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We suggest a description of the beam asymmetry in pp̄ and ΛΛ̄ photoproduction off the proton γ⃗ þ p →
pp̄þ p and γ⃗ þ p → ΛΛ̄þ p, which takes into account the contribution of the scalar mesons f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ. These scalars are considered as mixed states of a glueball and nonstrange and
strange quarkonia in the framework based on the use of effective hadronic Lagrangians. Present results can
be used to guide the possible search for this reaction by the GlueX Collaboration at JLab. Also, we did an
estimate of contribution of heavier scalar meson states f0ð2020Þ, f0ð2100Þ, and f0ð2200Þ.
DOI: 10.1103/PhysRevD.96.054024

I. INTRODUCTION

In this paper, we investigate the beam asymmetry in the
pp̄ and ΛΛ̄ photoproduction due to the possible contribu-
tion of scalar mesons. This reactions are relevant to the
physical program of the GlueX Collaboration (Hall D) at
JLab. Note that the GlueX Collaboration recently reported
[1] measurements of the photon beam asymmetry for the π0

and η photoproduction γ⃗p → pπ0 and γ⃗p → pη using a
9 GeV linear-polarized, tagged photon beam incident on
a liquid hydrogen target. The asymmetries, measured as a
function of the proton momentum transfer, possess greater
precision than previous π0 measurements and are the first
measurements involving the ηmeson in this energy regime.
The results are compared with theoretical predictions [2–5]
based on t-channel, quasiparticle exchange and constrain
the axial-vector component of the neutral meson produc-
tion mechanism in these models.
In present manuscript, we consider gluonic excitations in

the intermediate mesons through photoproduction reac-
tions. When focusing on events without really observed
mesons, the detection of the glueball or a glueball compo-
nent in a hadron is significantly simplified. The glueball
will be present in these processes via its mixing with
nonstrange and strange quarkonia components [6,7]. In
particular, the scalar fields f1 ¼ f0ð1370Þ, f2 ¼ f0ð1500Þ,
and f3 ¼ f0ð1710Þ are considered as mixed states of the
glueballG and nonstrangeN and strange S quarkonia [6,7]
fi ¼ Bi1N þ Bi2Gþ Bi3S, i ¼ 1, 2, 3, where the Bij are
elements of the 3 × 3 mixing matrix rotating bare states
ðN ; G; SÞ into the physical scalar mesons fi. Therefore, the
glueballG component will appear in the couplings of scalar
mesons with photon and vector (axial) mesons and in the

scalar meson propagators, which are the basic blocks for
the calculation of the baryon-antibaryon photoproduction
in our approach (see Fig. 1). Regarding the coupling of
scalar mesons with pp̄ andΛΛ̄ pairs, we proceed as follows
(see details in the Appendix):
(1) We neglect the coupling of glueball component to

pp̄ and ΛΛ̄.
(2) In case of pp̄ photoproduction, we neglect by the

coupling of strange quarkonia with pp̄ and suppose
that fipp̄ couplings are dominated by the coupling
of the nonstrange component of fi to nucleons.

(3) In case of ΛΛ̄ photoproduction, we take into account
the couplings of both nonstrange and strange com-
ponents of fi to Λ hyperons.

We start with definition of kinematics of the process
of baryon-antibaryon photoproduction of the proton
γ⃗ðqÞþpðpÞ→pðp0ÞþBðq1Þþ B̄ðq2Þ and introduce beam

FIG. 1. Relevant diagrams describing the contribution of
intermediate scalar mesons fðiÞ0 ¼ f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ to the photoproduction of the BB̄ pair through the
exchange of vector VðjÞ ¼ ρ0;ω and axial-vector AðjÞ ¼ b1, h1
mesons (or the corresponding Reggeons). Here, W ¼ V, A and
B ¼ p, Λ.
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asymmetry: 1) p, p0, q, q1, and q2 are the momenta of the
initial and final protons, photon, produced baryon and
antibaryon, respectively. 2) Invariant Mandelstam variables
s (total energy), t (the square momentum transferred to the
target proton), and s2 (the square of the invariant mass of
the produced BB̄ pair) are defined as

s ¼ ðpþ qÞ2 ¼ ðp0 þ q1 þ q2Þ2;
t ¼ k2 ¼ ðp0 − pÞ2 ¼ ðq − q1 − q2Þ2;

s2 ¼ ðq1 þ q2Þ2: ð1Þ
3) The asymmetry ABB̄, written according to the known
Basel convention as

ABB̄ðtÞ ¼
dσ⊥=dΩ − dσ∥=dΩ
dσ⊥=dΩþ dσ∥=dΩ

¼ PγΣ cos 2φ; ð2Þ

can be measured experimentally at JLab in a large interval
of t. The numerator on the rhs of Eq. (2) is the difference
of cross sectionsmeasured for linearly polarized photons, σ∥
for the polarization along the x axis and σ⊥ for the
polarization along the y axis, which are named the
“PARA” and “PERP” orientations, respectively. The asym-
metry ABB̄ðtÞ of Eq. (2) includes the factor Pγ (the linear
polarization of the initial photon beam), and thus the
coefficient Σ only can be considered as a beam asymmetry
of the physical process. 4)We use the laboratory (Lab) frame
with the z axis directed along the photon momentum
qμ ¼ fjqj; 0; 0; jqjg. The absolute value of the 3-vector of
the transfer momentum k is expressed through t and nucleon

mass mN as jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tð1 − t

4m2
N
Þ

q
. The beam asymmetry

depends on the absolute value of k and the anglesΩ ¼ ðθ;φÞ
of k with respect to the photon 3-momentum q and the
direction of the photon electric field E for the PARAvariant
of the polarization (E∥x): kx ¼ jkj sin θ cosφ, ky ¼
jkj sin θ sinφ, kz ¼ jkj cos θ with

cos θ ¼
1þ 2m2

N
t

t−s2
s−m2

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

N
t

q : ð3Þ

In present paper, we consider theoretical predictions for
the differential cross sections

dσP
dt

¼
Z

sþ
2

s−
2

ds2
d2σP
dtds2

; P ¼ ⊥; ∥: ð4Þ

As we mentioned before, the calculation is based on
a model that takes into account the excitation of inter-
mediate scalar mesons considered as mixed states of
quarkonia and glueballs. The unpolarized cross section,
which is given by the sum of both photon polarization cross
sections with

d2σ
dtds2

¼ d2σ∥
dtds2

þ dσ2⊥
dtds2

¼ 1

2
N ðjM∥j2 þ jM⊥j2Þ; and

N ¼ α

64π2ðs −m2
NÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 4m2

B

s2

s
; ð5Þ

was considered in our recent work [8]. Here, M∥ and M⊥
are the matrix elements for the PARA and PERP orienta-
tions of photoproduction, α ¼ 1=137.036 is the fine-
structure constant, and mB is the mass of the produced
baryon. The physical region of the reaction is constrained
by the limits of the Chew-Low plot, defined by equations

s−2 ¼ 4m2
B; sþ2 ¼ s −m2

N

2m2
N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt − 4m2

NÞ
q

þ sþm2
N

s −m2
N
t

�
;

t� ¼ m2
N −

s −m2
N

2s

�
sðs − s2Þ
s −m2

N
−m2

N ∓ λ1=2ðs; s2; m2
NÞ
�
;

ð6Þ
where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz is
the Källen kinematical function. We have a characteristic
value of

tðs2maxÞ¼m2
N

�
2−

�
mNffiffiffi
s

p þ
ffiffiffi
s

p
mN

��
; s2max¼ð ffiffiffi

s
p

−mNÞ2

ð7Þ

that corresponds to themaximumcondition dsþ
2

dt jt¼tðs2maxÞ ¼ 0.

II. FORMALISM

In this section, we discuss the formalism for the calculation
of the beam asymmetry in the process of the baryon-
antibaryon photoproduction through the intermediate scalar
meson based on the models proposed and developed in
Refs. [6–8]. The diagram in Fig. 1 schematically represents
the contributionof intermediate scalarmesonsf1¼f0ð1370Þ,
f2¼f0ð1500Þ, and f3¼ f0ð1710Þ to the photoproduction of
theBiB̄i (withB1 ¼ p,B2 ¼ Λ) pair through the exchange of
vector V1 ¼ ρð770Þ, V2 ¼ ωð782Þ with JPC ¼ 1−− and
axial-vector A1 ¼ b1ð1235Þ, A2 ¼ h1ð1170Þ mesons with
JPC ¼ 1þ− (or the corresponding Reggeons).
The full Lagrangian relevant for the description of

the BB̄ photoproduction processes γ þ p → BB̄þ p
involving exchange by vector (axial) mesons in the t
channel and contribution of scalar mesons in the s2 channel
is given by a sum of free LfreeðxÞ and interaction LintðxÞ
Lagrangians [6–8],

LfullðxÞ ¼ LfreeðxÞ þ LintðxÞ;
LfreeðxÞ ¼ LFðxÞ þ LfðxÞ þ LVðxÞ þ LAðxÞ þ LBðxÞ;
LintðxÞ ¼ LVppðxÞ þ LAppðxÞ þ LfBBðxÞ þ LfVγðxÞ

þ LfAγðxÞ; ð8Þ
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where LF, Lf, LV , LA, and LB are free parts of electro-
magnetic field, scalar, vector, axial mesons, and baryons,
respectively,

LFðxÞ ¼ −
1

4
FμνðxÞFμνðxÞ;

LfðxÞ ¼
1

2

X3
i¼1

½∂μfiðxÞ∂μfiðxÞ −M2
fi
f2i ðxÞ�;

LVðxÞ ¼ −
1

2

X2
i¼1

½∂νViμðxÞ∂νVμ
i ðxÞ −M2

VViμðxÞVμ
i ðxÞ�

LAðxÞ ¼ −
1

2

X2
i¼1

½∂νAiμðxÞ∂νAμ
i ðxÞ −M2

AAiμðxÞAμ
i ðxÞ�

LBðxÞ ¼
X2
i¼1

B̄ðxÞði=∂ −mBÞBðxÞ; ð9Þ

and LVpp, LApp, LfVγ , LfAγ , and LfBB are the interaction
Lagrangians of vector and axial mesons with protons, with
scalar mesons and a photon, and scalar mesons with
baryons,

LVppðxÞ¼
X2
i¼1

p̄ðxÞ
�
gVippV

μ
i ðxÞγμþ

fVipp

4MN
Vμν
i ðxÞσμν

�
pðxÞ;

LAppðxÞ¼
X2
i¼1

p̄ðxÞ
�
fAipp

4MN
Aμν
i ðxÞσμνγ5

�
pðxÞ;

LfBBðxÞ¼
X3
i¼1

X2
k¼1

gfiBkBk
fiðxÞB̄kðxÞBkðxÞ; ð10Þ

LfVγðxÞ ¼
e
2
FμνðxÞ

X3
i¼1

X2
j¼1

gfiVjγfiðxÞVμν
j ðxÞ;

LfAγðxÞ ¼
e
4
eμναβFμνðxÞ

X3
i¼1

X2
j¼1

gfiAjγfiðxÞAαβ
j ðxÞ: ð11Þ

Here, we introduce the following notation: Fμν ¼
∂μAν − ∂νAμ, Vμν¼∂μVν−∂νVμ, and Aμν¼∂μAν−∂νAμ

are the stress tensors of the electromagnetic field, vector,
and axial mesons, respectively.

The scalar fields are considered as mixed states of the
glueballG and nonstrangeN and strange S quarkonia [6,7]:
fi ¼ Bi1N þ Bi2Gþ Bi3. The Bij are the elements of the
mixing matrix rotating bare states ðN ; G; SÞ into the
physical scalar mesons ½f0ð1370Þ; f0ð1500Þ; f0ð1710Þ�.
In Refs. [6,7], we studied in detail different scenarios for
the mixing ofN ,G, and S states. Here, we proceed with the
scenario fixed in Ref. [7] from a full analysis of strong f0
decays and radiative decays of the J=ψ with the scalars in
the final state:

B ¼

0
B@

0.75 0.60 0.26

−0.59 0.80 −0.14
−0.29 −0.05 0.95

1
CA: ð12Þ

The coupling constants involving scalar mesons are given
in terms of the matrix elements Bij and the effective
couplings csf and cgf of Ref. [7]:

gfiργ ¼ 3gfiωγ ¼ Bi1csf þ Bi2

ffiffiffi
2

3

r
cgf: ð13Þ

The effective couplings csf ¼ 1.592 GeV−1 and cgf ¼
0.078 GeV−1 are fixed from data involving the scalar
mesons fi. In case of the fipp couplings, we suppose that
they are dominated by the coupling of the nonstrange
component to the nucleon,

gfipp ≃ Bi1gNpp: ð14Þ

The coupling gNpp can be identifiedwith the coupling of the
nonstrange scalar σ meson to nucleons,

gNpp ¼ gσpp ≃ 5: ð15Þ

In case of fiΛΛ couplings,we take into account the coupling
of both nonstrange and strange components to theΛ.We use
the SUð6Þ quark model relations in order to derive fiΛΛ
couplings.
The invariant matrix element corresponding to the

diagram in Fig. 1 reads

MVðijkÞλ
inv ¼ GVðijkÞ

eff DðiÞ
f ðs2ÞDðjÞ

V ðtÞ½qαkμ − gαμk · q�ūBk
ðq1; σ1zÞvBk

ðq2; σ2zÞ

× ūpðp0; σ0zÞ
�
γαgVjpp þ ðkα − γα=kÞ

fVjpp

2mN

�
upðp; σzÞϵλμðqÞ ð16Þ

in the case of vector (W ¼ V) meson exchange and

MAðijkÞλ
inv ¼ GAðijkÞ

eff DðiÞ
f ðs2ÞDðjÞ

A ðtÞεμναβqαkβūBk
ðq1; σ1zÞvBk

ðq2; σ2zÞ × ūpðp0; σ0zÞ
�
γνγ5=k

fAjPP

2mN

�
upðp; σzÞϵλμðqÞ ð17Þ
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in the case of axial-vector (W ¼ A) meson exchange. The
indices i ¼ 1, 2, 3; j ¼ 1, 2; and k ¼ 1, 2 correspond to the
summation over scalar [f1¼ f0ð1370Þ, f2 ¼ f0ð1500Þ,
f3¼ f0ð1710Þ] and vector (axial-vector) [V1¼ ρ0,
V2 ¼ ω, A1 ¼ b1, A2 ¼ h1] mesons, and baryons
[B1¼p, B2 ¼ Λ], respectively. Here, ūBk

and vBk
are

the spinors denoting the produced baryon and antibaryon;
ūp and up are the spinors denoting the final and initial
proton; λ ¼ �1 is the photon helicity; σz is the baryon spin

projection on the z axis;DðiÞ
f ðs2Þ andDðjÞ

VðAÞðtÞ are the scalar
and vector (axial-vector) meson propagators, respectively,
including their resonance parts,

DðiÞ
f ðs2Þ ¼

1

m2
fi
− s2 − imfiΓfi

;

DðjÞ
VðAÞðtÞ ¼

1

m2
VjðAjÞ − t − imVjðAjÞΓVjðAjÞ

; ð18Þ

where a set of masses and the widths of scalar mesons,

Mf1 ¼ 1.432 GeV; Mf2 ¼ 1.510 GeV;

Mf2 ¼ 1.720 GeV ð19Þ

and

Γf1 ¼ 350MeV; Γf2 ¼ 109MeV; Γf3 ¼ 135MeV

ð20Þ

is the prediction of our model (see Refs. [6,7]), while for
vector and axial mesons, we use cental values of data [9],

Γρ ¼ 149.1 MeV; Γω ¼ 8.49 MeV;

Γb1 ¼ 142 MeV; Γh1 ¼ 360 MeV: ð21Þ

GVðijkÞ
eff ðt; s2Þ and GAðijkÞ

eff ðt; s2Þ are effective vertices, which
are products of fBB, fVγ and fBB, fAγ phenomenological
form factors, respectively,

GVðijkÞ
eff ðt; s2Þ ¼ gfiBkBk

ðs2ÞgfiVjγðtÞ;
GAðijkÞ

eff ðt; s2Þ ¼ gfiBkBk
ðs2ÞgfiAjγðtÞ: ð22Þ

In Ref. [8], we dropped the s2 and t dependence of the
corresponding form factors. However, in accordance with
quark counting rules [10–12], the form factors gfBBðs2Þ and
gfVðAÞγðtÞ should scale at large s2 and t as

gVppðtÞ ∼
1

t2
; fVppðtÞ ∼

1

t3
; fAppðtÞ ∼

1

t3
;

gfVðAÞγðtÞ ∼
1

t
; gfBBðs2Þ ∼

1

s22
: ð23Þ

These scalings following from the scaling results for the
differential cross sections of the pp̄ andΛΛ̄ pair production
are consistent with the leading-twist quark fixed-angle
counting rules [10–12],

dσ
dt

ðAþ B → CþDÞ ∝ FðθCMÞ=sN−2; ð24Þ

whereN¼NAþNBþNCþND is the total twist or number
of elementary constituents (NA ¼ 1 for the photon, NB ¼ 3
for the initial proton, NC ¼ 6 for the produced BB̄ pair, and
ND ¼ 3 for the final proton). In our case,we getN − 2 ¼ 11.
When we calculate the matrix element squared contributing
to the differential cross section [see Eqs. (40) and (42)
below], we find the product of VðAÞpp, fVðAÞγ, and fBB
form factors should scale as 1=t3 · 1=s22. Because of ρðωÞ − γ
universality, theDirac andPauliVðAÞpp form factors should
scale as 1=t2 and 1=t3, respectively, to the scaling of theDirac
and Pauli γpp form factors. fVðAÞγ should scale as 1=t as
other meson-meson-photon form factors. Finally, we con-
clude that the fBB form factors should scale as 1=s22.
We model the momentum dependence of hadronic form

factors as

gfBBðs2Þ ¼ gfBBðM2
fÞ
�Λ2

f þM2
f

Λ2
f þ s2

�
2

;

gfVðAÞγðtÞ ¼ gfVðAÞγðM2
VðAÞÞ

Λ2
VðAÞ

Λ2
VðAÞ þM2

VðAÞ − t
;

gVppðtÞ ¼ gVppðM2
VÞ
�

Λ2
V

Λ2
V þM2

V − t

�
2

;

fVðAÞppðtÞ ¼ fVðAÞppðM2
VðAÞÞ

� Λ2
VðAÞ

Λ2
VðAÞ þM2

VðAÞ − t

�
3

; ð25Þ

where ΛV , ΛA, and Λf are the cutoff parameters. In
numerical calculations, we will use for simplicity the
universal parameter for ΛV and ΛA, Λ ¼ ΛV ¼ ΛA, and
fix its square Λ2 at 0.7 GeV2, i.e., at the value at which
results of the Born approximation are close to the Regge
approximation results. Also, for a comparison, wewill study
a sensitivity of the results for the BB̄ photoproduction to a
variation of Λ2 from 0.7 to 2 GeV2. For Λf, we choose
Λf ¼ 2MB. For convenience, we normalize the form factors
on the mass shell of scalar and vector (axial) mesons: s2 ¼
M2

f and t ¼ M2
V for gfBBðs2Þ and gfVðAÞγðtÞ, gVppðtÞ,

fVðAÞppðtÞ, respectively. The couplings gfNNðM2
fÞ and

gfVγðM2
VÞ have been fixed in our previous paper [8]:

gf1ργ ¼ 3gf1ωγ ¼ 1.24 GeV−1;

gf2ργ ¼ 3gf2ωγ ¼ −0.90 GeV−1;

gf3ργ ¼ 3gf3ωγ ¼ −0.47 GeV−1;

gf1NN ¼ 3.75; gf2NN ¼ −2.95; gf3NN ¼ −1.45: ð26Þ
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For the coupling constants ρpp and ωpp (gρpp, gωpp, fρpp,
fωpp) we consider two variants, as in Ref. [8], variant I and
variant II, which are

gρpp ¼ 2.3; gωpp ¼ 3gρpp;

fρpp ¼ 3.66gρpp; fωpp ¼ −0.07gωpp ðvariant IÞ;
gρpp ¼ 3.4; gωpp ¼ 15; fρpp ¼ 20.7;

fωpp ¼ 0 ðvariant IIÞ: ð27Þ

In case of axial meson couplings, we take b1pp and h1pp
couplings from Ref. [13],

gb1pp ¼ 8.83; gh1pp ¼ 3.06; ð28Þ

and identify the fiAγ couplings with corresponding fiVγ
couplings:

gfiργ ¼ 3gfiωγ ¼ gfib1γ ¼ 3gfih1γ: ð29Þ

The couplings of scalar mesons with hyperons are fixed
using SUð6Þ quark model relations (see details in the
Appendix):

gf1ΛΛ ¼ 4.699; gf2ΛΛ ¼ −3.445; gf3ΛΛ ¼ 1.908:

ð30Þ

In both cases (Feynman propagators and Regge trajec-
tories), the spin structures of the corresponding vertices are
equivalent to each other, and thus we only have to calculate
the vector (axial-vector) meson vertex. It is further suffi-
cient to substitute the Regge trajectories for the scalar parts
of the vector (axial-vector) meson propagators as

1

t −m2
V
→ DVðtÞ ¼

�
s
s0

�
αVðtÞ−1ð−α0VÞΓð1 − αVðtÞÞ

×
−1þ eiπαVðtÞ

2
ð31Þ

into the final expression, where αVðtÞ ¼ α0V þ α0Vt. In the
case of a single Regge trajectory, the factors (31) do not
influence the value of the ratio (2) because they cancel each
other in the numerator and the denominator. But in the case of
several trajectories, the ratio (2) can dramatically depend on
the position of points t0, where the Regge trajectory αjðtÞ has
a zero with αjðt0jÞ ¼ 0. For example, the zero point t0ρ ≈
−0.6 GeV2 of the ρmeson trajectory does not coincide with
the zero point jt0b1 j ≈ 0.01 of the unnatural parity trajectory
[the unnatural parity b1ð1235Þ, h1ð1170Þ exchanges are
allowed for f0 photoproduction because of charge parity
conservation], and in the region of t close to t0ρ and t0b1 , the
beam asymmetry ΣðtÞ for f0 (or for π0, η) photoproduction
can be represented in the lowest order of ðt − t0ρÞ and
ðt − t0b1Þ by

ΣReggeðtÞ ≈
c2ρðt − t0ρÞ2 þ c2b1ðt − t0b1Þ2 þ 2cρcb1ðt − t0ρÞðt − t0b1Þ
d2ρðt − t0ρÞ2 þ d2b1ðt − t0b1Þ2 þ 2dρdb1ðt − t0ρÞðt − t0b1Þ

; ð32Þ

where cρ, cb1 and dρ, db1 are coefficients at the first nonzero
terms of Taylor series for Reggeons (31) involved in Eq. (2)
(for the numerator and denominator, respectively). These
coefficients are defined by parameters of different mesons,
ρ and b1, and thus cρ

dρ
≠ cb1

db1
. It is easily seen that ΣReggeðtÞ

will jump from the value cρ
dρ

to the one of
cb1
db1

inside a

relatively small interval −t0b1 ≤ −t ≤ −t0ρ that disturbs the
smooth behavior of this function. As a result, the Regge
model results in a large dip for the beam asymmetry ΣðtÞ in
the region of −t ≈ 0 − 0.6 GeV2 for the π0, η photo-
production [14]. It may occur in the f0 photoproduction
as well.
Hence, we cannot only use the Feynman amplitudes for

the evaluation of the asymmetry (2). The functions (31) also
play an important role in the formation of the t dependence
of Σ. As in our recent work [8], we use two variants for the
parameters of the Regge trajectories: α0ρ ¼ 0.53,
α0ρ ¼ 0.85 GeV−2, α0ω ¼ 0.4, α0ω ¼ 0.85 GeV−2, and s0 ¼
1 GeV2 in the case of variant I and α0ρ ¼ 0.55,

α0ρ ¼ 0.8 GeV−2, α0ω ¼ 0.44, α0ω ¼ 0.9 GeV−2, and s0 ¼
1 GeV2 for variant II. Now, we add the unnatural parity
trajectory with α0b1 ¼ 0.0676, α0h1 ¼ 0.0418, and α0b1 ¼
α0h1 ¼ 0.7 GeV−2 in both variants.
For the photon polarized along the x axis, we define

the polarization vector as ϵ∥μðqÞ ¼ ð−ϵþ1
μ þ ϵ−1μ Þ= ffiffiffi

2
p ¼

f0; 1; 0; 0g, and for the photon polarized along the y axis
we define it as ϵ⊥μ ðqÞ ¼ iðϵþ1

μ þ ϵ−1μ Þ= ffiffiffi
2

p ¼ f0; 0; 1; 0g.
The photon spin density matrices for such states have the
simplest representation in terms of Lorentz indicesμ, ν in the
Lab frame:

ρ∥μν ¼ ϵ∥ν
†ϵ∥μ ¼ diagð0; 1; 0; 0Þ;

ρ⊥μν ¼ ϵ⊥ν †ϵ⊥μ ¼ diagð0; 0; 1; 0Þ: ð33Þ

Using these expressions, one can write the PARA and PERP
parts of the cross section (5) as
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jMPj2 ¼
1

2

X
ij

X
i0j0

X
σzσ

0
z

X
σ1zσ2z

Mði0j0Þ�ðσ0z; σz; σ1z; σ2z; νÞMðijÞðσ0z; σz; σ1z; σ2z; μÞρPμν; P ¼ ∥;⊥; ð34Þ

where we represent the lhs of Eq. (8) as MðijÞλ
inv ¼

MðijÞðσ0z; σz; σ1z; σ2z; μÞϵλμ. The full invariant matrix
element is the sum over all scalar and vector mesons

Mλ
inv ¼

P
ijM

ðijÞλ
inv . Then, using the rhs of Eq. (16), one can

obtain, after elementary calculations, the final expressions
for the squared matrix elements (34):

jMPj2 ¼ 4ðs2 − 4m2
BÞ
X
ijk

X
i0j0k0

ðWμνÞijk;i0j0k0ρPμν: ð35Þ

Wμν is the hadronic tensor, which in the case of vector
meson exchange factorizes as

Wμν ¼GVði0j0k0Þ
eff GVðijkÞ

eff Dði0Þ
f ðs2ÞDðiÞ

f ðs2ÞDðj0Þ
V ðtÞDðjÞ

V ðtÞTμν;⊥
jj0 ;

ð36Þ
where

Tμν;⊥
jj0 ¼ 1

2

�
ðgVjpp þ fVjppÞðgVj0PP þ fVj0ppÞg

μν
⊥ k2ðk · qÞ2

þ 4

�
gVjppgVj0pp −

k2

4m2
N
fVjppfVj0pp

�
fμν⊥

�
: ð37Þ

Here, gμν⊥ and fμν⊥ are the tensors, which are explicitly
orthogonal to the photon momentum

gμν⊥ ¼ gμν −
kμqν

k · q
−
kνqμ

k · q
þ kμkν

q2

ðk · qÞ2 ;

fμν⊥ ¼ nμ⊥nν⊥; nμ⊥ ¼ 1

m3
N
½pμðp0qÞ − p0μðp0qÞ�; ð38Þ

i.e., obey the transversity conditions

qμg
μν
⊥ ¼ qνg

μν
⊥ ; qμf

μν
⊥ ¼ qνf

μν
⊥ ; qμn

μ
⊥ ¼ 0: ð39Þ

The final result can be written in terms of the Lorentz
invariants s; s2; t by using equations p2¼p02¼m2

N , p ·q¼
ðs−m2

NÞ=2, p0 ·q¼ðsþ t−s2−m2
NÞ=2, p ·p0 ¼m2

N − t=2,
and p · k ¼ −t=2. After summation over μ and ν, one gets

(jMV
∥ j2

jMV⊥j2

)
¼ðs2−4m2

BÞ
X
ijk

X
i0j0k0

GV
effði0j0k0;ijkÞDf0Vði0j0;ij;s2;tÞ

�
2ðgVjppðtÞþfVjppðtÞÞðgVj0ppðtÞþfVj0ppðtÞÞ

�
−t
4

�
ðs2−tÞ2

þ
�
gVjppðtÞgVj0ppðtÞ−

t
4m2

N
fVjppðtÞfVj0ppðtÞ

�
ðs−m2

NÞ2jkj2sin2θ
	
cos2φ

sin2φ


�
; ð40Þ

where GV
effði0j0k0; ijkÞ ¼ GVði0j0k0Þ

eff GVðijkÞ
eff and

DfVðAÞði0j0; ij; s2; tÞ ¼ Dði0Þ†
f ðs2ÞDðiÞ

f ðs2ÞDðj0Þ†
V ðtÞDðjÞ

V ðtÞ

¼ 1

ðm2
fi
− s2Þ2 þm2

fi
Γ2
fi

·
1

ðm2
VjðAjÞ − tÞ2 þm2

VjðAjÞΓ
2
VjðAjÞ

: ð41Þ

In the case of the diagram with the axial-vector meson exchange, one obtains an analogous expression with

( jMA
∥ j2

jMA⊥j2

)
¼ ðs2 − 4m2

BÞ
X
ijk

X
i0j0k0

GA
effði0j0k0; ijkÞDfAði0j0; ij; s2; tÞ

�
fAjpp

ðtÞfAj0ppðtÞðs −m2
NÞ2jkj2sin2θ

	
sin2φ

cos2φ


�
: ð42Þ

Note that sin2 φ and cos2 φ in the rhs column are exchanged when comparing the expression of Eq. (42) to the one of
Eq. (40). Such a permutation corresponds to the change of the vertex γVf0 with Lorentz structure ½qαkμ − gαμk · q� to the
γAf0 vertex with ερσαμqρkσ in passing from the vector amplitude (16) to the axial-vector one (17). The vertex γVf0
generates the scalar product n̂ · k̂ ¼ sin θ cosφ (i.e., the factor sin2 θ cos2 φ in the PARA cross section), while the vertex
γAf0 generates the vector product n̂ × k̂ ∼ sin θ sinφ (i.e., the factor sin2 θ sin2 φ in the PARA cross section), where n̂ is the
vector of photon polarization.
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The upper line in the lhs columns of Eqs. (40)–(42)
corresponds to the cross section for photon polarized along
the x axis, i.e., n̂ ¼ x̂. Thus, the contribution of the axial-
vector exchange to the asymmetry (2) given by
ðPERP-PARAÞA ∼ cos2φ − sin2φ ¼ cos 2φ has a negative
sign when compared to the contribution of the vector
exchange, ðPERP-PARAÞV ∼ sin2φ − cos2φ ¼ − cos 2φ.
It is also important to note that no interference occurs

between the vector and axial-vector amplitudes (16) and
(17) in the spin average (34), and the substitution MðijÞ →
MVðijÞ þMAðijÞ to Eq. (34) gives jMV

P j2 þ jMA
P j2, P ¼ ∥⊥.

Now, the asymmetry (2) can be rewritten through the
event yields Y∥ðtÞ and Y⊥ðtÞ, which are proportional to

N
R ðjMV

∥ j2 þ jMA
∥ j2Þds2 and N

R ðjMV⊥j2 þ jMA⊥j2Þds2,
respectively. Using Eqs. (40) and (42), one can obtain

ABB̄ðtÞ ¼
Y⊥ðtÞ − Y∥ðtÞ
Y⊥ðtÞ þ Y∥ðtÞ

¼ IVnumðtÞ þ IAnumðtÞ
IVdenðtÞ þ IAdenðtÞ

cos 2φ ¼ ΣðtÞ cos 2φ; ð43Þ

where

IVnumðtÞ ¼ −
Z

sþ
2

s−
2

ds2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 4m2

B

s2

s
ðs2 − 4m2

BÞ
X
ij

X
i0j0

GV
effði0j0k0; ijkÞDf0Vði0j0; ij; s2; tÞ

×

�
gVj0ppðtÞgVjppðtÞ −

t
4m2

N
fVj0ppðtÞfVjppðtÞ

�
ðs −m2

NÞ2jkj2sin2θ; ð44Þ

IAnumðtÞ ¼
Z

sþ
2

s−
2

ds2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 4m2

B

s2

s
ðs2 − 4m2

BÞ
X
ij

X
i0j0

GA
effði0j0k0; ijkÞDf0Aði0j0; ij; s2; tÞ

× fAj0ppðtÞfAjppðtÞ
�

−t
4m2

N

�
ðs −m2

NÞ2jkj2sin2θ; ð45Þ

IVdenðtÞ ¼
Z

sþ
2

s−
2

ds2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 4m2

B

s2

s
ðs2 − 4m2

BÞ
X
ij

X
i0j0

GV
effði0j0k0; ijkÞDf0Vði0j0; ij; s2; tÞ

×

�
2ðgVjpp þ fVjppÞðgVj0pp þ fVj0ppÞ

�
−t
4

�
ðs2 − tÞ2

þ
�
gVj0ppðtÞgVjppðtÞ −

t
4m2

N
fVj0ppðtÞfVjppðtÞ

�
ðs −m2

NÞ2jkj2sin2θ
�

ð46Þ

IAdenðtÞ ¼
Z

sþ
2

s−
2

ds2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 4m2

B

s2

s
ðs2 − 4m2

BÞ
X
ij

X
i0j0

GA
effði0j0; ijÞDf0Aði0j0; ij; s2; tÞ

× fAj0ppðtÞfAjppðtÞ
�

−t
4m2

N

�
ðs −m2

NÞ2jkj2sin2θ: ð47Þ

Note that it is trivial to generalize Eq. (43) to the case of a partially polarized photon beam (Pγ ≠ 1) using the substitution

Y∥ðtÞ ¼ N ð1 − PγΣðtÞ cos 2ϕÞ; Y⊥ðtÞ ¼ N ð1þ PγΣðtÞ cos 2ϕÞ: ð48Þ

Finally, we define the integrated beam asymmetry hΣi as

hΣi ¼
R
dt½IVnumðtÞ þ IAnumðtÞ�R
dt½IVdenðtÞ þ IAdenðtÞ�

; ð49Þ

where IAnum defined in Eq. (45) is negative, which should diminish the beam asymmetry ΣðtÞ generated by ρ and ω exchange
diagrams.
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III. RESULTS

We study the linearly polarized beam asymmetry ΣðtÞ for
the pp̄ and ΛΛ̄ photoproduction off the proton. We
calculate the t dependence of the beam asymmetry ΣðtÞ
for the photon energies Eγ ¼ 5 and 9 GeV (relevant for the
JLab experiment) following Eqs. (43)–(47) and using the
photoproduction model recently developed in Ref. [8].

The obtained results for the pp̄ photoproduction are shown
in Figs. 2 and 3 for Eγ ¼ 5 and 9 GeV, respectively. The
results for the ΛΛ̄ photoproduction are shown in Fig. 4
for Eγ ¼ 9 GeV.
Note that at Eγ ¼ 5 GeV the maximum value of s2 in the

ΛΛ̄ channel defined by Eq. (7) is only 0.15 GeV higher
than the ΛΛ̄ threshold value 4m2

Λ, and thus the ΛΛ̄ cross
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FIG. 2. The pp̄ photoproduction off the proton, Eγ ¼ 5 GeV: (a) beam asymmetry Σpp̄, (b) dσpp̄=dt in the Regge-pole
approximation, (c) dσpp̄=dt in the Born approximation. In panel a, the lower two curves (without a peak at −t ≈ 0.6 GeV2)
correspond to the vector meson exchange (V ¼ ρþ ω) in the Born (dotted-dashed curve) and Regge-pole (dashed curve)
approximations. The upper two curves are obtained for the sum of vector and axial-vector meson exchanges
(V þ A ¼ ρþ ωþ b1 þ h1) for the Regge-pole approximation with taking into account six (solid curve) and three (pointed curve)
intermediate scalar mesons, respectively. In panel b, results for two sets of effective parameters are presented: the lower two curves,
variant I (dashed for V þ A and two-pointed dashed for V exchanges), and the upper two curves, variant II (solid for V þ A and dotted
dashed for V exchanges). In panel c, the same notations for the curves are used as in panel b. Dotted curves in panels a, b, and c show the
results obtained with taking into account the contribution of only three intermediate scalar mesons, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ.
The rest takes into account also the contribution of f0ð2020Þ, f0ð2100Þ, and f0ð2200Þ.
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FIG. 3. The pp̄ photoproduction for Eγ ¼ 9 GeV. The same content of panels as in Fig. 2.
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section is very small as compared to the one of pp̄
production because of the small phase space. For this
reason, the ΛΛ̄ cross section is not shown for Eγ ¼ 5 GeV.
One can see that in the considered energy interval the

absolute value of asymmetry Σ is increasing with the
increasing of photon energy and approaching to −1 in
the limit of large s due to hΣi ¼ −1þOð1=sÞ. For example,
the contribution of vector meson exchange (Figs. 2 and 3)
to the integrated asymmetry hΣi is −0.119 at Eγ ¼ 5 GeV,
and it takes the value of −0.509 at Eγ ¼ 9 GeV.
The contribution of exchanged vector and axial-vector

mesons to the pp̄ photoproduction is described in terms of
a Regge pole model for two sets of effective parameters,
coupling constants Geff and the values of α0, α0, which are
characteristic of the Regge pole trajectories. It turns out, as
seen in Figs. 2–4, that for the standard set used in meson
exchange models (variant I) the calculated cross section is
several times smaller than for the set usually used in the
Regge approach (variant II). As was shown in Ref. [8],
the Born approximation results in an overestimate of the
cross section if one uses the vertices without form factors.
Now, we show that the insertion of form factors (25)
restores the agreement between Regge model predictions
and the description in terms of a modified Born
approximation.
The beam asymmetryΣðtÞ does not depend on the explicit

values of the effective parameters. The results of the
calculations made in both the Regge and Born approxima-
tions arevery close eachother, if one neglects the axial-vector
meson exchanges. The beam asymmetry ΣðtÞ calculated in
the Born approximation practically does not differ from the
results of the Regge model calculations, except the region
−t ≈ 0–0.6 GeV2, where the vector (axial-vector) meson
trajectory passes through zero [αjðt0jÞ ¼ 0; j ¼ V,A]. Then,
the denominator in Eq. (49) is close to zero. In such a
situation, the behavior of ΣðtÞ is determined by the approxi-
mation (32), which predicts a nontrivial jump of ΣðtÞ
if t0b1 ≠ t0ρ.
Note that such jumps occur not only for the cases of vector

and axial-vector Reggeon exchanges. In the case of two
different vector resonances, ρ and ω, the t behavior of the
asymmetry ΣðtÞ should also be disturbed by the same
mechanism, if t0ω ≠ t0ρ. However, this can rather be
considered as an artifact of the Regge-pole approximation.
For example, the zero points of ρ and ω trajectories, t0ρ and
t0ω, for the widely used sets of parameters (e.g., for variant I
or II) are very close to each other because both sets
practically correspond to the same trajectory (the trajectory
of natural parity resonances). In practice, one can slightly
change the parameters of the ω trajectory to obtain an exact
equality t0ω ¼ t0ρ (without any essential change in the
observables), and then the irregular behavior of ΣðtÞ near
t0 disappears. Here, we use suchmodified parameters for the
ω trajectory in variant I (α0ωmod ¼ 0.8355, α0ωmod ¼ 0.4805)

and for the ρ trajectory in variant II (α0ρmod ¼ 0.9143,
α0ρmod ¼ 0.4501), and thus there are no irregularities in
the ΣðtÞ behavior, when only the contributions of natural
parity resonances (V ¼ ρ, ω) are taken into account [the
lower curves “V” in Figs. 2(a), 3(a) and 4(a)]. However, it
would be impossible to cancel the irregularity ofΣðtÞ near t0,
when one takes into account the contribution of two really
different trajectories (e.g., the trajectories for natural
and unnatural parity resonances; see curves “V þ A” in
Figs. 2–4), because in this case the zero points of such
trajectories should be different by physical terms.
It is apparent that, in addition to the contribution of the

f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ states in the observables
of the baryon-antibaryon production, one should consider
contribution of other meson resonances of positive charge
parity, which are sufficient in the considered energy interval.
For example, poorly established scalar mesons f0ð2020Þ,
f0ð2100Þ, and f0ð2200Þ could give a large contribution in
considered physical properties since theirmasses are close to
the pp̄ threshold. Unfortunately, their coupling constants
gγVfi and gfiNN are poorly known. Therefore, for a rough
estimate of a role of such “background” processes, we
calculate the asymmetry Σ and the differential cross section
dσ
dt , taking into account the contribution of the f0ð2020Þ,
f0ð2100Þ, and f0ð2200Þ states for which we use the
corresponding coupling constants defined for f0ð1370Þ,
f0ð1500Þ, andf0ð1710Þ states, respectively.We takemasses
and widths of the f0ð2020Þ, f0ð2100Þ, and f0ð2200Þ from
data [9]:

Mf0ð2020Þ ¼ 1.992 GeV; Mf0ð2100Þ ¼ 2.101 GeV;

Mf0ð2200Þ ¼ 2.189 GeV;

Γf0ð2020Þ ¼ 442 MeV; Γf0ð2010Þ ¼ 224 MeV;

Γf0ð2200Þ ¼ 238 MeV: ð50Þ

The results, obtained within the Regge model and with
taking into account f0ð2020Þ, f0ð2100Þ, and f0ð2200Þ
states, are shown in Figs. 2(a), 2(b), 3(a), and 3(b). It is
seen that additional intermediate mesons can significantly
contribute to the cross section but they cannot significantly
change the asymmetry Σ.
While in a Regge approximation the t dependence of the

cross section is fixed by the known parameters of Regge-
pole trajectories, in a Born approximation the t dependence
is defined by form factors which are poorly known.
Moreover, a small variation of the cutoff Λ in vertex form
factors (25) leads to a large variation of the cross section as
it is shown in Fig. 5 for Λ2 ¼ 0.7, 0.8, 1, 1.2, and 2 GeV2.
One can see that only for Λ2 ≈ 0.7–1 GeV2 are the Born
results close to the stable results of the Regge model, but
even at a small enhancement of Λ2 up to 2 GeV2, the Born
cross section increases in an order of magnitude.
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One can estimate the role of the axial-vector mesons (b1,
h1) in the formation of a beam asymmetry in pp̄ (ΛΛ̄)
photoproduction comparing the Regge results obtained
without the b1 þ h1 contribution [the curves “V” in
Figs. 2(a), 3(a), and 4(a)] with the results that take into
account all exchanges ρþ ωþ b1 þ h1 (the curves
“V þ A”). It is seen that adding the b1 and h1 contributions
does considerably lower the asymmetry ΣðtÞ [in accordance
with the analytical results (44), (45)] and only slightly
increases the differential cross section [see Figs. 2(a)
and 2(b)]. This common qualitative conclusion does not
depend on concrete values of the poorly understood axial-
vector meson coupling constants (following the evaluations
made in Ref. [14] on the basis of π0, η photoproduction, we
use here the same values of couplings as for the corre-
sponding vector meson coupling constants). Quantitatively,
the effect of lowering the absolute value of beam asym-
metry jΣðtÞj through the b1 þ h1 Reggeon exchange
depends on concrete values for the axial-vector coupling
constants, and thus the new data on pp̄ and ΛΛ̄ photo-
production would be very useful for their evaluation.

ACKNOWLEDGMENTS

The authors thank Reinhard Schumacher for useful
discussions. This work was supported by the German
Bundesministerium für Bildung und Forschung (BMBF)
under Project No. 05P2015—ALICE at High Rate (BMBF-
FSP 202), “Jet- and fragmentation processes at ALICE and
the parton structure of nuclei and structure of heavy
hadrons”; by the Basal CONICYT Grant No. FB082, by
CONICYT (Chile) PIA/Basal FB0821; by Fondecyt
(Chile) Grant No. 1140471 and CONICYT (Chile) Grant
No. ACT1406; by Tomsk State University Competitiveness
Improvement Program and the Russian Federation program
“Nauka” (Contract No. 0.1764.GZB.2017); by Tomsk
Polytechnic University Competitiveness Enhancement
Program (Grant No. VIU-FTI-72/2017), by the Deutsche
Forschungsgemeinschaft (DFG Projects No. FA 67/42-1
and No. GU 267/3-1); and by the Russian Foundation for
Basic Research (Grant No. RFBR-DFG-a 16-52-12019).

The research was carried out at Tomsk Polytechnic
University within the framework of Tomsk Polytechnic
University Competitiveness Enhancement Program grant.

APPENDIX: COUPLING CONSTANTS
FOR ΛΛ̄ CHANNEL

The scalar fields fi are considered as mixed states of the
glueballG and nonstrangeN and strange S quarkonia [6,7]
fi ¼ Bi1N þ Bi2Gþ Bi3S, where the Bij are elements of
the mixing matrix rotating bare states ðN ; G; SÞ into the
physical scalar mesons ½f0ð1370Þ; f0ð1500Þ; f0ð1710Þ�. In
Refs. [6,7], we studied in detail different scenarios for the
mixing of N , G, and S states. Here, we proceed with the
scenario fixed in Ref. [7] from a full analysis of strong f0
decays and radiative decays of the J=ψ with the scalars in
the final state:

B ¼

0
B@

0.75 0.60 0.26

−0.59 0.80 −0.14
−0.29 −0.05 0.95

1
CA: ðA1Þ

The coupling constants involving scalar mesons are given
in terms of the matrix elements Bij and the effective
couplings csf ¼ 1.592 GeV−1 and cgf ¼ 0.078 GeV−1 of
Ref. [7] fixed from data involving the scalar mesons fi:

gfiργ ¼ 3gfiωγ ¼ Bi1csf þ Bi2

ffiffiffi
2

3

r
cgf: ðA2Þ

In case of the fiNN couplings, we suppose that they are
dominated by the coupling of the nonstrange component to
the nucleon gfiNN ≃ Bi1gNNN . The coupling gNNN can be
identified with the coupling of the nonstrange scalar σ
meson to nucleons,

gNNN ¼ gσNN ≃ 5; ðA3Þ
which plays an important role in phenomenological
approaches to the nucleon-nucleon potential generated
by meson exchange [15].
In the case of the couplings of scalar mesons with

hyperons, we use SUð6Þ quark model relations. The master
formulas are

cNpp ¼ hp↑j
X3
i¼1

IiN jp↑i

cNΛΛ ¼ hΛ↑j
X3
i¼1

IiN jΛ↑i

cSΛΛ ¼ hΛ↑j
X3
i¼1

IiSjΛ↑i; ðA4Þ

where IN ¼ diagð 1ffiffi
2

p ; 1ffiffi
2

p ; 0Þ, IS ¼ diagð0; 0; 1Þ. Using the

proton and Λ hyperon SU(6) wave functions
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FIG. 5. The pp̄ photoproduction for Eγ ¼ 9 GeV. The Born
approximation for different values of the cutoff parameters Λ ¼
ΛV ¼ ΛA (Λ2 ¼ 0.8, 1, 1.2, and 2 GeV2) is shown in comparison
to the choice Λ2 ¼ 0.7 GeV2 (solid curve) used in this work.
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jp↑i ¼ 1ffiffiffi
2

p
�
1

6
ðuduþ duu − 2uudÞð↑↓↑þ ↓↑↑ − 2↑↑↓Þ þ 1

2
ðudu − duuÞð↑↓↑ − ↓↑↑Þ

�
;

jΛ↑i ¼ 1ffiffiffiffiffi
12

p ½udsð↑↓↑ − ↓↑↑Þ þ dusð↓↑↑ − ↑↓↑Þ þ usdð↑↑↓ − ↓↑↑Þ þ sudð↑↑↓ − ↑↓↑Þ

þ dsuð↓↑↑ − ↑↑↓Þ þ sduð↑↓↑ − ↑↑↓Þ� ðA5Þ

gives

cNpp ¼ 3ffiffiffi
2

p ; cNΛΛ ¼
ffiffiffi
2

p
; cSΛΛ ¼ 1: ðA6Þ

Using our result for gfiNN ¼ Bi1gNNN [8], we get gfiΛΛ ¼ Bi1gNΛΛ þ Bi3gSΛΛ, where gNΛΛ and gSΛΛ are deduced from the
ratios

gNΛΛ

gNpp
¼ cNΛΛ

cNpp
¼ 2

3
;

gSΛΛ
gNpp

¼ cSΛΛ
cNpp

¼
ffiffiffi
2

p

3
ðA7Þ

as

gNΛΛ ¼ 2

3
gNpp; gSΛΛ ¼

ffiffiffi
2

p

3
gNpp: ðA8Þ

Using Eqs. (A1)–(A3) and the values of gf1NN ¼ 3.75, gf2NN ¼ −2.95, and gf3NN ¼ −1.45, we get

gf1ΛΛ ¼ 4.699; gf2ΛΛ ¼ −3.445; gf3ΛΛ ¼ 1.908: ðA9Þ
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