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Experimental data from hadronic τ decays allow for a precision determination of the slope of the I ¼ 1

vacuum polarization at zero momentum. We use this information to provide a value for the next-to-next-to-
leading order (NNLO) low-energy constant C93 in chiral perturbation theory. The largest systematic error in
this determination results from the neglect of terms NNNLO (and higher) in the effective chiral Lagrangian,
whose presence in the data will, in general, make the effective C93 determined in an NNLO analysis mass
dependent. We estimate the size of this effect by using strange hadronic τ-decay data to perform an alternate
C93 determination based on the slope of the strange vector polarization at zero momentum, which differs
from that of the I ¼ 1 vector channel only through SUð3Þ flavor-breaking effects. We also comment on the
impact of such higher order effects on ChPT-based estimates for the hadronic vacuum polarization
contribution to the muon anomalous magnetic moment.
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I. INTRODUCTION

The spin J ¼ 0þ 1 polarization sums, Π0þ1
V=A;ud;us, of the

flavor ud and us vector (V) and axial vector (A) current two-
point functions of QCD have been calculated to two-loop
order in chiral perturbation theory (ChPT) [1]. It is therefore,
in principle, possible to provide estimates for low-energy
constants (LECs) appearing in these expressions at next-to-
next-to-leading order (NNLO) by comparing the relevant
ChPTexpressions to either dispersive representations of the
subtracted polarizations, Π0þ1;sub

V=A;ud;usðQ2Þ≡Π0þ1
V;ud;usðQ2Þ−

Π0þ1
V;ud;usð0Þ, or inverse-moment finite-energy sum-rule

(IMFESR) results for their slopes at Q2 ¼ −q2 ¼ −s ¼ 0,
both of which can be determined from experimental data
for the spectral functions in the V and A channels. Since
LECs encode the physics of QCD at low energies, their
knowledge is indispensable in phenomenological applica-
tions of ChPT. Since many applications now employ ChPT
to NNLO, it is important to determine the numerical values
of as many NNLO LECs as possible.1

The LECs that appear in the ChPT expressions for
Π0þ1

V=A;ud;usðQ2Þ are the next-to-leading order (NLO)
LECs L9 and L10 and the NNLO LECs C12, C13, C61,
C62, C80, C81, C87 and C93 in the SUð3Þ-flavor-symmetric
limit, and, in addition, the NLO LEC L5 in flavor-breaking
contributions proportional to m2

K −m2
π . In previous work

[2–4], we provided determinations of L10 and the linear
combinations C12 − C61 þ C80, C13 − C62 þ C80, C61 and

C87 using dispersive and IMFESR results for the flavor ud
V−A polarization and flavor-breakingud − usV andV þ A
polarization combinations. For the ud V − A polarization,
both lattice results at unphysical quark mass [5] and
physical-quark-mass results, obtained using hadronic τ
decay data from OPAL [6] and ALEPH [7] for the non-
strange spectral functions, were employed. The IMFESRs
used to determine the Q2 ¼ 0 values of the flavor-breaking
V and V þ A polarizations required, in addition, strange
hadronic τ-decay data from ALEPH [8], Belle [9–11] and
BABAR [12–14], together with 2014 Heavy Flavor
Averaging Group (HFAG) strange branching fractions [15].
In the present paper, we consider the LECC93, which can

be obtained from a determination of the slopewith respect to
Euclidean momentum-squared, Q2, at Q2 ¼ 0, of the V
polarization using the ALEPH data. C93 is the only NNLO
LEC appearing in the NNLO representation of the
subtracted polarizationsΠsub

ud;usðQ2Þ.2 The ud representation
also depends on the NLO LEC L9 and the us representation
on the NLO LECs L5 and L9. With Πsub

ud;usðQ2Þ both
admitting once-subtracted dispersive representations, C93

can, in principle, be determined from the experimental
spectral data of either channel. As in our previous work,
wewill takeL5 andL9 from outside sources [16,17]. In what
follows, in addition toΠsub

ud;us, we also consider the subtracted
version of the V current polarization,ΠηðQ2Þ in the notation

1For one application, see the discussion in Sec. Vof this paper.

2Since we will consider only the spin J ¼ 0þ 1 V case in this
paper, we will drop the superscript 0þ 1 and the subscript V from
now on.

PHYSICAL REVIEW D 96, 054027 (2017)

2470-0010=2017=96(5)=054027(9) 054027-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.054027
https://doi.org/10.1103/PhysRevD.96.054027
https://doi.org/10.1103/PhysRevD.96.054027
https://doi.org/10.1103/PhysRevD.96.054027


of Ref. [1], associated with the neutral octet V current
ðūγμuþ d̄γμd − 2s̄γμsÞ=

ffiffiffi
6

p
. L9 and C93 are the only NLO

and NNLO LECs appearing in the NNLO representation
of Πsub

η ðQ2Þ.
Spectral functions [generically denoted ρðsÞ] obtained

from hadronic τ decays are, of course, limited to s ≤ m2
τ .

This limits the radius, s0, of the circular contour in the
complex-s plane used in τ-based IMFESRs to s0 ≤ m2

τ .
Dispersive representations of the subtracted polarizations
require the corresponding ρðsÞ for all s. In the ud channel, we
will use a representation of ρðsÞ above the τ mass obtained
from sum-rule-based fits employing perturbation theory,
augmented by a model for duality-violating (resonance)
effects, performed in Ref. [18]. While this introduces an
assumptionabout thevalidity of thismodel into our extraction
of C93, the low-Q2 region from which C93 is determined is
very insensitive to the details of this assumption. Hence, we
believe that the associated potential uncertainty is far smaller
than the systematic error due to the neglect of orders beyond
NNLO in ChPT.
Since we will employ ChPT to NNLO, the value of C93

obtained from the ud V channel analysis, which we denote
by Cud

93, will have a residual mass dependence, originating
from the effect of beyond-NNLO loop and LEC contribu-
tions present in the data, but absent from the NNLO
representation of Πsub

ud ðQ2Þ. NNNLO loop corrections have
not been calculated, so an expanded NNNLO analysis is
not possible. We will, therefore, use flavor-breaking
IMFESRs to obtain an estimate for the slope of the
difference of the us and ud V polarizations, hence also
of the slope of the us V polarization, at Q2 ¼ 0. This latter
result provides an alternate NNLO us-V-channel-based
determination, Cus

93, of C93. The difference between Cud
93 and

Cus
93 then provides an estimate of the size of residual mass-

dependent effects originating from orders beyond NNLO.
This paper is organized as follows. In Sec. II we summa-

rize the necessary theory, and in Sec. III we present our
central ud-V-channel-based result for C93, with the exper-
imental error coming from the ALEPH data. In Sec. IV we
analyze the us − ud difference mentioned above, and obtain
an estimate of the systematic error due to theneglect of higher
orders in ChPT. In Sec. V we comment on the use of NNLO
ChPT for estimates of the hadronic vacuum-polarization
contribution to the anomalous magnetic moment of the
muon. We conclude with a discussion of our results.

II. THEORY SUMMARY

In this section we briefly summarize the necessary
theory.

A. ChPT

In the isospin limit, the expression for the subtracted
vacuum polarization Πsub

ud ðQ2Þ was calculated to NNLO in

ChPT in Ref. [1]. As a function of Euclidean momentum-
squared Q2, it is given by

Πsub
ud ðQ2Þ¼−8B̂ðQ2;m2

πÞ−4B̂ðQ2;m2
KÞ

þ16

f2π
Lr
9Q

2ð2BðQ2;m2
πÞþBðQ2;m2

KÞÞ

−
4

f2π
Q2ð2BðQ2;m2

πÞþBðQ2;m2
KÞÞ2þ8Cr

93Q
2;

ð2:1Þ

where B̂ðQ2; m2Þ ¼ BðQ2; m2Þ − Bð0; m2Þ is the sub-
tracted standard, equal-mass, two-propagator, one-loop
integral, with

Bð0;m2Þ ¼ 1

192π2

�
1þ log

m2

μ2

�
;

B̂ðQ2;m2Þ

¼ 1

96π2

0
B@
�
4m2

Q2
þ 1

�
3=2

coth−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2

s
−
4m2

Q2
−
4

3

1
CA;

ð2:2Þ
and the low-energy constants (LECs) Lr

9 and Cr
93 are

renormalized at the scale μ, in the “MSþ 1” scheme
employed in Ref. [1].
From Eq. (2.1) it is clear that Cr

93 can be determined from
the slope of Πsub

ud ðQ2Þ atQ2 ¼ 0. Since we will only use the
explicit expression for Πsub

us ðQ2Þ for a systematic error
estimate, we do not provide it here, but refer to Ref. [1]
for the full expression.3

B. Flavor-breaking sum rule

The difference ΔΠðQ2Þ of the ud and us spin J ¼ 0þ 1

V unsubtracted two-point functions ΠudðQ2Þ and ΠusðQ2Þ
satisfies the flavor-breaking IMFESR [19]

dΔΠðQ2Þ
dq2

����
q2¼0

¼ −
dΔΠðQ2Þ

dQ2

����
Q2¼0

¼
Z

s0

4m2
π

dswτðs=s0Þ
ΔρðsÞ
s2

þ 1

2πi

I
jsj¼s0

dswτðs=s0Þ
ΔΠðQ2 ¼ −sÞ

s2
;

ð2:3Þ

where q2¼−Q2, wτðxÞ¼ð1−xÞ2ð1þ2xÞ, and ΔρðsÞ ¼
ρudðsÞ − ρusðsÞ. As long as we choose s0 ≤ m2

τ , the first

3In the notation of Ref. [1], Πsub
us ðQ2Þ ¼ Πð1Þ

VKð−Q2Þ þ
Πð0Þ

VKð−Q2Þ − ðΠð1Þ
VKð0Þ þ Πð0Þ

VKð0ÞÞ.
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integral on the right-hand side can be computed using
experimentally available spectral functions. We have used
that wτð0Þ ¼ 1 and dwτðs=s0Þ=dsjs¼0 ¼ 0.
As in other applications of FESRs, we will approximate

ΔΠðsÞ in the second integral by the operator product
expansion (OPE),4 and assume that the contribution from
duality violations to this sum rule are negligibly small. In
this case, this is reasonable because of the presence of a
weight function with a double pinch at s ¼ s0, as well as a
further 1=s2 suppression of the contribution from higher-s
values to the integral. This assumption can be tested for
self-consistency by studying the s0 dependence of the right-
hand side of Eq. (2.3). Because the left-hand side is
independent of s0, the individually s0-dependent ud- and
us-spectral integral and OPE integral contributions should
combine to produce a right-hand side independent of s0,
within errors.
The sum rule (2.3) gives access to the difference of the

slopes of the subtracted polarizations Πsub
ud ðQ2Þ and

Πsub
us ðQ2Þ at Q2 ¼ 0. This, together with the independent

dispersive determination of the slope of Πsub
ud ðQ2Þ, yields

the value of the slope of Πsub
us ðQ2Þ at Q2 ¼ 0. The NNLO

expression for this slope provides the alternate determi-
nation, Cus

93, of C93 already introduced above.
Of course, since LECs are, by definition, mass indepen-

dent, the NNLO analysis results Cud
93 and C

us
93 should be the

same, provided NNNLO and higher order contributions are
negligible. The experimental data used in their determi-
nation, however, know about the existence of higher orders
in ChPT, and if these are not, in fact, negligible, we expect
the two values to be different. The numerical difference
provides an indication of the size of higher-order, residual
mass-dependent effects.
In ChPT, the leading mass-dependent corrections to the

slopes of the V polarizations at Q2 ¼ 0 result from
NNNLO operators having a single insertion of the chiral
mass operator (χþ in the notation of Ref. [20]). A two-trace
NNNLO operator of this form in which χþ appears through
the factor TrðχþÞ produces an SUð3Þ-flavor-symmetric
contribution proportional to 2m2

K þm2
π to the slopes of

all of the ud, us and η V channel polarizations atQ2 ¼ 0. A
single-trace NNNLO operator containing one factor of χþ,
similarly, produces contributions proportional to m2

π , m2
K

and m2
η ¼ 4

3
m2

K − 1
3
m2

π, respectively, to those same slopes.5

To take these effects into account, we introduce two

NNNLO LECs, δCð1Þ
93 and δCð2Þ

93 , where the (1), (2) super-
scripts indicates the number of trace factors in the

accompanying operators, normalized such that they pro-
duce mass-dependent contributions

Cud
93 ¼ Cr

93 þ δCð2Þ
93 ð2m2

K þm2
πÞ þ δCð1Þ

93 m
2
π;

Cus
93 ¼ Cr

93 þ δCð2Þ
93 ð2m2

K þm2
πÞ þ δCð1Þ

93 m
2
K;

Cη
93 ¼ Cr

93 þ δCð2Þ
93 ð2m2

K þm2
πÞ þ δCð1Þ

93

�
4

3
m2

K −
1

3
m2

π

�
:

ð2:4Þ

Only the first of the new NNNLO LECs, δCð1Þ
93 , contrib-

utes to the difference Cud
93 − Cus

93 at NNNLO, and thus if,
guided bywhat is found atNNLO,we assumeNNNLOLEC
contributions will dominate loop contributions also at
NNNLO, the sum rule (2.3) will give us an estimate of

δCð1Þ
93 . The observation that δCð2Þ

93 is suppressed in large Nc

then leads to two expectations: one thatCud
93 should be much

closer to the true, mass-independent C93 than Cus
93; the other

that the difference Cud
93 − Cus

93 should give a reasonably
conservative estimate of the systematic error associated
with the neglect of contributions beyond NNLO in ChPT.
We emphasize that loop contributions at NNNLO will also
produce mass-dependent contributions to the slopes of
Πsub

ud ðQ2Þ and Πsub
us ðQ2Þ, and thus that this estimate relies

on the assumption, also made in the rest of this paper, that
such mass-dependent higher-order loop contributions are
small compared to the LEC contributions, at the scale μ ¼
0.77 GeV in the MSþ 1 scheme we will use in this paper.
We note in closing this section that the higher-

order, mass-dependent effects discussed above are also
included in the phenomenological approach of Ref. [21],
where NNLO and higher LEC contributions are mod-
eled by replacing the NNLO LEC contributions propor-
tional to Cr

93 in the expressions for the subtracted
polarizations with the corresponding full vector-meson
dominance (VMD) contributions obtained using ρ and ϕ
masses in the VMD expressions for the I ¼ 1 and
strange current channels, respectively. The chiral-limit
part of the vector meson mass in this approach produces
quark-mass-independent contributions which, in the
chiral expansion, would be parametrized by a tower
of NNLO and higher LECs, including Cr

93 and the
NNNLO LEC Cr introduced in Ref. [3] (which produces
a common SUð3Þ-flavor-symmetric contribution CrQ4

to the subtracted V polarizations we consider in this
paper). The quark-mass-dependent parts of the different
vector meson masses used in the different V channels,
similarly, generate contributions which would be para-

metrized by δCð1Þ
93 , δCð2Þ

93 , and yet higher-order LECs.
The VMD extension of the NNLO results contains
only contributions analytic in Q2 in the low-Q2 region
and hence also neglects NNNLO and higher loop
contributions.

4Mass-independent, purely perturbative contributions cancel
for the flavor-breaking combination considered here. The lead-
ing, dimension-2, OPE contribution is thus perturbative in origin,
and of order ðms −mÞ2=s, where m is the u, d-averaged light
quark mass.

5Here we use the tree-level relations between quark and meson
masses.

DETERMINATION OF THE NNLO LOW-ENERGY CONSTANT … PHYSICAL REVIEW D 96, 054027 (2017)

054027-3



III. C93 FROM ALEPH DATA

The once-subtracted ud V polarization Πsub
ud ðQ2Þ can be

defined in terms of the corresponding spectral function
ρudðsÞ as a function of the Euclidean momentum-squared
Q2 by the dispersion relation

Πsub
ud ðQ2Þ ¼ −Q2

Z
∞

4m2
π

ds
ρudðsÞ

sðsþQ2Þ : ð3:1Þ

For s < m2
τ , we can use the experimental spectral function

provided by Ref. [7], but for s > m2
τ we will need a

theoretical representation, with parameters fit from the data
in the region below m2

τ. We follow the procedure employed
in Refs. [2,4,22], using the fitted version of the theoretical
representation obtained starting from the rescaled version
of the data for the ALEPH ud spectral function, and
following the procedure described in detail in Ref. [18].
The theoretical representation is the sum of the QCD
perturbation theory (PT) expressionρud;PTðsÞ and a “duality-
violating” (DV) part ρud;DVðsÞ representing the effects of
resonances, with the ansatz

ρud;DVðsÞ ¼ e−δV−γVs sin ðαV þ βVsÞ ð3:2Þ

used for the DV part. The perturbative expression is known
to order α4s [23]. Fits to theweighted integrals of the ALEPH
data determining the parameters αs, αV , βV , γV and δV have
been performed in Ref. [18], with a focus on the high-
precision determination of αs from hadronic τ decays. We
will use the values obtained from the fixed-order perturba-
tion theory (FOPT) sswitch ¼ smin ¼ 1.55 GeV2 fit of
Table 1 of Ref. [18],

αsðm2
τÞ ¼ 0.295ð10Þ;
αV ¼ −2.43ð94Þ;
βV ¼ 4.32ð48Þ GeV−2;

γV ¼ 0.62ð29Þ GeV−2;

δV ¼ 3.50ð50Þ: ð3:3Þ

The matches between the data and theory representations of
both theweighted spectral integrals and the spectral function
in the window used in performing the fits are excellent, and
there is no discernible effect onΠsub

ud ðQ2Þ for thevalues ofQ2

smaller than 0.2 GeV2 of interest in the comparison to ChPT
if we vary the point at which we switch from the exper-
imental to the theoretical version of ρudðsÞ within this fit
window, use the results of a contour-improved perturbation
theory (CIPT)[24] fit instead of an FOPT fit, or employ
parameter values from one of the other optimal fits in
Ref. [18]. Results for Πsub

ud ðQ2Þ in the region below
Q2 ¼ 0.2 GeV2, at intervals of 0.01 GeV2, are shown in
Fig. 1. The errors shown are fully correlated, taking into

account, in particular, correlations between the parameters
of Eq. (3.3) and the data. We emphasize again that
systematic effects due to the use of the ansatz (3.2) can
be assumed to be small compared to systematic effects due to
the neglect of higher orders in ChPT.
It follows from Eq. (2.1) that the slope of Πsub

ud ðQ2Þ at
Q2 ¼ 0 is a linear combination of the LECs Lr

9 and C
r
93. We

will use

mπ ¼ 139.57 MeV;

mK ¼ 495.65 MeV;

fπ ¼ 92.21 MeV: ð3:4Þ

The errors on these values are so small that they can be
ignored in the computation of the error on Cr

93. We also use
the value [17]

Lr
9ðμ ¼ 0.77 GeVÞ ¼ 0.00593ð43Þ: ð3:5Þ

With these inputs, the NNLO representation of the slope,
Eq. (2.1), becomes

dΠsub
ud ðQ2Þ
dQ2

����
Q2¼0

¼ ð−0.02253 − 0.00291

− 0.02775ð201ÞÞ GeV−2 þ 8Cud
93 ;

ð3:6Þ

where the first term is the NLO contribution, the second the
NNLO loop contribution involving only LO vertices and
the third the NNLO loop contribution proportional to Lr

9.
The slope obtained from the results for Πsub

ud ðQ2Þ shown in
Fig. 1,6

0.00 0.05 0.10 0.15 0.20
0.025

0.020

0.015

0.010

0.005

0.000

Q2 GeV2

udsu
b

Q
2

FIG. 1. Πsub
ud ðQ2Þ as a function of Q2 constructed from ALEPH

data as explained in Sec. III.

6The error on this value is based on propagation of the full
covariance matrix.
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dΠsub
ud ðQ2Þ
dQ2

����
Q2¼0

¼ −0.17608� 0.00291 GeV−2; ð3:7Þ

then yields, for the (potentially mass-dependent) ud
channel effective LEC Cud

93 , the result

Cud
93ðμ ¼ 0.77 GeVÞ
¼ −0.01536� 0.00036� 0.00025 GeV−2; ð3:8Þ

where the first error comes from the error in the slope, and
the second from the error in Lr

9. As one can see, the result in
(3.6) is dominated by the contribution from Cud

93 . Residual
mass-dependent effects causing Cud

93 to, in principle, differ
from Cr

93 remain to be estimated.

IV. ESTIMATE OF RESIDUAL MASS
DEPENDENCE

The value for C93 obtained in Eq. (3.8) appears to have a
very small error, but this is misleading. There are, in fact,
other small errors which we neglected in this result, for
instance due to the use of our ansatz (3.2) and isospin
breaking. However, as mentioned already above, there is
also a theoretical systematic error due to the neglect of orders
in ChPT beyond NNLO, which is likely to be more
important, and which we address in this section. We
do so by using the IMFESR (2.3) to determine the difference
in the slopes at Q2 ¼ 0 of Πsub

ud ðQ2Þ and Πsub
us ðQ2Þ, and,

from this, using the result for dΠsub
ud ðQ2Þ=dQ2jQ2¼0 from

Eq. (3.7), determine dΠsub
us ðQ2Þ=dQ2jQ2¼0, whose NNLO

representation then provides uswith an alternate,us-channel
determination of C93, denoted Cus

93. C
ud
93 and Cus

93 should be
equal within errors if contributions beyond NNLO are
negligible. As it turns out, they are not, and this allows us
to estimate the effect of the neglect of higher order
contributions. While it is difficult to convert this estimate
into a reliable systematic error, it will be clear that this is the
dominant uncertainty in our result for Cr

93.
In order to evaluate the right-hand side of Eq. (2.3), we

will need the ud and us spectral functions, as well as the
dimension-2 and dimension-4 terms in the OPE.
The ud spectral function is the same as that used to

construct Πsub
ud ðQ2Þ above; we refer again to Ref. [18] for a

more detailed discussion (cf., Sec. III.A, in particular).
The us spectral function we will use is constructed as a

sum over exclusive mode contributions, as in Ref. [3], to
which we refer for a detailed discussion (cf., Sec. III.C, in
particular). All 2014 HFAG inputs used previously have
been updated to reflect current 2016 HFAG values [25].
One additional issue to consider is the choice of

Kπ branching fractions. These provide the overall normali-
zation used to convert the unit-normalized Belle experi-
mental distribution [9] to the actual, physically normalized
Kπ contribution to the us spectral function. The first
normalization is the one provided by HFAG [25],

B½K−π0� ¼ 0.00433ð15Þ;
B½K̄0π−� ¼ 0.00839ð14Þ; ð4:1Þ

the errors of which are essentially uncorrelated, yielding
a 2-mode Kπ branching fraction sum 0.01271(21). The
dispersive study of Ref. [26] (referred to as ACLP below),
however, finds clear tension between such branching frac-
tion values,Kl3 results and dispersive constraints on theKπ
form factors. The analysis of Ref. [26] yields slightly higher
expectations for these branching fractions,

B½K−π0� ¼ 0.00471ð18Þ;
B½K̄0π−� ¼ 0.00857ð30Þ; ð4:2Þ

this time with the errors essentially 100% correlated and
hence a 2-mode Kπ branching fraction sum 0.01327(48).
We consider both possibilities in our analysis; the associated
ud − us slope uncertainty is found to be about half the size of
the error induced by other experimental uncertainties.
We treat the OPE in the sameway as in Ref. [3], and refer

to Sec. III.B of Ref. [3] for the explicit expressions. We will
use the input parameters [27–31]7

αsðm2
τÞ ¼ 0.3155ð90Þ ðconverted fromRef: ½27�Þ;

msð2 GeVÞ ¼ 93.9ð1.1Þ MeV ðRef: ½28�Þ;
mτ ¼ 1.77686ð12Þ MeV ðRef: ½27�Þ;

hs̄si=hūui ¼ 1.08ð16Þ ðRef: ½29�Þ;
Be ¼ 0.17815ð23Þ ðRef:½25�Þ;
Vud ¼ 0.97417ð21Þ ðRef:½30�Þ;
Vus ¼ 0.22582ð91Þ ð3-family unitarityÞ;
SEW ¼ 1.0201ð3Þ ðRef: ½31�Þ; ð4:3Þ

where hūui is in the isospin limit, and its value is obtained
from the Gell-Mann Oakes Renner relation. We find that
the OPE contribution to the right-hand side of Eq. ([19]) is
less than 1.6% of the total for s0 ¼ 2.15 GeV2, and
decreases for larger values of s0.
Very good s0-stability is observed for the slope obtained

from this analysis. This is illustrated, for the ACLP choice
of the Kπ normalization, in Fig. 2. The figure shows the
individual terms (OPE integral, ud spectral integral and us
spectral integral) appearing on the right-hand side of
Eq. (2.3), together with the ud − usþ OPE combination

which determines − dΔΠðQ2Þ
dQ2 jQ2¼0, all as a function of s0.

The corresponding results for the HFAG Kπ normaliza-
tion choice are essentially identical, and hence not

7Because the OPE contribution to Eq. (2.3) is so small, it does
not matter whether one uses the value for αsðm2

τ Þ given below, or
the one given in Eq. (3.3).
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shown explicitly. The excellent s0-stability provides a self-
consistency check on our neglect of duality violations
employing the IMFESR (2.3), and confirms the very minor
role played by the OPE.
Using the Kπ branching-fraction normalization of

Eq. (4.1), and quoting the s0 ¼ m2
τ result to be specific,

we find a slope for the ud − us difference

dΔΠðQ2Þ
dQ2

����
Q2¼0

¼ −0.0894ð35Þ GeV−2; ð4:4Þ

which yields

dΠsub
us ðQ2Þ
dQ2

����
Q2¼0

¼ −0.0867ð46Þ GeV−2 ð4:5Þ

for the slope in the us channel. The corresponding NNLO
representation, with Eq. (3.4) as input, is

dΠsub
us ðQ2Þ
dQ2

����
Q2¼0

¼ ð−0.000868 − 0.004740 − 0.6836Lr
5

− 0.5419Lr
9Þ GeV−2 þ 8Cus

93; ð4:6Þ

with the first term the NLO contribution, the second the
NNLO loop contribution involving only LO vertices and
the third and fourth the NNLO one-loop contributions with
a single NLO vertex. Using [28]

Lr
5ðμ ¼ 0.77 GeVÞ ¼ 0.00119ð25Þ; ð4:7Þ

and Eq. (3.5) for Lr
9, we have, adding the first two terms on

the right-hand side of Eq. (4.6),

dΠsub
ud ðQ2Þ
dQ2

����
Q2¼0

¼ ð−0.005606 − 0.000814ð171Þ

− 0.003214ð230ÞÞ GeV−2 þ 8Cus
93;

ð4:8Þ

and hence

Cus
93ðμ ¼ 0.77 GeVÞ ¼ −0.00963ð58Þ GeV−2; ð4:9Þ

where the error is dominated by the experimental error on
the ud − us slope. Again, as in the ud channel, the slope
(4.8) is dominated by the contribution from the LEC Cus

93.
Using, instead, the Kπ branching-fraction normalization

of Eq. (4.2), we find a slope for the ud − us difference

dΔΠðQ2Þ
dQ2

����
Q2¼0

¼ −0.0868ð40Þ GeV−2 ð4:10Þ

at s0 ¼ m2
τ , yielding for the slope in the us channel

dΠsub
us ðQ2Þ
dQ2

����
Q2¼0

¼ −0.0893ð49Þ GeV−2; ð4:11Þ

and the result

Cus
93ðμ ¼ 0.77 GeVÞ ¼ −0.00996ð61Þ GeV−2: ð4:12Þ

The values (4.9) and (4.12) are consistent within errors.
Comparing these results with that in Eq. (3.8) shows the
existence of significant residual mass-dependent effects.
Taking the average of the values (4.9) and (4.12) yields

Cud
93 − Cus

93

Cud
93

����
μ¼0.77 GeV

¼ 0.36ð4Þ: ð4:13Þ

The size of this difference is consistent with the expectation
for an SUð3Þ breaking effect. Finally, from

dΔΠðQ2Þ
dQ2

����
Q2¼0

¼ ð−0.019832þ 0.6836Lr
5

− 4.1376Lr
9Þ GeV−2 − 8δCð1Þ

93 ðm2
K −m2

πÞ;
ð4:14Þ

we find

δCð1Þ
93 ðm2

K −m2
πÞ ¼

�
0.00573ð49Þ GeV−2 ðHFAGÞ;
0.00540ð55Þ GeV−2 ðACLPÞ;

ð4:15Þ

for the Kπ branching-fraction normalizations of Ref. [25]
and Ref. [26], respectively.
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FIG. 2. Contributions to the right-hand side (RHS) of the
IMFESR (2.3) and the resulting ud − usþ OPE sum, as a function
of s0. The us spectral integrals are those obtained using the ACLP
branching-fraction normalization of the Kπ distribution.
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V. CHPT AND THE MUON ANOMALOUS
MAGNETIC MOMENT

The lowest-order hadronic contribution to the muon
anomalous magnetic moment is given by an integral over
Q2 of the hadronic vacuum polarization times a weight that
causes about 90% of the integral to correspond to the
integral between Q2 ¼ 0 and Q2 ¼ 0.2 GeV2. One may
thus hope that ChPT can be used to constrain the low-
momentum part of this integral [21,32–34]. In particular,
since it is difficult to compute the quark-disconnected part
of the hadronic vacuum polarization on the lattice [35–38],
ChPT has been used to estimate the size of the disconnected
contribution relative to the connected contribution [21,33].
In Ref. [37], the disconnected part has been computed

on the lattice. In this analysis, an estimate of the systematic
uncertainty associated with the inability to accurately
resolve the disconnected signal at large Euclidean times
was achieved by considering the Fourier transform
Πuu−ss;dd−ssðQ2Þ of h0jT½Vμ

uu−ssðxÞVν
dd−ssð0Þ�j0i, which

(in the isospin limit) is equal to 9 times the sum of the
connected strange and the full disconnected contributions to
the electromagnetic vacuum polarization. A physical model
for the large-time disconnected contribution was then
obtained by subtracting from a fitted two-exponential rep-
resentation of the strange-connected-plus-full-disconnected
sum the well-determined strange connected contribution.
Though restricted in Ref. [37] to an investigation of the
behavior of the disconnected contribution at large Euclidean
times, this strategy is, in principle, usable more generally.
Thus, were a reliable continuum representation of the
strange-connected-plus-full-disconnected sum to be avail-
able, the disconnected contribution to the electromagnetic
polarization could be obtained from this simply by sub-
tracting lattice results for the strange connected contribution,
which, for example, has been accurately determined in
Refs. [39,40]. The hope is that ChPT might provide such
a reliable continuum representation, at least in the low-Q2

region.To see that thismight indeed bepossible, note that one
has, in terms of the I ¼ 1 and SUð3Þ-octet vacuum polar-

izations Πð1Þ
Vπ and Πð1Þ

Vη of Ref. [1],

Πuu−ss;dd−ssðQ2Þ ¼ −
1

2
Πð1Þ

VπðQ2Þ þ 3

2
Πð1Þ

Vη ðQ2Þ: ð5:1Þ

The results of Ref. [1] thus provide an NNLO representation
of Πuu−ss;dd−ssðQ2Þ. From Eq. (2.4), the “effective” C93

contribution, including NNNLO residual mass effects, to
1
9
Πuu−ss;dd−ssðQ2Þ is equal to

8

9
Q2Ceff

93≡ ¼ 8

9
Q2ðCr

93 þ δCð1Þ
93 ð2m2

K −m2
πÞ

þ δCð2Þ
93 ð2m2

K þm2
πÞÞ

¼ 8

9
Q2ðCud

93 þ 2δCð1Þ
93 ðm2

K −m2
πÞÞ: ð5:2Þ

Using Eqs. (3.8) and (4.15), we find a significant

cancellation between the Cud
93 and the δCð1Þ

93 contributions
in (5.2) resulting in

Ceff
93 ¼

�
−0.0039ð11Þ GeV−2 ðHFAGÞ;
−0.0046ð12Þ GeV−2 ðACLPÞ: ð5:3Þ

The two estimates are consistent within errors, but very
different from our best estimate for the true value of Cr

93,
given in Eq. (3.8). The strong cancellation between the

Cud
93 and the δCð1Þ

93 contributions produces a result for

the slope of 1
9
½− 1

2
Πð1Þ

Vπ þ 3
2
Πð1Þ

Vη � much less strongly domi-

nated by the effective NNLO LEC combination Cud
93 þ

2ðm2
K −m2

πÞδCð1Þ
93 than is the case for the slopes of either

of the individual terms entering the difference. Explicitly,
one finds for the slope of this combination

½0.00082þ 0.00016þ 0.00189ð14Þ� GeV−2 þ 8

9
Ceff
93

¼ 0.00287ð14Þ GeV−2 þ 8

9
Ceff
93 ; ð5:4Þ

where the first three terms in the first line are the NLO
contribution, the NNLO loop contribution with only LO
vertices, and the NNLO loop contribution proportional to
Lr
9, respectively, all at μ ¼ 0.77 GeV. The results given in

Eq. (5.3) yield for the last contribution, 8Ceff
93=9, the

values −0.0035ð9Þ and −0.0041ð10Þ GeV−2, for the
HFAG and ACLP Kπ normalization choices, respec-
tively.8 These are only slightly larger in magnitude than
the sum of the NLO and other NNLO contributions. In

contrast, for dΠð1Þ
Vπ ðQ2Þ
dQ2 jQ2¼0, the results of Eq. (3.6) show a

μ ¼ 0.77 GeV NNLO contribution proportional to Cud
93 a

factor of ∼5.5 larger than the corresponding NLO con-
tribution and ∼4.0 larger than the remaining NNLO

contributions. The slope
dΠð1Þ

Vη ðQ2Þ
dQ2 jQ2¼0 is even more

8It is worth noting that, though the VMD estimates for Cud
93 and

Cus
93 differ by ∼10–30% from the corresponding dispersive and

IMFESR determinations (see below for details), the VMD
estimate for Ceff

93 works rather well. Explicitly, with fEM;V the
vector meson decay constants, h0jJEMμ jVðqÞi¼gEM;VmVϵμðqÞ ¼
fEM;Vm2

VϵμðqÞ, one finds the VMD expectation

8

9
Ceff
93 ¼ 1

9

f2EM;ρ

m2
ρ

−
f2EM;ω

m2
ω

−
f2EM;ϕ

m2
ϕ

: ð5:5Þ

With PDG values for the masses and V → eþe− decay widths,
gEM;ρ ¼ 156.4MeV, gEM;ω ¼ 46.6 MeV and gEM;ϕ ¼ 75.9 MeV,
the VMD estimate yields Ceff

93 ¼ −0.0041 GeV−2, in good
agreement with the results of Eq. (5.3).
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strongly dominated by the effective NNLO LEC contri-
bution, with

dΠð1Þ
Vη ðQ2Þ
dQ2

����
Q2¼0

¼ ð−0.00258 − 0.00002

þ 0.00210ð15ÞÞ GeV−2 þ 8Cη
93; ð5:6Þ

where Cη
93 ≡ Cud

93 þ 4
3
δCð1Þ

93 ðm2
K −m2

πÞ, the first three terms
have the samemeaning as inEq. (3.6) and,with the results for

Cud
93 and δCð1Þ

93 given above, 8Cη
93 ¼ −0.0653ð56Þ GeV−2

and −0.0618ð53Þ GeV−2, for the ACLP and HFAG Kπ
normalization cases, respectively. Moreover, in contrast to

the Πð1Þ
Vπ and Πð1Þ

Vη cases, where the effective NNLO LEC
contributions have the same signs as the NLO and remaining
NNLO contributions, the effective NNLO LEC contribution
to the slope in Eq. (5.4) has the opposite sign, leading to
further cancellation between the effective NNLO LEC and
other contributions. The final values for the slope of the
1
9
½− 1

2
Πð1Þ

Vπ þ 3
2
Πð1Þ

Vη � combination, −0.0006ð10Þ GeV−2 and
−0.012ð11Þ GeV−2 for the HFAG and ACLP Kπ normali-
zation choices, respectively, thus show a further factor of 3 to
6 reduction relative to the already reduced effective NNLO
LECcontributions. This raises thequestionof howsafe it is to
neglect NNNLO and higher loop contributions for this
particular combination.9

We emphasize that the mass-dependent NNNLO terms
considered here further supplement the mass-independent
NNNLO contribution CrQ4 added to Eq. (2.1) in
Refs. [34,41]. The latter was required to account for the
deviation between the Q2 dependence of the full vacuum
polarization and the NNLO ChPT expression, visible
already beyond Q2 ≈ 0.1 GeV2. Such a mass-independent
term is, of course, also present at NNNLO, but does not
contribute to the values of the slopes at Q2 ¼ 0 consid-
ered above.

VI. DISCUSSION

We determined the value of the NNLO LEC C93 from
ALEPH data for the V hadronic ud and us spectral
functions. The difference between these two determinations
gives an estimate of the systematic uncertainty due to

effects beyond NNLO in ChPT, and turns out to dominate
the total uncertainty.
One would expect that the value Cud

93 is closer to the true
mass-independent result than Cus

93 since the pion mass is
much smaller than the kaon mass. Assuming a mass-
dependent contamination linearly dependent on the square
of the meson mass, this would lead to an extrapolated value
Cr
93 ¼ −0.0158 GeV2. Such an extrapolation, however,

does not take into account the effect of the 1=Nc-suppressed

NNNLO contribution proportional to δCð2Þ
93 , or other higher-

order effects. To be conservative in our assessment, we
therefore take as our central result for Cr

93 the value of C
ud
93

given in Eq. (3.8) of Sec. III, and assign to this an uncertainty
equal to the differenceCus

93 − Cud
93 [cf., Eq. (4.13) in Sec. IV].

This represents our best estimate of the uncertainty asso-
ciated with the presence of residual higher-order mass-
dependent effects. Our final result is then

Cr
93ðμ ¼ 770 GeVÞ ¼ −0.015ð5Þ GeV−2: ð6:1Þ

It is interesting to compare the results obtained abovewith
estimates based on VMD. VMD leads to the expectation

Cij
93 ∼ − f2EM;V

4m2
V

[1], with mV ¼ mρ ¼ 775 MeV, fEM;V ¼
fEM;ρ ∼ 0.2 for ij ¼ ud and mV ¼ mK� ¼ 892 MeV,
fEM;V ¼ fEM;K� ∼ fEM;ρ for ij ¼ us. The resulting ij ¼
ud estimate, Cud

93 ∼ −0.017 GeV−2, agrees at the ∼10%
level with the result found in Eq. (3.8). For ij ¼ us, VMD
correctly predicts that jCus

93j < jCud
93 j, though the magnitude

in this case agrees with the determinations of Eqs. (4.9) and
(4.12) only at the approximately 30% level. As noted
already, the VMD estimate for Ceff

93 , where the existence
of strong cancellations might lead one to anticipate a much
larger fractional error, in fact, works very well. The strong
cancellation does, however, raise worries about the possible
impact of neglected NNNLO and higher loop contributions.
Finally, in Sec. V, we showed that the strong cancellation

produced by NNNLO residual-mass-dependent effects in
the supplemented NNLO representation of the sum of
strange connected and full disconnected contributions calls
into question the accuracy with which this sum can be
represented by a supplemented NNLO ChPT form neglect-
ing currently unknown NNNLO and higher-order contri-
butions. The slope of this sum atQ2 ¼ 0, in particular, could
receive sizeable corrections from such contributions, sig-
nificantly impacting the accuracy with which the associated
low-Q2 contributions to the muon anomalous magnetic
moment can be estimated.
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