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We unify two widely different approaches to understanding the infrared behavior of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational,
realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a
process-independent running coupling for QCD, a new type of effective charge that is an analogue of the
Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the
process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic
constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct
means by which to gain empirical insight into QCD’s Gell-Mann–Low effective charge.
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I. INTRODUCTION

In quantum gauge field theories defined in four spacetime
dimensions, the Lagrangian couplings and masses do not
remain constant. Instead, owing to the need for ultraviolet
(UV) renormalization, they come to depend on a mass scale,
which can often be related to the energy or momentum at
which a given process occurs. The archetype is quantum
electrodynamics (QED), for which a sensible perturbation
theory canbedefined [1].Within this framework, owing to the
Ward identity [2], there is a single running coupling,
measuring the strength of the photon–charged-fermion ver-
tex, which can be obtained by summing the collection of
virtual processes that change the bare photon into a dressed
object, viz. by computing the photon vacuum polarization.
QED’s running-coupling is known to great accuracy [3] and
the running has been observed directly [4,5].
A new coupling appears when electromagnetism is com-

bined with weak interactions to produce the Standard
Electroweak Model [6]. It may be characterized by
sin2 θW , where θW is a scale-dependent angle which
specifies the particular mixing between the model’s defin-
ing neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be defined for
the electroweak theory [7] so that sin2 θW can be computed
and compared with precise experiments [3].
At first sight, the addition of quantum chromodynamics

(QCD) [8] to the Standard Model does not qualitatively
change anything, despite the presence of four possibly
distinct strong-interaction vertices (gluon-ghost, three-
gluon, four-gluon and gluon-quark) in the renormalized
theory. An array of Slavnov-Taylor identities (STIs) [9,10],
implementing BRST symmetry [11,12] (a generalization of
non-Abelian gauge invariance for the quantized theory)

ensures that a single running-coupling characterizes all four
interactions on the domain within which perturbation
theory is valid. The difference here is that whilst QCD
is asymptotically free and extant evidence suggests that
perturbation theory is valid at large momentum scales, all
dynamics is nonperturbative at those scales typical of
everyday strong-interaction phenomena, e.g. ζ ≲mp,
where mp is the proton’s mass.
The questions that arise are how many distinct running-

couplings exist in nonperturbative QCD, and how can they
be computed? Given that there are four individual, appa-
rently UV-divergent interaction vertices in the perturbative
treatment of QCD, there could be as many as four distinct
couplings at infrared (IR) momenta. (Of course, if non-
perturbatively there are two or more couplings, they must
all become equivalent on the perturbative domain.) We will
argue herein that, nonperturbatively, too, QCD possesses
a unique running coupling. The alternative admits the
possibility of a different renormalization-group-invariant
(RGI) intrinsic mass-scale for each coupling and no
guarantee of a connection between them. In such circum-
stances, BRST symmetry would likely be irreparably
broken by nonperturbative dynamics and one would be
pressed to conclude that QCD was non-renormalizable
owing to IR dynamics. There is no empirical evidence to
support such a conclusion: QCD does seem to be a well-
defined theory at all momentum scales, owing to the
dynamical generation of gluon [13–18] and quark masses
[19–21], which are large at IR momenta.

II. PROCESS-INDEPENDENT RUNNING
COUPLING

Poincaré covariance is of enormous importance in
modern physics, e.g. it places severe limitations on the
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nature and number of those independent amplitudes that
are required to fully specify any one of a gauge theory’s
n-point Schwinger functions (Euclidean Green functions).
Analyses and quantization procedures that violate Poincaré
covariance lead to a rapid proliferation in the number of
such functions. For example, the gluon 2-point function
(propagator, Dμν) is completely specified by one scalar
function in the class of linear covariant gauges; but, in the
class of axial gauges, two unconnected functions are
required and unphysical, kinematic singularities are present
in the associated tensors [22]. Consequently, covariant
gauges are typically preferred for concrete calculations
in both continuum and lattice-regularized studies of QCD.
In fact, a Landau gauge is the most common choice
because, inter alia, it is a fixed point of the renormalization
group and readily implemented in lattice-QCD [23].
Herein, therefore, we use a Landau gauge; and, moreover,
employ a physical momentum-subtraction renormalization
scheme, detailed elsewhere [24].
As noted in Sec. I, there is a particular simplicity

to QED, viz. the unique running coupling, a process-
independent effective charge, can be obtained simply by
computing the photon vacuum polarisation. This is because
ghost-fields decouple in Abelian theories; and, conse-
quently, one has the Ward identity, which guarantees that
the electric-charge renormalization constant is equivalent
to that of the photon field. Stated physically, the impact
of dressing the interaction vertices is absorbed into the
vacuum polarization. This is not generally true in QCD
because ghost-fields do not decouple.
There is one approach to analyzing QCD’s Schwinger

functions, however, that preserves some of QED’s sim-
plicity; namely, the combination of the pinch technique
(PT) [25–30] and background field method (BFM) [31,32].
This framework can be seen as a means by which QCD can
be made to “look” Abelian: one systematically rearranges
classes of diagrams and their sums in order to obtain
modified Schwinger functions that satisfy linear STIs. In
the gauge sector, in Landau gauge, this produces a modified
gluon dressing function from which one can compute the
QCD running coupling, i.e. the polarization captures all
required features of the renormalization group.
Furthermore, the coupling is process independent: one
obtains precisely the same result, independent of the
scattering process considered, whether gluonþ gluon →
gluonþ gluon, quarkþ quark → quarkþ quark, etc. This
clean connection between the coupling and the gluon
vacuum polarization relies on another particular feature
of QCD, viz. in Landau gauge the renormalization constant
of the gluon-ghost vertex is not only finite but unity [9], in
consequence of which the effective charge obtained from
the PT-BFM gluon vacuum polarization is directly
connected with that deduced from the gluon-ghost
vertex [24], sometimes called the “Taylor coupling,”
αT [33–35].

Writing these statements explicitly, with TμνðkÞ ¼
δμν − kμkν=k2, one has [36,37]

αðζ2ÞDPB
μν ðk; ζÞ ¼

αðζ2ÞΔFðk2; ζÞ
½1þ Gðk2; ζÞ�2 TμνðkÞ ð1aÞ

¼ d̂ðk2ÞTμνðkÞ; ð1bÞ

Iðk2Þ ≔ k2d̂ðk2Þ ¼ αTðk2Þ
½1 − Lðk2; ζ2ÞFðk2; ζ2Þ�2 ; ð1cÞ

where: αðζ2Þ ¼ g2ðζ2Þ=½4π�, ζ is the renormalization scale;
DPB

μν is the PT-BFM gluon two-point function; DμνðkÞ ¼
ΔFðk2ÞTμνðkÞ is the canonical gluon two-point function;
d̂ðk2Þ is the RGI running-interaction discussed in Ref. [24];
F is the dressing function for the ghost propagator; G is
that piece of the gluon-ghost vacuum polarisation that can
be isolated by transverse projection, and L is that longi-
tudinal part which vanishes at k2 ¼ 0. In terms of these
quantities, QCD’s matter-sector gap equation can be written
ðk ¼ p − qÞ

S−1ðpÞ ¼ Z2ðiγ · pþmbmÞ þ ΣðpÞ; ð2aÞ

ΣðpÞ ¼ Z2

Z
Λ

dq
4πd̂ðk2ÞTμνðkÞγμSðqÞΓ̂a

νðq; pÞ; ð2bÞ

where the usual Z1Γa
ν has become Z2Γ̂a

ν , with the latter
being a PT-BFM gluon-quark vertex that satisfies an
Abelian-like Ward-Green-Takahashi identity [30] and Z1;2

are, respectively, the gluon-quark vertex and quark wave
function renormalization constants.
The RGI interaction, d̂ðk2Þ, in Eqs. (1) has been

computed. The most up-to-date result is discussed in
Refs. [36,37]. These analyses make explicit a remarkable
feature of QCD; namely, the interaction saturates at infrared
momenta:

d̂ðk2 ¼ 0Þ ¼ αðζ2Þ=m2
gðζÞ ¼ α0=m2

0; ð3Þ

where α0≔ αð0Þ≈0.9π, m0≔mgð0Þ≈mp=2, i.e. the gluon
sector of QCD is characterized by a nonperturbatively-
generated infrared mass-scale [13–18]. With this in mind,
we define a RGI function

Dðk2Þ ¼ ΔFðk2; ζÞ=½m2
0ΔFð0; ζÞ�; ð4Þ

employing for ΔF a parametrization of continuum- and/or
lattice-QCD calculations of the canonical gluon two-point
function built such that

1

Dðk2Þ ¼
�
m2

0 þ Oðk2 ln k2Þ k2 ≪ m2
0

k2 þ Oð1Þ k2 ≫ m2
0

; ð5Þ
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so that the nonperturbative IR behavior is preserved and the
UV anomalous dimension remains in d̂ðk2Þ. (Practical
details are provided in Sec. III). Using Eq. (4),

ΣðpÞ ¼ Z2

Z
Λ

dq
4πα̂PIðk2ÞDμνðk2ÞγμSðqÞΓ̂a

νðq; pÞ; ð6Þ

where Dμν ¼ DTμν and the dimensionless product

α̂PIðk2Þ ¼ d̂ðk2Þ=Dðk2Þ ð7Þ

is a RGI running coupling (effective charge): by construc-
tion, α̂PIðk2Þ ¼ Iðk2Þ on k2 ≫ m2

0.
The product in Eq. (7) has many important qualities. For

instance, it is process independent: as noted above, the
same function appears irrespective of the initial and final
parton systems. Moreover, it unifies a diverse and extensive
array of hadron observables [36]; a property that is evident
in the fact that the dressed-quark self-energy serves as a
generating functional for the Bethe-Salpeter kernel in all
meson channels and the product α̂PIðk2Þ is untouched by
the generating procedure in all flavored systems [38–41].
Finally, although α̂PIðk2Þ is RGI and process-independent
in any gauge, it is sufficient to know α̂PIðk2Þ in the Landau
gauge (the choice for easiest computation) because: α̂PIðk2Þ
is form-invariant under gauge transformations, since the
identity established by Eqs. (1a), (1b) is the same in all
linear covariant gauges [42]; and, crucially, gauge covari-
ance ensures that such transformations are implemented by
multiplying a simple factor into the configuration space
transform of the gap equation’s solution and may con-
sequently be absorbed into the dressed-quark two-point
function [43].

III. COMPUTING THE RUNNING
COUPLING

The effective charge defined in Eq. (7) is a product of
known quantities: both d̂ðk2Þ and the canonical gluon
two-point function have been extensively studied and
tightly constrained using continuum and lattice methods
[36,37,44]. Indeed, the known forms of these functions
provide a unified, quantitatively reliable explanation of
numerous hadron physics observables [36,44]. It is
therefore straightforward to combine existing results
and compute d̂ðk2Þ, a procedure [37] which yields the
function depicted in Fig. 1. For this purpose we used a
½n; nþ 1�, n ¼ 1, Padé approximant to simultaneously
interpolate the IR behavior of contemporary lattice
results for DμνðkÞ and express the UV constraint on
ΔFðk2; ζÞ specified in Eq. (5). The result is given in line
2, Eq. (10) of Ref. [37] and yields m0 ¼ 0.45 GeV via
Eqs. (4), (5). (Using n ≥ 2 yields no noticeable fit
improvement, but n ¼ 0 is incapable of representing
modern lattice data).

It is worth highlighting some important features of the
effective charge in Fig. 1. First, it is a parameter-free
prediction: the curve is completely determined by results
obtained for the gluon and ghost two-point functions using
continuum and lattice-regularized QCD. Second, it is
physical, in the sense that there is no Landau pole, and
it saturates in the IR: α̂PIðk2 ¼ 0Þ ¼ α0 ≈ 0.9π, i.e. the
coupling possesses an infrared fixed point [45]. Third, the
prediction is equally concrete and sound at all spacelike
momenta, connecting the IR and UV domains, and pre-
cisely reproducing the known behavior of the Taylor
coupling at large k2 [33–35], with no need for an ad hoc
“matching procedure,” such as that employed in models
[46]. Finally, our result is essentially nonperturbative,
obtained by combining self-consistent solutions of
gauge-sector gap equations with lattice simulations, aug-
mented only by a physical procedure for setting a single
mass-scale [37]. There are indications [47–49] that the
effective charge in Fig. 1 could prove useful in developing a
modern dynamical perturbation theory [50].
It is evident in Fig. 1 that ghost-gluon interactions are

critical. The RGI product LF in Eq. (1c) expresses effects
of gluon-ghost scattering that are essential to ensuring α̂PI is
process-independent. It is also quantitatively important,
introducing a roughly 60% enhancement of α̂PIðk2Þ for
k≃m0. It must also, therefore, be physically significant
because the strength of the running-coupling at IR
momenta determines the magnitude of dynamical chiral
symmetry breaking (DCSB) [36,37,44]; and DCSB is a
crucial emergent phenomenon in QCD, possibly insepa-
rable from confinement in the unquenched theory [51], i.e.
when dynamical light quarks are active.

[ ]

FIG. 1. Solid (blue) curve, complete effective charge in Eq. (7);
and dot-dashed (black) curve, Taylor-scheme effective charge, i.e.
computed in the absence of crucial pieces of the gluon-ghost
vacuum polarisation [LF≡ 0 in Eq. (1c)]. The k-axis scale is
linear to the left of the vertical line and logarithmic otherwise, an
artifice which enables us to show saturation of the effective
charge.
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IV. COMPARISON OF EFFECTIVE CHARGES

Another approach to determining an “effective charge”
in QCD was introduced in Ref. [52]. This is a process-
dependent procedure; namely, an effective running cou-
pling is defined to be completely fixed by the leading-order
term in the perturbative expansion of a given observable in
terms of the canonical running coupling. An obvious
difficulty, or perhaps drawback, of such a scheme is the
process-dependence itself. Naturally, effective charges
from different observables can in principle be algebraically
connected to each other via an expansion of one coupling in
terms of the other. However, any such expansion contains
infinitely many terms [46]; and this connection does not
imbue a given process-dependent charge with the ability to
predict any other observable, since the expansion is only
defined a posteriori, i.e. after both effective charges are
independently constructed.
One such process-dependent effective charge is αg1ðk2Þ,

which is defined via the Bjorken sum rule [53,54]:

Z
1

0

dx½gp1 ðx; k2Þ − gn1ðx; k2Þ� ¼
gA
6

�
1 −

1

π
αg1ðk2Þ

�
; ð8Þ

where gp;n1 are the spin-dependent proton and neutron
structure functions, whose extraction requires measure-
ments using polarized targets, and gA is the nucleon
isovector axial-charge [55]. The merits of this definition
are outlined in Ref. [46]. They include the existence of data
for a wide range of k2 [56–81]; tight sum-rules constraints
on the behavior of the integral at the IR and UVextremes of
k2; and the isospin nonsinglet feature of the difference,
which suppresses contributions from numerous processes
that are hard to compute and hence might muddy inter-
pretation of the integral in terms of an effective charge.
The world’s data on the process-dependent effective

charge αg1ðk2Þ are depicted in Fig. 2 and therein compared
with our prediction for the process-independent RGI
running coupling α̂PIðk2Þ. Owing to asymptotic freedom,
all reasonable definitions of a QCD effective charge must
agree on k2 ≳ 1 GeV2 and our approach guarantees this
connection. To be specific, in terms of the widely-used MS
running-coupling [3]:

αg1ðk2Þ ¼ αMSðk2Þð1þ 1.14αMSðk2Þ þ � � �Þ; ð9aÞ

α̂PIðk2Þ ¼ αMSðk2Þð1þ 1.09αMSðk2Þ þ � � �Þ; ð9bÞ

where Eq. (9a) may be built from, e.g. Refs. [82,83].
Significantly, there is also near precise agreement with

data on the IR domain, k2 ≲m2
0, and complete accord on

k2 ≥ m2
0. Figure 1 makes plain that any agreement on k2 ∈

½0.01; 1� GeV2 is nontrivial because ghost-gluon inter-
actions produce as much as 40% of α̂PIðk2Þ on this domain:
if these effects were omitted from the gluon vacuum

polarization, then αg1 and α̂PI would differ by roughly a
factor of two on the critical domain of transition between
strong and perturbative QCD.
At this point we would like to mention that other studies

have considered quantities which are related, in one way
or another, to the effective charge, α̂PIðk2Þ, depicted in
Figs. 1 and 2. Pertinent examples are described in
Refs. [87,88], which arrive at couplings with far-IR values
of ð1.3 − 1.9Þπ and ð1.1 − 1.6Þπ, respectively. Notably, the
former employed quenched lattice results for the gluon
two-point function, ΔFðk2Þ in Eq. (4), and both used a
range of estimates for the gluon mass-scale based on then-
contemporary phenomenology. Those elements explain
the differences between the IR saturation values in
Refs. [87,88] and our final result: α̂PIð0Þ ¼ ð0.9� 0.1Þπ,
which is obtained using modern unquenched lattice results
for the gluon.
Of equal or greater importance is the pointwise behavior

of those charges, i.e. their running. Ref. [88] set L≡ 0 in
Eq. (1c) and so ignored material contributions from ghost-
gluon dynamics, whose importance we have repeatedly
emphasized. Furthermore, both Refs. [87,88] assumed
that the effect of the gluon vacuum polarization is com-
pletely expressed by writing Dðk2Þ ¼ 1=½k2 þm2ðk2Þ�,
with m2ðk2Þ monotonically decreasing from its maximum
value at k2 ¼ 0; whereas, in reality, Dðk2Þ ¼ 1=½Jðk2Þk2 þ
m2ðk2Þ� on k2 ≲ 2 GeV2, with k2Jðk2Þ initially negative at
far-IR momenta before turning to approach its perturbative

FIG. 2. Solid (blue) curve: predicted process-independent RGI
running coupling α̂PIðk2Þ, Eq. (7). The shaded (blue) band
bracketing this curve combines a 95% confidence-level window
based on existing lattice-QCD results for the gluon two-point
function with an error of 10% in the continuum extraction of the
RGI product LF in Eqs. (1). World data on αg1 [56–81]. The
shaded (yellow) band on k > 1 GeV represents αg1 obtained from
the Bjorken sum by using QCD evolution [84–86] to extrapolate
high-k2 data into the depicted region, following Refs. [56,57];
and, for additional context, the dashed (red) curve is the light-
front holographic model of αg1 canvassed in Ref. [46].
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form, which is reached on k2 ≳ 2 GeV2 [37]. The charges
in Refs. [87,88] therefore omit effects which are crucial to
obtaining a sound prediction for the running of the process-
independent effective charge α̂PIðk2Þ: in fact, they much
overestimate the charge on k2 ≲ 2 GeV2.
It is also worth highlighting that Refs. [33,34] focus

solely on the Taylor coupling, which, as seen readily using
Eqs. (1), (7), is only indirectly related to α̂PIðk2Þ:

α̂PIðk2Þ ¼
1

k2Dðk2Þ
αTðk2Þ

½1 − Lðk2; ζ2ÞFðk2; ζ2Þ�2 : ð10Þ

Hence, a comparison is not meaningful.

V. CONCLUSIONS

We have defined and calculated a process-independent
running coupling for QCD, α̂PIðk2Þ [Eq. (7), Fig. 1]. This
is a new type of effective charge, which is an analogue of
the Gell-Mann–Low effective coupling in QED, being
completely determined by the gauge-boson two-point
function. Our prediction for α̂PIðk2Þ is parameter-free,
being obtained by combining the self-consistent solution
of a set of Dyson-Schwinger equations with results from
lattice-QCD; and it smoothly unifies the nonperturbative
and perturbative domains of the strong-interaction theory.
This process-independent running coupling is known to
unify a vast array of observables, e.g. the pion mass and
decay constant, and the light meson spectrum [89]; the
parton distribution amplitudes of light- and heavy-mesons
[90–92], associated elastic and transition form factors
[93,94], etc.
Finally, and perhaps surprisingly at first sight, α̂PIðk2Þ is

almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on our
knowledge of nucleon spin structure, and in complete
agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s

effective charge, but here the subleading terms differ by
just 4% [Eqs. (9)]. An excellent match at infrared momenta,
i.e. below the scale at which perturbation theory would
locate the Landau pole, is nontrivial; and crucial to this
agreement is the careful treatment and incorporation of a
special class of gluon-ghost scattering effects. One is
naturally compelled to ask how these two apparently
unrelated definitions of a QCD effective charge can be
so similar? We attribute this outcome to a physically useful
feature of the Bjorken sum rule, viz. it is an isospin
nonsinglet relation and hence contributions from many
hard-to-compute processes are suppressed, and these same
processes are omitted in our computation of α̂PIðk2Þ.
The analysis herein unifies two vastly different

approaches to understanding the infrared behavior of
QCD, one essentially phenomenological and the other
deliberately computational, embedded within QCD. There
is no Landau pole in our predicted running-coupling. In
fact, there is an inflection point at

p
k2 ¼ 0.7 GeV, mark-

ing a transition wall at which, as momenta decreasing from
the ultraviolet promote growth in the coupling, that
coupling turns away from the Landau pole, the growth
slows, and finally the coupling saturates: α̂PIðk2 ¼ 0Þ ≈
0.9π [Fig. 2]. This unification identifies the Bjorken sum
rule as a near direct means by which to gain empirical
insight into a QCD analogue of the Gell-Mann–Low
effective charge.

ACKNOWLEDGMENTS

We are grateful for comments from S. J. Brodsky,
L. Chang, A. Deur and S.-X. Qin. This study was conceived
and initiated during the 3rd Workshop on Nonperturbative
QCD, University of Seville, Spain, 17-21 October, 2016.
This research was supported by: Spanish MEyC, under
Grants No. FPA2014-53631-C-1-P, No. FPA2014-53631-
C-2-P and No. SEV-2014-0398; Generalitat Valenciana
under Grant Prometeo II/2014/066; and U.S. Department of
Energy, Office of Science, Office of Nuclear Physics,
Contract No. DE-AC02-06CH11357.

[1] Nobel Lectures in Physics (1963-1970), edited by
S. Lundqvist (World Scientific, Singapore, 1998),
pp. 121–180.

[2] J. C. Ward, Phys. Rev. 78, 182 (1950).
[3] C. Patrignani et al., Chin. Phys. C 40, 100001 (2016).
[4] S. Odaka et al., Phys. Rev. Lett. 81, 2428 (1998).
[5] S. Mele, arXiv:hep-ex/0610037.
[6] Nobel Lectures in Physics (1971-1980), edited by

S. Lundqvist (World Scientific, Singapore, 1994),
pp. 485–560.

[7] Nobel Lectures in Physics (1996-2000), edited by
G. Ekspong (World Scientific, Singapore, 2002),
pp. 359–397.

[8] W. J. Marciano and H. Pagels, Nature (London) 279, 479
(1979).

[9] J. C. Taylor, Nucl. Phys. B33, 436 (1971).
[10] A. A. Slavnov, Theor. Math. Phys. 10, 99 (1972).
[11] C. Becchi, A. Rouet, and R. Stora, Ann. Phys. (N.Y.) 98,

287 (1976).
[12] I. V. Tyutin, arXiv:0812.0580.

PROCESS-INDEPENDENT STRONG RUNNING COUPLING PHYSICAL REVIEW D 96, 054026 (2017)

054026-5

https://doi.org/10.1103/PhysRev.78.182
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevLett.81.2428
http://arXiv.org/abs/hep-ex/0610037
https://doi.org/10.1038/279479a0
https://doi.org/10.1038/279479a0
https://doi.org/10.1016/0550-3213(71)90297-5
https://doi.org/10.1007/BF01090719
https://doi.org/10.1016/0003-4916(76)90156-1
https://doi.org/10.1016/0003-4916(76)90156-1
http://arXiv.org/abs/0812.0580


[13] A. Cucchieri and T. Mendes, Proc. Sci., LAT20072007
(2007) 297.

[14] A. Cucchieri and T. Mendes, Phys. Rev. Lett. 100, 241601
(2008).

[15] A. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D 78,
025010 (2008).

[16] D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel, and
H. Verschelde, Phys. Rev. D 78, 065047 (2008).

[17] I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, and A.
Sternbeck, Phys. Lett. B 676, 69 (2009).

[18] A. Aguilar, D. Binosi, and J. Papavassiliou, Phys. Rev. D 86,
014032 (2012).

[19] M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C.
Tandy, Phys. Rev. C 68, 015203 (2003).

[20] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B.
Parappilly, A. G. Williams, and J. Zhang, Phys. Rev. D
71, 054507 (2005).

[21] M. S. Bhagwat and P. C. Tandy, AIP Conf. Proc. 842, 225
(2006).

[22] G. B. West, Phys. Rev. D 27, 1878 (1983).
[23] A. Cucchieri, T. Mendes, and E. M. S. Santos, Phys. Rev.

Lett. 103, 141602 (2009).
[24] A. Aguilar, D. Binosi, J. Papavassiliou, and J. Rodríguez-

Quintero, Phys. Rev. D 80, 085018 (2009).
[25] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[26] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474

(1989).
[27] A. Pilaftsis, Nucl. Phys. B487, 467 (1997).
[28] D. Binosi and J. Papavassiliou, Phys. Rev. D 66, 111901

(2002).
[29] D. Binosi and J. Papavassiliou, J. Phys. G 30, 203

(2004).
[30] D. Binosi and J. Papavassiliou, Phys. Rep. 479, 1

(2009).
[31] L. F. Abbott, Nucl. Phys. B185, 189 (1981).
[32] L. F. Abbott, Acta Phys. Pol. B 13, 33 (1982).
[33] B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, X. Du, M.

Gravina, V. Morenas, O. Pène, K. Petrov, and J. Rodríguez-
Quintero, Phys. Rev. D 85, 034503 (2012).

[34] B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, V.
Morenas, O. Pène, K. Petrov, and J. Rodríguez-Quintero,
Phys. Rev. D 89, 014507 (2014).

[35] B. Blossier, Ph. Boucaud, M. Brinet, F. De Soto, X. Du, V.
Morenas, O. Pène, K. Petrov, and J. Rodríguez-Quintero,
Phys. Rev. Lett. 108, 262002 (2012).

[36] D. Binosi, L. Chang, J. Papavassiliou, and C. D. Roberts,
Phys. Lett. B 742, 183 (2015).

[37] D. Binosi, C. D. Roberts, and J. Rodriguez-Quintero,
Phys. Rev. D 95, 114009 (2017).

[38] H. J. Munczek, Phys. Rev. D 52, 4736 (1995).
[39] A. Bender, C. D. Roberts, and L. von Smekal, Phys. Lett. B

380, 7 (1996).
[40] M. S. Bhagwat, L. Chang, Y.-X. Liu, C. D. Roberts, and

P. C. Tandy, Phys. Rev. C 76, 045203 (2007).
[41] D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou, and C. D.

Roberts, Phys. Rev. D 93, 096010 (2016).
[42] D. Binosi and A. Quadri, Phys. Rev. D 88, 085036

(2013).
[43] M. J. Aslam, A. Bashir, and L. X. Gutierrez-Guerrero,

Phys. Rev. D 93, 076001 (2016).

[44] D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D.
Roberts, Phys. Rev. D 95, 031501(R) (2017).

[45] A. C. Aguilar, A. A. Natale, and P. S. Rodrigues da Silva,
Phys. Rev. Lett. 90, 152001 (2003).

[46] A. Deur, S. J. Brodsky, and G. F. de Teramond, Prog. Part.
Nucl. Phys. 90, 1 (2016).

[47] A. C. Aguilar, A. Mihara, and A. A. Natale, Phys. Rev. D
65, 054011 (2002).

[48] A. A. Natale, Proc. Sci., QCD-TNT092009 (2009) 031.
[49] E. G. S. Luna, A. L. dos Santos, and A. A. Natale, Phys.

Lett. B 698, 52 (2011).
[50] H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
[51] T. Horn and C. D. Roberts, J. Phys. G 43, 073001

(2016).
[52] G. Grunberg, Phys. Rev. D 29, 2315 (1984).
[53] J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
[54] J. D. Bjorken, Phys. Rev. D 1, 1376 (1970).
[55] C. A. Aidala, S. D. Bass, D. Hasch, and G. K. Mallot,

Rev. Mod. Phys. 85, 655 (2013).
[56] A. Deur, V. Burkert, J.-P. Chen, and W. Korsch, Phys. Lett.

B 650, 244 (2007).
[57] A. Deur, V. Burkert, J. P. Chen, andW. Korsch, Phys. Lett. B

665, 349 (2008).
[58] A. Deur, Y. Prok, V. Burkert, D. Crabb, F.-X. Girod,

K. A. Griffioen, N. Guler, S. E. Kuhn, and N. Kvaltine,
Phys. Rev. D 90, 012009 (2014).

[59] K. Ackerstaff et al., Phys. Lett. B 404, 383 (1997).
[60] K. Ackerstaff et al., Phys. Lett. B 444, 531 (1998).
[61] A. Airapetian et al., Phys. Lett. B 442, 484 (1998).
[62] A. Airapetian et al., Phys. Rev. Lett. 90, 092002 (2003).
[63] A. Airapetian et al., Phys. Rev. D 75, 012007 (2007).
[64] J. H. Kim et al., Phys. Rev. Lett. 81, 3595 (1998).
[65] V. Yu. Alexakhin et al., Phys. Lett. B 647, 8 (2007).
[66] M. G. Alekseev et al., Phys. Lett. B 690, 466 (2010).
[67] C. Adolph et al., Phys. Lett. B 753, 18 (2016).
[68] P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993).
[69] K. Abe et al., Phys. Rev. Lett. 74, 346 (1995).
[70] K. Abe et al., Phys. Rev. Lett. 75, 25 (1995).
[71] K. Abe et al., Phys. Rev. Lett. 76, 587 (1996).
[72] K. Abe et al., Phys. Lett. B 364, 61 (1995).
[73] P. L. Anthony et al., Phys. Rev. D 54, 6620 (1996).
[74] K. Abe et al., Phys. Rev. Lett. 79, 26 (1997).
[75] K. Abe et al., Phys. Lett. B 404, 377 (1997).
[76] K. Abe et al., Phys. Lett. B 405, 180 (1997).
[77] K. Abe et al., Phys. Rev. D 58, 112003 (1998).
[78] P. L. Anthony et al., Phys. Lett. B 458, 529 (1999).
[79] P. L. Anthony et al., Phys. Lett. B 463, 339 (1999).
[80] P. L. Anthony et al., Phys. Lett. B 493, 19 (2000).
[81] P. L. Anthony et al., Phys. Lett. B 553, 18 (2003).
[82] A. L. Kataev, Phys. Rev. D 50, R5469 (1994).
[83] P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, Phys. Rev.

Lett. 104, 132004 (2010).
[84] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438

(1972).
[85] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[86] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
[87] A. C. Aguilar, D. Binosi, and J. Papavassiliou, J. High

Energy Phys. 07 (2010) 002.
[88] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J.

Rodríguez-Quintero, Phys. Rev. D 86, 074512 (2012).

DANIELE BINOSI et al. PHYSICAL REVIEW D 96, 054026 (2017)

054026-6

https://doi.org/10.1103/PhysRevLett.100.241601
https://doi.org/10.1103/PhysRevLett.100.241601
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.025010
https://doi.org/10.1103/PhysRevD.78.065047
https://doi.org/10.1016/j.physletb.2009.04.076
https://doi.org/10.1103/PhysRevD.86.014032
https://doi.org/10.1103/PhysRevD.86.014032
https://doi.org/10.1103/PhysRevC.68.015203
https://doi.org/10.1103/PhysRevD.71.054507
https://doi.org/10.1103/PhysRevD.71.054507
https://doi.org/10.1063/1.2220232
https://doi.org/10.1063/1.2220232
https://doi.org/10.1103/PhysRevD.27.1878
https://doi.org/10.1103/PhysRevLett.103.141602
https://doi.org/10.1103/PhysRevLett.103.141602
https://doi.org/10.1103/PhysRevD.80.085018
https://doi.org/10.1103/PhysRevD.26.1453
https://doi.org/10.1103/PhysRevD.40.3474
https://doi.org/10.1103/PhysRevD.40.3474
https://doi.org/10.1016/S0550-3213(96)00686-4
https://doi.org/10.1103/PhysRevD.66.111901
https://doi.org/10.1103/PhysRevD.66.111901
https://doi.org/10.1088/0954-3899/30/2/017
https://doi.org/10.1088/0954-3899/30/2/017
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1016/j.physrep.2009.05.001
https://doi.org/10.1016/0550-3213(81)90371-0
https://doi.org/10.1103/PhysRevD.85.034503
https://doi.org/10.1103/PhysRevD.89.014507
https://doi.org/10.1103/PhysRevLett.108.262002
https://doi.org/10.1016/j.physletb.2015.01.031
https://doi.org/10.1103/PhysRevD.95.114009
https://doi.org/10.1103/PhysRevD.52.4736
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1016/0370-2693(96)00372-3
https://doi.org/10.1103/PhysRevC.76.045203
https://doi.org/10.1103/PhysRevD.93.096010
https://doi.org/10.1103/PhysRevD.88.085036
https://doi.org/10.1103/PhysRevD.88.085036
https://doi.org/10.1103/PhysRevD.93.076001
https://doi.org/10.1103/PhysRevD.95.031501
https://doi.org/10.1103/PhysRevLett.90.152001
https://doi.org/10.1016/j.ppnp.2016.04.003
https://doi.org/10.1016/j.ppnp.2016.04.003
https://doi.org/10.1103/PhysRevD.65.054011
https://doi.org/10.1103/PhysRevD.65.054011
https://doi.org/10.1016/j.physletb.2011.02.057
https://doi.org/10.1016/j.physletb.2011.02.057
https://doi.org/10.1103/PhysRevD.20.2947
https://doi.org/10.1088/0954-3899/43/7/073001
https://doi.org/10.1088/0954-3899/43/7/073001
https://doi.org/10.1103/PhysRevD.29.2315
https://doi.org/10.1103/PhysRev.148.1467
https://doi.org/10.1103/PhysRevD.1.1376
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1016/j.physletb.2007.05.015
https://doi.org/10.1016/j.physletb.2007.05.015
https://doi.org/10.1016/j.physletb.2008.06.049
https://doi.org/10.1016/j.physletb.2008.06.049
https://doi.org/10.1103/PhysRevD.90.012009
https://doi.org/10.1016/S0370-2693(97)00611-4
https://doi.org/10.1016/S0370-2693(98)01396-3
https://doi.org/10.1016/S0370-2693(98)01341-0
https://doi.org/10.1103/PhysRevLett.90.092002
https://doi.org/10.1103/PhysRevD.75.012007
https://doi.org/10.1103/PhysRevLett.81.3595
https://doi.org/10.1016/j.physletb.2006.12.076
https://doi.org/10.1016/j.physletb.2010.05.069
https://doi.org/10.1016/j.physletb.2015.11.064
https://doi.org/10.1103/PhysRevLett.71.959
https://doi.org/10.1103/PhysRevLett.74.346
https://doi.org/10.1103/PhysRevLett.75.25
https://doi.org/10.1103/PhysRevLett.76.587
https://doi.org/10.1016/0370-2693(95)01340-2
https://doi.org/10.1103/PhysRevD.54.6620
https://doi.org/10.1103/PhysRevLett.79.26
https://doi.org/10.1016/S0370-2693(97)00613-8
https://doi.org/10.1016/S0370-2693(97)00641-2
https://doi.org/10.1103/PhysRevD.58.112003
https://doi.org/10.1016/S0370-2693(99)00590-0
https://doi.org/10.1016/S0370-2693(99)00940-5
https://doi.org/10.1016/S0370-2693(00)01014-5
https://doi.org/10.1016/S0370-2693(02)03015-0
https://doi.org/10.1103/PhysRevD.50.R5469
https://doi.org/10.1103/PhysRevLett.104.132004
https://doi.org/10.1103/PhysRevLett.104.132004
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1007/JHEP07(2010)002
https://doi.org/10.1007/JHEP07(2010)002
https://doi.org/10.1103/PhysRevD.86.074512


[89] L. Chang and C. D. Roberts, Phys. Rev. C 85, 052201(R)
(2012).

[90] L. Chang, I. C. Cloët, J. J. Cobos-Martinez, C. D. Roberts,
S. M. Schmidt, and P. C. Tandy, Phys. Rev. Lett. 110,
132001 (2013).

[91] C. Shi, C. Chen, L. Chang, C. D. Roberts, S. M. Schmidt,
and H.-S. Zong, Phys. Rev. D 92, 014035 (2015).

[92] M. Ding, F. Gao, L. Chang, Y.-X. Liu, and C. D. Roberts,
Phys. Lett. B 753, 330 (2016).

[93] K. Raya, L. Chang, A. Bashir, J. Javier Cobos-Martinez, L.
Xiomara Gutiérrez-Guerrero, C. D. Roberts, and P. C.
Tandy, Phys. Rev. D 93, 074017 (2016).

[94] K. Raya, M. Ding, A. Bashir, L. Chang, and C. D. Roberts,
Phys. Rev. D 95, 074014 (2017).

PROCESS-INDEPENDENT STRONG RUNNING COUPLING PHYSICAL REVIEW D 96, 054026 (2017)

054026-7

https://doi.org/10.1103/PhysRevC.85.052201
https://doi.org/10.1103/PhysRevC.85.052201
https://doi.org/10.1103/PhysRevLett.110.132001
https://doi.org/10.1103/PhysRevLett.110.132001
https://doi.org/10.1103/PhysRevD.92.014035
https://doi.org/10.1016/j.physletb.2015.11.075
https://doi.org/10.1103/PhysRevD.93.074017
https://doi.org/10.1103/PhysRevD.95.074014

