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The problem of the existence of a stable vacuum field in pure QCD is revised. Our approach is based on
using classical stationary nonlinear wave type solutions with an intrinsic mass scale parameter. Such
solutions can be treated as quantum-mechanical wave functions describing massive spinless states in
quantum theory. We verify whether nonlinear wave type solutions can form a stable vacuum field
background within the framework of the effective action formalism. We demonstrate that there is a special
class of stationary generalized Wu-Yang monopole solutions that are stable against quantum gluon
fluctuations.
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I. INTRODUCTION

The origin of quark/color confinement and the mass gap
in quantum chromodynamics represents the principal
problem in the foundations of the theory of strong
interactions [1]. One of the most attractive mechanisms
of quark confinement is based on the dual Meissner effect
in color superconductors by means of monopole conden-
sation [2–5]. If such a stable monopole condensate is
generated, it will immediately imply confinement [6–8],
which has been confirmed in lattice simulations [9–13].
The theoretical foundation of the confinement mechanism
with the dual Meissner effect encounters several obstacles.
Among them, the realization of physical monopole sol-
utions in standard QCD and the quantum stability of
monopole condensation represent a long-standing problem
since the late 1970s when the Savvidy-Nielsen-Olesen
vacuum instability was found [14,15]. So far, neither a
regular monopole solution nor a strict construction of a
stable color magnetic condensate has been discovered in
the framework of the basic standard theory of QCD. This
causes serious doubts that the known Copenhagen “spa-
ghetti” vacuum and other models of the QCD vacuum can
provide a rigorous microscopic description of the vacuum
structure [16–21].
In the present paper we elaborate the idea that classical

stationary nonlinear wave type solutions can be treated in a

quantum-mechanical sense and describe physical states in
quantum theory. The idea that stationary nonsolitonic wave
solutions correspond to particles or quasiparticles was
proposed a long time ago [22–24]. Our goal is to find a
proper regular stationary solution which will be stable
against quantum gluon fluctuations within the formalism of
the effective action in the one-loop approximation. Such a
stable field configuration can serve as a structural element
in the further construction of a true QCD vacuum. There is
a wide class of known stationary nonlinear wave solutions
[25–30] which possess nontrivial features: the presence of
mass scale parameters, nonvanishing longitudinal compo-
nents of color fields along the propagation direction, color
magnetic charge, and a vanishing classical spin density
operator. This gives a hint that some of these classical
solutions describe quantum states corresponding to massive
spinless quasiparticles, which might lead to the formation
of a stable vacuum condensate. Surprisingly, we show that
there is a special class of stationary spherically symmetric
monopole solutions which possess quantum stability.
The paper is organized as follows. In Sec. II we give an

overview of the main critical points in the vacuum stability
problem and outline possible ways to construct a stable
vacuum field configuration. The quantum stability of
nonlinear plane-wave solutions is considered in Sec. III.
A careful analysis shows that, in spite of several attractive
properties of such solutions, the nonlinear plane waves are
unstable against vacuum gluon fluctuations. In Sec. IV we
consider the quantum stability of a recently proposed
stationary monopole solution [30] which represents a
system of a static Wu-Yang monopole interacting with
off-diagonal components of the gluon field. We prove that
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such a generalized monopole solution provides a stable
vacuum field background in the effective action of QCD in
the one-loop approximation. Conclusions and a discussion
of our results are presented in the last section. An additional
qualitative analysis of the quantum stability of the sta-
tionary monopole field is given in the Appendix.

II. VACUUM STABILITY PROBLEM

Let us consider the structure of the QCD effective action
in the presence of constant homogeneous classical fields
and expose the critical issues of vacuum instability for this
simple case. In order to study the vacuum structure in
quantum field theory, it is suitable to apply a quantization
scheme based on the functional integral formalism and
calculate the quantum effective action with a properly
chosen classical background field. The background field
satisfying the classical equations of motion corresponds to
a vacuum-averaged value of the quantum field operator in
the presence of a source, or in the adiabatic limit when the
external source vanishes at time t → þ∞. A nontrivial
vacuum structure can be retrieved from the behavior of the
effective potential and from the structure of the effective
action. In general, the effective potential admits several
local minima, and only the lowest and stable one deter-
mines a true physical vacuum. Moreover, the symmetry
properties of the vacuum state determine fundamental
properties of the theory, such as the type of symmetry
breaking, possible phase transitions, etc. The knowledge of
the analytic structure of the effective action represents an
important step which verifies whether a nontrivial classical
vacuum in the theory corresponds to a physical vacuum at
the quantum level. As usual, the presence of an imaginary
part of the effective action indicates vacuum instability.
We concentrate mainly on the structure of the effective

action in the case of pure SUð2Þ QCD. For the case of a
constant homogeneous classical background field the
effective action can be calculated in a complete form in
the one-loop approximation. We start with a classical
Lagrangian of Yang-Mills theory,

L0 ¼ −
1

4
Fa
μνF

μν
a ; ð1Þ

with

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gϵabcAb

μAc
ν:

The space-time indices μ, ν and those for colors a, b, c run
through 0, 1, 2, 3 and 1, 2, 3, respectively. Wework with the
convention gμν ¼ diagð−1; 1; 1; 1Þ and ϵ123 ¼ 1.
An initial gauge potential Aa

μ is split into classical (Ba
μ)

and quantum (Qa
μ) parts,

Aa
μ ¼ Ba

μ þQa
μ: ð2Þ

One should stress that the classical gauge potential Ba
μ must

be a solution to the classical Euler-Lagrange equations of
motion. Only in that case can the external classical field Ba

μ

be treated as a vacuum-averaged value of the quantum
operator Aa

μ in a consistent manner with the effective action
formalism. One should note that a static homogeneous
classical gauge potential Ba

μ cannot provide a constant field
strength unless the gauge symmetry is broken. The field Ba

μ

is defined as a vacuum-averaged value of the quantum
operator Aa

μ in the limit of vanishing source Jaμ → 0 during
the time evolution (t → þ∞),

Ba
μ ¼ h0jAa

μj0iJ→0; ð3Þ

where j0i is a vacuum state. It is clear that due to the gauge
and Lorentz invariances the vacuum-averaged value of the
gauge potential must be identically zero, i.e., Ba

μ ≡ 0. A
partial solution to this problem was suggested by proposing
the “spaghetti” vacuum model where the vacuum is
represented by a statistical ensemble of vortex domains,
which leads to a zero mean value of the gauge field.
However, in such cases one encounters two principal
obstacles: (i) the statistical field ensemble does not re-
present an exact solution to the classical equations of
motion, and (ii) at the microscopic scale each domain or a
single vortex causes instability due to a nonvanishing
contribution to the imaginary part of the effective action.
Thus, a statistical ensemble does not provide a microscopic
theory of the vacuum structure on the firm basis of standard
quantum field theory.
With these preliminaries, let us write down the main

equations which allow to retrieve the analytic structure of
the effective action for an arbitrary background gauge field
configuration. It is convenient to choose a covariant Lorenz
gauge-fixing condition for the quantum gauge potential,

ðDμQ
μÞa ¼ 0; ð4Þ

where Dab
μ ¼ δab∂μ þ gϵacbBμc is a covariant derivative

including the background gauge field potential Ba
μ.

Applying a standard functional technique, one can express
the one-loop correction to the classical action in terms of
functional determinants,

S1 loopeff ¼ −
i
2
lnDet½Kab

μν � þ i lnDet½Mab
FP�;

Kab
μν ¼ −gμνðDρDρÞab − 2ϵacbF c

μν;

Mab
FP ¼ −ðDρDρÞab; ð5Þ

where F a
μν is a background field strength and the operators

Kab
μν , Mab

FP correspond to one-loop contributions of gluons
and Faddeev-Popov ghosts. One should stress that Eq. (5)
represents an exact one-loop result for an arbitrary con-
figuration of the background gauge field Ba

μ. One can
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obtain similar expressions for the one-loop functional
determinants when using an initial temporal gauge for
the quantum gauge potential and an additional Coulomb-
type gauge condition, which fixes the residual symmetry.

A. A constant Abelian magnetic field

Let us first consider the simple case of the Savvidy
vacuum [14], based on a classical solution for the constant
homogeneous magnetic Abelian-type field defined by the
gauge potential Ba

μ ¼ gμ2δa3xH. The gauge field strength
F a

μν has only one nonvanishing magnetic component,
F 3

12 ¼ H. In this case, the expression for the one-loop
correction to the effective action (5) can be simplified as

S1 loopeff ¼ i
X
Sz¼�1

2Tr ln½−DμDμ þ 2gHSz�; ð6Þ

where Sz ¼ �1 is a spin projection onto the z axis of the
gluon which is treated as a massless vector particle in the
Nielsen-Olesen approach [15]. It is clear that the operator
inside the logarithmic function is not positively defined for
Sz ¼ −1. This gives rise to an imaginary part of the
effective action and implies the Nielsen-Olesen unstable
“tachyon” mode [15]. An important issue is that the origin
of the vacuum instability is due to a specific interaction
structure of the non-Abelian gauge theory, namely, the
anomalous magnetic moment interaction of the vector
gluon with the magnetic field H. Note that the contribution
of the Faddeev-Popov ghosts does not induce an imaginary
part since the interaction of spin-zero ghost fields with the
magnetic field has no such anomalous magnetic moment
interaction. The functional determinants in Eq. (6) can be
calculated using the Schwinger proper-time method. With
this, the effective Lagrangian can be expressed in a compact
integral form [31–38],

L1 loop
eff ¼ 1

16π2

Z
∞

0

ds

sð2−εÞ
gH=μ2

sinhðgHs=μ2Þ
�
e
−2gHs

μ2 þ e
2gHs

μ2

�
; ð7Þ

where ε is the ultraviolet cutoff parameter and μ2 is a mass
scale parameter corresponding to the subtraction point. The
second exponential term in the last equation leads to a
severe infrared divergence, which is a reflection of the same
anomalous magnetic moment interaction term in Eq. (6).
One can perform an infrared regularization by changing the
proper-time variable to a pure imaginary one, s → it [38],

L1 loop
eff ¼ −

1

8π2

Z
∞

0

dt

tð2−εÞ
gH=μ2

sinðgHt=μ2Þ cosð2gHt=μ2Þ: ð8Þ

This removes the infrared divergence, but now one
encounters an ambiguity in choosing contours of the
integral due to the appearance of an infinite number of
poles at t ¼ πkμ2=gH, ðk ¼ 0; 1; 2;…Þ. We define the
integration path t ¼ 0 − iδ with an infinitesimal number

factor δ. One can verify that a total residue contribution
from the poles exactly reproduces the Nielsen-Olesen
imaginary part of the effective Lagrangian [15],

ImL ¼ 1

8π
g2H2: ð9Þ

Note that a color electric field causes the vacuum instability
due to the Schwinger mechanism of charged particle-
antiparticle pair creation in the external electric field.
Moreover, in pure gluodynamics it has been shown that
a homogeneous chromoelectric field E leads to a negative
imaginary part of the effective one-loop Lagrangian [39],

ImL ¼ −
11

96π
g2E2: ð10Þ

One concludes that a constant homogeneous color
magnetic and electric field of Abelian type is unstable.
The physical meaning of such an instability is the gluon
pair creation in the chromomagnetic field and the gluon pair
annihilation in the case of the chromoelectric background
field [39].

B. Non-Abelian constant field configuration

It has been established that SUðNÞ Yang-Mills theory
admits two types of constant homogeneous field configu-
rations [40]. The first type is represented by Abelian-type
gauge potentials, which correspond to the Cartan subalge-
bra of the Lie algebra suðNÞ. The constant homogeneous
fields of the second type originate from the non-Abelian
structure of the gauge field strength due to the noncom-
mutativity of the Lie-algebra-valued gauge potentials [40],

F⃗μν ¼ A⃗μ × A⃗ν: ð11Þ

Contrary to the case of Abelian constant color magnetic
fields, the non-Abelian magnetic field admits a spherically
symmetric configuration. It was observed that the symmet-
rization of the QCD Hamiltonian might help to cure the
Nielsen-Olesen instability [41]. After the discovery of the
Savvidy-Nielsen-Olesen vacuum instability, some attempts
have been undertaken to construct a stable vacuum made of
constant non-Abelian gauge fields. The results of studies of
such a vacuum have led to a vacuum instability of the same
origin, i.e., the presence of the anomalous magnetic
moment interaction [42,43].
Let us briefly review the known results, with the purpose

of finding a way to resolve the problem of vacuum stability.
We consider the following isotropic homogeneous field
configuration of non-Abelian type defined by the classical
gauge potential,

Ba
0 ¼ 0; Ba

m ¼ ϕðtÞδam: ð12Þ
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Throughout this paper, we use latin indices m, n to denote
the space components of the four-vectors. The function
ϕðtÞ may require a time dependence to include the case
with nonvanishing constant color electric field as well.
We can find eigenvalues of the operators Kab

μν ,Mab
FP in the

weak-field approximation, assuming that ϕðtÞ is a slowly
varying function. In the momentum-space representation
one has

Kab
mn ¼ δmnðδabðk2 þ 2ϕ2Þ − 2iϕϵacbkcÞ

− 2ϕ2ðδbmδan − δamδ
b
nÞ;

Kab
0n ¼ 2ϵabnb;

Mab
FP ¼ δabðk2 þ 2ϕ2Þ − 2iϕϵacbkc ¼ −Kab

00 ; ð13Þ

where the time derivative term b≡ ∂0ϕ corresponds to
components of a color electric field in the temporal gauge
Ba
0 ¼ 0. In the weak-field approximation the fields ϕ and b

are treated as constant fields. To find the eigenvalues of the
operators Kab

μν , Mab
FP, let us first calculate the corresponding

matrix determinants with respect to Lorentz and color
indices. After some calculations, we obtain

detKab
μν ¼ L1L2L3L4;

detMab
FP ¼ ð2ϕ2 þ k2Þðð2ϕ2 þ k2Þ2 − 4ϕ2k⃗2Þ; ð14Þ

with

L1 ¼ k4 − 4ϕ2k⃗2;

L2 ¼ ð2ϕ2 þ k2Þðk2ð4ϕ2 þ k2Þð6ϕ2 þ k2Þ
− 4ϕ2ð2ϕ2 þ k2Þk⃗2Þ þ 8k2ð6ϕ2 þ k2Þb2;

L3 ¼ 2ϕ2ðk2 − 2ϕjk⃗jÞð3k2 − 2ϕjk⃗jÞ þ 8ϕ4ðk2 − ϕjk⃗jÞ
þ k2ðk2 − 2ϕjk⃗jÞ2 þ 8ðk2 − ϕjk⃗jÞb2;

L4 ¼ 2ϕ2ðk2 þ 2ϕjk⃗jÞð3k2 þ 2ϕjk⃗jÞ þ 8ϕ4ðk2 þ ϕjk⃗jÞ
þ k2ðk2 þ 2ϕjk⃗jÞ2 þ 8ðk2 þ ϕjk⃗jÞb2:

In the particular case with a constant pure magnetic field
background, b ¼ 0, our result reduces exactly to the known
expressions obtained earlier in Ref. [42], where it was
shown that all eigenvalues corresponding to the operators
Li are real. Explicit expressions for all 12 eigenvalues of the
operators Li in the case of a pure magnetic background
field (b ¼ 0) were obtained in Ref. [42].
The operator L1 is decomposed into the product of two

eigenvalues,

λ1;2 ¼ k2 � 2ϕjk⃗j: ð15Þ

It is easy to verify that the expression for L2 is non-negative
for any values of ϕ; b; k⃗, and k. The operator L3 has one real

and two complex eigenvalues, and L4 has eigenvalues
which are complex conjugate to the eigenvalues of the
operator L3. In general, the complex and negative eigen-
values of the operators L1, L3, and L4 cause vacuum
instability.
One may observe that Eq. (15) implies negative eigen-

values for small momentum k⃗ of the virtual gluon inside the
loop. We recall that the Nielsen-Olesen unstable mode
originates from the anomalous magnetic moment interac-
tion term gHSz in Eq. (6), which does not depend on the
internal momentum k⃗. So, in the case of a symmetric field
configuration one has no instability in the limit of zero
momentum k⃗. So, the symmetric non-Abelian magnetic
field configuration makes the instability problem more soft,
even though the source of the negative eigenvalues remains
the same as for the Nielsen-Olesen unstable mode.
The instability of the vacuum coming from the non-

Abelian gauge field is somewhat puzzling since one
expects that the dynamics of a non-Abelian gauge field
should provide a consistent quantum vacuum in pure QCD.
Thus, one should observe one essential weak point in the
above consideration: the constant non-Abelian gauge field
does not represent a classical solution. Due to this the
standard method based on the formalism of functional
integration cannot be applied self-consistently to the
derivation of the one-loop effective action. This raises a
question of whether a non-Abelian-type magnetic field can
be realized as a strict solution, and if so, whether such a
solution can provide a stable vacuum. Note that to find a
stable physical vacuum one should go beyond the one-loop
approximation, since at the one-loop level a quartic self-
interaction term in the initial Yang-Mills Lagrangian is
omitted and does not affect the final result. However, the
confinement phenomenon is certainly provided by the self-
interaction of gluons. So, the quartic interaction term
should be an essential part of the nonperturbative dynam-
ics. The evaluation of an exact two-loop effective action in
QCD represents a hard unresolved problem. To go beyond
the one-loop approximation one can implement nonpertur-
bative effects in the structure of the classical solution used
as a background field in the effective action. We conclude
that one should look for a proper nonperturbative and
essentially non-Abelian solution of the classical equations
of motion, which can lead to a consistent description of the
stable vacuum.

III. QUANTUM INSTABILITY OF
NONLINEAR PLANE WAVES

Stationary nonlinear wave type solutions can be treated
as quantum-mechanical wave functions which describe
possible states in quantum theory. In particular, we are
interested in classical solutions that are stable against
quantum gluon fluctuations. A known class of nonlinear
plane-wave solutions with a mass scale and zero spin
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[25–30] is of primary interest in our search of possible
stable vacuum fields, since one expects that a system of
massive spinless particles can form a stable condensate in
the classical theory. The presence of spinless states can help
in removing the Nielsen-Olesen instability. We consider a
special plane-wave solution in SUð2Þ Yang-Mills theory
which possesses a spherically symmetric configuration in
the rest frame [25–30]. A simple ansatz for nonvanishing
components of the gauge potential reads

Ba
m ¼ δamϕðuÞ; ð16Þ

where u≡ k0t. Substituting the ansatz into the Yang-Mills
equations, we obtain an ordinary differential equation,

k20
d2ϕ
du2

þ 2g2ϕ3 ¼ 0: ð17Þ

One has the following nonvanishing components for the
color electric and magnetic fields:

F1
10 ¼ F2

20 ¼ F3
30 ¼ −∂tϕ;

Fa
mn ¼ gϵmn

aϕ2: ð18Þ

The solution to Eq. (17) is given by the Jacobi elliptic
function

ϕðuÞ ¼ M
g
sn½Mt;−1�; ð19Þ

which is a double-periodic analytic function with a perio-
dicity T0 ¼ 4K½−1�≃ 5.244…, (M ¼ 1), and K½−1� is a
complete elliptic integral of the first kind. The solution
contains a mass scale parameter M due to the conformal
invariance of the equations of motion.
The one-loop effective potential in a constant color

electric and magnetic field possesses a local minimum
for a nonzero value of the magnetic field and for a
vanishing electric field. The presence of the electric field
in the solution (18) can lead to the instability of the vacuum
due to the Schwinger pair-creation effect. However, since
the electric field of the solution is represented by a periodic
function, the time dependence may change the stability
properties of the vacuum field. Another advantage of
treating the stationary plane-wave solutions as a quan-
tum-mechanical wave function describing the vacuum state
is that the time averaging leads naturally to a vanishing of
the vacuum expectation value of the gauge potential,
h0jAa

μj0i ¼ 0, whereas the averaged magnetic field remains
nonzero.
Now we can study the structure of the functional

determinants in Eq. (13). It turns out that the matrix
operator Kab

mn gains complex eigenvalues. The presence
of complex eigenvalues complicates the analysis of the
structure of the effective action, since in that case one needs

to know the analytic structure of the full effective action in
the presence of color magnetic and electric fields [44]. Due
to this, we consider the structure of the one-loop effective
action in the temporal gauge, Qa

0 ¼ 0 [the background
gauge field satisfies the temporal condition due to the
structure of the ansatz (16)], which significantly simplifies
the analysis of possible unstable modes. In the temporal
gauge, one has a known residual gauge symmetry under the
gauge transformations with space-dependent gauge param-
eters. To fix this symmetry one can impose an additional
Coulomb constraint, ∂mQa

m ¼ 0. Therefore, the calculation
of the Faddeev-Popov ghost determinant becomes more
difficult since one should introduce secondary ghosts.
However, since all ghost fields correspond to interactions
of spinless particles with the magnetic field they do not
cause vacuum instability, and we do not need to calculate
ghost contributions when studying the imaginary part of the
effective action. With this, one can perform a functional
integration over the quantum field Qa

μ and obtain the
following expression for the matrix operator Kab

mn:

Kab
mn ¼ δmnδ

abð∂2
t − ∂2

l þ 2g2ϕ2ðtÞÞ þ 2ϵabcF c
mn

− gϕðtÞðϵabm∂n þ ϵabn∂m þ 2ϵacbδmn∂cÞ: ð20Þ

Since the field ϕðtÞ does not depend on space coordinates,
one can easily perform a Fourier transformation with
respect to the space coordinates. After performing the
Wick rotation t → iτ, one arrives at the following expres-
sion for the operator Kab

mn in the momentum-space
representation:

Kab
mn ¼ δmnδ

abð−∂2
τÞ þ δabδmnðk⃗2 þ 2ϕ2Þ

þ ϵabcð2ϕ2ϵcmn þ 2ϕδmnik⃗
c − ϕδcmik⃗n þ ϕδcnik⃗mÞ

≡ δmnδ
abð−∂2

τÞ þ K̂ab
mn: ð21Þ

One can find the eigenvalues L̂i of the matrix operator
K̂ab

mn since the field ϕ does not depend on the space
components of the momentum,

L̂1 ¼ k⃗2;

L̂2;3 ¼ k⃗2 þ 4ϕ2 � ϕjk⃗j;

L̂4;5 ¼ k⃗2 þ 5ϕ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ4 þ 6ϕ2k⃗2

q
;

L̂6;7 ¼ k⃗2 � ϕjk⃗j;
L̂8;9 ¼ k⃗2 � 2ϕjk⃗j: ð22Þ

With this, one has finally nine ordinary second-order
differential equations for eigenfunctions of the initial
kinetic operator Kab

mn,

QUANTUM STABILITY OF NONLINEAR WAVE TYPE … PHYSICAL REVIEW D 96, 054025 (2017)

054025-5



�
−

d2

dτ2
þ L̂q

�
ψq ¼ λqψq; ðq ¼ 1; 2;…; 9Þ: ð23Þ

The differential equations containing the operators L̂q,
(q ¼ 6, 7, 8, 9) might have negative eigenvalues since the
respective differential operators are not positively defined
at small momenta k⃗. Let us rewrite Eq. (23) in the case
q ¼ 6, 7, 8, 9 in the following form:

−
d2ψ
dτ2

þ ðk2 þ αkϕðτÞÞψ ¼ λψ ; ð24Þ

where k≡ jk⃗j and α ¼ �1;�2. Note that the classical
solution ϕðτÞ is identical to the original solution ϕðtÞ in
Eq. (19), since by definition the classical field Ba

m corre-
sponds to a vacuum-averaged value of the quantum
operator Aa

μ in the real Minkowski space-time. We recall
that the Wick rotation t → iτ provides a causal structure for
the Green function, and it does not mean that one should
treat the classical field Ba

m as a solution of the equations of
motion in the Euclidean space-time.
Equation (24) includes the momentum k as a free

positive parameter, and the quantum vacuum stability of
the classical solution will occur if all of the eigenvalues of
Eq. (24) are non-negative for all values of “k” and for
α ¼ �1;�2. It is convenient to rewrite Eq. (24) as follows:

−
d2ψ
dτ2

þ V0ð1 − ϕðτÞÞψ ¼ Eψ ; ð25Þ

with V0 ≡ αk andE≡ λ − k2 þ αk. The equation represents
a Schrödinger-type equation for a quantum-mechanical
problem in one-dimensional space parametrized by τ ≥ 0,
and ψðτÞ is a wave function describing quantum fluctuations
of the virtual gluon. One can make another analogy, namely,
that Eq. (25) describes the behavior of the electron in a one-
dimensional crystal with a periodic potential. It is known that
such an electron in a crystal is not localized and can move
freely in the entire crystal volume. The electron wave
function is expressed by the periodic Bloch function and
the energy spectrum forms a band structure (see, for
example, Ref. [45]). To check whether Eq. (25) has negative
eigenvalues, it is enough to estimate a lowest energy bound
in the first energy band. As a qualitative estimation, we first
consider a Schrödinger equation with a periodic rectangular
potential,

VðτÞ ¼
�þ1; nT ≤ τ ≤ ð2nþ 1Þ T

2
;

−1; ð2n − 1Þ T
2
≤ τ ≤ nT;

ð26Þ

where n ¼ 0;�1;�2; � � �. Analytic expressions for a sol-
ution of the Schrödinger equation with the potential VðτÞ
and the dispersion relation can be obtained by solving the
equation on a finite interval ð0 ≤ τ ≤ TÞ [45]. Taking the

shift in the potential height into account and setting T ¼ 1,
one can find an eigenvalue corresponding to the lowest
energy level in the first band, which turns out to be
negative: Elowest ≃ −0.04.
The numerical analysis of Eq. (25) shows that for α ¼ 1

there are no negative eigenvalues for any momentum k, and
the eigenvalue λ approaches zero from positive values when
k → 0. For the case α ¼ �2 the numeric solutions of
Eq. (25) imply negative eigenvalues for the momentum k in
the range ð0 ≤ k ≤ 0.733Þ, with the lowest eigenvalue
λlowest ¼ −0.0361 at k0 ¼ 0.482. Note that the scale
parameter M in the nonlinear plane-wave solution ϕðxÞ ¼
Msn½Mx;−1� leads to a rescaling of the eigenvalue λ and
does not affect the stability properties, as it should be due to
the conformal invariance of the original classical Yang-
Mills theory. We conclude that, despite several attractive
properties, the nonlinear plane-wave solutions cannot
provide a stable vacuum field configuration.

IV. A STABLE SPHERICALLY SYMMETRIC
MONOPOLE FIELD BACKGROUND

Let us first describe the main properties of the stationary
spherically symmetric monopole solution [30]. Due to the
conformal invariance of Yang-Mills theory, the static
soliton solutions do not exist, in agreement with
Derrick’s theorem. It is somewhat unexpected that pure
QCD admits a regular stationary monopole-like solution
[30]. The solution is described by a simple ansatz which
generalizes the static Wu-Yang monopole solution [in
spherical coordinates ðr; θ;φÞ],

A1
φ ¼ −ψðr; tÞ sin θ; A2

θ ¼ ψðr; tÞ; A3
φ ¼ 1

g
cos θ;

ð27Þ

where ψðr; tÞ is an arbitrary function and all other compo-
nents of the gauge potential vanish. In the case where
ψðr; tÞ ¼ 0, the ansatz describes a Wu-Yang monopole
solution which is singular at the origin r ¼ 0. The case
ψðr; tÞ ¼ 1 corresponds to a pure gauge field configuration.
For a nontrivial function ψðr; tÞ, the ansatz (27) describes a
system of a static Wu-Yang monopole dressed in an off-
diagonal gluon field. Substituting the ansatz into the
equations of motion, we obtain a single partial differential
equation,

∂2
tψ − ∂2

rψ þ 1

r2
ψðg2ψ2 − 1Þ ¼ 0: ð28Þ

Equation (28) was obtained in the past by using a
spherically symmetric “hedgehog” ansatz describing gen-
eralized SUð2Þ Wu-Yang monopole field configurations
(a ¼ 1, 2, 3),
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Aa
m ¼ −ϵabcn̂b∂mn̂c

�
1

g
− ψðt; rÞ

�
; ð29Þ

where n̂ ¼ ⃗r=r [46–50]. Note that the “hedgehog” ansatz
(29) is related to the ansatz (27) by an appropriate singular
gauge transformation [51]. We prefer to use the ansatz (27)
in the so-called Abelian gauge [51] since such a repre-
sentation allows us to interpret our monopole solution as a
static Wu-Yang monopole interacting with dynamic off-
diagonal gluons represented by the field ψðr; tÞ. Note that
the ansatz in the Abelian gauge admits a generalization to
the case of SUðNÞ stationary Wu-Yang monopole solu-
tions, and it is suitable as a description of a stationary
system of monopoles and antimonopoles located at differ-
ent points.
It has been shown that Eq. (28) admits a wide class of

time-dependent solutions, including nonstationary solitonic
propagating solutions in the effective two-dimensional
space-time ðr; tÞ [46–50]. Surprisingly, a stationary regular
Wu-Yang type monopole solution with a finite energy
density everywhere was missed in previous studies. We will
show that such a solution provides a stable vacuum
configuration in pure SUð2Þ QCD.
Let us consider a classical Hamiltonian written in terms

of the field ψðr; tÞ,

H ¼
Z

drdθdφ sin θðð∂tψÞ2 þ ð∂rψÞ2

þ 1

2g2r2
ðg2ψ2 − 1Þ2Þ≡ 4π

Z
drEðr; tÞ; ð30Þ

where E is an effective energy density in one-dimensional
space. One has the following nonvanishing field-strength
components:

F2
rθ ¼ ∂rψ ; F1

rφ ¼ −∂rψ sin θ;

F3
θφ ¼ g2

�
ψ2 −

1

g2

�
sin θ;

F2
tθ ¼ ∂tψ ; F1

tφ ¼ −∂tψ sin θ; ð31Þ

where the radial component of the field strength F3
θφ

describes spherically symmetric monopole configuration
with a nonvanishing color magnetic flux through a sphere
with a center at the origin r ¼ 0 [30]. The color magnetic
charge of the monopole depends on time and the radius of
the sphere.
One can find an asymptotic behavior of the stationary

solution, which approaches a standing spherical wave in the
leading order of the Fourier series expansion,

ψðr; tÞ≃ a0 þ A0 cosðMrÞ sinðMtÞ þO
�
1

r

�
; ð32Þ

where a0 and A0 are parameters characterizing the mean
value and amplitude of the standing spherical wave in the
asymptotic region. The mass scale parameter M corre-
sponds to the conformal symmetry of the original Yang-
Mills equations.
A local solution near the origin r ¼ 0 is given by the

Taylor series expansion

ψ ¼ 1

g
þ
X
k¼1

c2kðtÞr2k; ð33Þ

where all coefficient functions c2k>2ðtÞ are expressed in
terms of one arbitrary function c2ðtÞ defining the initial
conditions. The presence of the first term 1=g indicates a
nonperturbative origin of the solution. One can verify that
such a term regularizes the singularity of the Wu-Yang
monopole and provides a finite energy density. To find a
stationary solution one can impose initial conditions by
choosing the function c2ðtÞ in its simplest form,
c2ðtÞ ¼ ~c0 þ ~c20 sinðMtÞ. We will choose the initial profile
function c2ðtÞ in terms of the Jacobi elliptic function (19),

c2ðtÞ ¼ c0 þ c20sn½Mt;−1�; ð34Þ

where the set of the parameters c0, c20, and M provides a
unique general solution within a consistent Cauchy prob-
lem for the differential equation (28). The choice of the
initial profile function c2ðtÞ [Eq. (34)] provides additional
control over the consistency of the numerical calculation to
verify that the numerical solution matches the asymptotic
solution (32) given precisely by the ordinary sine function
sinðMtÞ (in the leading order of the Fourier series decom-
position). A subclass of stationary solutions is classified by
one independent parameter: c0 or c20.
A simple dimensional analysis implies that the energy

corresponding to the Hamiltonian (30) is proportional to
the scale parameter M. Due to this, the energy vanishes in
the limit M → 0. This might cause some doubts about
existence of a solution. However, one should stress that
standard arguments on the existence of solitonic solutions
based on Derrick’s theorem [22] cannot be applied to the
case of stationary solutions which satisfy a variational
principle of extremal value of the classical action, not the
energy functional. In addition, in the case of a pure Yang-
Mills theory the action is invariant under conformal trans-
formations, and its first variational derivative with respect
to the scale parameter M equals zero identically. So the
parameter M represents a moduli space parameter of
solutions related by conformal transformations (dilatations)
r → Mr, t → Mt. Without loss of generality one can fix the
value of M to an arbitrary number which determines the
unit of the space-time coordinates.
In order to solve Eq. (28) numerically we choose special

values for the parameters: g ¼ 1, M ¼ T0=ð2πÞ, and
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c0 ¼ −0.251. The parameter c20 is fixed by the requirement
that a numeric solution should match the asymptotic
solution (32). The mean value a0 and amplitude A0 of
the oscillating asymptotic solution are extracted from the
numeric solution, which is depicted in Fig. 1.
Note that at large distance rf after space-time averaging

over the ring ðrf ≤ r ≤ rf þ 2π; 0 ≤ t ≤ 2πÞ, one gains a
partial screening effect for the monopole charge. The
obtained numeric solution implies an averaged monopole
charge at rf ¼ 30,

gm ¼ 1

4π

Z
dθdφHθφ ¼ 1

4π

Z
dθdφðhψ2i − 1Þ sin θ

¼ 0.195 � � � ; ð35Þ

with

hψ2i ¼ 1

4π2

Z
rfþ2π

rf

dr
Z

2π

0

dtψ2ðr; tÞ:

The space-time-averaged magnetic flux of the radial color
magnetic field H3

θφ through a sphere does not vanish in
general and depends on the radius of the sphere. There is a
special nontrivial solution with the parameters a0 ¼ 0.1 � � �,

A0 ¼ 1.989 � � � which corresponds to a totally screened
averaged monopole charge.
With a given numeric monopole solution one can verify

the quantum stability of the monopole field in a similar
manner as we considered in the previous section. One
should solve the following Schrödinger-type eigenvalue
equation for possible unstable modes [the space indices
ðm; n ¼ 1; 2; 3Þ correspond to the spherical coordinates
ðr; θ;φÞ, respectively]:

Kab
mnΨb

nðr; θ;φ; tÞ ¼ λΨa
mðr; θ;φ; tÞ; ð36Þ

where Ψb
nðr; θ;φ; tÞ are the wave functions describing the

quantum gluon fluctuations, and Kab
mn is a differential

matrix operator corresponding to the one-loop gluon
contribution to the effective action in the temporal gauge,

Kab
mn ¼ −δabgmn∂2

t − gmnðDnDnÞab þ 2ϵabcF c
mn: ð37Þ

The Schrödinger-type equation (36) represents a system
of nine nonlinear partial differential equations which
should be solved on a three-dimensional numeric domain
with sufficiently high numerical accuracy. An additional
technical difficulty in the numerical calculation is that one
must solve the equations while changing the size of the
numeric domain in the radial direction in the limit r → ∞
to verify that all eigenvalues remain positive. Fortunately,
the numerical analysis of the solutions corresponding to the
lowest eigenvalue is simplified drastically due to the
factorization property of the original equation (36) and a
special feature of the class of ground-state solutions, as we
will see below.
Equation (36) in component form admits factorization,

and it can be written as two decoupled systems of partial
differential equations as follows (for brevity of notation we
set g ¼ 1 since the coupling constant can be absorbed by
the monopole function ψ):

(I)

ðΔ̂ΨÞ22 −
2

r2
∂θΨ2

1 þ
1

r2
ððψ2 − 1ÞΨ2

2 − 2ψ2Ψ1
3 þ 2csc2θðΨ2

2 þ Ψ1
3Þ þ 2 cot θψΨ3

3Þ ¼ λΨ2
2;

ðΔ̂ΨÞ13 −
2

r2
ψ∂θΨ3

3 þ
1

r2
ðψ2ð−2Ψ2

2 þ Ψ1
3Þ −Ψ1

3 þ 2csc2θðΨ2
2 þ Ψ1

3Þ þ 2 cot θΨ2
1Þ ¼ λΨ1

3;

ðΔ̂ΨÞ21 þ
2

r2
∂θΨ2

2 þ
1

r2
ððcot2θ þ ψ2ÞΨ2

1 þ 2 cot θðΨ2
2 þΨ1

3Þ þ 2ψΨ3
3 þ 2Ψ2

1Þ −
2

r
∂rψΨ3

3 ¼ λΨ2
1;

ðΔ̂ΨÞ33 þ
2

r2
ψ∂θΨ1

3 þ
1

r2
ð2ψΨ2

1 þ 2 cot θψðΨ2
2 þΨ1

3Þ þ 2ψ2Ψ3
3 þ csc2θΨ3

3Þ −
2

r
∂rψΨ2

1 ¼ λΨ3
3; ð38Þ

FIG. 1. Stationary spherically symmetric monopole solu-
tion in the numeric domain ð0 ≤ r ≤ 8π; 0 ≤ t ≤ 2πÞ, with
c0 ¼ −0.251, a0 ¼ 0.84175, and A0 ¼ 0.6405.
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(II)

ðΔ̂ΨÞ11 þ
2

r2
∂θΨ1

2 −
2

r2
ψ∂θΨ3

1 þ
1

r2
ðð2þ cot2θ þ ψ2ÞΨ1

1 þ 2ψΨ3
2 − 2 cot θðΨ2

3 − Ψ1
2ÞÞ

−
2

r
∂rψΨ3

2 ¼ λΨ1
1;

ðΔ̂ΨÞ32 −
2

r2
∂θΨ3

1 þ
2

r2
ψ∂θΨ1

2 þ
1

r2
ð2ψΨ1

1 þ 2 cot θψðΨ1
2 −Ψ2

3Þ þ ð2ψ2 þ csc2θÞΨ3
2Þ

−
2

r
∂rψΨ1

1 ¼ λΨ3
2;

ðΔ̂ΨÞ12 −
2

r2
∂θΨ1

1 −
2

r2
ψ∂θΨ3

2 þ
1

r2
ð−2ψΨ3

1 þ ψ2ðΨ1
2 þ 2Ψ2

3Þ þ 2csc2θðΨ1
2 −Ψ2

3Þ −Ψ1
2Þ

þ 2

r
∂rψΨ3

1 ¼ λΨ1
2;

ðΔ̂ΨÞ31 þ
2

r2
∂θΨ3

2 þ
2

r2
ψ∂θΨ1

1 þ
1

r2
ð2 cot θψΨ1

1 þ 2ð1þ ψ2ÞΨ3
1 − 2ψðΨ1

2 þ Ψ2
3Þ þ 2 cot θΨ3

2Þ

þ 2

r
∂rψðΨ1

2 þΨ2
3Þ ¼ λΨ3

1;

ðΔ̂ΨÞ23 þ
1

r2
ð2 cot θðψΨ3

2 −Ψ1
1Þ − 2ψΨ3

1 þ ψ2ð2Ψ1
2 þΨ2

3Þ − 2csc2θðΨ1
2 −Ψ2

3Þ −Ψ2
3Þ

þ 2

r
∂rψΨ3

1 ¼ λΨ2
3; ð39Þ

where

Δ̂Ψa
m ≡ −

�
∂2
t þ ∂2

r þ
2

r
∂r þ

1

r2
∂2
θ þ

cot θ
r2

∂θ

�
Ψa

m:

To numerically solve the systems of equations (I) and
(II), we choose a rectangular three-dimensional domain
ð0 ≤ t ≤ 2π; r0 ≤ r ≤ L; 0 ≤ θ ≤ πÞ and use a simple inter-
polating function for the monopole solution ψðr; tÞ,

ψ int ¼ 1 −
ð1 − a0Þr2
1þ r2

þ A0ð1 − e−d0r
2Þ cosðMrþ b0Þ sinðMtÞ; ð40Þ

where d0 and b0 are fitting parameters. The obtained
numerical solution to the system of equations (I)
[Eq. (38)] implies that the lowest eigenvalue is positive,
λI ¼ 0.0531, and the corresponding eigenfunctions have
the following properties: the functions Ψ2

1 and Ψ3
3 vanish

identically, and remaining two functions are related by the
constraint Ψ1

3 ¼ −Ψ2
2. Thus, there is only one independent

nonvanishing eigenfunction which can be chosen asΨ2
2. An

important feature of the solution corresponding to the
lowest eigenvalue is that the eigenfunction Ψ2

2 does not
depend on the polar angle; see Fig. 2. This allows one to
simplify the system of equations (I) in the case of solutions
corresponding to the lowest eigenvalues. One can easily

verify that the system of equations (I) reduces to one partial
differential equation in two space-time dimensions,

�
−∂2

t − ∂2
r −

2

r
∂r þ

1

r2
ð3ψ2 − 1Þ

�
Ψ2

2 ¼ λΨ2
2: ð41Þ

The last equation represents a simple Schrödinger-
type equation for a quantum-mechanical problem. The
equation does not admit negative eigenvalues if the
parameter a0 of the monopole solution satisfies the con-
dition a0 ≥ 1=

ffiffiffi
3

p ≃ 0.577…, which provides a totally
repulsive quantum-mechanical potential in this equation.
The structure of the system of equations (II) admits

similar factorization properties in the space of ground-state
solutions. We have numerically solved the equations (II)

FIG. 2. Eigenfunction Ψ2
2 for the ground state with the lowest

eigenvalue λI ¼ 0.0531, with a0 ¼ 0.895, A0 ¼ 0.615, g ¼ 1,
M ¼ 1, 0 ≤ r ≤ 6π, 0 ≤ t ≤ 2π, and 0 ≤ θ ≤ π.
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[Eq. (39)] with the same background monopole function
ψðr; tÞ for various values of the parameters a0, A0, and M.
In the special case with a0 ¼ 0.895, A0 ¼ 0.615, and 0 ≤
r ≤ 6π the obtained numeric solution for the ground state
has a lowest eigenvalue λII ¼ 0.0142, which is less than λI.
None of the components of the solution are dependent on
the polar angle, and they satisfy the following relationships:
Ψ1

2 ¼ Ψ2
3 and Ψ1

1 ¼ Ψ3
2 ¼ 0. There are two independent

nonvanishing functions which can be chosen as Ψ3
1 and Ψ2

3.
One can check that in the space of solutions corresponding
to the lowest eigenvalue the system of equations (II)
reduces to two coupled partial differential equations for
two functions Ψ3

1ðr; tÞ and Ψ2
3ðr; tÞ,

�
−∂2

t − ∂2
r −

2

r
∂r

�
Ψ3

1 þ
2

r2
ðð1þ ψ2ÞΨ3

1 − 2ψΨ2
3Þ

þ 4

r
∂rψΨ2

3 ¼ λΨ3
1;�

−∂2
t − ∂2

r −
2

r
∂r

�
Ψ2

3 þ
1

r2
ðð3ψ2 − 1ÞΨ2

3 − 2ψΨ3
1Þ

þ 2

r
∂rψΨ3

1 ¼ λΨ2
3: ð42Þ

Exact numerical solution profiles for the functions Ψ3
1 and

Ψ2
3 are shown in Fig. 3.
We have obtained that the lowest eigenvalue is positive

when the asymptotic monopole amplitude A0 is less than
the critical value a1cr ≃ 0.625.
We conclude that a ground-state solution with the lowest

eigenvalue satisfying the original eigenvalue equation (36)
can be found by solving a simple system of partial
differential equations [Eq. (42)]. Note that numerically
solving the original eigenvalue equations (36) in three-
dimensional space-time does not provide a high enough
accuracy, especially in the case of a large radial size of the
numerical domain. This causes difficulty in studying the
positiveness of the eigenvalue spectrum in the limit of
infinite space when the eigenvalues become very close to
zero. Solving the reduced two-dimensional partial differ-
ential equations (42) can be performed easily using
standard numerical packages with a high enough numerical
accuracy and convergence. The obtained numerical
accuracy for the eigenvalues λðLÞ in solving the two-
dimensional equations (42) is 1.0 × 10−5, which allows one
to construct the eigenvalue dependence on the radial size L
of the space-time domain in the range 6π ≤ L ≤ 64π. We
have proved that the lowest eigenvalue λðLÞ approaches
zero with increasing L from positive values, as it is shown
in Fig. 4. This implies that the ground-state solution
describes the main mode of the standing spherical wave
with a wave vector proportional to the inverse of the radial
size of the box, jp⃗j≃ 1=L. This completes the proof of the
quantum stability of the spherically symmetric stationary
monopole solution.
The stationary single monopole solution represents a

simple example of a spherically symmetric vacuum field
that has a nontrivial intrinsic microscopic structure deter-
mined by two parameters: the amplitude A0 and frequency
M of space-time oscillations of the monopole field.
Quantum-mechanical consideration implies that the fre-
quency of vacuum monopole field oscillations has a finite
minimum value. One can estimate a lower bound on M

FIG. 3. Solutions to Eq. (42): the functions Ψ3
1ðr; tÞ (a) and Ψ1

2ðr; tÞ ¼ Ψ2
3ðr; tÞ (b) corresponding to the eigenvalue λ ¼ 0.014218,

with a0 ¼ 0.895, A0 ¼ 0.615, M ¼ 1, 0 ≤ r ≤ 6π, and 0 ≤ t ≤ 2π.

FIG. 4. Lowest eigenvalue dependence λðLÞ on the radial size L
of the numerical domain.
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using the condition that the characteristic length λ ¼ 2π=M
of the monopole field should be less than the hadron size.
At the macroscopic scale, when the observation time is
much larger than the period of oscillations of the stationary
monopole solution, the vacuum-averaged value of the
gauge potential h0jAa

μj0i vanishes, as it should be in the
confinement phase. Contrary to this, the so-called vacuum
gluon (monopole) condensate H2 ≡ h0jF⃗2

μνj0i does not
vanish after averaging over time, and it has an inhomo-
geneous distribution inside the hadron. Calculating an exact
effective action in the case of inhomogeneous background
vacuum fields represents an unresolved problem. In the
weak-field approximation one can apply the known expres-
sion for the Savvidy renormalized one-loop effective
potential [14,31–38]

VeffðHÞ ¼ 1

4
H2 þ 11g2ðμÞ

96π2
H2

�
ln
gðμÞH
μ2

−
3

2

�
; ð43Þ

where gðμÞ is a renormalized coupling constant defined at
the subtraction point μ2 ≃ ΛQCD [αs ¼ g2ðμÞ=ð4πÞ≃ 1].
For qualitative estimates we replace the vacuum spherically

symmetric monopole field H2 with its mean value H2

obtained by averaging over space and time. The potential
VeffðH̄Þ has a nontrivial minimum corresponding to a
negative vacuum energy density at a nonzero value of
the averaged monopole field, H̄0 ≃ 0.138 μ2 [38]. The
value H̄0 is consistent with the frequency and amplitude
values ðM ≃ 1; A0 ≤ a1crÞ corresponding to stable station-
ary monopole field configurations.
One should stress that the generation of a nontrivial

vacuum originates from the magnetic moment interaction
between the vacuum magnetic field and quantum gluon
fluctuations. Such an interaction causes the vacuum energy
to decrease for sufficiently small values of the vacuum
monopole condensate parameter H̄. In the case of the
spherically symmetric monopole solution our numerical
analysis confirms that for large values of the parameters M
and A0 (i.e., for large values of H̄0), the monopole field
obtains quantum instability which prevents the generation
of a stable monopole condensate.

V. DISCUSSION

We have demonstrated that there is a subclass of
stationary spherically symmetric monopole solutions
which possesses quantum stability for restricted values
of the amplitude A0 of the asymptotic monopole solution
(32). Recently, it has been found that there is another stable
stationary monopole-antimonopole solution in SUð2Þ and
SUð3Þ QCD [52]. This gives hope that a true vacuum can
be formed through condensation of such monopoles and/or
monopole-antimonopole pairs.
The existence of stable monopole field configurations

and the possible formation of a gauge-invariant vacuum

monopole condensate may shed light on the origin of color
confinement in QCD and give a partial answer to a simple
but puzzling question: why do we have spontaneous
symmetry breaking in the electroweak theory, while in
QCD the color symmetry is preserved despite the similar
gauge group structure in both theories? The vanishing
vacuum-averaged value of the gluon field operator corre-
sponding to the stationary monopole solution hAa

mi testifies
that there is no spontaneous symmetry breaking in QCD in
the confinement phase. One can apply the ansatz (27) to
electroweak gauge potentials corresponding to the group
SUð2Þ × UYð1Þ of the Weinberg-Salam model to find
similar stationary electroweak monopole solutions. One
can consider the Higgs complex doublet Φ in the unitary
gauge, and choose a simple Dirac monopole ansatz for the
hypermagnetic field Bμ,

Φ ¼
�

0

ρðr; tÞ

�
; Bμ ¼ cos θ: ð44Þ

Direct substitution of the ansatz (27) and the last equa-
tions (44) into the equations of motion of the Weinberg-
Salam model results in two equations for two functions
ψðr; tÞ and ρðr; tÞ,

∂2
tψ − ∂2

rψ þ 1

2
ψρ2 þ 1

r2
ðψ2 − 1Þ ¼ 0;

∂2
t ρ − ∂2

rρ −
2

r2
∂rρþ

1

2r2
ρψ2 þ κρðρ2 − 1Þ ¼ 0; ð45Þ

where κ is the coupling constant of the Higgs potential. In
the special case of static field configurations, Eq. (45)
reduces to the ordinary differential equations describing the
known Cho-Maison monopole [53]. A simple numerical
analysis of Eq. (45) shows that a nonstatic generalization of
the Cho-Maison monopole exists; however, it has the same
singularity at the origin r ¼ 0. We conclude that there is a
principal difference between the Weinberg-Salam model
and QCD: the absence of a regular monopole solution in the
Weinberg-Salam model implies that there is no generation
of a stable monopole condensation like in QCD. This leads
to nonvanishing vacuum-averaged values for the gauge
bosons and, consequently, to the spontaneous symmetry
breaking. Contrary to this, in the confinement phase of
QCD the mean value of the monopole field h0jAa

mj0i
averaged over the periodic space-time domain vanishes,
so that the color symmetry is exact.
In conclusion, we have demonstrated that a classical

stationary spherically symmetric monopole solution pro-
vides a stable vacuum field configuration in pure SUð2Þ
QCD. A generalization of our results to the case of SUð3Þ
QCD has been presented in a separate paper [54]. The
possibility that a stationary classical solution can be related
to vacuum structure is not very surprising, since it was
noticed in the past that color magnetic flux tubes in the
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“spaghetti” vacuum should be vibrating due to quantum-
mechanical considerations [55]. An unexpected result is
that a stationary color monopole solution exists in pure
QCDwithout any matter fields, and it possesses remarkable
features such as a finite energy density, zero total spin, and
the existence of an intrinsic mass scale parameter. This
gives a strong indication of the generation of a stable
vacuum condensate in QCD.
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APPENDIX: VARIATIONAL ANALYSIS OF THE
QUANTUM STABILITY OF THE STATIONARY

MONOPOLE FIELD

To reveal the origin of the stability of our numerical
solution, we analyze the eigenvalue spectrum of the
Schrödinger-type equation (36). Since we are interested
only in the lowest eigenvalue solution,we can approxi-
mately solve Eq. (36) by applying variational methods.
Within the framework of the variational approach one has
to minimize the following “energy” functional:

H ¼
Z

drdθdφdtr2 sin θΨa
mKab

mnΨb
n: ðA1Þ

The structure of the kinetic operator Kab
mn and the finiteness

condition of the functional H allow us to fix the singular-
ities along the boundaries θ ¼ 0 and θ ¼ π in the integral
density in Eq. (A1). We factorize the angle dependence of
the ground-state wave functions using the leading-order
approximation in a Fourier series expansion for the
functions fam as

Ψ3
1ðr; θ;φ; tÞ ¼ f31ðr; tÞ; ðA2Þ

and for the other functions

Ψa
mðr; θ;φ; tÞ ¼ famðr; tÞ sin θ: ðA3Þ

With this, one can perform the integration in Eq. (A1) over
the angle variables ðθ;φÞ and obtain an effective “energy”
functional,

Heff ¼
Z

drdtr2famKab
mnfbn

¼
Z

drdtr2fam½gmnδ
ab ~K0 þ Vab

mnðr; tÞ�fbn; ðA4Þ

where ~K0 ¼ −∂2
t − ∂2

r − ð2=rÞ∂r, and Vab
mn is an effective

potential. The quadratic form

hfjVjfi≡ X
m;n;a;b

famVab
mnfbn ðA5Þ

contains terms with radial dependences proportional to
ð1=r2Þ and ð1=rÞ, which correspond to the centrifugal and
Coulomb-like potentials, respectively. In the case of a pure
Wu-Yang monopole it was shown that such a background
field leads to vacuum instability due to the appearance of
the attractive potential ð−1=r2Þ in the respective eigenvalue
equation for unstable modes [21]. In our case, in the
presence of the stationary monopole solution, one can
verify that due to the structure of the local solution near
r ¼ 0 in Eq. (33), the quadratic form containing the terms
proportional to ð1=r2Þ is positively defined for any smooth
fluctuating functions famðr; tÞ satisfying the finiteness
condition of the “energy” functional. This provides a
nonvanishing positive centrifugal potential in the corre-
sponding Schrödinger equation which prevents the appear-
ance of negative eigenmodes for a special class of
background monopole solutions.
By variation of the functional Heff with respect to the

functions famðr; tÞ, one obtains the following effective
Schrödinger-type equation:

Kab
mnfbnðr; tÞ ¼ λfamðr; tÞ: ðA6Þ

The obtained system of nine differential equations is
explicitly factorized into four decoupled systems of partial
differential equations:

(I)

~K0f22 þ
1

r2
ðð5þ 2ψ2Þf22 þ ð6 − 4ψ2Þf13Þ ¼ λf22;

~K0f13 þ
1

r2
ðð6 − 4ψ2Þf22 þ ð5þ 2ψ2Þf13Þ ¼ λf13;

ðA7Þ

(II)

~K0f21 þ
1

r2
ð3þ ψ2Þf21 þ 2ψf33Þ −

2ψ 0

r
f33 ¼ λf21;

~K0f33 þ
2

r2
ðð1þ ψ2Þf23 þ ψf21Þ −

2ψ 0

x
f21 ¼ λf33;

ðA8Þ
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(III)

~K0f12 þ
1

r2
ðð10þ 4ψ2Þf12 − ð12 − 8ψ2Þf23

− 3πψf31Þ þ
3πψ 0

r
f31 ¼ λf12;

~K0f31 þ
1

2r2
ð4ð1þ ψ2Þf31 − πψðf12 þ f23ÞÞ

þ πψ 0

2r
ðf12 þ f23Þ ¼ λf31;

~K0f23 þ
1

4r2
ð2ð5f23 − 6f12Þ þ 4ψ2ð2f12 þ f23Þ

− 3πψf31Þ þ
3πψ 0

4r
f31 ¼ λf23: ðA9Þ

The remaining system (IV) of two equations for the
functions f11 and f32 is the same as the system (II) for
the functions f21 and f

3
3 with the replacements f21 → f11 and

f33 → f32. The obtained equations represent Schrödinger-
type equations for a charged particle with a positive

centrifugal potential and oscillating Coulomb potential.
It is clear that solutions ψðr; tÞ with small enough param-
eters a0, A0 will imply a positive eigenvalue spectrum,
since a potential with a small enough depth and asymptotic
behavior [Oð1=rαÞ and ðα ≤ 1Þ] does not lead to bound
states in the case of space dimension d ≥ 3. Substituting the
interpolating function (40) into the Schrödinger equations,
one can solve them and obtain the eigenvalue spectrum.
Numerical analysis shows that a complete positive eigen-
value spectrum exists for solutions ψðr; tÞ with parameter
values of a0 in a finite range 0.89 ≤ a0 ≤ 1. We solve the
systems (I)–(III) for the case of a monopole background
field specified by the parameters a0 ¼ 0.895 and
A0 ¼ 0.615. A typical profile function for the solutions
to systems (I) and (II) has a weak dependence on time; see
Fig. 5. The corresponding ground-state eigenvalues are
close to each other: λI ≃ 0.0586 and λII ≃ 0.0552. The
solution to system (III) has a lower eigenvalue
(λIII ≃ 0.0293) and manifests larger time fluctuations, as
it is shown in Fig. 6. Note that the principal lowest
eigenvalue originates from the decoupled system of equa-
tions (III) for the functions f12, f

3
1, and f23, which is in

qualitative agreement with the exact numerical solution of
the original eigenvalue equation presented in Sec. IV.
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