integrates the Langevin equation (4.1)
(see [41] and below). In other words, in this case the
algorithm just described can be interpreted as a particular
integration scheme for the Langevin equation.

B. KSPT

Having defined HSPT in terms of the HMD algorithm, a
second interesting possibility to consider is NSPT based on
the Kramers algorithm. This algorithm was proposed long
ago in the context of field theory simulations by Horowitz
[33,34], and recently reconsidered in [36]. In this case, the
stochastic equations governing the field dynamics are given
by the SMD equations,

∂tsϕðts; xÞ ¼ πðts; xÞ;
∂tsπðts; xÞ ¼ −γπðts; xÞ − Fðϕðts; xÞÞ þ ηðts; xÞ: ð5:3Þ

Here Fðϕðts; xÞÞ is still defined by (4.2), while ηðts; xÞ is a
Gaussian random field satisfying

hηðts; xÞiη ¼ 0; hηðts; xÞηðt0s; yÞiη ¼ 2γδðts − t0sÞδxy;
ð5:4Þ

where γ > 0 is a free parameter (see below). We observe
that the (nonergodic) MD equations (5.1) are obtained
when γ ¼ 0 while, up to a rescaling of stochastic time, the
Langevin equation (4.1) is obtained for γ → ∞ (see [30]).
The implementation of Kramers algorithm is as follows.

Starting from some arbitrary initial values for the fields
ϕð0; xÞ and πð0; xÞ, the MD equations corresponding to
(5.3) with γ ¼ 0 are integrated from ts ¼ 0 to t0s ¼ δt
through a single step of a given numerical integration
scheme. The value of δt thus defines the step size of the
integrator. After this MD step, the effect of the γ term and
the coupling to the random field η is taken into account by
partially refreshing the momentum field: the momentum
field πðt0s; xÞ is replaced by

π0ðt0s; xÞ ¼ e−γδtπðt0s; xÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2γδt

p
ηðt0s; xÞ; ð5:5Þ

where the noise field is here normalized such that
hηðnδt; xÞηðn0δt; yÞiη ¼ δnn0δxy. These elementary steps
are then alternated, and expectation values of generic
observables of the field are obtained as in (4.7) by
averaging over a long Monte Carlo history, after they have
reached equilibrium. In a KSPT implementation, the fields
ϕ and π are assumed to have an expansion of the form (3.4),
and just as in the Langevin case the random field η only
has a lowest-order component. Hence, during the partial
refreshment (5.5) only the lowest-order component of the
momentum field π0;0 is affected by the random field η,
while the higher-order components are just rescaled by
the factor e−γδt. In the case where γ → ∞ (the Langevin
limit) the algorithm described is just the single-step HSPT
algorithm.
Having defined the algorithm, some comments are in

order. First of all, as shown by Horowitz’s analysis [33], the
partial momentum refreshment (5.5) integrates exactly the
corresponding terms in (5.3). Similarly to the case of HSPT,
the systematic errors that one expects in expectation values
of the fields (4.7) are given by the integration of the MD
equations in discrete steps; in particular analogous con-
clusions apply for the order of the step-size errors in the
equilibrium probability distribution (see Sec. VA). For the
present work, we employed the very same OMF4 integrator
that we used for HSPT: we therefore expect Oðδt4Þ step-
size errors.
Secondly, one might naïvely conclude from the free field

theory analysis of [38] that the KSPTalgorithm just defined
is not of much interest as it is not expected to perform better
than HSPT, at least close to the continuum limit. However,
one has to note that the conclusions in [38] refer to the exact
implementation of these algorithms, i.e., when a Metropolis
accept/reject step is included. This is what leads to the

10As mentioned before, we could include an accept/reject step
in the HMD evolution of the lowest-order field ϕ0;0. In this case
the equilibrium probability distribution would be correct at this
order. Keeping the acceptance probability fixed in this case would
then require x ¼ Vδt2p to be fixed, which is a less stringent
condition than keeping y fixed. However, it is not clear what the
step-size errors would be for the higher-order components of the
field in this case.
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critical exponent for the cost of the algorithms being z ¼ 1
for HMC but z ¼ 3=2 for the exact Kramers algorithm
(KMC). However, in the case of NSPT one is limited to
inexact algorithms, so the computations have to be per-
formed in a parameter regime where the effect of step-size
errors on expectation values are smaller than some specified
statistical accuracy, as otherwise some extrapolation in the
step size would be necessary. In this regime, corresponding
to the case where the Metropolis acceptance probability
would be close to one, the two algorithms have in fact
comparable performances [38].11

KSPT is also interesting due to the following property.
As mentioned before, the SMD equations (5.3) approach
the Langevin equation (4.1) in the limit γ → ∞. In lattice
field theory, this limit can be taken simultaneously with
the continuum limit if γ is kept fixed in lattice units while
a → 0 [30]. In this limit the algorithm described above
integrates the Langevin equation as the continuum limit
of the theory is approached. Consequently, the consid-
erations on the continuum scaling of the LSPT algorithms
discussed in Sec. IV directly apply to KSPT at fixed γ.
Although the scaling of these algorithms is expected to
be the same, in the case of KSPT the parameter γ may be
fixed to some finite value for which the algorithm may be
more efficient. This will be addressed in detail in the next
section.

VI. NUMERICAL RESULTS

In this section we present the results of our numerical
investigation of the methods described in Secs. III–V. Our
aim is to provide a comparison of the techniques in order
to identify their principal advantages and disadvantages. In
Sec. VI A we compare the perturbative results for some
specific quantities obtained with the different algorithms, in
order to confirm their correctness and viability. Once these
are established, in Secs. VI B–VI E we study the continuum
scaling of the errors of these perturbative coefficients as
computed by the various methods.

A. Testing the methods

Before other comparisons are considered it is important
to confirm that the various algorithms agree for the
perturbative computation of some quantities. In Fig. 3
the results for EðtÞ at tree level, Oðg0Þ, and Oðg20Þ are
shown from top to bottom respectively. The computations
were performed on a tiny L ¼ 4 lattice for which very high
statistics could be obtained: similar results were obtained
on larger lattices albeit with lower precision. We collected
≈107 independent measurements for ISPT, HSPT, and
KSPT, and ≈106 measurements for each of 9 values of

ε ∈ ½0.01; 0.05� for LSPT. The values for the mass of the
field and the flow time were chosen to correspond to z ¼ 4
and c ¼ 0.2, respectively. For HSPT and KSPT we then
chose hτi ¼ 1 and γ ¼ 2. The perturbative expansion is
expressed in terms of the renormalized mass m whereas the
perturbative coefficients correspond to the expansion in the
bare coupling g0, i.e.,

FIG. 3. Comparison of different methods in the determination
of E0, E1 and E2 for z ¼ 4, c ¼ 0.2, and L ¼ 4. The analytic
result (LPT) and the result of the extrapolation ε → 0 for LSPT, as
well as the ISPT, KSPT, and HSPT results (for which there are no
step-size errors or the step-size errors are negligible compared
with the statistical errors), are plotted near ε2 ¼ 0.

11It is worth pointing out that even in the exact case, the critical
exponent for Kramers in the free case can be improved by using
higher-order integrators for the MD equations.
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EðL; z; cÞ ¼ E0 þ E1g0 þ E2g20 þ E3g30 þOðg40Þ;
where Ei ≡ EiðL; z; cÞ: ð6:1Þ

As can be seen from the figure, all the methods agree with
each other and with the analytic determination. In the case
of LSPT deviations from the expected results are sizable at
the largest step sizes, and agreement is found only after
extrapolation to ε → 0. In particular, the asymptotic Oðε2Þ
behavior expected for the integrator used is clearly visible.
For the case of HSPT and KSPT we do not see any

indication of step-size errors as the results show no
statistically significant deviation from the analytic deter-
mination; the points are precise at the 0.1–0.5% level
depending on the order. Even though the lattice is quite
small, the step size we chose for both HSPT and KSPT
is rather large, namely δt ¼ 0.5. This step size satisfies
δt4 ≥ 25ε2, for all values of ε considered for LSPT: this
inequality would give the naïve size of the expected relative
step-size errors. This needs to be compared with the fact
that the application of the OMF4 integrator only costs twice
as much computer time as the RK2 integrator. Of course
this result depends on many factors: the lattice size
considered, the observable, the parameters of the theory,
the values of the step sizes, and most importantly the
integrators used.12 Nonetheless, as already emphasized,
symplectic MD integrators are at a more mature stage of
development than Runge-Kutta integrators; they can be
optimized to reduce the magnitude of the step-size errors
(see [40]). As illustrated by our example, this results in a
significant reduction of systematic errors relative to the cost
of a single integration step. Consequently, it is feasible to
run the algorithm with a small enough step size such that
extrapolations are not required. Moreover, as we can afford
to run with larger step sizes for a fixed systematic error and
with a fixed number of force computations the cost of
obtaining independent configurations is reduced because of
the smaller autocorrelations. Later in the section we shall
give more quantitative evidence on the benefits of using
efficient symplectic integrators in minimizing both system-
atic and statistical errors at fixed cost.

B. Continuum error scaling: A first look

Having addressed the issue of systematic errors, we now
study the continuum scaling of the various NSPT algo-
rithms. We do this by investigating how the (relative) errors
of the perturbative coefficients of some given observables
scale as the continuum limit of the theory is approached.
The precise details of the scaling depend on the observable,
but some general features may be inferred.

In Figs. 4 and 5 we show the continuum scaling of the
relative errors ΔEi=Ei for i ¼ 0;…; 3 and L in the range
4 ≤ L ≤ 16, as computed using ISPT, LSPT, HSPT, and
KSPT. Recall that the error ΔEi may be expressed as

ΔEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AIðEiÞ × VarðEiÞ

Nconfig

s
; ð6:2Þ

where Nconfig is the total number of field configurations
considered, and VarðEiÞ and AIðEiÞ are the variance and
integrated autocorrelation of Ei where

t2

L4

X
x∈Ω

Eðt;xÞ¼E0þE1g0þE2g20þE3g30þOðg40Þ: ð6:3Þ

We show our results for z ¼ 4 and c ¼ 0.2, but the same
qualitative behavior is observed in other cases. The number
of configurations for each method is specified at L ¼ 4
and kept constant as 1=L → 0. Specifically, at L ¼ 4 we
collected between 105 and 106 independent measurements
for each of the different methods. At this small lattice size

FIG. 4. Continuum scaling of the relative errors ΔE0=E0 and
ΔE1=E1 as computed with ISPT, LSPT, HSPT, and KSPT. The
parameters are z ¼ 4 and c ¼ 0.2. The data are normalized at
L ¼ 8.

12It is clear that considering larger lattices favors HSPT and
KSPT, because higher-order integrators have a better cost scaling
with increasing volume.
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and for the algorithmic parameters considered the different
methods have comparable statistical precision for the
same number of independent measurements. In the case
of LSPTwe measured after each step of the Markov chain.
For KSPTwe set the parameter γ ¼ 2, and we adjusted the
measurement frequency so as to measure at fixed intervals
Δts ¼ 0.5 of simulation time independent of the step size.13

For HSPT we measured after each trajectory of average
length hτi ¼ 1. The results in the figures are normalized to
the values of the relative errors at L ¼ 8, and hence to a first
approximation are independent of Nconfig. Since the figures
are only intended to be qualitative no estimates for the error
on the relative error are provided.
The error computation for the perturbative coefficients

was obtained using jackknife in the case of ISPT, whereas
for LSPT, HSPT, and KSPT we employed the Γ-method
described in [43] in order to take into account autocorre-
lations of the measured quantities. The coefficients Ei and
corresponding errors refer to the expansion in terms of the

renormalized mass m and bare coupling g0 (6.1). Power
divergences in the inverse lattice spacing are thus excluded
in the coefficients Ei, while logarithmic divergences asso-
ciated with renormalization of the coupling constant are not
expected to be relevant for the following discussion. In the
case of HSPT and KSPT the step size was scaled as δt ∝
1=L starting from a value of δt ¼ 0.5 so as to keep the
Oðδt4Þ errors in the equilibrium distribution approximately
fixed using the OMF4 integrator as the continuum limit is
approached. As mentioned in Sec. VA this is probably a
very conservative choice, but it was done to avoid poten-
tially large systematic errors that might modify the overall
picture.14 Keeping the systematic errors in the equilibrium
distribution fixed for LSPT is significantly more challeng-
ing as it requires ε ∝ 1=L2 with the RK2 integrator
(Sec. IV). In this case we thus simply considered two
well-separated step sizes in order to assess the dependence
of the results on ε.
Starting from the results at tree level (top panel in Fig. 4)

we see how the relative error of ISPT is constant for a
fixed number of field configurations. The results for LSPT,
HSPT, and KSPTare rather different: excluding perhaps the
smaller lattices there is a linear growth of the relative errors
with the lattice size. These results confirm free field theory
expectations. The variance VarðE0Þ is finite and constant
with L up to discretization effects. In particular it is the
same for all NSPT methods up to step-size errors, and
independent of the algorithmic parameters. Consequently,
since ISPT results are uncorrelated, this implies that the
error ΔE0 is essentially constant with L for a given number
of field configurations Nconfig. The linear rise of the errors
in the case of LSPT, HSPT, and KSPT is due to the fact
that autocorrelations grow ∝ L2 as the continuum limit is
approached. For a fixed number of configurations this
translates into a linear rise of the relative errors with L as
the number of independent configurations decreases
∝ 1=L2.
At higher perturbative orders the situation for ISPT

changes significantly. At Oðg0Þ the relative error grows
linearly with L, indicating a growth of the variance
proportional to L2 as the continuum limit is approached.
For higher perturbative orders the increase of the variance is
even more rapid. This may be better appreciated from Fig. 6
where results for ISPT alone are given up to L ¼ 24 and
Oðg30Þ. In this plot we show the ratios of ΔEi and ΔE0

for i ¼ 1, 2 and 3. These ratios are independent of the
number of configurations considered, and were estimated
using 105–107 measurements, depending on the lattice size.
It is clear that the error, and hence the variance, increases
as an increasing power of L as the perturbative order is

FIG. 5. Continuum scaling of the relative errors ΔE2=E2 and
ΔE3=E3 as computed with ISPT, LSPT, HSPT, and KSPT. The
parameters are z ¼ 4 and c ¼ 0.2. The data are normalized at
L ¼ 8. Note that for ISPT ΔE3=E3 ≈ 65 for L ¼ 16.

13Since autocorrelations are linear in the step size δt for γ fixed,
from the point of view of autocorrelations this is equivalent to
measuring after each step for a fixed step size of δt ¼ 0.5.

14In fact with this choice the step-size errors vanish faster than
the leading Oð1=L2Þ lattice artifacts as the continuum limit is
approached.
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increased.15 This is to be compared with the relative errors
for LSPT, HSPT, and KSPT, which have the same quali-
tative behavior as at tree level; namely the errors increase
only linearly with L (Figs. 4 and 5). For these algorithms
the behavior is similar to what happens at tree level: the
errors of the higher-order coefficients appear to increase
due to increasing autocorrelations. The increase of the
variance of the perturbative coefficients in LSPT, HSPT,
and KSPT, if any, is very mild here.16 These conclusions
will be confirmed by the detailed investigations of the
following subsections.
We conclude by noticing that the above observations

for the higher-order results are in agreement with general
theoretical expectations. The peculiar behavior in the
variance of perturbative coefficients computed with ISPT
was recently elucidated by Lüscher [44]. He emphasized
the generic presence of power divergences in the variance
of perturbative coefficients computed with ISPT. On the
other hand, as we noted in Sec. IV, he showed that the
variances of perturbative coefficients computed using
LSPT are at most logarithmically divergent [31].
However, their autocorrelations grow with the square of
the correlation length of the system, i.e., ∝ 1=m2 ∝ L2.
These results also apply to KSPT at fixed γ (see Sec. V B
and [30]). Strictly speaking they cannot be extended to
HSPT due to the nonrenormalizability of the HMD
equations [30], although it is most plausible that they hold
in the case where the trajectory length does not scale with
the correlation length of the system, i.e., hτi is independent
of L. This follows from the observation that in the
continuum limit L → ∞ the HSPT algorithm effectively
integrates the perturbatively expanded Langevin equation,

as in this case there is no fundamental difference from a
single-step HSPT algorithm (which is LSPT). This con-
jecture seems to be confirmed by the numerical experi-
ments discussed below.

C. Continuum scaling of autocorrelations

As a result of the investigation of the previous subsection
we conclude that NSPT methods based on stochastic
differential equations have a much better continuum cost
scaling than ISPT. It is clear that beyond the first few orders
in perturbation theory the scaling of ISPT is such that its
performance is much worse than the other algorithms. In
this and the following subsection we therefore focus our
attention on these other methods. In particular the question
we want to address is the following. As is well known, free
field analysis of the HMD and Kramers algorithms shows
that their continuum cost scaling depends on how their
parameters are adjusted [38]. In the context of NSPT these
results directly apply to the lowest-order determinations.
However, it is not obvious what the behavior of the higher-
order results is if different parameter scalings are consid-
ered; this is because we do not have analytic control on this
behavior except in the Langevin limit of these algorithms.
To answer this question we investigate the continuum
scaling of the autocorrelations of the perturbative orders
Ei as a function of the algorithmic parameters in this
subsection. More precisely, we will compare the optimal
parameter scaling suggested by the free field theory
analysis of [38] with the Langevin scaling. We identify
the latter as the case where hτi for HSPT or γ for KSPT is
kept fixed as the continuum limit is approached. The case
of LSPT is not considered explicitly as it is effectively
covered by KSPT for γ → ∞ or equivalently by a single-
step HSPT algorithm.
Starting with HSPT, at the lowest perturbative order we

expect autocorrelations to grow like L2 when approaching
the continuum limit if the average trajectory length hτi is
kept fixed. On the other hand, the analysis of [38] shows
how this scaling can be improved by choosing the average
trajectory length proportional to the correlation length of
the system: hτi ∝ 1=m ∝ L. Heuristically, the idea is that
by adjusting the trajectory length with the correlation
length one avoids the situation where configuration space
is explored by a random walk, namely in random steps that
are short compared with the natural scale of the system.
What happens to the autocorrelations in HSPT beyond the
tree-level dynamics, however, remains to be seen.17

In Fig. 7 we compare the results for the integrated
autocorrelation AIðEiÞ of the perturbative orders Ei as the
continuum limit is approached. We compared the case
where the average trajectory length was kept fixed at
hτi ¼ 1 with the case where we set hτi ¼ 1=m for the
range of lattice sizes 4 ≤ L ≤ 32. The step size was

FIG. 6. Continuum scaling of the ratios ΔEi=ΔE0 for i ¼ 1, 2, 3
as computed with ISPT. The case with z ¼ 4 and c ¼ 0.2 is
shown. The results are normalized to their values at L ¼ 4.

15A similar behavior was also observed by Lüscher in pure
SU(3) Yang-Mills theory [44].

16We note that for LSPT a similar observation was made in [8]
in the pure SU(3) Yang-Mills theory. 17In the full theory this may not be the case [36].
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adjusted so as to keep the errors in the equilibrium
distribution roughly constant as L was increased, namely
δt ¼ 2=L using the OMF4 integrator. We measured the
observables after each trajectory, and chose z ¼ 4 and
c ¼ 0.2. As can be seen from the figure the free field theory
expectation also applies for the high-order fields: for the
case where hτi ¼ 1 we observed the asymptotic random
walk behavior AIðEiÞ ∝ L2 whereas for hτi ¼ 1=m the
integrated autocorrelations were constant as the continuum
limit was approached.
For KSPT the results from free field theory [38] indicate

that at the lowest order in perturbation theory the auto-
correlations are expected to increase as L2 as the continuum
limit is approached if the parameter γ is kept fixed.
However, they increase only as L if γ ∝ m (see also
[36]).18 Hence γ effectively plays the role of an inverse
trajectory length for the algorithm [33]. In Fig. 8 we report
the results for AIðEiÞ for these two cases. In the first case
we fixed γ ¼ 2 as L → ∞, while in the second case we set
γ ¼ 2m. We measured the observables after each step, and
chose z ¼ 4 and c ¼ 0.2. Unlike the case of HSPT we
chose a fixed step size δt ¼ 0.25, and we kept this constant
as L → ∞.19 As we can see from the figure the two cases
agree with the free field theory expectations for all the
perturbative orders we investigated.
In conclusion, it seems that the free field theory expect-

ations for autocorrelations of the HMD and Kramers
algorithms apply up to relatively high perturbative orders

in the corresponding NSPT implementations.20 Except
for the case of KSPT at fixed γ this is a nontrivial result
in view of the nonrenormalizability of the HMD and SMD
equations [30,36].

D. Continuum variance scaling

Having investigated the dependence of the continuum
scaling of the integrated autocorrelations for different
algorithmic parameter scalings, we next studied the corre-
sponding scaling of the variances VarðEiÞ. In Fig. 9 we
present results for the ratios VarðEiÞ=VarðE0Þ with i ¼ 1,
2, 3 for HSPT, comparing the cases hτi ¼ 1 and hτi ¼ 1=m
as L → ∞. For convenience the results are normalized by
their values at L ¼ 4. As usual we chose z ¼ 4, c ¼ 0.2,
and took 4 ≤ L ≤ 32 and δt ¼ 2=L. Recall that the lowest-
order variance VarðE0Þ is independent of the algorithmic
parameters, namely hτi (or γ below), and up to Oð1=L2Þ
corrections is constant with L. Observe that upon setting
hτi ¼ 1=m the variances VarðEiÞ with i > 1 increase
significantly as the continuum limit is approached. This
effect is more pronounced as the perturbative order
increases; on the other hand for hτi ¼ 1 the variances
for all the perturbative orders considered grow very slowly
with L and do not change significantly over the whole
range of lattice sizes studied.
In Fig. 10 we plot the results for the ratios

VarðEiÞ=VarðE0Þ as obtained with KSPT. The two cases

FIG. 7. Continuum scaling of the integrated autocorrelations
AIðEiÞ in HSPT for the cases hτi ¼ 1 and hτi ¼ 1=m. For hτi ¼ 1

we show results only up toOðg30Þ, while for hτi ¼ 1=m they go up
to Oðg60Þ. The data are for z ¼ 4 and c ¼ 0.2. We measure the
observables after each trajectory. The errors on the integrated
autocorrelations were estimated using the Γ-method [43].

FIG. 8. Continuum scaling of the integrated autocorrelations
AIðEiÞ in KSPT for the cases γ ¼ 2 and γ ¼ 2m. For γ ¼ 2 we
show results only up to Oðg30Þ, while for γ ¼ 2m they go up to
Oðg60Þ. The data are for z ¼ 4, c ¼ 0.2. The step size is δt ¼
0.25 and we measure the observables after each step. The errors
on the integrated autocorrelations were estimated using the Γ-
method [43].

18We assume that the observables are measured at fixed
stochastic time intervals as L → ∞.

19We checked up to L ¼ 20 that compatible results for the
integrated autocorrelations were obtained if δt ∝ 1=L and the
autocorrelations measured in units of this step size were rescaled
∝ L.

20We also studied the dependence of the integrated autocorre-
lations AIðEiÞ on the step size δt and γ for KSPT, and on hτi for
HSPT at fixed L and m. In this case the free field theory
predictions of [38] also hold for all the perturbative orders we
investigated.
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γ ¼ 2m and γ ¼ 2 are shown. These results are very similar
to those for HSPT: γ ¼ 2m leads to larger variances than
keeping γ ¼ 2 fixed, and these variances grow rapidly with
perturbative order as the continuum limit is approached.
These results show that beyond the lowest perturbative

order not only do the autocorrelations of observables
computed using NSPT depend on the parameters of the
algorithms but their variances do too. This is quite a
different situation to the familiar case of nonperturbative
computations.

E. Continuum cost scaling and parameter tuning:
The case of KSPT

1. Continuum cost scaling

From the results of the previous subsections it is clear
that the most cost-effective tuning of parameters for a

NSPT simulation is not trivial to determine. For all cases
considered decreasing autocorrelations occurs concomi-
tantly with increasing variances; the optimal compromise
between the two effects must be found.
The situation is clear if we look directly at the total error

(6.2) rather than at autocorrelations and variances sepa-
rately, and compare the two parameter scalings investigated
above. For illustration we consider the case of KSPT;
HSPT gives very similar results. In Fig. 11 we compare the

FIG. 10. Continuum scaling of the ratios VarðEiÞ=VarðE0Þ for
i ¼ 1, 2, 3 for KSPT, for the cases γ ¼ 2m and γ ¼ 2. The case
of z ¼ 4 and c ¼ 0.2 is shown, and the data are normalized at
L ¼ 4.

FIG. 11. Relative errors ΔEi=Ei, i ¼ 0, 1, 2, as a function of L
for the two cases γ ¼ 2 and γ ¼ 2m. The data are normalized at
L ¼ 4.

FIG. 9. Continuum scaling of the ratios VarðEiÞ=VarðE0Þ with
i ¼ 1, 2, 3 for HSPT, for the cases hτi ¼ 1=m and hτi ¼ 1. The
case of z ¼ 4 and c ¼ 0.2 is shown, and the data are normalized
at L ¼ 4.
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relative error ΔEi=Ei with i ¼ 0, 1, 2 for the cases γ ¼ 2
and γ ¼ 2m. The number of configurations for the two
parameter scalings is fixed to Nconfig ¼ 106 for all the
lattice sizes 4 ≤ L ≤ 20. As usual the data are for z ¼ 4,
c ¼ 0.2. We took δt ¼ 2=L and adjusted the measurement
frequency ∝ L. As expected, setting γ ¼ 2m is beneficial
compared to having γ ¼ 2 at the lowest perturbative order
(top panel of Fig. 11). On the other hand, when considering
higher perturbative orders the case γ ¼ 2m seems to give
comparable if not larger errors than fixing γ ¼ 2 as L → ∞.
Hence, for the range of lattice sizes and perturbative orders
we investigated, the effect of having smaller autocorrela-
tions for γ ¼ 2m appears to be compensated if not over-
come by the corresponding increase of the variances.

2. Parameter tuning

It appears clear that optimizing the performance of the
algorithms requires finding the optimal value of hτi or γ for
given lattice parameters, given observables, and the per-
turbative orders of interest. Focusing on the case of KSPT
again, in Fig. 12 we plot for example the relative errors
ΔEi=Ei for i ¼ 0, 1, 2 as a function of γ for different values
of L. For each L and perturbative order, the total number of
configurations Nconfig was kept constant as γ was varied,
and the results are normalized by their values at γ ¼ 2. As
usual z ¼ 4, c ¼ 0.2, and δt ¼ 2=L.
At tree level (top panel) increasing γ leads to an increase

of the relative error except at very small γ values and small
lattice size. This is expected because in this case the
variance is independent of γ, while the autocorrelations
increase with γ until they saturate at some large enough
value. In this regime the algorithm is effectively integrating
the Langevin equation up to step-size errors. The situation
for the higher perturbative orders E1 and E2 is quite
different. For small γ the errors fall rapidly as γ is increased;
as we expect the autocorrelations to be small in this case
we interpret this as a rapid fall of the variances. For larger γ
values the errors increase only mildly compared to the
situation at tree level. As at tree level autocorrelations
tend to grow with γ, but this effect is compensated by the
variances decreasing as γ is increased. In particular, we note
that the Langevin limit γ → ∞ is characterized by having
the largest autocorrelations but the smallest variances.
There is a region of γ values for which the errors are
minimized; in the example considered this does not appear
to strongly depend on either the perturbative order or the
lattice size. This is comforting as it allows us to tune γ
easily and to improve the efficiency of the algorithm
relative to Langevin.

3. Cost comparison with LSPT

The results of the previous subsection show that a proper
tuning of the parameter γ increases the efficiency of KSPT
over its Langevin limit, γ → ∞. In the specific example

considered, choosing a value of γ ≈ 2 appears to be a good
compromise for the different perturbative orders investi-
gated, and it leads to a reduction of the statistical errors at
fixed cost by a factor ≈2–2.5 for L ¼ 16 as compared to
γ → ∞; this corresponds to a factor ≈4–6 in the cost at
fixed statistical precision.
It is interesting to consider a direct comparison between

KSPT and LSPT. We note that in practice LSPT differs

FIG. 12. Relative errors ΔEi=Ei with i ¼ 0, 1, 2 as a function of
γ for L ¼ 8, 12, 16. The data are normalized at γ ¼ 2, and the
results for γ ¼ 100 are also shown. At this large value of γ the
algorithm is effectively integrating the Langevin equation.
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from KSPT at γ ¼ ∞ only by the different integration
scheme used to integrate the Langevin equation. Hence,
this comparison permits us to quantify the benefits of using
efficient higher-order symplectic integrators in conjunction
with a proper tuning of γ.
To this end, we compared the computational cost for

computing the coefficients Ei, i ¼ 0;…3, to a specified
statistical accuracy using KSPT with γ ¼ 2 and LSPT. We
chose to carry out this comparison with L ¼ 12, z ¼ 4 and
c ¼ 0.2. For L ¼ 12 the reduction in the cost for a given
statistical precision compared to γ → ∞ is a factor 2–3 for
Ek, k ¼ 1, 2, 3, and a factor 6 for E0 (see Fig. 12).
In view of the results of Sec. VI A, we chose δt ¼ 0.5 for

KSPT as we expect step-size errors to be very small
compared to the precision of this test (see below).
Similarly, for LSPT we took ε ¼ 0.01, which corresponds
to the smallest step size considered in Sec. VI A. At this
value we also expect step-size errors to be small, and this is
the most expensive of the simulations considered in the
extrapolation ε → 0. At each step we made measurements
for both KSPT and LSPT, and considered a total of
configurations Nconfig ¼ 4 × 106 and 4 × 107, respectively.
The results are collected in Table III.
The KSPT and LSPT results are statistically consistent

with each other and with the closed-form perturbative
results (LPT) where these are available. KSPT and LSPT
have approximately the same statistical errors with the
numbers of configurations generated. The computer time
used for updating a 124 lattice on a single core of an
Intel Xeon E5-2630 Processor (2.4 GHz) is 0.21s for
LSPT and 0.42s for KSPT: this is just the expected ratio of
costs between the RK2 and OMF4 integrators, with the
observation that this cost is dominated by the force
computation.21

Thus, after rescaling Nconfig to have equal statistical
errors, it becomes apparent that KSPT is ≈5–7 times more
cost effective than LSPT is in reaching a given statistical
precision on the higher-order coefficients Ek, k ¼ 1, 2, 3,
and roughly 14 times more cost effective for E0. As KSPTat
fixed γ and LSPT have the same continuum scaling
behavior in terms of variances and autocorrelations, one
may expect a similar gain as L → ∞. Indeed, as shown in
Fig. 12, the gain in the statistical errors appears to become
larger for the higher-order fields at larger L; if one scales
the gain in cost accordingly this increases to a factor ≈9–10
for E1 and E2. Furthermore, as the continuum limit is
approached, it is advisable to reduce the step size so as to
keep systematic effects under control, and here again
higher-order integrators are more cost effective.

VII. CONCLUSIONS

NSPT is a powerful technique that permits automation of
high-order perturbative computations on the lattice. As well
as providing perturbative lattice estimates of quantities of
interest these methods are interesting for extracting con-
tinuum perturbation theory results in cases where these are
difficult or unfeasible to obtain with continuum perturbative
methods. However, to this end one needs efficient NSPT
algorithms in order to be able to obtain precise results with
both systematic and statistical errors under control. In
particular, such results are desirable for a collection of
lattice resolutions close to the continuum limit so that
reliable continuum extrapolations may be performed.
In this work we investigated some new formulations of

NSPT beyond LSPT, with the goal of finding more cost-
effective algorithms. The first of these techniques is the
recently proposed ISPT [12]. The first manifest advantage
of this method over standard LSPT is that the results
obtained are exact within statistical errors. Secondly, the
stochastic field representing the theory to some given
order in the couplings is constructed directly from a set
of Gaussian random fields, which are easy to generate.
Despite these attractive features this algorithm has severe
limitations beyond the lowest perturbative orders. First,
similarly to conventional diagrammatic perturbation theory,
the number of diagrams to be computed grows very rapidly
with the perturbative order. While the cost of evaluating the
diagrams is essentially proportional to the system size, their
number increases exponentially as the perturbative order
is increased. Most importantly, as shown by the present
study, as the continuum limit is approached the statistical
variance of perturbative coefficients computed using ISPT
grows with increasing powers of L as the perturbative order
is increased. Consequently it appears difficult to extract
precise high-order results close to the continuum limit
using this technique. While the exact details of our
investigation certainly depend on the theory we considered,
our conclusions are not specific to φ4 theory. This has been
confirmed by a recent study in the pure SUð3Þ Yang-Mills
theory [44], where the nature of the divergences of the
variances was also elucidated. In summary, the utility of

TABLE III. Results for Ei, i ¼ 0;…3 for L ¼ 12, z ¼ 4,
c ¼ 0.2 as obtained using KSPT with γ ¼ 2 and LSPT. We
chose δt ¼ 0.5 for KSPTand ε ¼ 0.01 for LSPT, and measured at
each step. The total number of configurations generated with the
two algorithms is Nconfig ¼ 4 × 106 and 4 × 107 for KSPT and
LSPT, respectively. The analytic perturbative results (LPT) for E0,
E1, and E2 are also given for comparison.

E0 × 105 E1 × 108 E2 × 109 E3 × 1010

LSPT 2.2367(37) −4.86ð13Þ 2.352(54) −1.599ð40Þ
KSPT 2.2347(22) −4.74ð12Þ 2.223(49) −1.517ð35Þ
LPT 2.2347 −4.76 2.270

21We recall that the RK2 integrator requires three force
computations per step whereas the OMF4 integrator requires
six (see Secs. IVA and VA, respectively).
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this technique may be limited to a few low perturbative
orders, which can nonetheless be of interest for some
particularly difficult problems.
Although they are not exact, the other NSPT algorithms

we considered, where the stochastic fields representing the
theory are generated by a Markov chain (or equivalently a
discrete stochastic process), in general have a significantly
better continuum cost scaling than ISPT. In particular, apart
from the standard LSPT, we considered NSPT based on
GHMD algorithms, specifically the HMD and Kramers
algorithms. With respect to the Langevin implementation,
these allow for a much more accurate discretization of the
relevant equations. This is so because very efficient high-
order symplectic integrators can be employed for the
numerical integration of the MD equations. With such
integrators the magnitude of the systematic errors is dras-
tically reduced for a given number of force computations,
and in practice one can run these algorithms with a small
enough step size that step-size extrapolations can be avoided.
As opposed to LSPT, HSPT and KSPT have tunable

parameters, the average trajectory length hτi and the
amount of partial momentum refreshment γ respectively,
which may be adjusted so as to optimize their efficiency.
However, beyond the lowest perturbative order finding the
most cost-effective tuning of these parameters is not
immediately obvious, in particular because their optimal
continuum scaling is not trivial. The situation is compli-
cated by the fact that, unlike the more familiar non-
perturbative simulations, not only do the autocorrelations
of the perturbative coefficients computed in NSPT depend
on the parameters of the chosen algorithm, but so do their
variances. The general trend we observed is that when an
algorithm is tuned to have small autocorrelations, the
corresponding variances tend to increase, and therefore a
trade-off between these two effects must be found.
Moreover, except in the Langevin limit of these algorithms,
analytic understanding of the continuum scaling of both
autocorrelations and variances is missing.
Our analysis indicates that the behavior of the autocor-

relations of the high-order fields with respect to the
algorithmic parameters is the same as in the free field
case. The behavior of the variances is not easily predicted,
and it seems to be different for different perturbative orders.
A consequence of this is the fact that the optimal parameter
scaling suggested by free field theory is not optimal when
higher perturbative orders are considered. In our study we
did not observe a significant difference in the cost with
respect to the Langevin scaling of the algorithms (Sec. VI
E 1). Finding the optimal parameter scaling might thus be
difficult, as it probably depends on the details of the
calculation considered, i.e., the observables, the perturba-
tive orders, and range of lattice sizes of interest.
Nonetheless, when investigating the dependence of the

errors in KSPTas a function of γ (Sec. VI E 2) we found that
for γ ≈ 2 the algorithm is significantly better than in
its Langevin limit γ → ∞, particularly so for large L.

For example, atL ¼ 16 an improvement by a factor≈4–6 in
the cost of obtaining a given statistical precision was
observed, depending on the order. This was possible since
for the observables studied the optimal value of γ did not
seem to depend much on either L or the perturbative order.
Whenwe comparedKSPTat γ ¼ 2withLSPT (Sec.VI E 3),
the use of efficient high-order integrators turned out to be
beneficial in keeping systematic errors under control in a
more cost-effective way than using lower-order Runge-
Kutta integrators, keeping this value of γ fixed as L → ∞
improves significantly the efficiency of the algorithm
over LSPT. Indeed, although the scaling behavior of the
statistical errors may be the same, one profits from a
significantly smaller prefactor, as well as the better scaling
(and prefactor) of the high-order symplectic integrators in
controlling step-size errors.
We also observe that HSPT and KSPT have similar

performance: for hτi ¼ C=γ with C ¼ Oð1Þ the two algo-
rithms have comparable autocorrelations in molecular
dynamics units, and comparable variances.
In conclusion, the novel NSPT methods presented here

offer a simple and natural development from the standard
Langevin-based algorithms. In particular, we have provided
evidence that they can significantly improve on previous
methods, hence allowing more precise results. Of course, a
natural follow-up of our study is to consider the application
of these techniques to a realistic problem in order to
determine whether the improvement provided by HSPT
or KSPT is significant in practice. These methods have
been used and are under further development for the more
interesting case of gauge theories [45,46].
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APPENDIX: RENORMALIZATION PROCEDURE

1. Coupling renormalization

In regularized ϕ4 theory we may compute an observable
O as a perturbative expansion in the bare coupling g0.
However, in order to take the continuum limit of its
expectation value, it is first of all necessary to express this
perturbative series in terms of a renormalized coupling g.
Of course, at finite lattice cutoff, the two are entirely
equivalent as formal expansions and may readily be
transformed into each other.
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Suppose we have computed the perturbative expansion of the renormalized coupling g as a power series in the bare
coupling g0,

g ¼ g0 þ
X
k≥2

ckgk0: ðA1Þ

We may then revert the expansion of g in terms of g0 by writing (A1) as

g0 ¼ g −
X
k≥2

ckgk0; ðA2Þ

and then recursively substituting (A2) into itself to obtain

g0 ¼ g −
X
k≥2

ck

�
g −

X
l≥2

clgl0

�
k

¼ g − c2g2 þ ð2c22 − c3Þg3 þ ð−5c32 þ 5c2c3 − c4Þg4 þ ð14c42 − 21c22c3 þ 6c2c4 þ 3c23 − c5Þg5
þ ð−42c52 þ 84c32c3 − 28c22c4 − 28c2c23 þ 7c2c5 þ 7c3c4 − c6Þg6 þ � � � ; ðA3Þ

noting that OðgN0 Þ ¼ OðgNÞ.
Suppose that we have also computed the expansion of some operator of interest O in powers of g0

O ¼
X
k≥0

Okgk0: ðA4Þ

Then by substituting (A3) into (A4) we obtain an expression for the expansion of O in powers of g:

O ¼ O0 þO1gþ ð−c2O1 þO2Þg2 þ ðð2c22 − c3ÞO1 − 2c2O2 þO3Þg3
þ ðð−5c32 þ 5c2c3 − c4ÞO1 þ ð5c22 − 2c3ÞO2 − 3c2O3 þO4Þg4
þ ðð14c42 − 21c22c3 þ 6c2c4 þ 3c23 − c5ÞO1 þ ð−14c32 þ 12c2c3 − 2c4ÞO2 þ ð9c22 − 3c3ÞO3 − 4c2O4 þO5Þg5
þ ðð−42c52 þ 84c32c3 − 28c22c4 − 28c2c23 þ 7c2c5 þ 7c3c4 − c6ÞO1 þ ð42c42 − 56c22c3 þ 14c2c4 þ 7c23 − 2c5ÞO2

þ ð−28c32 þ 21c2c3 − 3c4ÞO3 þ ð14c22 − 4c3ÞO4 − 5c2O5 þO6Þg6 þ � � �

For the numerical computation of the perturbative expansion ofO we are therefore free to consider an expansion in powers
of g0 as this is entirely equivalent—as formal power series—to expansion in powers of g.

2. Mass renormalization

The stochastic field ϕ is considered to be of the form

ϕðxÞ ¼
X
k;l≥0

ϕk;lðxÞgk0ðδm2Þl ðA5Þ

where g0 is the bare coupling and δm2 is the mass counterterm.22 Once the table of numbers ϕk;l has been computed, the
expectation value h� � �iη of functions of these quantities may be estimated, but they must be fitted to the renormalization
conditions in order to compute physical quantities. Here we shall present algebraic expressions for the formal power series
manipulation in order to explain the renormalization procedure; in actual computations we automated these formal
manipulations using the numerical values of the coefficients.

22Remember that δm2 has contributions of order gn0 for n ≥ 1 when it has been determined from the renormalization conditions (see
the following discussion).
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The renormalization condition (2.7) that defines m2 can be rewritten as

m2 ¼ p̂2�
χ�2

χ2 − χ�2
:

Therefore, since we can calculate χ2 and χ�2 as power series in both g0 and δm2

χ2 ¼ h ~ϕ0;0ð0Þ2i þ 2h ~ϕ0;0ð0Þ ~ϕ0;1ð0Þiδm2 þ h2 ~ϕ0;0ð0Þ ~ϕ0;2ð0Þ þ ~ϕ0;1ð0Þ2iδm4 þ 2h ~ϕ0;0ð0Þ ~ϕ0;3ð0Þ þ ~ϕ0;1ð0Þ ~ϕ0;2ð0Þiδm6

þ 2ðh ~ϕ0;0ð0Þ ~ϕ1;0ð0Þi þ h ~ϕ0;0ð0Þ ~ϕ1;1ð0Þ þ ~ϕ1;0ð0Þ ~ϕ0;1ð0Þiδm2

þ h ~ϕ0;0ð0Þ ~ϕ1;2ð0Þ þ ~ϕ1;0ð0Þ ~ϕ0;2ð0Þ þ ~ϕ0;1ð0Þ ~ϕ1;1ð0Þiδm4Þg0 þ ðh2 ~ϕ0;0ð0Þ ~ϕ2;0ð0Þ þ ~ϕ1;0ð0Þ2i
þ 2h ~ϕ0;0ð0Þ ~ϕ2;1ð0Þ þ ~ϕ1;0ð0Þ ~ϕ1;1ð0Þ þ ~ϕ0;1ð0Þ ~ϕ2;0ð0Þiδm2Þg20 þ 2h ~ϕ0;0ð0Þ ~ϕ3;0ð0Þ þ ~ϕ1;0ð0Þ ~ϕ2;0ð0Þig30 þOðg40Þ

χ�2 ¼ h ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi þ h ~ϕ0;0ðp�Þ ~ϕ0;1ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ0;1ðp�Þiδm2 þ h ~ϕ0;0ðp�Þ ~ϕ0;2ð−p�Þ
þ ~ϕ0;1ðp�Þ ~ϕ0;1ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ0;2ðp�Þiδm4 þ h ~ϕ0;0ðp�Þ ~ϕ0;3ð−p�Þ þ ~ϕ0;1ðp�Þ ~ϕ0;2ð−p�Þ
þ ~ϕ0;2ðp�Þ ~ϕ0;1ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ0;3ðp�Þiδm6 þ ðh ~ϕ0;0ðp�Þ ~ϕ1;0ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ1;0ðp�Þi
þ h ~ϕ0;0ðp�Þ ~ϕ1;1ð−p�Þ þ ~ϕ1;0ðp�Þ ~ϕ0;1ð−p�Þ þ ~ϕ0;1ðp�Þ ~ϕ1;0ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ1;1ðp�Þiδm2

þ h ~ϕ0;0ðp�Þ ~ϕ1;2ð−p�Þ þ ~ϕ1;0ðp�Þ ~ϕ0;2ð−p�Þ þ ~ϕ0;1ðp�Þ ~ϕ1;1ð−p�Þ þ ~ϕ1;1ðp�Þ ~ϕ0;1ð−p�Þ
þ ~ϕ0;2ðp�Þ ~ϕ1;0ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ1;2ðp�Þiδm4Þg0 þ ðh ~ϕ0;0ðp�Þ ~ϕ2;0ð−p�Þ þ ~ϕ1;0ðp�Þ ~ϕ1;0ð−p�Þ
þ ~ϕ0;0ð−p�Þ ~ϕ2;0ðp�Þi þ h ~ϕ0;0ðp�Þ ~ϕ2;1ð−p�Þ þ ~ϕ1;0ðp�Þ ~ϕ1;1ð−p�Þ þ ~ϕ0;1ðp�Þ ~ϕ2;0ð−p�Þ þ ~ϕ2;0ðp�Þ ~ϕ0;1ð−p�Þ
þ ~ϕ1;1ðp�Þ ~ϕ1;0ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ2;1ðp�Þiδm2Þg20 þ ðh ~ϕ0;0ðp�Þ ~ϕ3;0ð−p�Þ þ ~ϕ1;0ðp�Þ ~ϕ2;0ð−p�Þ
þ ~ϕ2;0ðp�Þ ~ϕ1;0ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ3;0ðp�ÞiÞg30 þOðg40Þ

where we defined the Fourier transform of the coefficient fields as

~ϕk;lðpÞ ¼
1

L2

X
x∈Ω

e−ipxϕk;lðxÞ; p ∈ ~Ω;

we can multiply and invert23 χ and χ� to compute m2 as power series in g0 and δm2,

m2 ¼
X
k;l≥0

ak;lgk0ðδm2Þl; ðA6Þ

where the coefficients ak;l are

a0;0 ¼
h ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi

h ~ϕ0;0ð0Þ2 − ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi
p̂2�;

a1;0 ¼ −

2h ~ϕ0;0ð0Þ ~ϕ1;0ð0Þih ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi
−h ~ϕ0;0ð0Þ2ih ~ϕ0;0ðp�Þ ~ϕ1;0ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ1;0ðp�Þi

h ~ϕ0;0ð0Þ2 − ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi2
p̂2�;

a0;1 ¼ −

2h ~ϕ0;0ð0Þ ~ϕ0;1ð0Þih ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi
−h ~ϕ0;0ð0Þ2ih ~ϕ0;0ðp�Þ ~ϕ0;1ð−p�Þ þ ~ϕ0;0ð−p�Þ ~ϕ0;1ðp�Þi

h ~ϕ0;0ð0Þ2 − ~ϕ0;0ðp�Þ ~ϕ0;0ð−p�Þi2
p̂2�;

and so forth. By construction a0;0 ¼ m2, so at lowest order in g0 the mass m is the mass that enters the scalar propagator
(3.10). Having determined the coefficient ak;l in (A6) we can now determine the coefficients m2

k of the expansion

23The inverse of a power series Sðg0; δmÞ is the power series for 1=Sðg0; δmÞ.
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δm2 ¼
X
k≥1

m2
kg

k
0

by imposing the relation (A6) order by order in g0, thus obtaining

m2
1 ¼ −

a1;0
a0;1

;

m2
2 ¼ −

a2;0 þ a1;1m2
1 þ a0;2m4

1

a0;1
;

m2
3 ¼ −

a3;0 þ a2;1m2
1 þ 2a0;2m2

1m
2
2 þ a1;2m4

1 þ a1;1m2
2 þ a0;3m6

1

a0;1
;

m2
4 ¼ −

a4;0 þ a3;1m2
1 þ a2;1m2

2 þ a1;1m2
3 þ a2;2m4

1 þ 2a1;2m2
1m

2
2

þa0;2m4
2 þ 2a0;2m2

1m
2
3 þ a1;3m6

1 þ 3a0;3m4
1m

2
2 þ a0;4m8

1

a0;1
;

..

.

Once δm2 is determined, the field ϕ and any other observable previously computed as a series in δm2 and g0 can be reduced
to a series in g0 alone.

3. Wave function renormalization

The renormalization of a generic correlation function by the wave function renormalization, or any multiplicative
renormalization factor, does not present any additional difficulty. We may compute Z as a power series in g0 and δm2 from
the renormalization condition (2.9),

Z ¼ m2χ ¼
X
k;l≥0

Zk;lgk0ðδm2Þl;

where

Z0;0 ¼ a0;0h ~ϕ0;0ð0Þ2i
Z1;0 ¼ a1;0h ~ϕ0;0ð0Þ2i þ 2a0;0h ~ϕ1;0ð0Þ ~ϕ0;0ð0Þi
Z0;1 ¼ a0;1h ~ϕ0;0ð0Þ2i þ 2a0;0h ~ϕ0;0ð0Þ ~ϕ0;1ð0Þi
Z2;0 ¼ 2a0;0h ~ϕ0;0ð0Þ ~ϕ2;0ð0Þi þ a0;0h ~ϕ1;0ð0Þ2Þi þ 2a1;0h ~ϕ0;0ð0Þ ~ϕ1;0ð0Þi þ a2;0h ~ϕ0;0ð0Þ2Þi
Z1;1 ¼ 2a0;0h ~ϕ0;0ð0Þ ~ϕ1;1ð0Þi þ 2a0;0h ~ϕ1;0ð0Þ ~ϕ0;1ð0Þi þ 2a0;1h ~ϕ0;0ð0Þ ~ϕ1;0ð0Þi þ 2a1;0h ~ϕ0;0ð0Þ ~ϕ0;1ð0Þi þ a1;1h ~ϕ0;0ð0Þ2i
Z0;2 ¼ 2a0;0h ~ϕ0;0ð0Þ ~ϕ0;2ð0Þi þ a0;0h ~ϕ0;1ð0Þ2i þ 2a0;1h ~ϕ0;0ð0Þ ~ϕ0;1ð0Þi þ a0;2h ~ϕ0;0ð0Þ2i;
and so forth. We can now compute a renormalized correlation function as a power series in g0 and the renormalized mass
m as

Zn=2hϕðx1Þ � � �ϕðxnÞi ¼
 X

k;l≥0
Zk;lgk0ðδm2Þl

!
n=2

×

* X
k1;l1≥0

ϕk1;l1ðx1Þgk10 ðδm2Þl1 � � �
X

kn;ln≥0
ϕkn;lnðxnÞgkn0 ðδm2Þln

+

¼
 X

k;l≥0
Zk;lgk0

 X
j≥1

m2
jg

j
0

!
l
!

n=2

×

* X
k1;l1≥0

ϕk1;l1ðx1Þgk10
 X

j1≥1
m2

j1
gj10

!
l1

� � �
X

kn;ln≥0
ϕkn;lnðxnÞgkn0

 X
jn≥1

m2
jn
gjn0

!
ln
+
:

This expansion in the bare coupling g0 can be replaced by one in the renormalized coupling g as explained in Sec. A 1, and
the correlation function is then properly renormalized.
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