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We discuss single-diffractive production of dijets. The cross section is calculated within the
resolved Pomeron picture, for the first time in the kt-factorization approach, neglecting transverse
momentum of the Pomeron. We use Kimber-Martin-Ryskin unintegrated parton (gluon, quark,
antiquark) distributions in both the proton as well as in the Pomeron or subleading Reggeon. The
unintegrated parton distributions are calculated based on conventional MMHT2014nlo parton
distribution functions in the proton and H1 Collaboration diffractive parton distribution functions
used previously in the analysis of diffractive structure function and dijets at HERA. For comparison,
we present results of calculations performed within the collinear-factorization approach. Our results
remain those obtained in the next-to-leading-order approach. The calculation is (must be)
supplemented by the so-called gap survival factor, which may, in general, depend on kinematical
variables. We try to describe the existing data from Tevatron and make detailed predictions for
possible LHC measurements. Several differential distributions are calculated. The ĒT , η̄ and xp̄
distributions are compared with the Tevatron data. A reasonable agreement is obtained for the first
two distributions. The last one requires introducing a gap survival factor which depends on
kinematical variables. We discuss how the phenomenological dependence on one kinematical
variable may influence dependence on other variables such as ĒT and η̄. Several distributions for the
LHC are shown.
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I. INTRODUCTION

The hard diffractive processes are related to the pro-
duction of a system with large mass (gauge boson, Higgs
boson), or large invariant mass (dijets), and the presence of
a rapidity gap somewhere in rapidity space. Several hard
diffractive processes have been studied in the past. The gap
may be in different places with respect to final-state objects,
e.g., between a forwardly produced proton and a hard
system (hard single-diffractive process) or between jets
(jet-gap-jet topology) or quarkonia (quarkonium-gap-
quarkonium). Another category is exclusive diffractive
processes (Higgs, dijets, γγ, pair of heavy quarks QQ̄,
etc.) Several other processes are possible in general, many
of them not studied so far.
In the present paper, we discuss single-diffractive pro-

duction of dijets. This process was discussed in the past for
photo- and electroproduction [1–4] as well as for proton-
proton or proton-antiproton collisions [5–9]. The hard
single-diffractive processes are treated usually in the
resolved Pomeron picture with a Pomeron being a virtual

but composed (of partons) object. This picture was used
with success for the description of hard diffractive proc-
esses studied extensively at HERA. This picture was also
attempted at hadronic collisions. A few processes were
studied experimentally at the Tevatron [10–20] including
the dijet production.
The related calculation was performed so far in the

context of the collinear-factorization approach. The cor-
responding parton distributions in the Pomeron, or equiv-
alently the so-called diffractive parton distributions in the
proton, have been fitted so far to the HERA data. The
distributions should be universal and so, in principle, can
be used in proton-proton collisions. In pp or pp̄ colli-
sions, the strong nonperturbative interactions can easily
destroy the rapidity gap associated with Pomeron (or other
color-singlet) exchange. This effect is of a nonperturbative
nature and is therefore difficult to control. There were
several attempts to understand the related suppression of
the hard diffractive cross sections. Usually, the effect
is quantified by a phenomenological gap survival factor.
The factor is known to be energy dependent because the
nonperturbative soft interactions are known to be energy
dependent. In general, the survival probability may
depend on other kinematical variables. Recently, the
gap survival factor was studied for jet-gap-jet processes
[21], and the dependence on the gap sizes was discussed
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in the picture of multiple parton scattering. In our opinion,
we are still far from the full understanding of the
dynamical effect.
The kt-factorization, originally proposed by Catani et al.

in Refs. [22,23], was used recently for different processes
at the LHC. In the present paper, we intend to treat the
single-diffractive dijet production for the first time also
within the kt-factorization approach. A similar approach
was used recently for the single-diffractive production of
cc̄ pairs [24]. The kt-factorization approach was also
used recently for nondiffractive dijet [25], three- [26] or
even four-jet production [27,28]. In particular, we wish to
compare results obtained within collinear-factorization
and kt-factorization approaches. A comparison with the
Tevatron data is planned. We wish to also make predictions
for the LHC.

II. SKETCH OF THE APPROACH

In this paper, we follow the theoretical framework
proposed very recently by three of us in Ref. [24].
There, some new ideas for the calculation of diffractive
cross sections were put forward and applied in the case
of single-diffractive production of charm at the LHC.
According to this approach, the standard resolved
Pomeron model [29], usually based on the leading-order
(LO) collinear approximation, is extended by adopting a
framework of the kt-factorization as an effective way to
include higher-order corrections. It was shown several
times that the kt-factorization approach is very useful in
this context and especially efficient in the studies of
kinematical correlations (see, e.g., Refs. [25,30]).
A sketch of the mechanisms under consideration, rel-

evant for the inclusive single-diffractive production of
dijets in pp or pp̄ collisions, with the notation of

kinematical variables and with some theoretical ingredients
used in the following is shown in Fig. 1.
According to the approach introduced above, the cross

section for inclusive single-diffractive production of the
dijet, for both considered diagrams (left and right panels of
Fig. 1), can be written as

dσSDð1Þðpapb → padijetXYÞ

¼
X
i;j;k;l

Z
dx1

d2k1t
π

dx2
d2k2t
π

dσ̂ði�j� → klÞ

× FD
i ðx1; k21t; μ2Þ · F jðx2; k22t; μ2Þ; ð2:1Þ

dσSDð2Þðpapb → dijetpbXYÞ

¼
X
i;j;k;l

Z
dx1

d2k1t
π

dx2
d2k2t
π

dσ̂ði�j� → klÞ

× F iðx1; k21t; μ2Þ · FD
j ðx2; k22t; μ2Þ; ð2:2Þ

where F iðx; k2t ; μ2Þ are the “conventional” unintegrated
(kt-dependent) parton distributions (UPDFs) in the proton
and FD

i ðx; k2t ; μ2Þ are their diffractive counterparts—which
we will call here diffractive UPDFs. The latter can be
interpreted as the probability of finding a parton i with
longitudinal momentum fraction x and transverse momen-
tum (virtuality) kt at the factorization scale μ2 assuming that
the proton which losts a momentum fraction xIP remains
intact.
The 2 → 2 partonic cross sections in Eqs. (2.1) and (2.2)

read

FIG. 1. A diagrammatic representation of the considered mechanisms of single-diffractive dijet production within the resolved
Pomeron model extended in the present paper to the kt-factorization approach.
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dσ̂ði�j� → klÞ ¼ d3p1

2E1ð2πÞ3
d3p2

2E2ð2πÞ3
× ð2πÞ2δ2ðp1 þ p2 − k1 − k2Þ
× jMi�j�→klðk1; k2Þj2 ð2:3Þ

with i; j; k; l ¼ g; u; d; s; ū; d̄; s̄, where p1, E1 and p2, E2

are the momenta and energies of outgoing partons, respec-
tively, and Mi�j�→klðk1; k2Þ are the off-shell matrix ele-
ments for the i�j� → kl subprocesses with initial-state
partons i and j being off mass shell. In the numerical
calculations here, we include all 2 → 2 partonic channels:

#1¼ g�g� → gg; #4¼ g�g� → qq̄; #7¼ q�q̄� → gg;

#2¼ q�g� → qg; #5¼ q�q̄� → qq̄; #8¼ q�q� → qq;

#3¼ g�q� → gq; #6¼ q�q̄� → q0q̄0; #9¼ q�q0� → qq0:

The relevant gauge-invariant off-shell matrix elements for
each of the channels above can be calculated, e.g., within
the method of parton Reggeization. It was done recently in
Ref. [25], where the matrix elements were presented in a
very useful analytical form.
As we proposed very recently in Ref. [24], the diffractive

UPDFs can be calculated from their collinear counterparts
via the Kimber-Martin-Ryskin (KMR) method [31,32].1

Then, the diffractive unintegrated parton distributions for
the gluon and quark are given by the following formulas,

fDg ðx; k2t ; μ2Þ≡ ∂
∂ log k2t ½g

Dðx; k2t ÞTgðk2t ; μ2Þ�

¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

×
Z

1

x
dz

�X
q

PgqðzÞ
x
z
qD

�
x
z
; k2t

�

þ PggðzÞ
x
z
gD

�
x
z
; k2t

�
ΘðΔ − zÞ

�
; ð2:4Þ

fDq ðx; k2t ; μ2Þ≡ ∂
∂ log k2t ½q

Dðx; k2t ÞTqðk2t ; μ2Þ�

¼ Tqðk2t ; μ2Þ
αSðk2t Þ
2π

×
Z

1

x
dz

�
PqqðzÞ

x
z
qD

�
x
z
; k2t

�

× ΘðΔ − zÞ þ PqgðzÞ
x
z
gD

�
x
z
; k2t

��
;

ð2:5Þ

where gD and qD are the collinear diffractive parton
distribution functions (PDFs) in the proton. The Pqq,
Pqg, Pgq and Pgg are the usual unregulated LO
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) split-
ting functions, and Tg and Tq are the gluon and quark
Sudakov form factors, respectively. More details of the
whole procedure and a discussion of all of the ingredients
can be found, e.g., in Ref. [32].
According to the so-called proton-vertex-factorization,

the diffractive collinear PDF in the proton, e.g., for the
gluon, has the following generic form,

gDðx; μ2Þ ¼
Z

dxIPdβδðx − xIPβÞgIPðβ; μ2ÞfIPðxIPÞ

¼
Z

xmax

x

dxIP
xIP

fIPðxIPÞgIP
�

x
xIP

; μ2
�
; ð2:6Þ

where β ¼ x
xIP

is the longitudinal momentum fraction of the
Pomeron carried by gluon and the flux of Pomerons may be
taken as

fIPðxIPÞ ¼
Z

tmax

tmin

dtfðxIP; tÞ: ð2:7Þ

An analogous expression can also be written for the
collinear diffractive quark distribution.
In this paper, the diffractive KMR UPDFs are calculated

from the “H1 2006 fit A” diffractive collinear PDFs [34],
that are only available at next-to-leading order. In the
calculation of the conventional nondiffractive KMR
UPDFs, the collinear MMHT2014nlo PDFs [35] were used.
In the perturbative part of the calculations, we take running
coupling constant αSðμ2RÞ and the renormalization and

factorization scales equal to μ2 ¼ μ2R ¼ μ2F ¼ p2
1tþp2

2t
2

, where
p1t and p2t are the transverse momenta of the outgoing jets.
Before starting the presentation of our results, we wish to

make a comment on some limitations of kt-factorization for
jet production. In the kT-factorization approach, the produc-
tion of jets can also occur from the unintegrated PDFs. We
followed this fact in our papers, when considering, e.g., cc̄,
bb̄ or cc̄þ jet production. These additional hard emissions
lead to an effective inclusion of a part of higher-order (real)
corrections (see our discussion, e.g., in Ref. [36]).
However, in the case of dijet production, the situation is a

bit more complicated. The condition kT < psub
T arises from

the methods of dijet experimental data analyses at the
Tevatron and/or LHC. Usually, the two (pT)-hardest jets
(the two most energetic) from the njet > 2 sample are taken
into account. Experimentally, it is impossible to separate
final-state partons/jets produced in the hard-parton scatter-
ing from the ones generated during the evolution of uPDFs.
In the KMR method, the situations where kT > psub

T or
even kT > plead

T are possible. However, the kinematics
of the hard parton from the uPDF is not under full control,

1The KMR method is based on an earlier observation origi-
nally made by Catani et al. [33], where a relationship between
high-energy factorization and the factorization theorem on mass
singularities was established.
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and one cannot say whether it fulfills, e.g., a rapidity
detector acceptance. Therefore, to avoid overestimation of
the visible cross section, one needs to keep the two hardest
jets coming from the hard-matrix element only. The addi-
tional emission from the uPDF is constrained but still
important. The condition kT < psub

T was originally pro-
posed in Ref. [25].
The rapidity gap is treated here in the same way for

collinear and kt-factorization as it is related to another
additional (treated as independent) soft scattering. In some
calculations performed here, it is just included by a
multiplication of the resolved Pomeron model result by
a gap survival factor. Also, when discussing the possible
dependence of the gap survival on xp̄ (see Sec. III .B), we
use a similar fitting function adjusted to the Tevatron
experimental data. In this case, however, the parameters
of the fitting function are different, which means that
the gap survival factor is different for the collinear and
kt-factorization approach.

III. RESULTS

In this section, we shall show results of our calculations.
We shall start from a trial of the description of the Tevatron
experimental data [13,14].

A. Tevatron cuts

We start by showing our results for ĒT ¼ E1TþE2T
2

and
η̄ ¼ η1þη2

2
distributions; see Fig. 2. In this calculation, the

Pomeron/Reggeon longitudinal momentum fraction was
limited as in the experimental case [13,14] to 0.035 <
xIP;IR < 0.095. We show both the naive result obtained
with the KMR UGDF (dashed line) as well as similar
results with limitations on parton transverse momenta
kT < psub

T (solid line) and kT < 7 TeV (dash-dotted line).
Above, psub

T is the transverse momentum of the subleading
jet. The first limitation was proposed for standard non-
diffractive jets [25]. The latter limitation is related to
the lower experimental cut on jet transverse momenta.

For comparison, we show also the distribution obtained in
the leading-order collinear-factorization approach (dotted
line). A large difference can be seen close to the lower
transverse momentum cut. A similar effect was discussed
recently for four-jet production in Ref. [27].
Figure 3 shows somewhat theoretical two-dimensional

distribution in transverse momenta of partons. Surprisingly,
the distribution is almost symmetric in k1T and k2T . The
limitation on parton transverse momenta kT < psub

T makes
the two-dimensional distribution much narrower, although
the consequences on the distribution in transverse momenta
and rapidity are not dramatic as has already been shown
in Fig. 2.
In contrast to the leading-order collinear-factorization

approach, in the kt-factorization approach, the transverse
momentum distributions of leading (solid) and subleading
(dashed) jets differ as is shown in the left panel of Fig. 4.
In contrast to the leading-order collinear-factorization
approach, in the kt-factorization approach, the transverse
momentum distributions of leading (solid) and subleading
(dashed) jets differ as is shown in the left panel of Fig. 4.
Here, a standard cut on parton transverse momentum
kT < psub

T has been imposed. In the right panel of
Fig. 4, we show how the single-diffractive cross section
depends on the cut on the square of four-momentum
transfer to the outgoing antiproton (the antiproton was
measured in the CDF experiment). The cut jtj < 0.2 GeV2

changes the cross section normalization but does not
modify the shape of the distribution.
Here, a standard cut on the parton transverse momentum

has been imposed. The single-diffractive cross section
depends on the cut on four-momentum squared transferred
to the outgoing antiproton (the antiproton was measured in
the CDF experiment). The cut changes the cross section
normalization but does not modify the shape of the
distribution.
In our calculation, we include both Pomeron and

subleading Reggeon exchanges. In the selected range of
xIP, the Pomeron contribution is much bigger than the

 (GeV)TE
10 15 20 25 30 35 40

(n
b/

G
eV

)
T

E
/dσd

1

10

210

310

410
p X  dijet →pSD: p  = 1.8 TeVs

 > 7 GeVsub
T

, plead
T

p

| < 4.2η| R = 0.7

2|t| < 1 GeV

 < 0.095IP,IR0.035 < x

 LO collinear-fact. (dotted)
-fact.: KMR (dashed)Tk

 (solid)sub

T
 < pT-fact.: KMR kTk
 < 7 GeV (dash-dotted)T-fact.: KMR kTk

η
−4 −3 −2 −1 0 1 2 3 4

 (
nb

)
η

/dσd

1

10

210

310

410
p X   dijet →pSD: p  = 1.8 TeVs

 > 7 GeVsub
T

, plead
T

p

| < 4.2η|
R = 0.7

2|t| < 1 GeV

 < 0.095IP,IR0.035 < x

 LO collinear-fact. (dotted)
-fact.: KMR (solid)Tk

 (dashed)sub

T
 < pT-fact.: KMR kTk

 < 7 GeV (dash-dotted)T-fact.: KMR kTk

FIG. 2. Distribution in average ĒT (left panel) and in average η̄ (right panel). Here, SG ¼ 0.1.
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contribution of the subleading Reggeon as shown in
Fig. 5. The subleading Reggeon contribution is about
10% of the single-diffractive cross section. For the
average jet rapidity distribution, the situation is a bit
more complicated. Both contributions are of the same
order for large η̄.

Now, we wish to consider distributions that can be
compared to the experimental ones.
In Fig. 6, we show the distribution in ĒT for two collision

energies. While the kt-factorization approach gives a better
description of the data close to the lower experimental
cut on jet transverse momenta, the collinear-factorization

FIG. 3. Two-dimensional distribution in transverse momenta of partons on the nondiffractive side (k1T) and on the diffractive side
(k2T). Here, SG ¼ 0.1.
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SINGLE-DIFFRACTIVE PRODUCTION OF DIJETS … PHYSICAL REVIEW D 96, 054018 (2017)

054018-5



 (GeV)TE

10 15 20 25 30 35

)
-1

  (
G

eV
T

E
/dσ

   
d

σ
1/

4−10

3−10

2−10

1−10

1 p X  dijet →pSD: p  = 1.8 TeVs

 LO collinear-fact. (dotted)
 (solid)sub

T
 < pT-fact.: KMR kTk

CDF data

 > 7 GeVsub
T

, plead
T

p

| < 4.2η| R = 0.7

2|t| < 1 GeV

 < 0.095IP,IR0.035 < x

 (GeV)TE
8 10 12 14 16 18 20 22 24

)
-1

  (
G

eV
T

E
/d σ

   
d

σ
1/

4−10

3−10

2−10

1−10

1 p X  dijet →pSD: p  = 0.63 TeVs

 LO collinear-fact. (dotted)
 (solid)sub

T
 < pT-fact.: KMR kTk

CDF data

 > 7 GeVsub
T

, plead
T

p

| < 4.2η| R = 0.7

2|t| < 0.2 GeV

 < 0.095IP,IR0.035 < x

FIG. 6. The average transverse energy distribution for
ffiffiffi
s

p ¼ 1.8 TeV (left panel) and for
ffiffiffi
s

p ¼ 630 GeV (right panel).

η
−2 −1 0 1 2 3 4

η
/dσ

   
d

σ
1/

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p X   dijet →pSD: p  = 1.8 TeVs

 LO collinear-fact. (dotted)
 (solid)sub

T
 < pT-fact.: KMR kTk

CDF data

 > 7 GeVsub
T

, plead
T

p

| < 4.2η|
R = 0.7

2|t| < 1 GeV

 < 0.095IP,IR0.035 < x

η
−2 −1 0 1 2 3

η
/dσ

   
d

σ
1/

0

0.1

0.2

0.3

0.4

0.5

0.6

p X   dijet →pSD: p  = 0.63 TeVs

 LO collinear-fact. (dotted)
 (solid)sub

T
 < pT-fact.: KMR kTk

CDF data

 > 7 GeVsub
T

, plead
T

p

| < 4.2η|
R = 0.7

2|t| < 0.2 GeV

 < 0.095IP,IR0.035 < x

FIG. 7. The average rapidity distribution for
ffiffiffi
s

p ¼ 1.8 TeV (left panel) and for
ffiffiffi
s

p ¼ 630 GeV (right panel).

px

3−10 2−10 1−10

) p
(x

N
D

S
D

R

3−10

2−10

1−10

 = 1.8 TeVs

 > 7 GeVsub
T

, plead
T

p

CDF data

| < 4.2η|
R = 0.7

 LO collinear-fact. (dotted)
 (solid)sub

T
 < pT-fact.: KMR kTk

px
2−10 1−10

) p
(x

N
D

S
D

R

3−10

2−10

1−10

 = 0.63 TeVs
 > 7 GeVsub

T
, plead

T
p

CDF data

| < 4.2η|
R = 0.7

 LO collinear-fact. (dotted)
 (solid)sub

T
 < pT-fact.: KMR kTk

FIG. 8. Distribution in xp̄ for
ffiffiffi
s

p ¼ 1.8 TeV (left panel) and for
ffiffiffi
s

p ¼ 630 GeV (right panel). No gap survival factor was included
here.

ŁUSZCZAK, MACIUŁA, SZCZUREK, and BABIARZ PHYSICAL REVIEW D 96, 054018 (2017)

054018-6



approach seems to be better for larger transverse momenta.
This is true for both Tevatron collision energies. We do not
have a good understanding of the result.
In Fig. 7, we show distributions in average jet rapidity

again for the two collision energies.Here, thekt-factorization
result better describes the experimental data than the result
obtained in the collinear approach. The outgoing antiproton
is at η ≈ −6.05 for

ffiffiffi
s

p ¼ 1.8 TeV and η ≈ −5.53 forffiffiffi
s

p ¼ 630 GeV.
We wish to note here that both the experimental

distributions in ĒT and in η̄ are not absolutely normalized
(inspect the description y axes of Figs. 6 and 7). On the
theoretical side, the absolute cross section depends on the
gap survival factor, which is not easy to calculate from
the first principle. The CDF Collaboration showed also the
distribution in xp̄ normalized to the inclusive cross section.
Our theoretical result is clearly above the experimental
result; see Fig. 8. Roughly a factor of order 0.1 is missing in

our calculation, although the exact shape is not exactly
the same.
There can be several reasons for the disagreement of our

results with the CDF data. One of them is not a perfect
extraction of the diffractive distributions at HERA. Another
one is the dependence of the gap survival factor on
kinematical variables. This possibility will be discussed
now in the next subsection.

B. Kinematical dependence of gap survival factor

In this section, we assume that the gap survival factor is a
function of xp̄ only. This assumption is a bit academic, but
we wish to see a possible influence of such a dependence
on other distributions. In Fig. 9, we show a fit to the data
assuming some functional form for SGðxp̄Þ, SGðxp̄Þ ¼
0.0056 � ðx−0.6p̄ þ x−0.02p̄ Þ for the collinear case and
SGðxp̄Þ ¼ 0.004 � ðx−0.6p̄ þ x−0.03p̄ Þ for the kt-factorization
approach, where xp̄ is a parton momentum fraction in the
antiproton.
The formula above is a purely mathematical fit which

applies in a limited range of xp̄. This formula should not be
extrapolated toward very small values of xp̄. Beyond the
experimental Tevatron region, our formula has no physical
meaning. Our fit nicely describes the CDF data atffiffiffi
s

p ¼ 1.8 TeV. In our present fit, the gap survival factor
depends somewhat arbitrarily on the parton momentum
fraction in the antiproton. We wish to check if such a
dependence could modify the measured distributions in the
rapidity and transverse momentum of jets. Models moti-
vated by the theory of dynamics of such a process should be
considered in this context in the future.
In Fig. 10, we again show the distribution in ĒT for the

collinear (left panel) and kt-factorization (right panel)
approaches. The inclusion of the dependence of SG on
xp̄ improves the overall agreement with the CDF data.
In Fig. 11, we show similar distributions in η̄. One can

observe a sizable shift of the distributions toward larger η̄.
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The shift is in a correct direction but is much too big.
This should be traced back to the extreme assumption of the
dependence of SG on xp̄ only. In reality, SG may depend on
a few kinematical variables. However, such a study goes far
beyond the scope of the present paper.

According to our knowledge, there is no commonly
accepted theory of the gap survival factor. Our trial in this
section of the paper is purely phenomenological and dem-
onstrates the potential importance of the dependence of SG
on kinematical variables for the description of real data.

C. Predictions for the LHC

In this subsection, we wish to present our results for the
LHC energy

ffiffiffi
s

p ¼ 13 TeV. In our calculations, we use cuts
relevant for the planned ATLAS experiments, so we use a
range of rapidities relevant for the ATLAS experiment
−4.9 < y1, y2 < 4.9. We consider a rather low cut on the
transverse momenta of jets pt > 20 GeV. In the following,
we shall use SG ¼ 0.05.
In Fig. 12, we show distribution in jet transverse

momentum, for leading (left panel) and subjeading (right
panel) jets. As for the Tevatron, we discuss the role of extra
cuts on parton transverse momenta. The cuts have a bigger
effect on leading jets.
In Fig. 13, we compare contributions of the Pomeron

and subleading Reggeon for the ATLAS range of xIP;IR.
The subleading contribution is somewhat larger than 10%.
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There is no evident dependence on the value of the
transverse momentum.
In Fig. 14, we show similar distributions for jet rapidity

again for the leading and subleading jets. As before,
we show contributions of the Pomeron and subleading
Reggeon separately. Here, the relative contribution of the
subleading Reggeon is an evident function of rapidity, both
for the leading and subleading jets.
Azimuthal angle correlations between the leading and

subleading jets are shown in Fig. 15. Similar shapes are
obtained for Pomeron and Reggeon contributions.
Finally, in Fig. 16, we show purely theoretical two-

dimensional distributions in transverse momenta of partons
for the Pomeron (left panel) and subleading Reggeon (right
panel), respectively, for nondiffractive and diffractive
sides. As for the Tevatron, the distributions are surprisingly
symmetric in k1T and k2T . In this calculation, no extra
cuts on parton transverse momenta have been imposed.
We stress that very large transverse momenta of partons
enter the considered dijet production.
In Table I, we present the integrated cross section for the

ATLAS acceptance for single-diffractive production of
dijets for different cuts of the jet-pT .

IV. CONCLUSIONS

In the present paper, we have presented for the first time
results for the single-diffractive production of dijets within
the kt-factorization approach. The resolved Pomeron model
with flux of the Pomeron and Reggeon and parton
distribution in the Pomeron have been used. The diffractive
unintegrated parton distributions were obtained based on
their collinear counterparts. The latter were used to fit
the HERA data for the diffractive F2 structure function
and for diffractive dijet production. The rapidity gap is not

calculated but can be fitted to the data. A constant value has
been assumed as a default.
Results of our calculations were compared with the

Tevatron data where forward antiprotons and rapidity
gaps were measured. We have calculated distributions in
ĒT and η̄. A reasonable agreement has been achieved.
We have compared results obtained within collinear and
kt-factorization approaches. The kt-factorization leads to a
better description in ET close to the lower transverse
momentum cut.
Several other distributions have been presented and

discussed, many of them for the first time.
It is rather difficult to describe the distributions in xp̄

with a constant value of the gap survival factor, especially
for

ffiffiffi
s

p ¼ 1.8 TeV. We have considered a possibility that
the gap survival factor depends exclusively on xp̄ and
studied consequences for other observables. A phenom-
enological xp̄ function was used to fit the Tevatron data.
Such a dependence of the gap survival factor leads to an
effective shift of the distribution in η̄ in better agreement
with the Tevatron data. Our preliminary study suggests that
the dependence of gap survival factor on kinematical
variables can be also an important ingredient in order to
understand details of rapidity distributions. Clearly, further
studies are necessary in the future.
We have also made predictions for future LHC mea-

surements. Several differential distributions have been
presented. We hope for their verification in the near future.
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TABLE I. The calculated cross sections in microbarns for single-diffractive production of dijets in pp-scattering atffiffiffi
s

p ¼ 13 TeV for different cuts on transverse momentum of the dijets. Here, the rapidity of the dijets is jyjetj < 4.9,
that corresponds to the ATLAS detector acceptance. The cross section here is not multiplied by the gap survival
factors.

Collinear kT-fractorization approach
pjet
T;mincuts MMHT2014nlo KMR KMR kT < pjet

T;min (IP) KMR kT < pjet
T;min (IR)

pjet
T > 20 GeV 9.08 11.42 8.53 1.79

pjet
T > 35 GeV 2.34 3.89 3.98 0.62

pjet
T > 50 GeV 0.42 0.83 0.68 0.16
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