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We study fermions in a magnetic field in a finite-size cylinder. With the boundary condition for the
fermion flux, we show that the energy spectra and the wave functions are modified by the finite-size effect;
the boundary makes the degenerate Landau levels appear only partially for states with small angular
momenta, while the boundary effect becomes stronger for states with large angular momenta. We find that
mode accumulation at the boundary occurs for large angular momenta and that the magnetic effect is
enhanced on the boundary surface. Using a simple fermionic model, we quantify the magnetic catalysis,
i.e., the magnetic enhancement of the fermion pair condensation, in a finite-size cylinder. We confirm that
the magnetic catalysis is strongly amplified at the boundary due to the mode accumulation.
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I. INTRODUCTION

Magnetic field backgrounds add many intriguing aspects
in quantum many-body systems. In quantum chromody-
namics (QCD), theoretical studies of significant interest in
magnetic responses have been inspired by gigantic mag-
netic fields which could exist in the early Universe [1],
compact stars [2], and relativistic heavy-ion collisions [3].
One recent and actively discussed example is the anoma-
lous transport phenomenon, such as the chiral magnetic
effect and its relatives [4], in a quark-gluon plasma
involving an external magnetic field.
The QCD vacuum structure is also quite sensitive to the

magnetic field; a pair condensate of fermions and anti-
fermions or the chiral condensate is enhanced by the
magnetic field, which is called the magnetic catalysis
[5]. This well-known feature in a magnetic field applied
to QCD was originally obtained in the framework of the
Nambu–Jona-Lasinio (NJL) model. Since then, the mag-
netic catalysis has been theoretically investigated with
various models and various approaches: the quark-meson
model [6], the MIT bag model [7], the lattice QCD
simulation [8], the holographic model [9] and the renorm-
alization group analysis [10] (see also Ref. [11] for recent
reviews and the references therein). Fascinatingly, some
nontrivial interplay between other external influences and
the magnetic field leads to more subtle changes in the QCD
vacuum. Contrary to what is expected from the magnetic
catalysis, a strong magnetic field can melt the chiral
condensate and restore a part of broken chiral symmetry
once the magnetic field is coupled with finite-density and
finite-temperature effects, which are called inverse mag-
netic catalysis [12] or magnetic inhibition [13]. The rich
structure of the QCD vacuum influenced by the magnetic
field is also discussed in a globally rotating system [14].

The robustness for the abovementioned magnetic phe-
nomena is ensured by the characteristic energy spectrum of
charged particles in the magnetic field, namely, the Landau
quantization with discrete Landau levels; for fermions with
charge e in the external magnetic field B, the transverse
momenta perpendicular to the magnetic field are replaced
by p⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eBð2nþ 1 − 2szÞ
p

, with n ¼ 0; 1;… and
sz ¼ � 1

2
. In other words, once the pattern of the Landau

quantization is distorted, a novel aspect of magnetic QCD
dynamics may be expected. In real physical systems which
have a finite size, such a modification inevitably appears
through the boundary condition. We thus expect the boun-
dary condition to affect the energy dispersion generally in
matter under the magnetic field, which is understood from
the following argument. The length scale of the cyclotron
motion (i.e., the Larmor radius) is characterized by the
magnetic length, lB ≡ 1=

ffiffiffiffiffiffi
eB

p
. As long as the length scale of

the system, which is denoted by lsystem, is much larger than
lB, particles do not feel the presence of the boundary. In this
case, corresponding to the quantized cyclotron motion, the
well-known conventional Landau levels ∼1=lB are formed.
By contrast, for lsystem ≲ lB, the cyclotron motion with a
large radius is disturbed by the boundary, and thus the
ordinary Landau quantized spectra are no longer obtained.
Specifically, in the weak magnetic field limit, the transverse
momenta should be of order not ∼1=lB but ∼1=lsystem.
On top of the fact that real physical systems have a finite

size, we have a strong motivation to formulate the finite-
size effect for a rotating system, e.g., a rotating quark-gluon
plasma whose orbital angular momentum is provided by
the noncentral geometry in the relativistic heavy-ion
collision [15]. Let us briefly review the finite-size effect
on rotating matter for B ¼ 0. For a rotating system, it is
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crucially important to impose a boundary condition at a
finite distance from the rotational center; otherwise, the
speed of the rotational motion exceeds the speed of the light
and the relativistic causality is violated. If we impose a
proper boundary condition, we can verify that uniform
rotation alone would not affect the vacuum structure
because all excitations are gapped [16,17]. Hence, we
can say that, at zero temperature without any other external
source, the rotational effect on fermionic thermodynamics
is invisible [18]. At finite temperature or density, on the
other hand, the chiral phase transition feels the effective
chemical potential induced by rotation [19,20].
From the above arguments, it would be expected that a

finite-size system with B ≠ 0 should have complicated and
interesting effects which competewith each other. One is the
finite energy gap from the boundary effect, and the other is
the partial realization of the gapless Landau zero modes. In
fact, unlike the rotation without any other external source, a
finite B can change the vacuum of rotating matter. In
Ref. [14], the present authors first discussed the low-energy
fermionic dynamics under the presence of finite magnetic
field and rotation, and the authors showed that the rotational
effect leads to an inverse magnetic catalysis in the sameway
as the finite-density situation. Also, an anomalous phe-
nomenon in the presence of vorticity (i.e., local rotation) and
magnetic background has been revealed in the formulation
of hydrodynamics [21] and quantum field theory [18]. In
these analyses, however, only the limit of lsystem ≫ lB was
implicitly assumed for simplicity. For such a large system,
the angular velocity must be smaller than the system-size
inverse in order not to violate the causality constraint.
Hence, we need to consider the finite-size effect properly
to make a theoretical suggestion for thermodynamic proper-
ties of matter involving rapid rotation (or large vorticity)
coupled with the magnetic field.
In this paper we do not treat rotation but instead study a

finite-size cylindrical system under the magnetic field.
Although the coupling with rotation is an important exten-
sion, we will see that the boundary condition induces a
highly nontrivial surface effect. Imposing a boundary
condition for fermions, we numerically compute the energy
spectra and thewave functions of fermions at a finiteB. Then
we find that the Landau levels with a larger angular
momentum are more modified by the finite-size effect; that
is, we observe incomplete or nondegenerate Landau levels.
More importantly, we point out that the mode accumulation
occurs at the boundary surface. For a concrete demonstration
with the NJL model in which obtained spectra and wave
functions are implemented, we calculate the chiral con-
densate or the dynamical mass which is spatially dependent
in finite-size systems. We then conclude that there emerges
peculiar behavior of the dynamical mass near the surface,
which arises from the mode accumulation there.We call this
novel phenomenon the surface magnetic catalysis in
this work.

II. DIRAC EQUATION WITH BOUNDARY

We start our discussion with the Dirac equation under an
external constant magnetic field in systems with a finite
size. We choose the magnetic field direction along the z
axis, i.e., B ¼ Bẑ, and we take the symmetric gauge with
Aμ ¼ ð0;−By=2; Bx=2; 0Þ. Then the Dirac equation reads

½iγ0∂0 þ iγ1ð∂1 þ ieBy=2Þ
þ iγ2ð∂2 − ieBx=2Þ þ iγ3∂3 −m�ψ ¼ 0: ð1Þ

Let us solve the above Dirac equation explicitly in the
cylindrical coordinates, ðt; r; θ; zÞ, with a boundary set at
r ¼ R. In the Dirac representation for γμ’s, we write down
two independent positive-energy solutions with different
spin polarizations but the same total angular momentum
j ¼ lþ 1=2 (along the z axis) as follows:

ψ ¼ uþ ¼ e−iεtþipzzffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p

0
BBBBB@

ðεþmÞϕl;k

0

pzϕl;k

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
φl;k

1
CCCCCA; ð2Þ

ψ ¼ u− ¼ e−iεtþipzzffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p

0
BBBB@

0

ðεþmÞφl;k

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
ϕl;k

−pzφl;k

1
CCCCA; ð3Þ

with ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k þ p2

z þm2
q

. Here, λl;k represents a

modified Landau level index in a finite-size system, and
its explicit form depends on the boundary condition at
r ¼ R. We will elucidate how to fix λl;k in the next section.
For the above wave functions, we introduce a compact
notation as

ϕl;k ≡ eilθΦl

�
λl;k;

1

2
eBr2

�
;

φl;k ≡ eiðlþ1ÞθΦlþ1

�
λl;k − 1;

1

2
eBr2

�
: ð4Þ

We note that the above functions correspond to ϕl and φl
in Ref. [18]. The Landau wave function is deformed by the
finite-size effect, and for l ≥ 0, we find

Φl≥0ðλ; xÞ ¼
1

Γðlþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðλþ lþ 1Þ
Γðλþ 1Þ

s

× x
l
2e−x=21F1ð−λ; lþ 1; xÞ: ð5Þ

Here, 1F1ða; b; xÞ denotes the confluent hypergeometric
function, also known as Kummer’s function of the first
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kind. We chose the normalization to recover the conven-
tional spinors in the R → ∞ limit. In fact, it is straightfor-
ward to check on how the above solutions reduce to the
conventional Landau wave function. In this limit of
R → ∞, as we see later, λl;k takes a non-negative integer
n. As a result, the confluent hypergeometric function in
Eq. (5) is replaced by the Laguerre polynomials through the
following relation [22]:

Ll
nðxÞ ¼

Γðnþ lþ 1Þ
Γðlþ 1ÞΓðnþ 1Þ 1F1ð−n; lþ 1; xÞ; ð6Þ

for any integer l, which is simply a definition of the
generalized Laguerre function.
For l < 0, we cannot use Eq. (5) because 1F1ða; b; xÞ is

ill defined for the integer b ≤ 0. For l < 0, thus, the above
expression is replaced by

Φl<0ðλ; xÞ ¼
ð−1Þ−lþ1

Γð−lþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðλþ 1Þ

Γðλþ lþ 1Þ

s

× x−
l
2e−x=21F1ð−λ − l;−lþ 1; xÞ: ð7Þ

It should be mentioned that the functions (5) and (7) reduce
to familiar Bessel functions at zero magnetic field, B → 0,
as [18]

Φl

�
λl;k;

1

2
eBr2

�
⟶ Jlð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
rÞ;

Φlþ1

�
λl;k − 1;

1

2
eBr2

�
⟶ Jlþ1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
rÞ: ð8Þ

Also, the negative-energy solutions with the total angular
momentum j ¼ lþ 1=2 are written as

ψ ¼ vþ ¼ eiεt−ipzzffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p

0
BBBBB@

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
ϕl;k

−pzφl;k

0

ðεþmÞφl;k

1
CCCCCA; ð9Þ

ψ ¼ v− ¼ eiεt−ipzzffiffiffiffiffiffiffiffiffiffiffiffi
εþm

p

0
BBB@

−pzϕl;k

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
φl;k

−ðεþmÞϕl;k

0

1
CCCA: ð10Þ

In the appendix we give a detailed derivation for these
solutions, (2), (3), (9), and (10). Here, some explanations
are needed for consistency with Ref. [18], in which we
required that v� ¼ iγ2u��. This relation between u� and v�
makes the physical interpretation of antiparticles clear as
long as charge conjugation symmetry C is exact. However,
in the presence of an external B, such a naive construction

of v� does not satisfy the Dirac equation; under the
replacement of l → −l − 1, we see that ϕl;k → ϕ−l−1;k,
which would be equal to φ�

l;k if B ¼ 0. Then, only in the
case of B ¼ 0 does v� in Eqs. (9) and (10) coincide exactly
with the ones from v� ¼ iγ2u�� in Ref. [18]. Later, we will
return to this point to discuss how to fix λl;k.

III. NONDEGENERATE LANDAU LEVELS

In finite-size systems, momenta are generally discretized
due to the boundary effect. As already mentioned in the
previous section, we specifically consider a cylindrical
system with the radius R and assume translational invari-
ance in the longitudinal direction along the z axis. In this
setup, while pz is continuous, the transverse momenta
are discretized as a function of R. For scalar fields, for
instance, we can impose the Dirichlet boundary condition
at r ¼ R, so that we can readily obtain the discretized
momenta [16]. Such a simple treatment is, however, not
applicable to fermionic fields. This is because Dirac spinors
involve spin-up and spin-down components for which the
zeros of the wave functions appear differently, as is
understood in Eq. (4).
A possible boundary condition which we will employ

here is the “zero flux constraint” at r ¼ R. That is, all of the
fermionic fluxes built with u� and v� should be zero at
r ¼ R, and we express this condition explicitly as [18]Z

∞

−∞
dz

Z
2π

0

dθψ̄γrψ
���
r¼R

¼ 0; ð11Þ

where we define γr ≡ γ1 cos θ þ γ2 sin θ. We note that
Eq. (11) is not a unique choice but rather that other
boundary conditions for fermionic fields are also possible.
For example, the MIT-bag-type condition leads to a differ-
ent type of momentum discretization, but finite-size effects
on fermionic fields are qualitatively unchanged [17,20].
After performing the integration with respect to θ, we see

that the integrand in Eq. (11) would vanish if

Φlðλl;k; αÞΦlþ1ðλl;k0 − 1; αÞ ¼ 0 ð12Þ

for arbitrary l, k, and k0 values. Here, α is the dimensionless
parameter defined by

α≡ 1

2
eBR2: ð13Þ

Instead of eB or R, in this paper, we will frequently refer to
α, which is a dimensionless ratio between the magnetic
length lB ¼ 1=

ffiffiffiffiffiffi
eB

p
and the system size lsystem ¼ R.

Moreover, this quantity α corresponds to the conventional
Landau degeneracy factor, i.e., eBðπR2Þ=ð2πÞ without
boundary distortion.
Now, unlike Ref. [18], the choice of λl;k from Eq. (11) is

not unique; this nonuniqueness is related to v�, as we
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mentioned below Eqs. (9) and (10). In Ref. [18] we
required v� ¼ iγ2u�� from the beginning so that we could
keep charge conjugation symmetry C. This symmetry
property gives another constraint of invariance under
l ↔ −l − 1. In the present case with B ≠ 0, there is no
way to keep such symmetry; nevertheless, it is convenient
to adopt a sufficient condition for Eq. (12) to be connected
to the B ¼ 0 limit smoothly, that is,

Φlðλl;k; αÞ ¼ 0 for l ≥ 0;

Φlþ1ðλl;k − 1; αÞ ¼ 0 for l ≤ −1: ð14Þ

From the definition of the scalar function Φlðλ; xÞ
given in Eqs. (5) and (7), we obtain the transverse momenta
discretized as pl;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
, with

λl;k ¼
�
ξl;k for l ≥ 0;

ξ−l−1;k − l for l ≤ −1;
ð15Þ

where ξl;k denotes the kth zero of 1F1ð−ξ; lþ 1; αÞ as a
function of ξ. We note that λl;k depends on α; in other
words, the discretized momenta are functions of the
magnetic field B as well as R.
It would be instructive to think of the momentum

discretization in the B ¼ 0 limit. From the asymptotic
relations (8), we find that the no-flux condition (11) with
Eq. (14) leads to the following discretization:

pl;k !
eB→0

�
ζl;k=R for l ≥ 0;

ζ−l−1;k=R for l ≤ −1;
ð16Þ

where ζl;k is the kth zero of the Bessel function JlðζÞ, which
matches the preceding studies [17,18]. We point out
that this type of momentum discretization respects C and
CP; i.e., wave functions are invariant under j ↔ −j
(or l ↔ −l − 1).
It would be worthwhile to make one more remark about

the boundary condition. Another boundary condition dif-
ferent from ours can also lead to the same as Eq. (15);
namely, one can think of the following condition [23]:Z

rdrdθdzψ†
1Ĥψ2 ¼

Z
rdrdθdzðĤψ1Þ†ψ2; ð17Þ

where Ĥ ≡ −iγ0γið∂i þ ieAiÞ þmγ0 and ψ1;2 are arbitrary
solutions of the Dirac equation (1). That is, the quantized
momenta given in Eq. (15) [and Eq. (16) for the B ¼ 0

case] can result from the Hermiticity condition for Ĥ
including the surface term associated with the integration
by parts.
In Fig. 1 we plot the lowest transverse momentum pl;1 as

a function of the angular momentum l for various α’s
corresponding to various magnetic fields B or radius R [see
Eq. (13)]. In the B ¼ 0 case, as shown by the purple

triangular points in Fig. 1, positive l modes and negative
ð−l − 1Þ modes have a degenerated pl;1, which is immedi-
ately understood from the CP invariance, implying
j ↔ −j. Once a finite magnetic field is turned on, however,
the momenta for the l > 0 branch are more suppressed than
the l < 0 branch, as is clear by the green cross, the blue star,
and the magenta square points in Fig. 1. Naturally, finite
magnetic fields favor a particular direction of the angular
momentum and break the CP invariance. As α increases
(i.e., eB or R increases), we see that the lowest momenta
become insensitive to l and the conventional Landau zero
modes appear [24].
Figure 1 provides us with more information on the

Landau zero modes peculiar to finite-size systems.
According to the conventional argument, the Landau
degeneracy factor should be given by α, but this is no
longer the case for a small α; we notice in Fig. 1 that pl;1 is
lifted up from zero at around l≃ 10 for α ¼ 22.5. This
means that there are only half of the Landau zero modes as
compared to the conventional degeneracy factor. We can
intuitively understand this as follows. The Landau wave
functions with larger l’s have a peak position at larger r due
to the centrifugal force, which corresponds to a larger
Larmor radius of the classical cyclotron motion. The peak
width should scale as 1=

ffiffiffiffiffiffi
eB

p
. For a large enough α, the

peak is narrow relative to the system size, and its position
hits the boundary at r ¼ R when l reaches ≃α (which we
have numerically confirmed for α ¼ 1000). For a small α,
however, the peak is not well localized, so the Landau zero
modes are breached before l goes up to α. Figure 1 shows a
tendency for the degeneracy of the Landau zero modes to
approach α with increasing α; for α ¼ 45 the zero modes
remain approximately at l≃ 30.
Alternatively, in a slightly different setup of finite-size

systems, we can understand the above fact that there emerge
less Landau zero modes. We suppose that the system is put
not on a cylinder but on a semi-infinite x-y plane with
boundarywalls at x ¼ 0 and x ¼ lsystem. If the Landau gauge
Aμ ¼ ð0;−By; 0; 0Þ is chosen, the peak location of the wave

FIG. 1. Lowest transverse momentum pl;1 as a function of the
angular momentum l for various α’s.
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functions is dictated by px. Small momentum modes with
px ≲ π=lB or large momentum modes with px ≳ π=lsystem
receive strong influences from the boundary effect. As a
result, for example, a finite-size graphene ribbon under an
external magnetic field has energy dispersion spectra with
large and small px modes pushed up, and the Landau zero
modes are seen only for intermediate px’s [25].
In Fig. 2 we show a plot for the lowest momentum p0;1 as

a function of α. If there is no boundary, p0;1 must be
vanishing. For a small α, however, a finite gap appears from
the boundary effect. This is obviously so because α → 0
implies B → 0 and then there is no Landau quantization. In
this particular limit of α → 0, we find that p0;1 goes to
2.40483=R, and this value precisely corresponds to the
Bessel zero, ζ0;1, in the discretized momenta (16) for B ¼ 0

[26]. We should emphasize that this behavior of p0;1 is
physically quite important. As argued in Ref. [18], a
rotation alone does not change the vacuum structure
because the induced effective chemical potential (i.e., the
rotational energy shift) is always smaller than the lowest
energy gap, p0;1. Once eB becomes bigger than the squared
system-size inverse (that is, α ≳ 10 from Fig. 2), however,
the energy gap is significantly reduced and the anomalous
coupling between the magnetic field and the rotation is then
manifested [14,21].

IV. INTEGRATION MEASURE AND
REWEIGHTED WAVE FUNCTIONS

Because the radial momenta are discretized, we replace
the transverse momentum integration with the sums over
the quantum numbers l and k, i.e.,

Z
dpxdpy

ð2πÞ2 →
1

πR2

X∞
l¼−∞

X∞
k¼1

1

N2
l;k

; ð18Þ

where Nl;k represents a weight factor which corresponds to
the integration measure in finite-size systems. In the B ¼ 0
case, as discussed in Ref. [18], the weight factor is deduced

from the Bessel-Fourier expansion; that is, we know that, in
the limit of α → 0,

N2
l;k →

2

R2

Z
R

0

rdr½Jlðpl;krÞ�2; ð19Þ

with the discretized momentum pl;k in Eq. (16). From the
relation in Eq. (8), we extrapolate the above identification
to nonzero α as

N2
l;k ¼

2

R2

Z
R

0

rdr
�
Φl

�
λl;k;

1

2
eBr2

��
2

¼
Z

1

0

dx½Φlðλl;k; αxÞ�2: ð20Þ

We can easily confirm that the Nl;k defined as above
satisfies the asymptotic behavior in Eq. (19) in the α → 0

limit. Moreover, we can readily understand thatN2
l;k goes to

1=α in the opposite limit of α → ∞. Then this exactly
accounts for the appearance of the Landau degeneracy
factor, α=ðπR2Þ ¼ eB=ð2πÞ, in Eq. (18) in the strong
magnetic field limit, which also validates Eq. (20).
Interestingly, as this should be so, we can proveZ

1

0

dx½Φlðλl;k; αxÞ�2 ¼
Z

1

0

dx½Φlþ1ðλl;k − 1; αxÞ�2: ð21Þ

This is an important relation; thanks to this equality, we can
commonly use Nl;k to normalize the four component
spinors with both ϕl;k and φl;k.
As we see in the next section, the propagator involves a

spinor matrix that is a product of twowave functions and, in
general, 1=N2

l;k appears together with the propagator. Thus,
the physical meaning of Nl;k would become more trans-
parent if we define reweighted wave functions by Nl;k, i.e.,

~ϕl;k ≡ ϕl;kffiffiffiffiffiffiffiffi
πR2

p
Nl;k

; ~φl;k ≡ φl;kffiffiffiffiffiffiffiffi
πR2

p
Nl;k

ð22Þ

for a certain R.
Let us explain the interpretation of the reweighted wave

functions, ~ϕl;k and ~φl;k. We solved the Dirac equation and
gave definitions for ϕl;k and φl;k, but they are not yet
properly normalized, where we simply fixed the overall
normalization to reproduce the conventional expressions in
the limit of no boundary effect. The important point here is
that, for l > 0, φl;k may penetrate outside of r > R, while
only ϕl;k vanishes at r ¼ R; nevertheless, there is no
communication across r ¼ R due to the no-flux condition.
Therefore, we should normalize the wave functions within
0 ≤ r ≤ R only. In other words, we can just presume that the
system is empty for r > R; owing to the no-flux condition,
even in this sharp boundary case, no singularity appears at
r ¼ R. To avoid confusion, we must stress that the above
description is just an interpretation, and the denominator in

FIG. 2. Lowest momentum p0;1 (which gives an energy gap) as
a function of α ¼ eBR2=2.
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Eq. (22) is, in any case, uniquely fixed in the replacement of
the integration with the discrete sum in Eq. (18).
From the point of view of a confined picture of wave

functions, the reweighted wave functions, ~ϕl;k and ~φl;k,
would make intuitive sense. To see the behavior of the
reweighted wave functions, in Fig. 3, we show the radial
dependence of j ~ϕl;1j and j ~φl;1j for l ¼ 0 (upper panel) and
l ¼ 20 (lower panel) (where we chose k ¼ 1 to see the
lowest modes only). Let us discuss several notable features
of the reweighted wave functions.
First, we focus on the l ¼ 0 modes, as depicted in the

upper panel of Fig. 3. We numerically found ξ0;1 ≃ 0.041
for a weak magnetic field (α ¼ 4.5) leading to N2

0;1 ≃ 0.19,
and ξ0;1 ≃ 0 for a stronger magnetic field (α ¼ 45) leading
to N2

0;1 ≃ 0.022. In fact, if ξ0;1 ≃ 0, as pointed out before,
N2

l;k ≃ 1=α is a very good approximation.
Because l ¼ 0 corresponds to the S-wave, jϕ0;1j is

centered around r ¼ 0 and becomes more localized for
larger α’s. As noticed in Eq. (4), on the other hand, jφ0;1j
has a l ¼ 1 component of the P-wave, so the wave function
peaks near the boundary due to the centrifugal force. It is an
interesting observation that jφ0;1j gets more and more
sharply attached to the boundary with increasing α. In

the infinite size limit R → ∞ (i.e., α → ∞), there is no
contribution at all from jφ0;1j, which means that both u� are
eigenstates of the spin sz ¼ 1

2
σz with an eigenvalueþ 1

2
, that

is, spin-up states. This observation is consistent with the
fact that the Landau zero modes have only one spin state.
Next, we consider the l ¼ 20 modes by looking at the

lower panel in Fig. 3. The behavior is qualitatively different
from the l ¼ 0 case. The most nontrivial point is seen in the
difference between j ~φ0;1j in the upper panel and j ~φ20;1j in the
lower panel for α ¼ 4.5. As explained above, the centrifugal
force with l ¼ 1 pushes j ~φ0;1j toward r ¼ R, and one would
expect that such centrifugal effects must be greater for
l ¼ 20. However, j ~ϕ20;1j is centered rather away from r ¼ R,
which seems to be quite counterintuitive.We can resolve this
puzzle from an indirect constraint from j ~ϕl;1j; for the l ¼ 0

case, j ~ϕ0;1j is not modified much by the boundary because
the wave-function tail at r ¼ R is negligibly small from the
beginning. However, for the l ¼ 20 case, j ~ϕ20;1j is signifi-
cantly distorted and this boundary effect is strong enough to
distort j ~φ20;1j as well.
Another interesting observation for the l ¼ 20 wave

functions is that the spin-up and the spin-down states are
not really separable, unlike the l ¼ 0 case. We recall that in
the upper panel of Fig. 3 the region with r < R is dominated
by j ~ϕ0;1j only and the wave function inevitably becomes the
spin-up eigenstate. In the l ¼ 20 case, however, due to the
centrifugal force, all of the wave functions are shifted in
the vicinity of the boundary, and there, j ~ϕ20;1j and j ~φ20;1j
always coexist; in other words, the Landau degeneracy is
violated for a large l, as we already saw in Fig. 2.
We emphasize the importance of the wave-function

behavior around r ¼ R. In this way the wave functions
at larger l’s are accumulated near r ¼ R and the low-energy
dynamics closer to the boundary is more prominently
affected by the magnetic background. For instance, as
we will confirm in the next section, the dynamical mass
enhancement by the magnetic field is further strengthened
near the boundary. As a side remark, we note that the mode
accumulation around the boundary has no contradiction
with the Pauli exclusion principle because all accumulated
modes are labeled by different quantum numbers.

V. BOUNDARY ENHANCEMENT OF THE
MAGNETIC CATALYSIS

We will proceed to some concrete calculations to dem-
onstrate the interplay between the magnetic and surface
effects. We will estimate the dynamical mass in the local
density approximation using an NJL model. The qualitative
features are independent of a model choice and thus robust,
however, as is clear from the physical discussions in the
previous section.
The most fundamental ingredient for concrete calcula-

tions is the propagator, S, which can be constructed from

FIG. 3. Radial profiles of j ~ϕl;1j (the solid lines) and j ~φl;1j (the
dashed lines), which are wave functions normalized byffiffiffiffiffiffiffiffi
πR2

p
Nl;1, where all the quantities are given in the unit of R.

The upper and lower panels show the wave functions for l ¼ 0
and l ¼ 20, respectively.
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the solutions (2), (3), (9), and (10). Then, in terms of the
Dirac indices, S is a 4 × 4 matrix whose form is given by

Sαβðx; x0Þ ¼ i
Z

dp0dpz

ð2πÞ2
X∞
l¼−∞

X∞
k¼1

1

πR2N2
l;k

×
e−ip

0ðt−t0Þþipzðz−z0Þ

ðp0Þ2 − ε2 þ iϵ
Sαβ
l;kðp; r; θ; r0; θ0Þ; ð23Þ

where the spinor matrix Sαβ
l;k in the Dirac representation

reads

Sl;kðp; r; θ; r0; θ0Þ ¼
0
@MðþÞ

l;k N ðþÞ
l;k

N ð−Þ
l;k Mð−Þ

l;k

1
A; ð24Þ

with

Mð�Þ
l;k ≡

0
B@ ð�p0 þmÞϕl;kϕ

0
l;k 0

0 ð�p0 þmÞφl;kφ
0
l;k

1
CA;

N ð�Þ
l;k ≡

0
B@ −pzϕl;kϕ

0
l;k �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
ϕl;kφ

0
l;k

∓i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
φl;kϕ

0
l;k pzφl;kφ

0
l;k

1
CA;

ð25Þ

where we use a short notation for the wave functions;
ϕl;k ¼ ϕl;kðr; θÞ, ϕ0

l;k ¼ ϕl;kðr0; θ0Þ, φl;k ¼ φl;kðr; θÞ, and
φ0
l;k ¼ φl;kðr0; θ0Þ. We note that πR2N2

l;k in Eq. (23) may

have been absorbed into redefinition of ϕl;k → ~ϕl;k and
φl;k → ~φl;k.
To study the boundary effect for the dynamical mass

generation associated with the spontaneous breaking of
chiral symmetry, we analyze the NJL model whose
Lagrangian density is

L ¼ ψ̄iγμð∂μ þ ieAμÞψ þ G
2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�: ð26Þ

In the mean-field approximation (which is justified when
there are infinitely many fermion species), the gap equation
or the condition to minimize the thermodynamic potential
is written as

m ¼ Gtr½Sðx; xÞ�: ð27Þ

Since translation invariance is lost along the radial
direction, the dynamical mass has the r dependence, and
thus we should regard Eq. (27) as a functional equation
to determine a function mðrÞ. It is, however, numerically
demanding to solve this functional equation self-
consistently. Besides, our present purpose is not to quantify
the effects but to demonstrate robust features of the surface

effects. Thus, we reasonably simplify the problem
by employing the local density approximation under
an assumption of j∂rmðrÞj ≪ mðrÞ2 [19]. Then, we can
approximately treat the energy dispersion relation as simple

as εðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k þ p2

z þmðrÞ2
q

. Utilizing Eq. (23) and

inserting a ultraviolet regulator, we write the explicit form
of the gap equation as

mðrÞ
G

¼ mðrÞ
Z

∞

−∞

dpz

2π

X∞
l¼−∞

X∞
k¼1

fðp;Λ; δΛÞ
πR2N2

l;k

×
½Φlðλl;k; 12 eBr2Þ�2 þ ½Φlþ1ðλl;k − 1; 1

2
eBr2Þ�2

εðrÞ :

ð28Þ

Here, we note that the choice of the ultraviolet regulator is a
part of the model definition, and, in our numerical calcu-
lations presented below, we adopt a smooth 3-momentum
cutoff function as follows [14]:

fðp;Λ; δΛÞ ¼ sinhðΛ=δΛÞ
coshðp=δΛÞ þ coshðΛ=δΛÞ ; ð29Þ

withp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k þ p2

z

q
. To discuss themagnetic catalysis,

the proper-time regularization [27] and the Pauli-Villars
regularization would be a common choice in NJL model
studies (see, e.g., Ref. [5]). It is, however, known that a naive
momentum cutoff with a step function could also give a
qualitatively correct result, as long as the smearing param-
eter δΛ is not too small [28]. Therefore, the above simple
fðp;Λ; δΛÞ value should suffice for our present purpose of
qualitative analysis. For the numerical calculation we chose
the model parameters as

G ¼ 24Λ−2; δΛ ¼ 0.05Λ: ð30Þ

Here, we can trivially scale out Λ by measuring all of the
quantities in units ofΛ. It should bementioned that the above
chosen G is intentionally below the onset of spontaneous
symmetry breaking. In fact, in units ofΛ, in this model with
B ¼ 0 and R → ∞, the critical coupling is

Gc ¼ 19.65Λ−2; ð31Þ

which is greater than the present G. For our demonstration
we chose this setup without the spontaneous symmetry
breaking to see the magnetic catalysis directly. Then, we fix
the system size to be

R ¼ 30Λ−1: ð32Þ

This value itself is not relevant for our discussion. For Λ≃
1 GeV (that is, a QCD scale), the above choice of the system
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size R ¼ 30Λ−1 corresponds to the typical radial scale of
heavy ions, R≃ 6 fm.
In Fig. 4 we show the dynamical mass mðrÞ solved from

the gap equation in the local density approximation. We see
from Fig. 4 that the magnetic field effect is minor for
α ¼ 4.5. The r dependence of the dynamical mass is flat up
to r≃ 0.7R, and mðrÞ then becomes oscillatory for
r≳ 0.7R. Such oscillation results from the boundary effect
and its exact form depends on the regularization
fðp;Λ; δΛÞ as well as the system size. Actually, for a
larger R, the discretized momentum spacing is smaller
(which is ∝ 1=R), and thus the oscillating period should be
smaller accordingly. For the even larger r≃ R, the dynami-
cal mass eventually vanishes. This oscillating and vanish-
ing behavior of mðrÞ is quite similar to what is observed in
the B ¼ 0 case (see Fig. 1 in Ref. [18]). We also comment
on the validity of the local density approximation. The
required condition, j∂rmðrÞj ≪ mðrÞ2 is satisfied for
almost all r’s, except the region very close to R.
In contrast to α ¼ 4.5, the dynamical mass behavior for

stronger magnetic fields (α ¼ 22.5 and 45 in Fig. 4) is
qualitatively different. As long as r is away from the
boundary, a flat plateau continues, until oscillations appear
around r≃ 0.7R. Then,mðrÞ does not vanish but is pushed
up as r approaches R. This abnormally enhanced magnetic
catalysis (called the surface magnetic catalysis in this work)
is a consequence of the interplay between the magnetic
field and the boundary effect.
We shall explain how to understand the surface magnetic

catalysis in terms of the wave functions. We have already
seen that the spin-down mixture by ~φl;k piles up near r≃ R
for a large l, as shown in the lower panel of Fig. 3. If there is
no boundary, the peak position of the wave functions with a
large l will be at a great distance. However, in the presence
of the boundary at r ¼ R, these modes, which would have
no contribution without a boundary, come to make a finite

contribution near r≃ R. Then, the gap equation (28)
receives contributions of spin-down boundary modes with
various l’s. We could say, in other words, that the surface
magnetic catalysis is induced by a combination of the
incomplete spin alignment of the Landau levels seen in
Sec. III and the reweighting factor from the integration
measure argued for in Sec. IV.

VI. CONCLUSION

In this paper, imposing a proper boundary condition in
terms of the fermionic flux (the same conclusion can be
drawn from the Hermiticity of the Hamiltonian), we
analyzed the finite-size effect on fermionic matter coupled
with an external magnetic field. We obtained incomplete or
nondegenerate Landau levels; that is, for states with large
angular momenta relative to the system size, the Landau
quantized spectra are not degenerate. Also, we noticed that
the spin-up and spin-down structures of the wave functions
are significantly changed by the finite-size effect. In the
thermodynamic limit of infinite volume, only the spin-up
modes (if the magnetic field is positive along the quantum
axis of the angular momentum) occupy the Landau zero
modes, and the spin-downmodes become irrelevant because
the spin-down modes are tightly localized in the vicinity of
the boundary at an infinitely great distance. In finite-size
systems, however, the magnetic field partially overcomes
this spin separation and forms the gapless Landau zero
modes for both spin-up and spin-down states. This pairwise
structure of spin-upmodes in the bulk and spin-downmodes
at the surface is quite remarkable for magnetic phenomena
related to chirality imbalance. For instance, in finite-size
systems, even though an anomalous fermionic current
density is nonzero in bulk, the whole current would vanish
together with the surface contribution [29].
In this paper, we found a novel aspect of the magnetic

catalysis peculiar to finite-size systems; the catalyzing
effect on the dynamical mass is more intense in the vicinity
of the boundary, which is called the surface magnetic
catalysis in this work. Because the surface magnetic
catalysis shows a sharp enhancement of the dynamical
mass at the surface, strictly speaking, we must say that the
local density approximation, in which spatial derivatives of
the dynamical mass are neglected, adopted in the present
workmight be not reliable enough.Wemust stress, however,
that the origin of such a strong enhancement can be
explained by the accumulation of many spin-down zero
modes near the boundary, which does not rely on any model
or approximation. Therefore, even including the higher
order derivative terms of the dynamical mass, nothing
qualitative should be changed. Regardless of the model or
the approximation, similar spatial profile of the dynamical
mass or the condensate must be reproduced. Furthermore,
we note that the geometrical shape of the boundary is not
relevant to the accumulation of the low-energy modes.
Hence, lattice numerical simulations could test the surface

FIG. 4. Dynamical mass as a function of the radial coordinate r
for the choice of R ¼ 30Λ−1. Near the boundary, the dynamical
mass rapidly increases due to the accumulation of the boundary
modes.
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magnetic catalysis in a realistic finite-size system (for
instance, graphene [30]) if not the periodic boundary
condition but an appropriate no-flux boundary condition
is formulated in terms of the link variables.
The findings in this paper have various applications. For

Dirac and Weyl semimetals, we expect fruitful phase
structures from the proper treatment of the finite-size effect.
In Ref. [31], the authors argue that an externalmagnetic field
leads to the dynamical transformation from a Dirac semi-
metal (a state without the chiral shift [32]) to a Weyl
semimetal (a state with the chiral shift). This is the case
for large systems. According to our result, the magnetic
property of the boundary should differ from that of
the bulk, and thus it would be intriguing to revisit the
possibility of the dynamical transformation, including the
surface effect.
Another interesting extension is the coupling to rotation.

For instance, the anomalous coupling with the magnetic
field and the rotation [18,21] should lead to a fascinating
effect on the energy-momentum tensor of a quark-gluon
plasma [33,34]. Besides, the interplay between the mag-
netic field and the rotation should influence the dynamical
symmetry breaking and the equation of state. As discussed
in Ref. [14], in rotating matter, the magnetic catalysis and
the inverse magnetic catalysis are driven, respectively, by
small and large rotational effects. At positions with small
distance r from the rotational center, the magnetic catalysis
is realized because the centrifugal force, which is propor-
tional to r, is still small. Since the edge region near the
boundary is heavily affected by the magnetic field, on the
other hand, it is nontrivial whether the inverse magnetic
catalysis really takes place around the boundary once the
results in Ref. [14] are augmented by the finite-size effects.
The quantitative details of the chiral structure in magnet-
ized rotating systems deserve further investigations, and we
will report our progress in forthcoming papers.
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APPENDIX: SOLVING THE DIRAC EQUATION

We derive the solutions (2), (3), (9), and (10). The Dirac
equation for fermions confined in a finite-size system under
an external magnetic field is given by

ðiγμDμ −mÞψ ¼ 0; ðA1Þ

where Dμ ¼ ∂μ þ ieAμ is the covariant derivative with the
symmetric gauge Aμ ¼ ð0;−By=2; Bx=2; 0Þ. Multiplying
ðiγνDν þmÞ by the above Dirac equation and changing to
the cylindrical coordinates, we can rewrite Eq. (1) as
follows: �

−∂2
t þ ∂2

z −m2 þ ∂2
r þ

1

r
∂r þ

1

r2
∂2
θ

þ eBð−i∂θ þ σ12Þ −
�
eBr
2

�
2
�
ψ ¼ 0; ðA2Þ

with σ12 ¼ i
2
½γ1; γ2� ¼ diagðσz; σzÞ. Since the t- and

z-dependent terms are separately solved in the form of
plane waves, we can parametrize two linear independent
solutions with positive energy as

ψ ¼ u� ¼ e−iεtþipzz

�
f1�ðr; θÞ
f2�ðr; θÞ

�
; ðA3Þ

where � refers to different polarizations.
Let us first focus on f1�. While the total angular

momentum, Ĵz ¼ L̂z þ Ŝz ¼ −i∂θ þ 1
2
σ12, is a good quan-

tum number in the present system, neither L̂z nor Ŝz is. For
this reason it is convenient to choose u� as an eigenstate of
Ĵz, with its common eigenvalue denoted by j. We here
employ the Dirac representation for γμ’s, i.e.,

γ0 ¼
�
1 0

0 −1

�
; γi ¼

�
0 σi

−σi 0

�
: ðA4Þ

Then, we fix the angular part of the two component
function f1� as

f1�ðr; θÞ ¼ eil�θ ~f1�ðrÞχ�; ðA5Þ

with σzχ� ¼ �χ� and lþ þ 1=2 ¼ l− − 1=2 ¼ j. From
Eq. (A2), we find the equation of motion for the radial
part, ~f1�, which reads

�
∂2
r þ

1

r
∂r −

l2�
r2

þ 2eBλl;k þ eBðl� � 1Þ −
�
eBr
2

�
2
�
~f1�

¼ 0; ðA6Þ

with the dispersion relation

2eBλl;k ¼ ε2 − p2
z −m2: ðA7Þ

Using the scalar function Φlðλ; 12 eBr2Þ defined in Eqs. (5)
and (7), we identify the solutions for this equation as
~f1þ ¼ Φlðλl;k; 12 eBr2Þ and ~f1− ¼ Φlþ1ðλl;k − 1; 1

2
eBr2Þ,

where we introduce the quantum number for L̂z,
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l≡ j − 1=2; i:e:; l ¼ lþ ¼ l− − 1: ðA8Þ

Thus, we find that f1� is represented as follows:

f1þðr; θÞ ¼ ϕl;kχþ; f1−ðr; θÞ ¼ φl;kχ−; ðA9Þ

with ϕl;k and φl;k in Eq. (4).
Also, we can solve the lower components f2� from

ðεþmÞf2� ¼ ð−iσ⊥ · D⊥ þ σzpzÞf1�; ðA10Þ

which follows from the Dirac equation in the Dirac
representation. In the cylindrical coordinates, the covariant
derivative term, −iσ⊥ · D⊥, is represented as

−iσ⊥ · D⊥ ¼
�
0 a†

a 0

�
; ðA11Þ

where we introduce the ladder operators defined by

a≡ −ieiθð∂r þ ir−1∂θ þ eBr=2Þ;
a† ≡ −ie−iθð∂r − ir−1∂θ − eBr=2Þ: ðA12Þ

In fact, we can explicitly check to see that a and a† act as
the ladder operator on ϕl;k and φl;k:

aϕl;k ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
φl;k;

a†φl;k ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
ϕl;k: ðA13Þ

From these relations and the explicit form of ~f1�, we can
solve Eq. (A10) for f2� as

f2þ ¼ pz

εþm
ϕl;kχþ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
εþm

φl;kχ−;

f2− ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
εþm

ϕl;kχþ þ −pz

εþm
φl;kχ−; ðA14Þ

which finally amounts to Eqs. (2) and (3) for the positive-
energy solution.
In the same way, we find the negative-energy solution,

v�. We suppose that the solution takes the following form:

ψ ¼ v� ¼ eiεt−ipzz

�
g1∓ðr; θÞ
g2∓ðr; θÞ

�
; ðA15Þ

with

g2þðr; θÞ ¼ φl;kχþ; g2−ðr; θÞ ¼ −ϕl;kχ−: ðA16Þ

Then the Dirac equation fixes the form of the upper
component g1� through

ðεþmÞg1� ¼ ðiσ⊥ · D⊥ − σzpzÞg2�: ðA17Þ

We can explicitly solve this equation, leading to

g1þ ¼ −pz

εþm
ϕl;kχþ þ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
εþm

φl;kχ−;

g1− ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eBλl;k

p
εþm

ϕl;kχþ þ −pz

εþm
φl;kχ−: ðA18Þ

Hence, we obtain Eqs. (9) and (10).
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