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of pp and AA photoproduction at JLab

Thomas Gutsche,' Serguei Kuleshov,” Valery E. Lyubovits.kij,l’z’3 4 and Igor T. Obukhovsky5
nstitut fiir Theoretische Physik, Universitdit Tiibingen, Kepler Center for Astro and Particle Physics,
Auf der Morgenstelle 14, D-72076 Tiibingen, Germany
2Departament0 de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal),
Universidad Técnica Federico Santa Maria, Casilla 110-V Valparaiso, Chile
3Department of Physics, Tomsk State University, 634050 Tomsk, Russia
4Labomtory of Particle Physics, Tomsk Polytechnic University, 634050 Tomsk, Russia

*Institute of Nuclear Physics, Moscow State University, 119991 Moscow, Russia
(Received 22 May 2017; revised manuscript received 6 July 2017; published 25 September 2017)

We suggest a description of the beam asymmetry in pp and AA photoproduction off the proton 7 + p —

pp+ pand ¥+ p - AA + p, which takes into account the contribution of the scalar mesons f(1370),
f0(1500), and f(1710). These scalars are considered as mixed states of a glueball and nonstrange and
strange quarkonia in the framework based on the use of effective hadronic Lagrangians. Present results can
be used to guide the possible search for this reaction by the GlueX Collaboration at JLab. Also, we did an
estimate of contribution of heavier scalar meson states f(2020), f,(2100), and f,(2200).
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I. INTRODUCTION

In this paper, we investigate the beam asymmetry in the
pp and AA photoproduction due to the possible contribu-
tion of scalar mesons. This reactions are relevant to the
physical program of the GlueX Collaboration (Hall D) at
JLab. Note that the GlueX Collaboration recently reported
[1] measurements of the photon beam asymmetry for the 7°
and # photoproduction yp — pza° and yp — pn using a
9 GeV linear-polarized, tagged photon beam incident on
a liquid hydrogen target. The asymmetries, measured as a
function of the proton momentum transfer, possess greater
precision than previous z° measurements and are the first
measurements involving the 7 meson in this energy regime.
The results are compared with theoretical predictions [2—5]
based on #-channel, quasiparticle exchange and constrain
the axial-vector component of the neutral meson produc-
tion mechanism in these models.

In present manuscript, we consider gluonic excitations in
the intermediate mesons through photoproduction reac-
tions. When focusing on events without really observed
mesons, the detection of the glueball or a glueball compo-
nent in a hadron is significantly simplified. The glueball
will be present in these processes via its mixing with
nonstrange and strange quarkonia components [6,7]. In
particular, the scalar fields f; = f,(1370), f» = fo(1500),
and f3 = f((1710) are considered as mixed states of the
glueball G and nonstrange N and strange S quarkonia [6,7]
fi=BaN + BpG + B;S, i =1, 2, 3, where the B;; are
elements of the 3 x 3 mixing matrix rotating bare states
(N, G, S) into the physical scalar mesons f;. Therefore, the
glueball G component will appear in the couplings of scalar
mesons with photon and vector (axial) mesons and in the
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scalar meson propagators, which are the basic blocks for
the calculation of the baryon-antibaryon photoproduction
in our approach (see Fig. 1). Regarding the coupling of
scalar mesons with p p and AA pairs, we proceed as follows
(see details in the Appendix):

(1) We neglect the coupling of glueball component to
pp and AA.

(2) In case of pp photoproduction, we neglect by the
coupling of strange quarkonia with pp and suppose
that f;pp couplings are dominated by the coupling
of the nonstrange component of f; to nucleons.

(3) In case of AA photoproduction, we take into account
the couplings of both nonstrange and strange com-
ponents of f; to A hyperons.

We start with definition of kinematics of the process

of baryon-antibaryon photoproduction of the proton

7(q)+p(p) = p(p')+B(q,)+ B(g,) and introduce beam

v(q, )

B(q27 U2z)

B(QL U1z)
P(p’,0,)

P(p,0,)

FIG. 1. Relevant diagrams describing the contribution of
intermediate scalar mesons fg) = fv(1370), fo(1500), and
fo(1710) to the photoproduction of the BB pair through the
exchange of vector V) = p° @ and axial-vector AY) = by,
mesons (or the corresponding Reggeons). Here, W =V, A and
B=p, A.

© 2017 American Physical Society


https://doi.org/10.1103/PhysRevD.96.054024
https://doi.org/10.1103/PhysRevD.96.054024
https://doi.org/10.1103/PhysRevD.96.054024
https://doi.org/10.1103/PhysRevD.96.054024

THOMAS GUTSCHE et al.

asymmetry: 1) p, p', g, q,, and g, are the momenta of the
initial and final protons, photon, produced baryon and
antibaryon, respectively. 2) Invariant Mandelstam variables
s (total energy), ¢ (the square momentum transferred to the
target proton), and s, (the square of the invariant mass of
the produced BB pair) are defined as

s=(p+q9?=0+a+0)
1=k =(p'-p?=@G-9 o)
52 =(q, + ¢2)* (1)

3) The asymmetry Agp, written according to the known
Basel convention as

N dUJ_/dQ - dG”/dQ
 do, /dQ+ doy/dQ

App(1) = P,Zcos2¢p, (2)

can be measured experimentally at JLab in a large interval
of t. The numerator on the rhs of Eq. (2) is the difference
of cross sections measured for linearly polarized photons, o
for the polarization along the x axis and o, for the
polarization along the y axis, which are named the
“PARA” and “PERP” orientations, respectively. The asym-
metry App(t) of Eq. (2) includes the factor P, (the linear
polarization of the initial photon beam), and thus the
coefficient X only can be considered as a beam asymmetry
of the physical process. 4) We use the laboratory (Lab) frame
with the z axis directed along the photon momentum
q" ={lq].0,0, |g|}. The absolute value of the 3-vector of
the transfer momentum k is expressed through ¢ and nucleon

mass my as |k| =, /—#(1 —%). The beam asymmetry

4m,2\,
depends on the absolute value of k and the angles Q = (6, ¢)
of k with respect to the photon 3-momentum ¢ and the
direction of the photon electric field E for the PARA variant
of the polarization (El|lx): k, = |k[sinfcos¢e, k,=
k| sin @sin ¢, k. = |k| cos € with

1+2m§, =5,
cosf = #_:ﬁv (3)
4m
1 ="

t

In present paper, we consider theoretical predictions for
the differential cross sections

dUP S;r
2% _ d
dr / g

As we mentioned before, the calculation is based on
a model that takes into account the excitation of inter-
mediate scalar mesons considered as mixed states of
quarkonia and glueballs. The unpolarized cross section,
which is given by the sum of both photon polarization cross
sections with

dzﬁp

—, P=_1,]. 4
G @
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Po & it 1 —
o SO 0L N(MP+]M.P). and

dtds, dtds, dtds, 2
a 5, — 4m?
N = 2 B 5
647> (s —m3%)? Sy )

was considered in our recent work [8]. Here, M| and M |
are the matrix elements for the PARA and PERP orienta-
tions of photoproduction, @ = 1/137.036 is the fine-
structure constant, and mp is the mass of the produced
baryon. The physical region of the reaction is constrained
by the limits of the Chew-Low plot, defined by equations

2 2
s—m s+m
55 = 4m3, 53 = 2N t(t —4m3) + ;Vt ,
2my s —my
2
s—my [s(s —s3)
+_ 2 N 2 2 1/2 2
t my, — —m :F/1 §, 82, m ’
N s {S_%v N (.52 N):|

(6)

where  A(x,v,z) = x> +y* + 22 —2xy — 2xz —2yz is
the Kiillen kinematical function. We have a characteristic
value of

(sam) =3 2= (42 |y = (= m?
)

=0.

. .. dsh
that corresponds to the maximum condition —*|,_
dr 11=t(52max)

II. FORMALISM

In this section, we discuss the formalism for the calculation
of the beam asymmetry in the process of the baryon-
antibaryon photoproduction through the intermediate scalar
meson based on the models proposed and developed in
Refs. [6-8]. The diagram in Fig. 1 schematically represents
the contribution of intermediate scalar mesons f = f,(1370),
f2=10(1500), and f53 = f,(1710) to the photoproduction of
the B;B; (with B, = p, B, = A) pair through the exchange of
vector V| = p(770), V, = w(782) with JP€ =17~ and
axial-vector A; = b(1235), A, = h;(1170) mesons with
JP€ = 17~ (or the corresponding Reggeons).

The full Lagrangian relevant for the description of
the BB photoproduction processes y + p — BB+ p
involving exchange by vector (axial) mesons in the
channel and contribution of scalar mesons in the s, channel
is given by a sum of free L. (x) and interaction L, (x)
Lagrangians [6-8],

Lyt (%) = Liree (%) + Line(%),
Liree(x) = Lp(x) + Ly(x) + Ly(x) + La(x) + Lp(x),
Lini(x) = Ly (%) + Lapp(x) + Lgp(x) + Ly, (x)

+ Lyay (x), (8)
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where Lp, Ly, Ly, L4, and Ly are free parts of electro-
magnetic field, scalar, vector, axial mesons, and baryons,
respectively,

£r(x) = = Fu)F(2),

£(x) = %i[a,,fmaﬂfi(x) M3 ()],

Lyx) = —ég[(wi ()P VE(x) = M3V, (0)VV ()
£06) = =2 S 0O A ) — M (AL 2)

i=1

B(x)(ip) — mp)B(x), ©)

1

2
i=
and Ly, Layps Lrvys Liay» and Lypp are the interaction
Lagrangians of vector and axial mesons with protons, with

scalar mesons and a photon, and scalar mesons with
baryons,

2
- fV, v
Cunnl0)= 3P [ VE 01 + 2V )| ),
i=1
: fa
= iPP v
Lapn )= 3 000) [Fa (s (),
3.2 .
Lpp(x) = Zng,-Bkkai(x)Bk(x)Bk(x)a (10)
i=1 k=1
302
‘chy 2 pw Zzgf, ,yfl ( )’
i=1 j=1
302
‘CfA}'( ) 4 ;wa/}F Zzgf, ]}’fl Aaﬁ( ) (11)
i=1 j=1
Here, we introduce the following notation: F* =
HAY — P A, VW =0HVY =" VH, and AFY =0OFAY — ¥ AH

are the stress tensors of the electromagnetic field, vector,
and axial mesons, respectively.
|

V(ijk)A
Minv

f
S ﬁp(p/’ a/z) },angp]) (
in the case of vector (W = V) meson exchange and

AR GA(ijk)D(i)

ijk i j a
= GO DY () DY (1) gk

AGE _ GAG f<s2>DEP(r)eﬂmﬂqakﬁu@(q],au)ka(qz,ozz)xu,,<p',a;>[msk
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The scalar fields are considered as mixed states of the
glueball G and nonstrange N and strange S quarkonia [6,7]:
fi =BuN + B»G + Bj5. The B;; are the elements of the
mixing matrix rotating bare states (N ,G,S) into the
physical scalar mesons [f((1370), fo(1500), fo(1710)].
In Refs. [6,7], we studied in detail different scenarios for
the mixing of A/, G, and S states. Here, we proceed with the
scenario fixed in Ref. [7] from a full analysis of strong f
decays and radiative decays of the J/y with the scalars in
the final state:

075 060 026
B=|-059 080 —0.14 (12)
—029 —0.05 0.95

The coupling constants involving scalar mesons are given
in terms of the matrix elements B;; and the effective
couplings ¢} and ¢} of Ref. [7]:

2
gf,py 3gf,w7 lecj +312\/; j (13)

The effective couplings ¢} = 1.592 GeV~!

0.078 GeV~! are fixed from data involving the scalar
mesons f;. In case of the f;pp couplings, we suppose that
they are dominated by the coupling of the nonstrange
component to the nucleon,

g __
and cp=

9ripp = Bitgnpp- (14)
The coupling gy, can be identified with the coupling of the
nonstrange scalar ¢ meson to nucleons,

5. (15)

INpp = Yopp =

In case of f;AA couplings, we take into account the coupling
of both nonstrange and strange components to the A. We use
the SU(6) quark model relations in order to derive f;AA
couplings.

The invariant matrix element corresponding to the
diagram in Fig. 1 reads

9"k - qlig (q1,01,)vp, (92, 02;)

) 2 ] (p.o)eh(a)

(16)

2 oy (poeila) (17
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in the case of axial-vector (W = A) meson exchange. The
indicesi = 1,2,3; j = 1,2;and k = 1, 2 correspond to the
summation over scalar [f, =f,(1370), f, = fo(1500),
f3=fo(1710)] and vector (axial-vector) [V, =p",
Vo=w, A =b;, A,=h;] mesons, and baryons
[B; =p, B, =A], respectively. Here, ip, and vp are
the spinors denoting the produced baryon and antibaryon;
i, and u, are the spinors denoting the final and initial
proton; A = +£1 is the photon helicity; o, is the baryon spin

projection on the z axis; D;i) (s7) and pY (t) are the scalar

V(A)
and vector (axial-vector) meson propagators, respectively,

including their resonance parts,

1
mj%i — 8 — lmflrf’ ’

() !
D 1) =
V(A)( ) m%/j(Aj) —t— imvj(Aj)Fv,‘(A,)

, (18)

where a set of masses and the widths of scalar mesons,

M; =1432GeV, M, = 1510 GeV,

My, = 1.720 GeV (19)

and

'y, =350MeV, T, =109MeV, I, =135MeV
(20)

is the prediction of our model (see Refs. [6,7]), while for
vector and axial mesons, we use cental values of data [9],

T, = 149.1 MeV,
Ty, = 142 MeV,

T, = 8.49 MeV,

I, = 360 MeV. (21)
Gé/f(fij ¥ (t,5,) and G?f(fij ¥ (1, 5,) are effective vertices, which
are products of fBB, fVy and fBB, fAy phenomenological
form factors, respectively,

Viijk
Gefg'] )(t’ S2) = gfinBk(sz)gfiVj}’(t)’
Alijk
GAO (1, 53) = 915,15, (52)9 1,4, (1): (22)

In Ref. [8], we dropped the s, and ¢ dependence of the
corresponding form factors. However, in accordance with
quark counting rules [10-12], the form factors g5 (s,) and
gv(ay(t) should scale at large s, and t as

1 1 1
ngp(t)Nt_z’ prp(t)Nt_3v prp<t>Nt_3,
1 1
ng(A)y(t) ~s ngB(SZ) ~. (23)
2

t 52
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These scalings following from the scaling results for the
differential cross sections of the pp and AA pair production
are consistent with the leading-twist quark fixed-angle
counting rules [10-12],
do N3

E(A-FB—)C-FD)O(F(QCM)/S , (24)
where N =N, + N+ N+ Np is the total twist or number
of elementary constituents (N, = 1 for the photon, Ny = 3
for the initial proton, N~ = 6 for the produced BB pair, and
Np = 3 forthefinal proton). In our case, we get N — 2 = 11.
When we calculate the matrix element squared contributing
to the differential cross section [see Egs. (40) and (42)
below], we find the product of V(A)pp, fV(A)y, and fBB
form factors should scale as 1/#° - 1/s3. Because of p(w) — y
universality, the Dirac and Pauli V(A) p p form factors should
scaleas 1/¢> and 1/13, respectively, to the scaling of the Dirac
and Pauli ypp form factors. fV(A)y should scale as 1/t as
other meson-meson-photon form factors. Finally, we con-
clude that the fBB form factors should scale as 1/ s%.

We model the momentum dependence of hadronic form
factors as

A2+ M372
9r88(52) = grpp(M7) {ﬁ] ,

A
Ajy + My —t
AZ 2
1) = M2 —V )
ngp( ) gVPI’( V) [A%, —|—M%, _ l‘:|
AZ

V(A) r (25)
+ M%,(A) —t

Irviay (1) = ng(A)V(M%/(A))

’

Frann(®) = Friam (M) |

V(A)
where Ay, Ay, and A are the cutoff parameters. In
numerical calculations, we will use for simplicity the
universal parameter for Ay and Ay, A = Ay = Ay, and
fix its square A? at 0.7 GeV?, i.e., at the value at which
results of the Born approximation are close to the Regge
approximation results. Also, for a comparison, we will study
a sensitivity of the results for the BB photoproduction to a
variation of A? from 0.7 to 2 GeV2. For A, we choose
A = 2M . For convenience, we normalize the form factors

on the mass shell of scalar and vector (axial) mesons: s, =

va and t = M5 for gspp(s,) and Irviay (1) gvpp(t),
fvaypp(t), respectively. The couplings ngN(M?-) and
Grvy(M %) have been fixed in our previous paper [8]:

9oy = 3970y = 1.24 GeV™!,

9fpr = 39f,0y = —0.90 GeV~!,

9ty = 39f0y = —0.47 GeV™!,

gy = —145. (26)

grNy = 375, gpnw = —2.95,
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For the coupling constants ppp and @pp (9,,p> Gupps S ppps
f,up ,,) we consider two variants, as in Ref. [8], variant I and
variant II, which are

Gopp = 23, Gopp = 39ppp

Fopp = 3:669,pp. Sopp = =0.07g4p)p (variant I),
Gopp = 34 Jopp = 15, fopp = 20.7,

Sopp =0 (variant II). (27)

In case of axial meson couplings, we take b;pp and h pp
couplings from Ref. [13],

b, pp = 8.83, Gn, pp = 3.06, (28)
and identify the f;Ay couplings with corresponding f;Vy
couplings:

Irior = 39f.0r = Gf by = 3957 (29)
The couplings of scalar mesons with hyperons are fixed
using SU(6) quark model relations (see details in the
Appendix):
gflAA = 4699,

9 AN = —3.445, JfAN = 1.908.

(30)

(1 —10,)* + ¢} (1 = tp,)* + 2¢,¢p, (1 = 10,) (1 — top,)

PHYSICAL REVIEW D 96, 054024 (2017)

In both cases (Feynman propagators and Regge trajec-
tories), the spin structures of the corresponding vertices are
equivalent to each other, and thus we only have to calculate
the vector (axial-vector) meson vertex. It is further suffi-
cient to substitute the Regge trajectories for the scalar parts
of the vector (axial-vector) meson propagators as

N

ay(t)—
L D)= (—) (<d)T(1 = ay (1)

t—mV S0

-1 inay (1)
R -

into the final expression, where ay (1) = agy + ajt. In the
case of a single Regge trajectory, the factors (31) do not
influence the value of the ratio (2) because they cancel each
other in the numerator and the denominator. But in the case of
several trajectories, the ratio (2) can dramatically depend on
the position of points #,, where the Regge trajectory a;(t) has
a zero with a;(#);) = 0. For example, the zero point 7, ~
—0.6 GeV? of the p meson trajectory does not coincide with
the zero point |7y, | # 0.01 of the unnatural parity trajectory
[the unnatural parity b;(1235), h;(1170) exchanges are
allowed for f, photoproduction because of charge parity
conservation], and in the region of 7 close to 7, and 7y, , the
beam asymmetry X(t) for f; (or for z°, 1) photoproduction
can be represented in the lowest order of (- 1f,) and

(t —top,) by

ZRegge (t) ~

where Cps C, and d/,, a’bI are coefficients at the first nonzero
terms of Taylor series for Reggeons (31) involved in Eq. (2)
(for the numerator and denominator, respectively). These
coefficients are defined by parameters of different mesons,
p and b;, and thus ;—” # ;l. It is easily seen that Zpee(?)
P by

will jump from the value ;—i to the one of %‘] inside a
relatively small interval —zy;, < —1 < —f, that disturbs the
smooth behavior of this function. As a result, the Regge
model results in a large dip for the beam asymmetry X(7) in
the region of —t=~0— 0.6 GeV? for the z°, 5 photo-
production [14]. It may occur in the f, photoproduction
as well.

Hence, we cannot only use the Feynman amplitudes for
the evaluation of the asymmetry (2). The functions (31) also
play an important role in the formation of the # dependence
of Z. As in our recent work [8], we use two variants for the
parameters of the Regge trajectories: a, = 0.53,
a, = 0.85 GeV™2, ap,, = 0.4, a}, = 0.85 GeV~2, and 59 =
1 GeV? in the case of variant I and ag, = 0.55,

d3(t — 10,)* + dil (1 — top,)* + 2d,dp, (1 — 10,) (1 — top,)

(32)

[
a, = 0.8 GeV=2, ag, = 0.44, a, = 0.9 GeV~2, and s, =

1 GeV? for variant II. Now, we add the unnatural parity
trajectory with agy, = 0.0676, ag;,, = 0.0418, and a), =
a, = 0.7 GeV~? in both variants.

For the photon polarized along the x axis, we define

the polarization vector as ell(q) = (—ef' +¢,")/ V2=

{0,1,0,0}, and for the photon polarized along the y axis
we define it as ef(q) = i(e! +¢;')/v2 ={0,0,1,0}.
The photon spin density matrices for such states have the
simplest representation in terms of Lorentz indices y, v in the
Lab frame:

ph, = €lfel = diag(0,1,0,0),

ph, = eliel = diag(0,0, 1,0). (33)

Using these expressions, one can write the PARA and PERP
parts of the cross section (5) as

054024-5
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|MP|2 ZZZ Z M 02,62,012,622, )M(ij)(aé’GZ’UIZ’UZZ;ﬂ)pEwP = ”’J—’ (34)

iI'j' 0,0, 0102,

|
where we represent the lhs of Eq. (8) as MU = Here, ¢/ and f%° are the tensors, which are explicitly

mnv

M f>(az,az,alz,02Z,u)€f,. The full invariant matrix  orthogonal to the photon momentum
element is the sum over all scalar and vector mesons
ML =>".M j mv * Then, using the rhs of Eq. (16), one can

obtain, after elementary calculations, the final expressions 7" kiq"  k'q" e

for the squared matrix elements (34): L k k-g (k- q)
Y 1
Mp = (s, —amd) S (W) eiph(35) Y =ntint. wh = [0~ PP (P (38)
ijk i'jK N

WH¥ is the hadronic tensor, which in the case of vector
meson exchange factorizes as

v V(i'j'k V(ijk i i i j v, L
we =Gy "G DY (5D (5,) DY) (DY (0T

i.e., obey the transversity conditions

36
(36) .97 = a.d".  a@ff =af’.  qn =0 (39)
where
1
L
Tf; = ) |:(gvﬂlﬂ +ijPF)(ng/PP +fV,-/pp)£ffk2(k : ‘1)2 The final result can be written in terms of the Lorentz
2 invariants s, s, t by using equations p*> = p”? =m%, p-q=
" 4(ngPPng/m7 - —zfvjppfv,,pzv)fpf] . (37)  (s=my)/2, ploq=(s+t=s5—m})/2, p-p'=my—1/2,
! 4my ! and p - k = —t/2. After summation over y and v, one gets
|

T _
{I i } (52=4m3) S S GY (7K. 1K) D o (771252, )[2<gv_,,,p<t)+fv,,,p<t))(gvj,pp(t)+ fvj,pp(t))<7t) (5,— 1)

|MK|2 ijk ik

2
(00,009,100 5= st 57 | (40)

sin“g
where G;/ff(l'/j/k/, ijk) _ G;(fi/j/k/)G;(fijk) and
Dyvin (01 7:52.0) = D (520} (5D " (DY 1)
! 1

_ . . (41)
(mF, = 52)? +mp I3 (5, ) =0+ miy 0 )19 4

In the case of the diagram with the axial-vector meson exchange, one obtains an analogous expression with

P o  [sing
{ = (52 403) S S G FK D 152:) T (0005 = s 2 L. )

|M |2 ijk l/]/k/ COS (p

Note that sin? ¢ and cos? ¢ in the rhs column are exchanged when comparing the expression of Eq. (42) to the one of
Eq. (40). Such a permutation corresponds to the change of the vertex yV f, with Lorentz structure [¢*k* — g*k - g| to the
YAfo vertex with &7%¢ k, in passing from the vector amplitude (16) to the axial-vector one (17). The vertex yVf
generates the scalar product 7 - k = sin@cos @ (i.e., the factor sin? @ cos” ¢ in the PARA cross section), while the vertex

yAf, generates the vector product 7 X k ~ sin @ sin ¢ (i.e., the factor sin? 8 sin? ¢ in the PARA cross section), where 7 is the
vector of photon polarization.
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The upper line in the lhs columns of Egs. (40)—(42) between the vector and axial-vector amplitudes (16) and
corresponds to the cross section for photon polarized along (17) in the spin average (34), and the substitution M) =
the x axis, i.e., 7 = X. Thus, the contribution of the axial-  5,v(ij) + MAG) 1o Eq. (34) gives MY + [MA]2, P = || L.
vector exchange to the asymmetry (2) given by
(PERP-PARA), ~ cos?g — sin’p = cos 2¢ has a negative
sign when compared to the contribution of the vector
exchange, (PERP-PARA), ~ sin’p — cos’p = — cos 2¢.
It is also important to note that no interference occurs

|

Now, the asymmetry (2) can be rewritten through the
event yields Y () and Y, (), which are proportional to

N [(IM]P +|M{P)ds, and N [(IMY]? + M4 ?)ds,,
respectlvely Usmg Egs. (40) and (42), one can obtain

L(t) - YII(Z) Ir‘l/um( ) + Iéum( )

App(t) Y 2 %(t) cos 2 (43)
() = cos2¢p = cos 2¢,
BB YJ_(t) +Y||(t) den(t)+1den( )
where
Vv 4mB 11
Lrum () ds2 (52 _4mB)ZZGeff(l] K. ijk)Dygy (i'f', ij;s2.1)
Ij 1J
t .
X (ng/pp(t)ngpp(t) - mej/pp(t)ijpp([)> (S - mlzv)2|k‘281n2€, (44)
N
A 4'mB 11,/
Ioum(1) ds2 ) —4m E:ZGeff IJKijk)Dya(i') 1] 85, 1)
lj zj
<Ly (4 2)<s—mN> kPsince, (45)

—4m>
1h.( / dszﬂ B(s,—4m ZGeff (i'j'K ijk)Dysy(i']' ij; 55, 1)
l] lj

X |:2(ng]7]7 + ijpp)(ng/pp + ij/pp) (;) (52 - t)z

n (gv_,,p,xr)gvjp,,(r) T 0,0 ) s =R Plesino (46)

—4m>
14,.( / ds,y | ——2( s2—4mB)ZZGeff(1] i)Dsa(i'f 1552,

ij iy
% Farm (D e >(%) (s — Y fPsin’e. (47)
Note that it is trivial to generalize Eq. (43) to the case of a partially polarized photon beam (P, # 1) using the substitution
Y (1) = N(1—P,Z(t) cos 2¢), Y (1) =N(1+ P,X(1) cos 2¢). (48)
Finally, we define the integrated beam asymmetry (X) as

[ dt[Im (1) +If}um(t)]
fdt den t den(t)] ’

where 14, defined in Eq. (45) is negative, which should diminish the beam asymmetry X(¢) generated by p and @ exchange
diagrams.

() = (49)
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FIG. 2. The pp photoproduction off the proton, E, =5 GeV: (a) beam asymmetry X,; (b) do,;/dt in the Regge-pole
approximation, (c) do,;/dt in the Born approximation. In panel a, the lower two curves (without a peak at —f=0.6 GeV?)
correspond to the vector meson exchange (V =p+ w) in the Born (dotted-dashed curve) and Regge-pole (dashed curve)
approximations. The wupper two curves are obtained for the sum of vector and axial-vector meson exchanges
(V+A =p+ o+ by + hy) for the Regge-pole approximation with taking into account six (solid curve) and three (pointed curve)
intermediate scalar mesons, respectively. In panel b, results for two sets of effective parameters are presented: the lower two curves,
variant I (dashed for V + A and two-pointed dashed for V exchanges), and the upper two curves, variant II (solid for V + A and dotted
dashed for V exchanges). In panel c, the same notations for the curves are used as in panel b. Dotted curves in panels a, b, and ¢ show the
results obtained with taking into account the contribution of only three intermediate scalar mesons, f(1370), f(1500), and f,(1710).
The rest takes into account also the contribution of f((2020), f(2100), and f,(2200).

III. RESULTS The obtained results for the p p photoproduction are shown
in Figs. 2 and 3 for E, =5 and 9 GeV, respectively. The
results for the AA photoproduction are shown in Fig. 4
for E, =9 GeV.

Note that at £, = 5 GeV the maximum value of s, in the
AA channel defined by Eq. (7) is only 0.15 GeV higher
than the AA threshold value 4m%, and thus the AA cross

We study the linearly polarized beam asymmetry X(¢) for
the pp and AA photoproduction off the proton. We
calculate the ¢ dependence of the beam asymmetry X(¢)
for the photon energies E, = 5 and 9 GeV (relevant for the
JLab experiment) following Egs. (43)—(47) and using the
photoproduction model recently developed in Ref. [8].

Eo ooy | . . . . . .
08k — Regge V+A | 4+ Regge, 9 GeV 20 Born, 9 GeV 7
- Regge*V+A — V+A(I) — V+A (I
——- Regge V —=- V+A (D) ——- V+A (D)
—-= Born V+A o V(1) o 15F V(D)
04F 4 > 3r >
(53 (5
o O
W < =)
< 2+ 1 Zof R
5 3
© ©
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1 o E 5+ B
. - frooean 0 L T - vk TS
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2, 2, 2, 2, 2,2
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FIG. 3. The pp photoproduction for E, = 9 GeV. The same content of panels as in Fig. 2.
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FIG. 4. The AA photoproduction for E, =9 GeV. The same content of panels as in Fig. 2.
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section is very small as compared to the one of pp
production because of the small phase space. For this
reason, the AA cross section is not shown for E, =5 GeV.

One can see that in the considered energy interval the
absolute value of asymmetry X is increasing with the
increasing of photon energy and approaching to —1 in
the limit of large s due to (X) = —1 + O(1/s). For example,
the contribution of vector meson exchange (Figs. 2 and 3)
to the integrated asymmetry (X) is —0.119 at E, = 5 GeV,
and it takes the value of —0.509 at E, = 9 GeV.

The contribution of exchanged vector and axial-vector
mesons to the pp photoproduction is described in terms of
a Regge pole model for two sets of effective parameters,
coupling constants G and the values of a, o, which are
characteristic of the Regge pole trajectories. It turns out, as
seen in Figs. 2—4, that for the standard set used in meson
exchange models (variant I) the calculated cross section is
several times smaller than for the set usually used in the
Regge approach (variant II). As was shown in Ref. [8],
the Born approximation results in an overestimate of the
cross section if one uses the vertices without form factors.
Now, we show that the insertion of form factors (25)
restores the agreement between Regge model predictions
and the description in terms of a modified Born
approximation.

The beam asymmetry %(7) does not depend on the explicit
values of the effective parameters. The results of the
calculations made in both the Regge and Born approxima-
tions are very close each other, if one neglects the axial-vector
meson exchanges. The beam asymmetry X(¢) calculated in
the Born approximation practically does not differ from the
results of the Regge model calculations, except the region
—t~0-0.6 GeV?, where the vector (axial-vector) meson
trajectory passes through zero [a;(#y;) = 0, j = V, A]. Then,
the denominator in Eq. (49) is close to zero. In such a
situation, the behavior of X(7) is determined by the approxi-
mation (32), which predicts a nontrivial jump of X(r)
if o1 # fo,-

Note that such jumps occur not only for the cases of vector
and axial-vector Reggeon exchanges. In the case of two
different vector resonances, p and w, the ¢ behavior of the
asymmetry X(#) should also be disturbed by the same
mechanism, if 7, # fy,. However, this can rather be
considered as an artifact of the Regge-pole approximation.
For example, the zero points of p and w trajectories, #;, and
fow» for the widely used sets of parameters (e.g., for variant
or II) are very close to each other because both sets
practically correspond to the same trajectory (the trajectory
of natural parity resonances). In practice, one can slightly
change the parameters of the @ trajectory to obtain an exact
equality 7, = fy, (without any essential change in the
observables), and then the irregular behavior of X(#) near
to disappears. Here, we use such modified parameters for the
o trajectory in variantI (@, , = 0.8355, ag,meq = 0.4805)

PHYSICAL REVIEW D 96, 054024 (2017)

and for the p trajectory in variant II (a'pmod =0.9143,
Aopmoa = 0.4501), and thus there are no irregularities in
the %(¢) behavior, when only the contributions of natural
parity resonances (V = p, w) are taken into account [the
lower curves “V” in Figs. 2(a), 3(a) and 4(a)]. However, it
would be impossible to cancel the irregularity of () near 7,
when one takes into account the contribution of two really
different trajectories (e.g., the trajectories for natural
and unnatural parity resonances; see curves “V +A” in
Figs. 2-4), because in this case the zero points of such
trajectories should be different by physical terms.

It is apparent that, in addition to the contribution of the
f0(1370), fo(1500), and f(1710) states in the observables
of the baryon-antibaryon production, one should consider
contribution of other meson resonances of positive charge
parity, which are sufficient in the considered energy interval.
For example, poorly established scalar mesons f(2020),
f0(2100), and f,(2200) could give a large contribution in
considered physical properties since their masses are close to
the pp threshold. Unfortunately, their coupling constants
gyvs, and gr yy are poorly known. Therefore, for a rough
estimate of a role of such “background” processes, we
calculate the asymmetry X and the differential cross section
‘fl—‘t’, taking into account the contribution of the f(2020),
f0(2100), and f((2200) states for which we use the
corresponding coupling constants defined for f((1370),
f0(1500), and f,(1710) states, respectively. We take masses
and widths of the f((2020), f,(2100), and f(2200) from
data [9]:

Mfo(2020) =1.992 GeV,
M, (2000 = 2.189 GeV,
T/ 000 = 442 MeV, T a010) = 224 MeV,

[t (22000 = 238 MeV. (50)

M.f()(z]o()) =2.101 GeV,

The results, obtained within the Regge model and with
taking into account f((2020), f,(2100), and f,(2200)
states, are shown in Figs. 2(a), 2(b), 3(a), and 3(b). It is
seen that additional intermediate mesons can significantly
contribute to the cross section but they cannot significantly
change the asymmetry X.

While in a Regge approximation the 7 dependence of the
cross section is fixed by the known parameters of Regge-
pole trajectories, in a Born approximation the ¢ dependence
is defined by form factors which are poorly known.
Moreover, a small variation of the cutoff A in vertex form
factors (25) leads to a large variation of the cross section as
it is shown in Fig. 5 for A2=0.7,08,1, 1.2, and 2 GeV2.
One can see that only for A? ~ 0.7-1 GeV? are the Born
results close to the stable results of the Regge model, but
even at a small enhancement of A% up to 2 GeV?, the Born
cross section increases in an order of magnitude.

054024-9



THOMAS GUTSCHE et al.

sof T T N
S A (GeV")
| A ]

B
T

-—- 08
- L
-- 12

do/dt (nb GeV?)
°
=
Il

]
=1
—
I

S

s 2 25
-t (GeVic)

FIG. 5. The pp photoproduction for E, =9 GeV. The Born
approximation for different values of the cutoff parameters A =
Ay = Ay (A2=0.8,1, 1.2, and 2 GeV?) is shown in comparison
to the choice A> = 0.7 GeV? (solid curve) used in this work.

One can estimate the role of the axial-vector mesons (b,
hy) in the formation of a beam asymmetry in pp (AA)
photoproduction comparing the Regge results obtained
without the b; + h; contribution [the curves “V” in
Figs. 2(a), 3(a), and 4(a)] with the results that take into
account all exchanges p -+ w4+ by + h; (the curves
“V 4+ A”). Itis seen that adding the b; and &, contributions
does considerably lower the asymmetry X(¢) [in accordance
with the analytical results (44), (45)] and only slightly
increases the differential cross section [see Figs. 2(a)
and 2(b)]. This common qualitative conclusion does not
depend on concrete values of the poorly understood axial-
vector meson coupling constants (following the evaluations
made in Ref. [14] on the basis of z°, 5 photoproduction, we
use here the same values of couplings as for the corre-
sponding vector meson coupling constants). Quantitatively,
the effect of lowering the absolute value of beam asym-
metry |X(¢)| through the b, + h; Reggeon exchange
depends on concrete values for the axial-vector coupling
constants, and thus the new data on pp and AA photo-
production would be very useful for their evaluation.
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APPENDIX: COUPLING CONSTANTS
FOR AA CHANNEL

The scalar fields f; are considered as mixed states of the
glueball G and nonstrange N\ and strange S quarkonia [6,7]
fi = BuN + B;»,G + Bj3S, where the B;; are elements of
the mixing matrix rotating bare states (N, G, S) into the
physical scalar mesons [f((1370), fo(1500), f,(1710)]. In
Refs. [6,7], we studied in detail different scenarios for the
mixing of A/, G, and S states. Here, we proceed with the
scenario fixed in Ref. [7] from a full analysis of strong f
decays and radiative decays of the J/y with the scalars in
the final state:

075 060 026
B=|-059 080 —0.14 (A1)
—029 —0.05 0.95

The coupling constants involving scalar mesons are given
in terms of the matrix elements B;; and the effective
couplings ¢} = 1.592 GeV~' and ¢} = 0.078 GeV~' of

Ref. [7] fixed from data involving the scalar mesons f;:

Ity = 39,0y = Bir¢y + B,»z\/gc?. (A2)
In case of the f;NN couplings, we suppose that they are
dominated by the coupling of the nonstrange component to
the nucleon gy yy = Bi1gnnn- The coupling gy -y can be
identified with the coupling of the nonstrange scalar o
meson to nucleons,

INNN = GonN =5, (A3)

which plays an important role in phenomenological
approaches to the nucleon-nucleon potential generated
by meson exchange [15].

In the case of the couplings of scalar mesons with
hyperons, we use SU(6) quark model relations. The master
formulas are

3

CNpp = <PT|ZI;V|pT>
i=1
3

CNAA = <AT|Zlfv|AT>
i=1

3
csan = (A1 ZI§|AT>’ (Ad)
i=1

where Iy = diag(%,%,O), I = diag(0,0, 1). Using the
proton and A hyperon SU(6) wave functions
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P) = [g o+ =2 (141 + L1 = 2100) +5 (=) (111 = 111)|.
A1) = sluds(141 = 1)+ dus(U11 = 1)+ wsd (114 = 1) +sud (114 = 111)
Fdsu(U = 10) + sdu(th = 110 (A3)
gives
CNpp = % CNAA = V2, csan = L. (A6)

Using our result for g¢ yy = Biigann [8], we get gran = Bitgaan + Bizgsan, Where gyap and ggpa are deduced from the

ratios

INAA _ ENAA _ g
INpp

CJ\/pp 37

as

2
INAN = gngp,

Using Egs. (A1)~(A3) and the values of gy yy = 3.75, gp,yv = —2.95, and gy yy = —1.45, we get

gflAA = 4699,

gszA = —3445,

gsan _ Csan _ Q (A7)
INpp  CNpp 3

V2
gsan = ?ngp- (A8)
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