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We developed a Friedrichs-model-like scheme in studying the hadron resonance phenomenology and
present that the hadron resonances might be regarded as the Gamow states produced by a Hamiltonian in
which the bare discrete state is described by the result of the usual quark potential model and the interaction
part is described by the quark pair creation model. In an almost parameter-free calculation, the Xð3862Þ,
Xð3872Þ, and Xð3930Þ state could be simultaneously produced with a quite good accuracy by coupling the
three P-wave states, χc2ð2PÞ, χc1ð2PÞ, χc0ð2PÞ predicted in the Godfrey-Isgur model to the DD̄, DD̄�,
D�D̄� continuum states. At the same time, we predict that the hcð2PÞ state is at about 3890 MeV with a pole
width of about 44 MeV. In this calculation, the Xð3872Þ state has a large compositeness. This scheme may
shed more light on the long-standing problem about the general discrepancy between the prediction of the
quark model and the observed values, and it may also provide reference for future search for the hadron
resonance state.
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As regards the charmonium spectrum above the open-
flavor thresholds, general discrepancies between the pre-
dicted masses in the quark potential model and the observed
values have been highlighted for several years. Typically,
among the P-wave n2sþ1LJ ¼ 23P2, 23P1, 23P0, and 21P1

states, the Xð3930Þ, discovered by the Belle collaboration
[1], is now assigned to the χc2ð2PÞ charmonium state though
its mass is about 50 MeV lower than the prediction in the
quark potential model [2–4]. The properties of the other
P-wave states have not been firmly determined yet. The
Xð3872Þ was first observed in the B� → K�J=ψπþπ− by
the Belle collaboration in 2003 [5]. Although its quantum
number is 1þþ, the same as the χc1ð2PÞ, the pure charmo-
nium interpretation was soon given up for the difficulties in
explaining its decays. The pure molecular state explanation
of Xð3872Þ also encounters difficulties in understanding its
radiative decays. So its nature remains to be obscure up to
now. As for the χc0ð2PÞ state, the Xð3915Þ was assigned to
it several years ago, but this assignment is questioned for
the mass splitting between χc2ð2PÞ and χc0ð2PÞ, and its
dominant decay mode [6,7]. In Ref. [8], analyses of the
angular distribution of Xð3915Þ to the final leptonic and
pionic states also support the possibility of being a 2þþ state,
which means that it might be the same tensor state as the
Xð3930Þ. Very recently, the Belle collaboration announced a

new result about the signal of Xð3862Þ which could be a
candidate for the χc0ð2PÞ [9]. The 21P1 state has not been
discovered yet. These puzzles have been discussed exhaus-
tively in the literature (see Refs. [10–12] for example), but a
consistent description is still missing.
In this paper, we adopt the idea of Gamow states and the

solvable extended Friedrichs model developed recently
[13–15], usually discussed in the pure mathematical phys-
ics literature, to study the resonance phenomena in the
hadron physics, in particular the charmonium spectrum.
Using the eigenvalues and wave functions for mesons in the
Godfrey-Isgur (GI) model [3] as input and modeling the
interaction by the quark pair production (QPC) model, we
found that the first excited 2þþ, 1þþ, and 0þþ charmonium
states could be reproduced with good accuracy in an almost
parameter-free calculation, and the mass and width of the
1þ− state are also obtained as a prediction. These results are
helpful in resolving the long-standing puzzle of identifying
the observed P-wave state, and also shed more light on the
interpretation of the enigmatic Xð3872Þ state. Furthermore,
this method can also provide the explicit wave functions of
resonances, “compositeness” and “elementariness” param-
eters for bound states, and scattering S-matrix involving
these resonances [13–15], which are rigorously obtained in
the Friedrichs model and have important applications in
further studies of the resonance properties. This scheme
provides a general framework to incorporate the hadron
interaction corrections to the spectra predicted by the quark
model, and can be used in evaluating the other mass spectra
above the open-flavor threshold to reconcile the gaps
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between the quark potential model predictions and the
experimental results.
To introduce our theoretical framework, we begin by

recalling some basic facts about the Friedrichs model. A
resonance exhibiting a peak structure in the invariant mass
spectrum of the final states could be understood as a
Gamow state in the famous Friedrichs model in math-
ematical physics [16]. In the simplest version of the
Friedrichs model, the full Hamiltonian H is separated into
the free part and the interaction part as

H ¼ H0 þ V; ð1Þ

and the free Hamiltonian

H0 ¼ ω0j0ih0j þ
Z

∞

ωth

ωjωihωjdω ð2Þ

has a discrete eigenstate j0i with eigenvalue ω0 > ωth, and
continuum eigenstates jωi with eigenvalues ω ∈ ½ωth;∞Þ,
ωth being the threshold for the continuum states, and they
are normalized as

h0j0i ¼ 1; hωjω0i ¼ δðω − ω0Þ; h0jωi ¼ hωj0i ¼ 0:

ð3Þ

The interaction part serves to couple the discrete state and
the continuous state as

V ¼ λ

Z
∞

ωth

½fðωÞjωih0j þ f�ðωÞj0ihωj�dω; ð4Þ

where the fðωÞ function denotes the coupling form factor
between the discrete state and the continuum state and λ
denotes the coupling strength. This eigenvalue problem for
the Hamiltonian can be exactly solved. In the rigged-
Hilbert-space formulation of the quantummechanics devel-
oped by Bohm and Gadella, the discrete state becomes a
generalized eigenstate with a complex eigenvalue, which
corresponds to the resonance state called Gamow state
[17,18]. The relation of the Gamow state and the pole in
the scattering amplitude in the S-matrix theory is also
straightforward [18]. By summing the perturbation series,
Prigogine and his collaborators also obtained a similar
mathematical structure [19]. Properties of Gamow states
could be represented by the zero point of the ηðxÞ function
on the unphysical sheet of the complex energy plane, where

η�ðxÞ ¼ x − ω0 − λ2
Z

∞

ωth

jfðωÞj2
x − ω� iϵ

dω: ð5Þ

In general, when λ increases from 0, the zero point moves
away from the real axis to the second Riemann sheet. The
wave function of the Gamow state is expressed as

jzRi ¼ NR

�
j0i þ λ

Z
∞

ωth

dω
fðωÞ

½zR − ω�þ
jωi

�
; ð6Þ

and the conjugate for a pair of resonance poles on the
second Riemann sheet, where the ½� � ��� means the ana-
lytical continuations of the integration [13]. There could
also be bound-state and virtual-state solutions both for
ω0 > ωth and ω0 < ωth, with the wave function being

jzB;Vi ¼ NB;V

�
j0i þ λ

Z
∞

ωth

fðωÞ
zB;V − ω

jωidω
�
; ð7Þ

for a bound (virtual) state jzBi (jzVi) at zB (zV) on the first

(second) Riemann sheet below the threshold, where Nð�Þ
R;B;V

are the normalizations. For virtual states, the integral should
be continued to zV on the second sheet. A generalization of
the Friedrichs model to include multiple discrete states and
multiple continuum states is also worked out and readers
are referred to Refs. [13–15] for more detailed discussions.
Inspired from QCD one-gluon exchange interaction and

the confinement, the Godfrey-Isgur model [3], with parti-
ally relativized linear confinement, Coulomb-type, and
color-hyperfine interactions, provides very successful pre-
dictions to the mass spectra of the conventional meson
states composed of u, d, s, c, and b quarks, but its
predictions with regard to the states above the open-flavor
thresholds are not as good as those below. These discrep-
ancies might arise from the neglecting of the coupling
between these “bare”meson states and their decay channels
(both open and closed) as they mentioned [3]. In our
scheme, the GI’s Hamiltonian which provides the discrete
bare hadron eigenstates can be effectively viewed as the
free Hamiltonian in the Friedrichs model, and the inter-
actions between the bare states of H0 and the continuum
states are modeled by the QPC model [20] and will
generate the corrections to the spectrum above the open-
flavor thresholds. The stronger the coupling is, the larger
the influence is. The wave functions in the QPC model are
chosen to be the same as the eigenstate solutions in the GI
model which is approximated by a combination of a set of
harmonic oscillator basis. Since the Okubo-Zweig-Iizuka
(OZI)-allowed channel will be more strongly coupled to the
bare states than the OZI-suppressed channel, the pole shift
is dominantly caused by these channels. So, we include
only the OZI allowed channels in our analysis.
In the spirit of the Friedrichs model, suppose a discrete

state j0; JMi with spin J, coupled to a continuum com-
posed of two hadrons jp; JM;LSi with a total angular
momentum quantum numbers J, M, orbital angular
momentum quantum number L, total spin S, the center
of mass (c.m.) momentum p for the two particles, and the
reduced mass μ. In the nonrelativistic theory, the free
Hamiltonian in the c.m. frame can be expressed as
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H0 ¼ M0

X
M

j0; JMih0; JMj

þ
X
L;S

Z
p2dpωjp; JM;LSihp; JM;LSj: ð8Þ

The interaction between the discrete states and the
continuum states is rotationally invariant and we can
confine ourselves to a fixed JM channel and omit the
JM indices. The matrix elements of the interaction poten-
tials can be expressed as [15]

H01 ¼
X
S;L

Z
dωfSLðωÞj0ihω; LSj þ H:c: ð9Þ

by absorbing a phase space factor
ffiffiffiffiffiffi
μp

p
in both fSLðωÞ

and jω; LSi.
The definition of the meson state is different from the

one in Ref. [21] by omitting the factor
ffiffiffiffiffiffi
2E

p
to ensure the

correct normalizations. Then, the meson coupling A → BC
can be defined as the transition matrix element

hBCjTjAi ¼ δ3ðP⃗f − P⃗iÞMABC; ð10Þ
where the transition operator T is the one in the QPC
model,

T ¼ −3γ
X
m

h1m1 −mj00i
Z

d3p⃗3d3p⃗4δ
3ðp⃗3 þ p⃗4Þ

× Ym
1

�
p⃗3 − p⃗4

2

�
χ341−mϕ

34
0 ω34

0 b†3ðp⃗3Þd†4ðp⃗4Þ: ð11Þ

By the standard derivation one can obtain the amplitude
MABC and the partial wave amplitude MSLðPðωÞÞ as in
Ref. [20]. Then the form factor fSL which describes the
interaction between jAi and jBCi in the Friedrichs model
can be obtained as

fSLðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μPðωÞ

p
MSLðPðωÞÞ; ð12Þ

where PðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MBMCðω−MB−MCÞ

MBþMC

q
is the c.m. momentum,

MB and MC being the masses of meson B and C
respectively. Now, after including more continuum states,
the ηðzÞ function can be expressed as

η�ðzÞ ¼ z − ω0 −
X
n

Z
∞

ωth;n

P
S;LjfnSLðωÞj2
z − ω� iϵ

dω; ð13Þ

where ωth;n denotes the energy of the nth threshold. Notice
that this function can be continued to an analytic function
ηðzÞ defined on a 2n-sheet Riemann surface in the case of n
thresholds. The poles of a scattering amplitude are just the
zeros of the ηðzÞ function [15], and its real part and
imaginary part represent the mass and half-width of the
Gamow state. Only the Gamow states close to the physical

region could significantly influence the observables such as
cross section or invariant mass spectrum of the final states.
With the parameters in the GI model [3], we first

reproduced the results of GI by approximating the wave
function of the P-wave charmonium states and the charmed
mesons with 30 harmonic oscillator wave function basis.
Using these wave functions of the meson states in the QPC
model, one could then obtain the coupling form factor in
the Friedrichs model. The only parameter of the QPC
model is γ, which represents the quark pair production
strength from the vacuum. We choose it to be the typical
value 6.9 [4,22]. So there is no free parameter in our
calculation.
The coupled channels are chosen up to D�D̄� in four

cases. The χc2ð2PÞ state can couple to DD̄, DD̄�, and
D�D̄� in both S- and D-wave. For the χc1ð2PÞ and hcð2PÞ
states, the coupled channels are DD̄�, and D�D̄�. In the
case of the χc0ð2PÞ state, the coupled channels are DD̄,
and D�D̄�.
The poles of scattering amplitude [zero of the ηðzÞ

function] could be extracted by analytically continuing ηðzÞ
to the closest Riemann sheet. To make this scheme more
friendly to the experimentists, one may approximate ηðzÞ
by a Breit-Wigner parametrization as ηðzÞ ≈ z −MBWþ
iΓBW=2, and the mass parameter is determined by solving

MBW − ω0 −
X
n

P
Z

∞

ωth;n

P
SLjfnSLðωÞj2
MBW − ω

dω ¼ 0; ð14Þ

on the real axis where P
R
means principal value integra-

tion and the Breit-Wigner partial width of the nth open
channel is expressed as

Γn
BW ¼ 2π

X
S;L

jfnSLðMBWÞj2; ð15Þ

and the total width Γtot ¼
P

nΓn
BW. It is worth mentioning

that this approximation, Eqs. (14) and (15) together, is only
valid when it is used to represent a narrow resonance far
away from the thresholds.
The numerical results of the extracted pole position and

related Breit-Wigner parameters are shown in Table I.
If there is only one open channel, usually one Gamow state
which originates from the bare state is expected, but
sometimes there could also be an extra virtual state or
bound state generated by the form factor fðωÞfðωÞ� when
the coupling is strong, which exhibits the molecular nature
of this state. Here, the Xð3872Þ is just of this nature. In
Ref. [13], we discussed the general condition for this kind
of virtual or bound state poles.
For the 23P2 channel, DD̄ and DD̄� thresholds are open

for the χc2ð2PÞ. This pole is shifted from the GI’s value
down to about 17 MeV below the observed value. Its width
is about 12 MeV, a little smaller than the observed one.
The branching ratio between DD̄ and DD̄� is 7.7, which
demonstrates that DD̄ is its dominant decay channel.
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Its decay probability to DD̄� is relatively small, but there is
still some possibility that there is the contribution of
Xð3930Þ in the observed DD̄� mass distribution in
experiments.
In the 23P1 channel, one pole is shifted down from the

bare state to about 3917 MeV with fairly large width, while
another bound state pole emerges just below the threshold
around 3872 MeV without any tuning of the parameter,
which is consistent with the Xð3872Þ found in the experi-
ment. If the coupling strength γ is tuned smaller, this
bound-state pole will move across theDD̄� threshold to the
second sheet and becomes a virtual state pole. This pole is
dynamically generated from the form factor which is an
evidence of the molecular origin of the state. It is natural to
assign this bound state pole to the Xð3872Þ, and the higher
state generated from GI’s bare state might be related to the
Xð3940Þ state.
In the 23P0 channel, the χc0ð2PÞ state is found to be a

narrow resonance right at about 3860 MeV. We noticed that
the mass newly observed χc0ð2PÞ candidate is just at
3862 MeV with a width 201þ242

−149 MeV [9], having a large
uncertainty. Although the DD̄ channel is OZI allowed for
the χc0ð2PÞ state, in this calculation we find that the
coupling between the DD̄ channel and the bare χc0ð2PÞ
is unexpectedly weak which causes the narrow width. This
narrow width is roughly only twice the bin size of the data
in [1,24] and smaller than the one in the more recent [9]. So,
in the future experiments, we propose a further exploration
with a higher resolution in this energy region to see whether
there is a narrow signal missing in the present data. An
interesting observation is that there seems to be a simulta-
neous small excess at the vicinity of about 3860 MeV in the
γγ → DD̄ experiment of both Belle [1] and BABAR
collaborations [24]. Notice the data points in the region
of 3850 MeV < mðDD̄Þ < 3875 MeV in Fig. 1.
The hcð2PÞ state is predicted at around 3890 MeV in this

scheme. As we have mentioned, χc2ð2PÞ, χc1ð2PÞ, hcð2PÞ
all couple to the DD̄� channel, which has no definite
C-parity. This means that the enhancement above the DD̄�
threshold contains all the contributions from these states.
To detect the hcð2PÞ signal, one needs to look for it in a
negative C-parity channel such as ηcγ in this energy region.
Further remarks about the Xð3872Þ are in order. In our

calculation, although without tuning of the standard
parameter it is found to be a bound state, we cannot

exclude the possibility of a virtual state nature [25,26],
since only a small shift down of the γ parameter will move
it to the second sheet. In [27], improving the approach
adopted in [28], a dispersion relation method combined
with the QPC model is also used in discussing the
charmoniumlike states, where Xð3872Þ can also be pro-
duced. However, since the wave function for the Xð3872Þ
cannot be obtained there and the wave function used in the
QPC model there is inaccurate, further discussion on the
nature of the Xð3872Þ may not be accurate. In the present
scheme, the exactly solvable Friedrichs model provides a
more solid theoretical setup and since the more accurate
hadron wave function of the GI model is used in the QPC
model, the result here would more accurately describe the
nature of the Xð3872Þ. Moreover, since the wave function
for the Xð3872Þ can be rigorously solved in terms of the
discrete state and the continuum states, one can also find
out its compositeness and elementariness. The composite-
ness of a bound state, defined as the probability of finding
the nth continuous states in the bound state, is expressed in
the Friedrichs model as

Xn ¼
1

N2

Z
∞

ωth;n

dω
X
S;L

jfnSLðωÞj2
ðmB − ωÞ2 ; ð16Þ

where the normalization factor is

N ¼ ð1þ
X
n

Z
∞

ωth;n

dω
X
S;L

jfnSLðωÞj2
ðmB − ωÞ2Þ

1=2: ð17Þ

If theXð3872Þ is a bound state, the relative ratio of finding cc̄
andDD̄� in the state is about 1∶2.7, showing the dominance
of the continuum part in this state, which also demonstrates
its molecular dominant nature [29–32]. In comparison, in
[32], by analyzing the production rate of CMS [33] andCDF
[34] data within the framework of NRQCD factorization,
the cc̄ component is estimated to be 22%–44%, which is
consistent with our value. However, our result is different
from [35], in which the cc̄ component is about 6%.
Nevertheless, both results favor a large DD̄� component.
Another QCD sum-rule analysis [36] predicts a larger cc̄
component, about 97%, but themass of the state is too low, at
around 3.77GeV, compared to the observed one ofXð3872Þ.

θ

FIG. 1. The mass distribution of γγ → DD̄ from BABAR [24]
and Belle [1]. The data of Belle is the one for j cos θ�j < 0.5. The
two dashed lines are set at mðDD̄Þ ¼ 3850 MeV and 3875 MeV.

TABLE I. Comparison of the experimental masses and the total
widths (in MeV) [23] with our results.

n2sþ1LJ Mexpt Γexpt MBW ΓBW Pole GI

23P2 3927.2� 2.6 24� 6 3910 12 3908-5i 3979
23P1 3942� 9 37þ27

−17 3917-45i 3953
3871.69� 0.17 < 1.2 3871 0 3871-0i

23P0 3862þ66
−45 201þ242

−149 3860 25 3861-11i 3917
21P1 3890 26 3890-22i 3956
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It is worth emphasizing that for a resonance, the compos-
iteness and elementariness parameters will become complex
numbers [15], so they have no rigourous definitions, but
some definitions proposed in the literature [37,38] might be
able to approximately describe these quantities.
In this paper, using the exactly solvable Friedrichs

model, we propose a general framework to include the
hadron interaction corrections to the quark model spectrum
predictions, in particular to the generally accepted GI’s
standard results. The explicit wave function for the reso-
nances can be obtained and the compositeness and elemen-
tariness of the bound states can be calculated which are
important for further study of the properties of the state.
Using this scheme, we could reproduce the first excited
P-wave charmoniumlike states. In particular, we find that
the Xð3872Þ could be dynamically generated in a natural
way by the coupling of the bare χc1ð2PÞ state and
continuum states, but its molecular components are larger.
The χc0ð2PÞ is found unexpectedly to be a narrow one.

We also predict the appearance of the hcð2PÞ state to be at
about 3890 MeV with a pole width of about 44 MeV.
This scheme is promising in matching the predictions of
the GI model with the observed states. The acceptable
consistency of our results and experiments means that the
hadron interactions really give large corrections to the GI’s
results for open flavor channels which can reconcile the
discrepancy between the quark model prediction and the
experiments.
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