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We give an accurate determination of the vector (electromagnetic) form factor, FðQ2Þ, for a light
pseudoscalar meson up to squared momentum transfer Q2 values of 6 GeV2 for the first time from full
lattice QCD, including u, d, s and c quarks in the sea at multiple values of the lattice spacing. Our results
show good control of lattice discretization and sea quark mass effects. We study a pseudoscalar meson
made of valence s quarks but the qualitative picture obtained applies also to the π meson, relevant to
upcoming experiments at Jefferson Lab. We find that Q2FðQ2Þ becomes flat in the region between Q2 of
2 GeV2 and 6 GeV2, with a value well above that of the asymptotic perturbative QCD expectation, but
well below that of the vector-meson dominance pole form appropriate to low Q2 values. Our calculations
show that we can reach higher Q2 values in future to shed further light on where the perturbative QCD
result emerges.
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I. INTRODUCTION

Hitting one constituent of a bound state with a photon
initiates a complicated process if the bound state is not to
fall apart. The momentum gained must be redistributed
between all the constituents so that the whole convoy can
slew round into the new direction. A price is paid in terms
of a reduced interaction strength between the photon and
the bound state and this is known as the electromagnetic
form factor—a function of the square of the (space-like)
4-momentum, q2, transferred from initial to final state.
When the bound state is a hadron, and held together by the
strong interaction, the determination of the form factor
becomes a case study for our understanding of quantum
chromodynamics (QCD) as a function of q2. Both exper-
imental measurement [1] and theoretical calculation are
important. As we show here, lattice QCD, now including a
realistic QCD vacuum [2], can provide key theoretical
results.
The π meson is one of the simplest hadrons, with a

valence quark and antiquark chosen from u=d. At small
values of squared momentum transfer, Q2 ¼ −q2 up to
0.25 GeV2, its electromagnetic form factor, FπðQ2Þ, has

been measured directly by scattering from atomic electrons
[3]. The form factor can be fitted to a simple pole form in
this region and the pole mass (close to that of the vector, ρ
[4]) can be related to the r.m.s. electric charge radius.
Lattice QCD calculations of the π form factor at small
values of Q2 [5–12] give a theoretical determination that
agrees well with experiment.
At the other extreme of the Q2 range, very large

values, a perturbative QCD treatment of the electromag-
netic form factor becomes possible because the process
in which the hard photon scatters from the quark or
antiquark factorizes from the distribution amplitudes
which describe the quark-antiquark configuration in the
meson [13,14]. The hard scattering amplitude is inversely
proportional to Q2 and can be treated perturbatively in
QCD because a high Q2 photon must be accompanied by
a high momentum gluon exchange between the meson
constituents (see Fig. 1). The asymptotic perturbative
QCD prediction, as Q2 → ∞, is very simple because
the distribution amplitude can be normalized using the
pion decay constant (fπ ¼ 130.4 MeV) [13,15,16]. This
gives

FπðQ2Þ ¼ 8παsf2π
Q2
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but this is not expected to be valid until Q2 values of
tens of GeV2 are reached [14]. Meanwhile, the approx-
imately constant value of Q2FπðQ2Þ from Eq. (1) is
numerically very different from the results and trend
seen at small Q2. This means that there is a large gap to be
filled in our understanding, extending to relatively high
Q2 values [17].
For Q2 of a few GeV2 an indirect experimental method

must be used to determine Fπ with scattering of electrons
from the pion cloud around a proton [18–20]. The most
recent results from Jefferson Lab [21–25] have reached
Q2 ¼ 2.45 GeV2 but extension to 6 GeV2 is foreseen [1],
starting in 2018, as a key experiment (E12-06-101) for the
12 GeV upgrade.
This is also a Q2 region in which lattice QCD can be

used to calculate the meson electromagnetic form factor
directly, as we demonstrate here. The method is straight-
forward, and the same for all Q2 values. To reach higher
Q2 values the participating meson 3-momentum and
therefore energy must be increased. Both statistical errors
and systematic errors from discretization effects will then
increase, so it is important to have a high statistics
calculation in a quark formalism with small discretization
errors. Previous lattice QCD calculations (see [26] for a
review) that include u, d and s quarks in the sea [27–29]
have concentrated on having many Q2 values for different
heavy pion masses at one value of the lattice spacing. This
has enabled studies of pion mass dependence but pre-
cluded taking a continuum limit. See also [5] for a more
extensive calculation but including only u and d quarks in
the sea.
Here we are able to reach values ofQ2 of 6 GeV2 with an

accuracy of 10% by performing a high statistics calculation
at a number of well-separated Q2 values. Instead of
studying π mesons we work consistently with a “pseudo-
pion,” a pseudoscalar meson made of valence s quarks
(denoted ηs), accurately tuned [30] on full QCD (with u, d,
s and c quarks in the sea) ensembles of gluon field
configurations at three values of the lattice spacing and
two values of the sea u=d quark masses. We work with s
quarks because it is numerically much faster to accumulate
high statistics for a precise result, little dependence on the
sea u=d mass is expected and finite-volume effects are
negligible [31]. We use the Breit frame where the initial and
final mesons have opposite spatial momenta, p⃗i ¼ −p⃗f and

Q2 is maximized for a given p⃗. By working at values of the
lattice spacing that range over a factor of 1.7 we are able to
show that discretization errors are small for our formalism,
even at relatively large Q2, and to extrapolate to the zero
lattice spacing continuum limit.
Our ηs mesons are qualitatively very similar to π mesons

for the purposes of this study, because the s quark is light
compared to QCD scales. Both the small-Q2 pole form and
very high Q2 perturbative QCD results for the form factor
can be readily determined and thus our lattice QCD results
provide a clear comparison to these two pictures in the
region of 0 < Q2 < 6 GeV2. In future we can extend this
work to even higher Q2 and also calculate other form
factors, inaccessible to experiment, which can be compared
to perturbative QCD to understand the Q2 range in which it
becomes valid. Most importantly, our results show the way
to accurate predictions for Fπ from lattice QCD for the
upcoming Jefferson Lab experiments [1].

II. LATTICE QCD CALCULATION

The electromagnetic, or vector, form factor for a pseu-
doscalar meson, P, is determined from

hPðpfÞjVμjPðpiÞi ¼ FPðpi þ pfÞμ; ð2Þ

where Vμ is a vector current coupling to the photon. Here
we use the temporal component of V and p⃗i ¼ −p⃗f so
that the right-hand side of Eq. (2) becomes 2EFP with
Q2 ¼ j2p⃗ij2.
The matrix element is determined in lattice QCD by

combining information from meson “2-point” and
“3-point” functions [32]. 2-point functions tie together
quark and antiquark propagators for a correlation function
that creates a hadron at time 0 and destroys it at time t0.
3-point functions combine 3 propagators so that a meson is
created at time 0, its quark (or antiquark) carrying
momentum p⃗i interacts with a photon at time t and is
scattered into p⃗f, with the meson being destroyed at time
T.1 We fit the t0-, t- and T-dependence of the 2- and 3-point
results (averaged over the gluon field configurations in an
ensemble and including all results above a tmin of 3)
simultaneously to a multi-exponential form in Euclidean
time that includes the set of possible mesons made from this
valence quark and antiquark [12]. This enables us to isolate
the matrix element for the ground-state, lightest, meson and
relate it to the required form factor, whilst making sure that
systematic effects from the presence of higher mass states
in the correlator are taken into account. We can normalize
the form factor by the electric charge conservation require-
ment that FPðQ2 ¼ 0Þ ¼ 1.

FIG. 1. The perturbative QCD description of the π electromag-
netic form factor. ϕπ represents the distribution amplitude and the
blue lines indicate the route of high momentum transfer through
the hard scattering process.

1Charge-conjugation symmetry means that quark-line discon-
nected diagrams vanish in this case [33].
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We use the highly improved staggered quark (HISQ)
formalism designed [34], and shown [31,35–37], to have
very small discretization errors from the lattice spacing. We
work on gluon field configurations generated by the MILC
collaboration [38,39] that include HISQ u, d, s and c
quarks in the sea and also have a highly improved gluon
action [40]. On these configurations we study the ηs. In
lattice QCD we can prevent this particle from mixing with
other isospin zero mesons and then its properties can be
well determined [31] and it behaves as a pseudopion; its
mass is 688.5(2.2) MeV and decay constant 181.14
(55) MeV. Here we determine its vector form factor as a
function of Q2.
Table I gives the parameters of the gluon field configu-

rations we use, with lattice spacing varying from 0.15 fm to
0.09 fm and u=d quark mass either twice or five times the
physical value, corresponding to Mπ ≈ 216 or 304 MeV.
We tune the valence s quark mass on each ensemble to
obtain the correct ηs mass [30]. We calculate ηs 2-point
functions with a range of spatial momenta with magnitude
in lattice units up to 0.62, given in Table I. These are
implemented by using the “twisted boundary condition”
method [41] and are chosen to be in the (1,1,1) direction to
minimize discretization effects. We use ηs mesons made
with the local γ5 (Goldstone) operator; in staggered quark
parlance this corresponds to spin-taste γ5 ⊗ γ5 [34]. For our
3-point correlation functions we use a 1-link temporal
vector current with spin-taste γ0 ⊗ 1.
We fit 2- and 3-point correlators simultaneously using

Bayesian methods [43] to constrain fit parameters and
determining the covariance between results at different Q2

values. The fit forms are [31,37]

C2ptðp⃗Þ ¼
X
i

b2i ðpÞfðEiðpÞ; t0Þ þ o:p:t:

C3ptðp⃗;−p⃗Þ ¼
X
i;j

½biðpÞfðEiðpÞ; tÞJijðQ2ÞbjðpÞ

× fðEjðpÞ; T − tÞ� þ o:p:t:

fðE; tÞ ¼ e−Et þ e−EðLt−tÞ ð3Þ

The HISQ action gives opposite parity terms (o.p.t.) for ηs
mesons at nonzero momentum; they are similar to the terms
given explicitly above but with factors of ð−1Þt0=a. The fit
parameters are chosen to be the log of the ground-state
energy, E0, and the log of energy differences between
the (ordered) excitations, i. For our kinematic setup
FηsðQ2Þ ¼ J00ðQ2Þ=J00ð0Þ, with J00 the ground-state to
ground-state amplitude. The division by J00ð0Þ provides
the normalization of the lattice current. Results for the
renormalization factors inferred from J00ð0Þ are given in
Appendix A.
We use priors of 800� 400 MeV for the energy splitting

between successive excitations and prior widths on ampli-
tudes bi and Jij of at least 2 times the ground-state value.
We take results from fits that include 6 exponentials where
ground-state values and their uncertainties have stabilized
and we have checked that the prior widths have only a
minor impact on these uncertainties. Although we are only
interested in ground-state properties here, our correlators
are precise enough to resolve the first excited state. We have
checked that its mass (around 950 MeV above the ground-
state) is in reasonable agreement with that for an excited
0− ss̄ state seen in [44]. Note that we do not expect multi-
meson (for example two kaon) energy levels to appear in
our spectrum since the overlap of such states with our
single meson operators is very small, being suppressed by
the volume [45].
Results for the (ground-state) form factor are given in

Table II and Q2FðQ2Þ is plotted in Fig. 2. Results on
different ensembles lie close to each other, showing that
effects from discretization and different u=d masses are
very small. Tests of discretization effects from studies of
the meson energy and decay amplitudes as a function of
spatial momentum are reported in Appendix B. We also
show in Appendix B (see Fig. 3) how statistical errors in the
form factor grow as a function ofQ2 and ðQaÞ2. It is in fact
the statistical errors that provide a practical limit to how
high in Q2 we can reach here for different values of the
lattice spacing. Note that the finer lattices have larger reach
in Q2 than the coarse.

TABLE I. We use MILC gluon field configurations [38,39], with β ¼ 10=g2 the QCD coupling and Ls and Lt the lattice dimensions.
w0=a [31] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [42]; w0 ¼ 0.1715ð9Þ fm from fπ [31]. Set 1 is “very
coarse,” sets 2 and 3, “coarse,” and set 4, “fine.” aml; ams and amc are the sea quark masses (ml ≡mu ¼ md) in lattice units. amval

s is the
valence s mass and aMηs the corresponding ηs mass in lattice units. ncfg gives the number of configurations; 16 random-wall time
sources on each give high statistics. ap gives the magnitude of the meson spatial momentum for the form factor at non-zero Q2. We
further reduce uncertainties on set 2 at pa ¼ 0.6 by averaging over 4 directions. We use 3 values of T=a for our 3pt-functions: 9, 12, 15
on set 1; 12, 15, 18 on sets 2 and 3 and 15,18 and 21 on set 4.

Set β w0=a aml ams amc amval
s aMηs ap Ls=a × Lt=a ncfg

1 5.8 1.1119(10) 0.0130 0.0650 0.838 0.0705 0.54028(15) 0.1243,0.3730,0.6217 16 × 48 1020
2 6.0 1.3826(11) 0.0102 0.0509 0.635 0.0541 0.43135(9) 0.1; 0.3; 0.5; 0.6ð×4 dirnsÞ 24 × 64 1053
3 6.0 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42636(6) 0.493,0.591 32 × 64 1000
4 6.3 1.9006(20) 0.0074 0.037 0.44 0.0376 0.31389(7) 0.0728,0.218,0.364,0.437,0.509,0.56 32 × 96 1008
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To determine the form factor in the physical continuum
limit we must extrapolate in the lattice spacing and sea
u=d quark mass. We do this using a model-independent
parametrization of the form factor now standard in both
theory and experiment for semileptonic weak decays (see
[46] for a recent review), mapping the domain of
analyticity in t ¼ q2 onto the unit circle in z. Since z < 1
we can then perform a power series expansion in z. We
take [47]

zðt; tcutÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffi
tcut

p ð4Þ

where tcut in our case is equal to 4M2
K . We choose

the point that maps to z ¼ 0 to be q2 ¼ 0, for simplicity;
this gives zmax of 0.46 at Q2 ¼ 6 GeV2, well below 1.
Rather than FðQ2Þ we work with PϕðQ2ÞFðQ2Þ, using
PϕðQ2Þ ¼ ð1þQ2=M2

ϕÞ. The product PϕF has reduced
z-dependence because P−1

ϕ is a good match to the form
factor at small Q2 (the ϕ being the ss̄ vector meson) and

it has the correct Q−2 dependence at large Q2 (but
the wrong value: see Fig. 2). To combine a z-expansion
with lattice QCD results we simply allow the coefficients
in the expansion to have independent a- and msea-
dependence. Adapting the method from [48], we use
the fit function

PϕFðz; a;mseaÞ

¼ 1þ
Ximax

i¼1

ziAi

�
1þ BiðaΛÞ2 þ CiðaΛÞ4 þDi

δm
10

�
:

ð5Þ

Note that the lattice “data” on the left-hand side include
correlations between results. The coefficients Bi and Ci
account for dependence on the lattice spacing; we take
Λ ¼ 1 GeV ≈

ffiffiffiffiffiffi
tcut

p
to allow for ðpaÞ2 and ðpaÞ4 terms

in F. Independent coefficients at each order i allow for
Q2-dependent discretization effects. Only even powers of
a appear in the HISQ formalism and, because we work in
the Breit frame with a fixed direction for p⃗, there is only
one scale, p, that can appear coupled with a. Note that,
by definition, there are no z-independent discretization
errors. In Fig. 6 of Appendix B we show results for
Q2FηsðQ2Þ at two values of Q2 plotted against the square
of the lattice spacing, showing more explicitly the size of
discretization effects. We also show there how well the fit
function of Eq. (5) is able to reproduce the discretization
effects, including their Q2 dependence. Di accounts for
the heavier-than-physical quark masses in the sea, using
δm ¼ P

u;d;sðmq −mtuned
q Þ=mtuned

s [30] and dividing by
a factor of 10 to convert this to a suitable chiral
perturbation theory expansion parameter. We take priors
on the Bi, Ci and Di of 0.0(1.0) but on B1 of 0.0(5),
because leading a2 errors are suppressed by αs in the
HISQ formalism [34]. For the Ai, the coefficients of the
z-expansion in the continuum and chiral limits, we take
priors of 0.0(2.0), twice as conservative as the Bayesian
probability function would suggest. We use imax ¼ 4;
adding higher terms has no impact and neither does
adding ðaΛÞ6 terms.
Our fit has a χ2=dof of 0.3. The result at a ¼ 0 and

physical quark masses (i.e. 1þP
Aizi) is plotted (con-

verted back toQ2 space) in Fig. 2 and shows little deviation
from the results on the fine lattices. The fitted parameters Ai
and their covariance matrix are given in Appendix C.

FIG. 2. Lattice QCD results for the vector form factor of the ηs
meson, multiplied by Q2 to focus on the large Q2 behavior,
plotted as a function of Q2. From coarse to fine: set 1 results are
given by green pluses, set 2 by blue crosses, set 3 by blue bursts
and set 4 by red triangles. Error bars include statistical/fit errors
and uncertainties from the lattice spacing correlated between
points. The black dashed line and grey band (for �1σ) give the
physical-point curve discussed in the text. The green dashed line
marked “pole” gives the pole form (P−1

ϕ ), for comparison. The
orange dotted line marked “PQCD 1” gives the asymptotic
perturbative QCD prediction and that marked “PQCD 2” includes
nonasymptotic corrections to the distribution amplitude discussed
in the text.

TABLE II. Results for the vector form factor, with statistical error, at values of Q2 given in GeV2.

Set Q2 FðQ2Þ Q2 FðQ2Þ Q2 FðQ2Þ Q2 FðQ2Þ Q2 FðQ2Þ Q2 FðQ2Þ
1 0.1012 0.9003(9) 0.9109 0.4747(18) 2.531 0.2138(70)
2 0.1012 0.9009(5) 0.9111 0.4786(10) 2.531 0.2170(51) 3.644 0.1456(59)
3 2.533 0.2219(23) 3.640 0.1517(65)
4 0.1014 0.9014(6) 0.9091 0.4843(9) 2.535 0.2286(22) 3.653 0.1602(42) 4.956 0.1167(82) 5.999 0.094(13)
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III. DISCUSSION/CONCLUSIONS

Figure 2 shows the physical curve for Q2FηsðQ2Þ
determined from our results for 0 < Q2 < 7 GeV2. At
small Q2 it is compared to the pole form, P−1

ϕ ðQ2Þ. Our
results show that the physical curve peels away from the
pole form atQ2 ≈ 1 GeV2 and then lies significantly below
it. Also plotted in Fig. 2, for Q2 > 6 GeV2, is the
asymptotic perturbative QCD form (labeled PQCD 1) of
Eq. (1), using fηs instead of fπ . For αs we have used
αsðMS; nf ¼ 3Þ at a scale of Q=2, since this is the
momentum carried by the gluon when the quark and
antiquark share the meson momentum equally. Our physi-
cal curve then lies significantly above this result at Q2 of
6 GeV2. We expect this qualitative picture of the physical
curve to be true for the pion form factor to be determined in
Jefferson Lab experiment E12-06-101 (the peeling away
from the pole form is already apparent [25]).
For non-asymptotic Q2 the leading perturbative QCD

prediction is modified to [13,14]:

FPðQ2Þ ¼ 8πf2PαsðQ=2Þ
Q2

����1þX∞
n¼2

aPn ðQ=2Þ
����2: ð6Þ

where the sum is over even n for a “symmetric” meson (the
ηs used here or π in the isospin limit). The aPn , coefficients
of an expansion in Gegenbauer polynomials, evolve log-
arithmically to zero as Q2 → ∞.
Lattice QCD calculations have been used to determine aπ2

[49,50] and this changes the asymptotic prediction substan-
tially in the region ofQ2 around10 GeV2. The calculation of
yet higher order corrections is complicated by operator
mixing [51]. It is important to understand the limitations
of the perturbative QCD approach here, because the pion
distribution amplitude inferred fromFπðQ2Þ is used in other
calculations. They appear, for example, in light-cone sum
rule calculations of the form factor at lowq2 for the exclusive
weak decay B → πlν to determine Vub [52,53].
Figure 2 shows a curve (labeled PQCD 2) that uses a

shape for the distribution amplitude ϕηs ¼ ðxð1 − xÞÞζ at a
scale Q=2 ¼ 2 GeV where x is the light-cone momentum
fraction and ζ ¼ 0.52ð6Þ is chosen to agree with lattice
QCD results for a2 for the π [50] (results indicate only
weak quark mass-dependence, so this should be a good
approximation). PQCD 2 is much higher than PQCD 1
at Q2 ¼ 6 GeV2 and shows stronger Q2-dependence. To
obtain a flatter curve in better agreement with our results
would require a broader distribution amplitude and a higher
scale for αs for less evolution. Such curves have been
obtained for the π in a recent Dyson-Schwinger approach
[54], and it would be interesting to see if it can reproduce
our results for the ηs. For this purpose we give the
parameters for our continuum curve in Appendix C.
To extend our results to higher values of Q2 is possible

on finer lattices where a given value of ap corresponds to

a higher jp⃗j in GeV. A Q2 of 12 GeV2 should be possible
on “superfine” lattices with a ¼ 0.06 fm, and even
20 GeV2 at a ¼ 0.045 fm (“ultrafine”). Lower statistics
calculations have already been done on such lattices
[55–57]. See also [58] for new methods to reduce
uncertainties in calculations at high Q2. The scalar form
factor at high Q2 will give additional information since
perturbative QCD [13,14] predicts that this should fall
more rapidly than Q−2.
Perturbative QCD [Eq. (6)] predicts approximate

scaling of the form factor with the square of the decay
constant, and we can test this in lattice QCD as we reduce
the pseudoscalar meson mass towards that of the π. This
scaling may set in before the Q2-dependence becomes
clearly that of perturbative QCD. If that is the case we can
use our results here, rescaling by ðfπ=fηsÞ2, to predict a
value for Q2FπðQ2Þ in a flat region from 2–6 GeV2

of ≈0.3 GeV2.
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APPENDIX A: RENORMALIZATION FACTORS

Table III gives the values of the vector current renorm-
alization factor, ZV , for each ensemble inferred from
electric charge conservation at Q2 ¼ 0. The vector current
we use is a 1-link current in the time direction, made gauge-
invariant by the inclusion of an APE-smeared gauge link.
The values for ZV show the expected qualitative behavior,
slowly falling towards 1 on finer lattices.

TABLE III. Results for the renormalization factor ZV which
multiplies the lattice temporal 1-link vector current used here to
normalize the form factor fully nonperturbatively. The values are
obtained from our fits at Q2 ¼ 0, using ZV ¼ 1=J00.

Set Zss̄
V

1 1.3892(15)
2 1.3218(7)
3 1.3179(7)
4 1.2516(9)
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APPENDIX B: TESTS OF STATISTICAL ERRORS
AND DISCRETIZATION EFFECTS

In Fig. 3 we show how the statistical error in the form
factor result grows with Q2. The results from different
lattice spacing values (for approximately the same number
of configurations, spatial lattice volume and smallest T
value in physical units) appear to lie on a universal curve
as a function of Q2ðaQÞ2. The curve is approximately
quadratic, showing that uncertainties degrade rapidly at
large pa values. However the same Q can be reached with
smaller pa on finer lattices, moving down the curve. The
plot helps to predict the statistical accuracy that will be
obtained from calculations on other lattices using the same
(Breit) frame.
A good test of discretization errors is to study the

ground-state meson energy as a function of spatial momen-
tum and compare the speed of light (in units of c) obtained
from ðE2 −M2Þ=p⃗2 to the expected value of 1.0 in the
absence of systematic discretization effects. The ground-
state energy, E, is given by E0ðpÞ and the mass, M, by
E0ð0Þ from the 2-point fit function of Eq. (3). Figure 4
shows results from our combined fits to the 2-point and
3-point ηs correlators used for our analysis. We see that, at
the level of our statistical uncertainties (at most 3%), the
speed of light shows no significant deviation from 1 even at
the highest momenta that we use for our coarse and fine
lattices. For very coarse set 1 there is a small (1%) but
significant discrepancy at pa ¼ 0.373. This is consistent
with discretization effects being dominated by ðmaÞ4 terms
and therefore 3 times larger on the very coarse lattices than
on the coarse. The statistical uncertainties increase with
ðpaÞ because the variance of the finite-momentum corre-
lator overlaps with, and so is controlled by, the exponential

behavior of the square of the zero-momentum correlator.
This behavior is similar to that plotted in Figure 3 for
the form factor. The uncertainties on the fine lattices
at a given value of ðpaÞ are larger than those on the
coarse lattices, but the values of ðpaÞ correspond to a larger
value of jp⃗j, so the accuracy on the finer lattices translates
into a larger reach in Q2. Comparison of the two coarser
lattices shows that the larger volume lattices have smaller
statistical uncertainties at a given ðpaÞ from volume-
averaging.
A further test is to study the ratio of the matrix element of

the pseudoscalar density, J5, between the vacuum and the
ηs meson at nonzero spatial momentum to that at zero
momentum. Since the matrix element should be indepen-
dent of momentum, we expect a result of 1.0. The matrix
element is determined from the fitted amplitudes denoted
by bi in Eq. (3), using

FIG. 4. The speed of light, defined in the text, determined from
our ηs meson energies as a function of the square of their spatial
momentum in lattice units. Note the expanded y-axis scale.
Results from very coarse set 1 are given by green pluses, coarse
set 2 by blue crosses and set 3 by blue bursts, and fine set 4 by red
triangles.

FIG. 5. The ratio of the matrix element between vacuum and ηs
of the pseudoscalar density at nonzero spatial momentum to that
at zero momentum, as a function of the square of the meson
spatial momentum in lattice units. Symbols as for Fig. 4.

FIG. 3. The statistical uncertainty that we obtain in the form
factor plotted as a function of Q2ðQaÞ2 for sets 1, 2 and 4 (green
pluses, blue crosses and red triangles respectively). For set 2 at
pa ¼ 0.6 we have adjusted the error to be that for one spatial
momentum direction (instead of 4) to match the statistics of the
other points. Note that these results are specific to the Breit frame
and the values of T used here.
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h0jJ5jηsðpÞi
h0jJ5jηsð0Þi

¼ b0ðpÞ
b0ð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
E0ðpÞ
E0ð0Þ

s
: ðB1Þ

Figure 5 shows our results, with a very similar qualitative
picture to that of Fig. 4 and again showing excellent control
of discretization effects in the HISQ formalism.
Finally, in Fig. 6, we illustrate the discretization errors

visible in the results for Q2FηsðQ2Þ plotted in Fig. 2. The
figure shows results at two different values of Q2 for which
we have calculations at three different values for the lattice
spacing (see Table II), plotted against the square of the
lattice spacing. The grey band shows the fit results from
Eq. (5) (for δm ¼ 0) at these values of Q2, as a function
of a2. We see that discretization effects, although small, are
clearly visible. Our fit form has no difficulty in fitting them
and capturing their Q2-dependence. The accuracy of our
results at multiple ðQaÞ and a values is what allows us good
control over the continuum limit for the range of Q2 values
that we cover here.

APPENDIX C: PARAMETERS OF
THE FIT FUNCTION

We give below the values of the fitted parameters, Ai and
their covariance matrix obtained in the continuum and
chiral limit of our results. In this limit we have [see Eq. (5)]:

PϕFðzÞ ¼ 1þ
X4
i¼1

Aizi: ðC1Þ

We find:

A1 ¼ −0.387ð59Þ
A2 ¼ −0.87ð26Þ
A3 ¼ 0.4ð1.0Þ
A4 ¼ −0.5ð1.7Þ: ðC2Þ

Only A1 and A2 are obtained with significance from the fit.
The Ai have covariance matrix:

2
66664

0.003472 −0.008100 0.007133 0.000999

−0.008100 0.068858 −0.168850 0.151820

0.007133 −0.168850 1.021326 −1.433623
0.000999 0.151820 −1.433623 2.81513

3
7775
ðC3Þ

From the fit function for F we can readily derive results
also for derivatives of F or Q2F. For example the mean
square electric charge radius is given by

hr2iηs ¼ 6
dF
dq2

����
q2¼0

ðC4Þ

¼ 6

M2
ϕ

�
1 −

A1

4

M2
ϕ

tcut

�
: ðC5Þ

Thus, from our results, we see that the mean square electric
charge radius of the ηs is a factor of 1.103(16) larger than
the naive expectation from the ϕ mass. Translating this into
units of fm gives

hr2iηs ¼ 0.248ð4Þ fm2: ðC6Þ

This is, not surprisingly, significantly smaller than the mean
square electric charge radius of the π meson, for which the
Particle Data Group give an average of 0.452(11) fm2 [59].
The slope of Q2F is given from the fit parameters as:

dðQ2FηsÞ
dQ2

¼ Fηs −
Q2Fηs

PϕM2
ϕ

þQ2

Pϕ

ð1 − zÞPiiAizi−1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtcut þQ2Þ

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p Þ

:

ðC7Þ

Evaluating this at Q2 ¼ 6 GeV2 gives −0.014ð8Þ, consis-
tent with zero (i.e., a curve forQ2F that is flat at this point).

FIG. 6. We show here two slices through Fig. 2 at two different
values of Q2, 2.53 GeV2 and 0.91 GeV2, plotted against the
square of the lattice spacing. The points (symbols as for Fig. 4)
show results at appropriate nearby values ofQ2 (see Table II) and
include correlated uncertainties from the lattice spacing. The grey
bands show our fit result using Eq. (5), now as a function of a2

but with δm set to zero.
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