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In the present work, the hidden-charm decays of Yð4390Þ are investigated in a D�D̄1 þ H:c: molecular
scenario. We find in this frame the observation of the Yð4390Þ in the eþe− → πþπ−hc process and the
absence of this state in the eþe− → πþπ−J=ψ process are very natural. The partial width of Yð4390Þ →
πþπ−hc could reach up to 1.26 MeV, which is large enough to be observed. The result also indicates that the
partial widths of Yð4390Þ → ηJ=ψ and Yð4390Þ → ηhc are of the same order of magnitude as the one of
Yð4390Þ → πþπ−hc, which could be tested by the precise measurements at BES III and Belle II.
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I. INTRODUCTION

The electron-positron annihilation process is an unique
platform of observing vector charmonia and charmonium-
like states. In this process, a number of charmonium-like
states have been observed, such as Yð4008Þ [1], Yð4220Þ
[2], Yð4260Þ [1,3], Yð4360Þ [4,5], Yð4630Þ [6], and
Yð4660Þ [5]. This is not the end of the ever-lengthening
particle list. Recently, the BESIII Collaboration reported
their precise measurements of the cross-sections for the
eþe− → πþπ−J=ψ [7] and eþe− → πþπ−hc [8] with the
center-of-mass energy up to 4.6 GeV, where three char-
monium-like state, Yð4220Þ, Yð4320Þ and Yð4390Þ, were
observed. Yð4220Þ were reported in both eþe− →
πþπ−J=ψ and eþe− → πþπ−hc processes [7,8], and its
resonance parameters are also consistent with those of the
one observed in the eþe− → ωχc0 [2]. The charmonium-
like states Yð4320Þ and Yð4390Þ were observed for the first
time, and the former one was reported in the cross-sections
for the eþe− → πþπ−J=ψ [8], while the later one was only
observed in the eþe− → πþπ−hc process [8].
The observations of the vector charmonium-like states

stimulate theorist’s great interest in their intrinsic structures.
Taking the long-standing Yð4260Þ as an example, the mass
of this state is far away from the relativistic quark model
[9], and more importantly, this state is only observed in the
cross-sections for the eþe− → πþπ−J=ψ [1,3], while in the
open charm channels [10–13] and R-value scan [14–19]
there is no signal of this states. Due to the particular
property of Yð4260Þ, some exotic interpretations are
proposed. In Ref. [20], the author found that the charmo-
nium and molecular interpretations were not supported by

their calculation, and a hybrid charmonium interpretation
could explain the decay property of the Yð4260Þ [21]. In
Ref. [22], Yð4260Þ was proposed to be the first orbital
excitation of the diquark-antidiquark ½cs�½c̄ s̄� state. While
the relativistic quark model estimation indicated that the P
wave diquark-antidiquark ½cq�½c̄ q̄� state could be a more
natural explanation of Yð4260Þ [23] and in such a kind of
picture, the radiative transition between Yð4260Þ and
Xð3872Þ was investigated [24]. The nonresonance inter-
pretations in Refs. [25–27] indicated that the line shape of
the cross-sections for eþe− → πþπ−J=ψ could be repro-
duced by the interferences of the nearby charmonia.
However, the recent measurement of Yð4260Þ in the
cross-sections for eþe− → πþπ−hc [8] challenged such
kind of interference picture.
In addition, it should be noticed that the mass of the

Yð4260Þ is 4251� 9 MeV, which is about 40 MeV below
the D1D̄ threshold, which indicates that the Yð4260Þ could
be a molecular state composed of D1D̄þ H:c: The meson
exchange model calculations in Ref. [28] found that
Yð4260Þ could be accommodated as a D1D̄þ H:c: mol-
ecule. The estimation of the chiral quark model also
supported the D1D̄þ H:c: molecular interpretation of
Yð4260Þ [29]. The investigations of the decays and pro-
ductions of the Yð4260Þ in the molecular scenario are also
in line with the corresponding experimental data [30–32].
As for the newly observed Yð4390Þ, it is observed in the

eþe− → πþπ−hc process [8]. The resonance parameters of
Yð4390Þ are presented in Table I and those for Yð4260Þ are
also listed for a comparison. The widths of Yð4260Þ and
Yð4390Þ are very similar and their masses satisfy,

mYð4390Þ −mYð4260Þ ≃mD� −mD ≃ 140 MeV:

Such kinds of similarities indicate that Yð4390Þ could be a
D�D̄1 þ H:c: molecule, which is a counterpart of the
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Yð4260Þ. In Ref. [33], we calculate the potential of the
D1D̄� system in a one-boson-exchange model. By solving
corresponding quasipotential Bethe-Salpeter equation, we
find a bound state solution, which well corresponds to
the Yð4390Þ.
To further test the molecular interpretations of the

Yð4390Þ, we should answer the question why this state
is only observed in eþe− → πþπ−hc process, which should
be suppressed due to the spin flip of the heavy quark, while
in the spin conserved process, eþe− → πþπ−J=ψ , this state
is absent. In the present work, we further investigate the
hidden-charm decays of the Yð4390Þ in a D1D̄� molecular
scenario, especially the decay process Yð4390Þ → hcπþπ−,
which could be a crucial test of the molecular assignment.
This work is organized as follows. The hidden-charm

decays are presented in the following section. The numeri-
cal results and discussions are given in Sec. III and Sec. IV
is devoted to a summary.

II. HIDDEN-CHARM DECAYS OF Yð4390Þ
Before the discussion of Yð4390Þ decay, we recall

another two charmonium-like but charged states
Zcð3900Þ and Zcð4020Þ (thereafter we denote these two
states as Zc and Z0

c), which would help us to understand the
observation of Yð4390Þ. Zc was first reported in the J=ψπ
invariant mass spectrum of the eþe− → πþπ−J=ψ [35,36],
and then in the DD̄� invariant mass spectrum of the
eþe− → πD�D process [37]. As a counterpart of the Zc,
Z0
c was successively observed in the hcπ invariant mass

spectrum of eþe− → πþπ−hc process and D�D̄� invariant
mass spectrum of eþe− → πD�D̄� [38,39]. The observed
mass of the Zc and Z0

c are very close to the thresholds of
DD̄� and D�D̄�, respectively. The resonance parameters
and decay behaviors indicated that Zc and Z0

c could be the
molecular state composed of DD̄� þ H:c: and D�D̄�,
respectively [40–43]. In the molecular scenario, the flavor
wave functions of the Zc and Z0

c are,

jZci ¼
1ffiffiffi
2

p ½DD̄� þ D̄D��; jZ0
ci ¼ D�D̄�; ð1Þ

respectively.
As for Yð4390Þ, it was reported in the eþe− → πþπ−hc,

which is a spin flipped process. However, this structure is
absent in the spin conserved process, eþe− → πþπ−J=ψ ,
This particular phenomena could be understood qualita-
tively in the D1D̄� þ H:c: molecular scenario. The

molecular state decays could occur via quark rearrange-
ment, and in the hadronic level, the molecular components
could couple to the final state via exchanging a proper
meson [44–46]. As for Yð4390Þ, it could transit into a
charmonium by exchanging charmed mesons. As shown in
Fig. 1(a) and (b), the molecular state Yð4390Þ couples to its
components D1D̄� þ H:c: via S wave, and the D1=D̄1

transits intoD�=D̄� via the emission of pion and theD�=D̄�
and D̄�=D� in the molecule could only couple to Z0

c as
indicated by the wave functions of the Zc and Z0

c in Eq. (1).
All these three vertexes in the triangle diagrams are
S−wave coupling, and furthermore, Z0

c has large branching
ratio to hcπ, but can not decay into J=ψπ. Thus, Z0

c plays
principle role in understanding both the observed decay
mode πþπ−hc and the unobserved mode πþπ−J=ψ .
Besides the observed channel, we also notice the measure-
ments of the cross-sections for eþe− → ηJ=ψ and
eþe− → ηhc in the vicinity of 4.39 GeV [47,48]. Thus,
searching for the signal of Yð4390Þ in these final states is
also interesting. The corresponding diagrams contribute to
Yð4390Þ → ηðη0ÞJ=ψ and ηhc are presented in Fig. 1(c) and
(d), respectively.
In the D1D̄� þ H:c: molecular scenario, Yð4390Þ should

couple to its components dominantly via S wave, and the
corresponding effective Lagrangian is in the form,

L ¼ gYffiffiffi
2

p εμναβ∂μYνðDα
1D̄

�β þ D̄α
1D

�βÞ; ð2Þ

where Y and D1, D� indicate Yð4390Þ, D1ð2420Þ, and
D�ð2010Þ, respectively.
Besides the above effective Lagrangian, the following

effective coupling between the charmonium/light mesons
and charmed mesons are also involved in our present
estimations,

TABLE I. A comparison of the resonance parameters of
Yð4260Þ and Yð4360Þ.
State Mass (MeV) Width (MeV)

Yð4260Þ [34] 4251� 9 120� 12
Yð4390Þ [8] 4391.6þ6.3

−6.8 � 1.0 139.5þ16.2
−20.6 � 0.6

(a) (b)

(c) (d)

FIG. 1. Diagrams contribute to the considered hidden-charm
decays. Diagrams ðaÞ − ðbÞ indicate Yð4390Þ → πþπ−hc process
via Z0

c. Diagrams (c) and (d) are correspond to the η=η0 transitions
from Yð4390Þ to J=ψ and hc, respectively.

DIAN-YONG CHEN, CHENG-JIAN XIAO, and JUN HE PHYSICAL REVIEW D 96, 054017 (2017)

054017-2



LJ=ψD�D� ¼ igJ=ψD�D�ψμðD�
ν∂νD�†

μ −∂νD�
μD

�†
ν −D�

ν∂
↔

μD�ν†Þ;
LhcD�D� ¼ ighcD�D�εμναβ∂μhcνD�

αD
�†
β ;

LD1D�P¼gD1D�Pð3Dμ
1ð∂μ∂νPÞD�ν†−Dμ

1ð∂ν∂νPÞD�†
μ Þ;

ð3Þ

which can be constructed by the heavy quark limit and
chiral symmetry [49–51]. P is the matrix form of the
pseudoscalar mesons, which is,

P ¼

0
BB@

π0ffiffi
2

p þαηþ βη0 πþ Kþ

π− − π0ffiffi
2

p þαηþ βη0 K0

K− K̄0 γηþ δη0

1
CCA; ð4Þ

where α¼ðcosθ− ffiffiffi
2

p
sinθÞ= ffiffiffi

6
p

, β ¼ ðsin θ þ ffiffiffi
2

p
cos θÞ=ffiffiffi

6
p

, γ¼ð−2cosθ− ffiffiffi
2

p
sinθÞ= ffiffiffi

6
p

, δ ¼ ð−2 sin θþffiffiffi
2

p
cos θÞ= ffiffiffi

6
p

. According to the analyses in
Refs. [52,53], we take the mixing angle θ ¼ −19.1°.
The effective Lagrangians related to Z0

c should depen-
dent on its nature, which has not yet been ascertained. Here,
we adopt the coupling of Z0

cD�D� to be the same as the one
of hcD�D� since the JP quantum numbers of the Z0

c are the
same as those of hc. In addition, Z0

c could couple to hcπ via
a P wave. Thus the Z0

c related effective Lagrangians are,

LZ0
cD�D� ¼ ighcD�D�εμναβ∂μhcνD�

αD
�†
β ;

LZ0
chcπ ¼ gZ0

chcπεμναβZ
0μ
c ∂νhαc∂βπ: ð5Þ

The coupling constants in the Lagrangians as shown in
Eqs. (2), (3), and (5) will be discussed in the following
section.
With above effective Lagrangians, we can obtain the

amplitudes of Yð4390Þðp0Þ↣½D1ðp1ÞD̄�ðp2Þ�D�ðqÞ↣
πþðp3Þπ−ðp4Þhcðp5Þ corresponding to Fig. 1(a), which is,

Ma¼
Z

d4q
ð2πÞ4

�
gYffiffiffi
2

p εμναβϵ
ν
Yð−ipμ

0Þ
�
½gD1D�Pð3ðip3ρÞðip3λÞ

−ðip3Þ2gρλÞ�½igZ0
cD�D�εθϕδτðipθ

4þ ipθ
5Þ�

× ½gZ0
chcπεγηκξðipη

5Þðipξ
4Þϵκhc �

−gαρþpα
1p

ρ
1=m

2
D1

p2
1−m2

D1

×
−gβτþpβ

2p
τ
2=m

2
D�

p2
2−m2

D�

−gδλþqδqλ=m2
D�

q2−m2
D�

×
−gϕγþðpγ

4þpγ
5Þðpϕ

4 þpϕ
5 Þ=m2

Z0
c

ðp4þp5Þ2−m2
Z0
c

F 2ðq2;m2
D� Þ: ð6Þ

As the reflection of Fig. 1(a), the amplitude corresponding
to Fig. 1(b) could be obtained from Ma by performing the
following replacement,

Mb ¼ Majp3↔p4
; ð7Þ

Besides the observed channel πþπ−hc, Yð4390Þ could
decay into ηðη0ÞJ=ψ and ηhc, and the amplitudes corre-
sponding to Fig. 1(c) and (d) are,

Mc ¼
Z

d4q
ð2πÞ4

�
gYffiffiffi
2

p εμναβϵ
ν
Yð−ipμ

0Þ
�
½gD1D�Pð3ðip3ρÞðip3λÞ

× −ðip3Þ2gρλÞ�½igJ=ψD�D�ϵθJ=ψð−ip2δgθτ þ iqτgθδ

þ ðip2θ − iqθÞgδτÞ�
−gαρ þ pα

1p
ρ
1=m

2
D1

p2
1 −m2

D1

×
−gβτ þ pβ

2p
τ
2=m

2
D�

p2
2 −m2

D�

−gδλ þ qδqλ=m2
D�

q2 −m2
D�

F 2ðq2; m2
D� Þ;

Md ¼
Z

d4q
ð2πÞ4

�
gYffiffiffi
2

p εμναβϵ
ν
Yð−ipμ

0Þ
�
½gD1D�Pð3ðip3ρÞðip3λÞ

× −ðip3Þ2gρλÞ�½ighcD�D�εθϕδτϵ
ϕ
hc
ðipθ

4 þ ipθ
5Þ�

×
−gαρ þ pα

1p
ρ
1=m

2
D1

p2
1 −m2

D1

−gβτ þ pβ
2p

τ
2=m

2
D�

p2
2 −m2

D�

×
−gδλ þ qδqλ=m2

D�

q2 −m2
D�

F 2ðq2; m2
D�Þ; ð8Þ

where F ðq2; m2
D� Þ is a form factor introduced to depict the

structure effect of the interaction vertexes and offshellness
of the exchanged D� meson. In the present estimation, we
take,

F ðq2; m2
D� Þ ¼ m2

D� − Λ2

q2 − Λ2
; ð9Þ

where the parameter Λ can be further reparameterized as
Λ ¼ αΛQCD þmD� with ΛQCD ¼ 220 MeV. The dimen-
sionless parameter α should be of order one, since Λ should
not be far way from the mass of the exchanged meson [54].
The total amplitudes of Yð4390Þ → πþπ−hc is,

ATot
πþπ−hc

¼ Ma þMb; ð10Þ

and the differential partial width of Yð4390Þ → πþπ−hc
reads

dΓπþπ−hc ¼
1

ð2πÞ3
1

32m3
Y
jATot

πþπ−hc
j2dm2

hcπ
dm2

ππ; ð11Þ

where the overline above indicates the sum over the spin of
the final states and the average of spin of Yð4390Þ.
As for Yð4390Þ → ηðη0ÞJ=ψ and Yð4390Þ → ηhc, the

differential decay width is,

dΓ ¼ 1

32π2
jATotj2

jp⃗fj
m2

Y
dΩ; ð12Þ

where ATot ¼ 2Mc and ATot ¼ 2Md for ηðη0ÞJ=ψ mode
and ηhc mode, respectively. p⃗f is the momentum of the
final states in the initial rest frame.
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III. NUMERICAL RESULTS AND DISCUSSIONS

A. Coupling constants

Before we estimate the partial width of the considered
processes, the involved coupling constants should be
clarified. In the nonrelativistic limit, the coupling of
Yð4390Þ and its components in Eq. (2) should be

L ¼ gYffiffiffi
2

p mYεijkYiðDj
1D̄

�k þ D̄j
1D

�kÞ; ð13Þ

and the coupling constants gY could be related to the
probability ofD1D̄� þ H:c: component in Yð4390Þ denoted
by c and the binding energy Eb by [55–57]

g2Y ≃ 16π
ðmD� þmD1

Þ2
m2

Y
c2

ffiffiffiffiffiffiffiffi
2Eb

μ

s
; ð14Þ

with μ ¼ mD�mD1
=ðmD1

þmD� Þ is the reduced mass. In the
molecular scenario, Yð4390Þ is a pure D1D̄� þ H:c:
molecular state, thus c ¼ 1. With above relationship, the
coupling constants gY could be estimated to be 3.51–3.84,
where the uncertainty comes from the measurement error of
the mass of Yð4390Þ [8].
As a cross-check of the reliability of the nonrelativistic

limit, we also estimated the coupling constants by using the
compositeness condition with a local interaction, which has
been widely used to discuss the molecular decays
[44,45,58,59]. In the approach, the local interaction is
described by a correlation function with a model parameter
Λ, which should be of 1 GeV.When takingΛ ¼ 1 GeV, the
coupling constant gY is estimated to be 3.54–4.13, which is
consistent with the one evaluated in nonrelativistic limit.
In the heavy-quark limit and chiral symmetry, the

coupling constants relevant to the effective Lagrangians
in Eq. (3) could related to some gauge coupling by [49–51],

gJ=ψD�D� ¼ mD

mD�

mJ=ψ

fJ=ψ
;

ghcD�D� ¼ 2g1
mD�ffiffiffiffiffiffiffiffimhc
p ;

gD1D�P ¼ −
ffiffiffi
6

p

3

h1 þ h2
Λχfπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mD1

mD�
p

; ð15Þ

where fJ=ψ ¼ 416 MeV is the decay constants of the J=ψ ,
which could be estimated from the leptonic width of J=ψ .
The gauge coupling g1 can relate to the decay constant of
χc0 via g1 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχc0=3

p
=fχc0 with fχc0 ¼ 510 MeV [60].

Λχ ≃ 1 GeV and fπ ¼ 132 MeV are the chiral symmetry
breaking scale and the decay constants of pion. The
coupling constant h0 ¼ h1 þ h2 is estimated to be 0.65
in a constituent quark-meson model [61].
To date, the nature of the Z0

c keeps unknown. Here
we could estimate the effective coupling constants in
Eq. (5) based on the limited experimental measurements.
The cross section for eþe− → π�Z0∓

c → πþπ−hc is

reported to be ð7.4� 1.7� 2.1� 1.2Þ pb at 4.26 GeV
[38]. In the same center-of-mass energy, the cross-section
for eþe− → π�ðD�D̄�Þ∓ is measured to be ð137� 9�
15Þ pb and the ratio σðeþe− → π�Z0∓

c → π�ðD�D̄�Þ∓Þ=
σðeþe−π�ðD�D̄�Þ∓Þ is fitted to be 0.65� 0.09� 0.06
[39]. Thus, the cross-section for eþe− → π�Z0∓

c →
π�ðD�D̄�Þ∓ is estimated to be ð89� 14Þ pb, where only
the statistical uncertainties are considered. Thus, ratio of the
partial widths ΓðZ0

c → D�D̄�Þ and ΓðZ0
c → hcπÞ could be,

ΓðZ0
c→D�D̄�Þ

ΓðZ0
c→hcπÞ

¼σðeþe−→π�Z0∓
c →π�ðD�D̄�Þ∓Þ

σðeþe−→π�Z0∓
c →πþπ−hcÞ

¼12.0�3.3: ð16Þ

Under the approximation that Z0
c dominantly decays into

D�D̄� and hcπ, the branching ratio of Z0
c → πhc could be,

BðZ0
c → πhcÞ≃ ð7.52� 1.87Þ% ð17Þ

The width of Z0
c is 13� 5 MeV [34], thus, with the center

values of the branching ratio and total width, one can
roughly estimate the partial widths of Z0

c → D�D̄� and
Z0
c → hcπ are about 12 MeVand 1 MeV, respectively. With

the partial widths and the effective Lagrangains in Eq. (5),
one can obtain gZ0

cD�D� ¼ 1.08 and gZ0
chcπ ¼ 0.65 GeV−1.

B. Decay width

With the above preparations, we could calculate the
hidden-charm decay width of Yð4390Þ in a D1D̄� þH:c
molecular scenario. In the present calculation, one model
parameter α is introduced, which should be of order one. In
Fig. 2, the partial width of Yð4390Þ → πþπ−hc depending
on parameter α is presented. The red solid curve is the
estimated results with the center values of the mass of
Yð4390Þ. The grey band indicates the uncertainty caused
by the measurement error of the mass of Yð4390Þ. In
the narrow width approximation, the partial width of
the Yð4390Þ → πþπ−hc could be proportional to
ΓYð4390Þ→Z0

cπBðZ0
c → hcπÞ, which is independent on the

width of Z0
c. In the present calculation, we take the

uncertainty of BðZ0
c → hcπÞ into consideration, which is

indicated by the light grey brands in Fig. 2. Here, we vary α
from 2 to 3, and in this parameter range, we find the partial
width of Yð4390Þ → πþπ−hc very weakly depends on the
model parameter. In particular, the center value of the
partial width increases from 0.74 to 0.85 MeV, and when
considering the mass uncertainties of Yð4390Þ and the
uncertainty of the branching ratio of Z0

c → πhc, this partial
width could reach up to 1.26 MeV and the corresponding
branching ratio is of order one percent. Such a large
branching ratio could answer why this state could be
observed in the πþπ−hc mode.
Besides the observed channel, Yð4390Þ could also transit

into J=ψ or hc by emitting a η=η0. The α dependent partial
widths of these hidden-charm decays are presented in
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Fig. 3. The red curves are the results obtained with center
value of the mass of Yð4390Þ, while the bands are
the uncertainties resulted from the measurement error of
the mass of Yð4390Þ. Different from the πþπ−hc mode, the
partial width of these two-body hidden-charm decays
slightly depend on the model parameter α and very weakly
depend on the mass of Yð4390Þ.
As for Yð4390Þ → J=ψη, the partial width increase from

0.57 MeV to 1.82 MeV when α increasing from 2 to 3.
Taking the evaluated center values of ΓðYð4390Þ →
πþπ−hcÞ, we can obtain the ratio of ΓðYð4390Þ →
J=ψηÞ and ΓðYð4390Þ → πþπ−hcÞ to be,

ΓðYð4390Þ → J=ψηÞ
ΓðYð4390Þ → πþπ−hcÞ

¼ 0.52–2.29: ð18Þ

The cross section for eþe− → πþπ−hc is reported to be
45.5þ12.9

−9.0 pb at the center-of-mass energy of 4.3874 GeV
[8] and the cross section for eþe− → ηJ=ψ is measured to
be 11.7þ8.5

−5.4 � 0.6 pb at the center-of-mass energy of
4.390 GeV. With the assumption that all the signals at
the center-of-mass energy of 4.390 GeV come from

the resonance contribution of Yð4390Þ, one can find the
ratio of the cross sections of eþe− → ηJ=ψ and eþe− →
πþπ−hc should be equal to ΓðYð4390Þ → J=ψηÞ=
ΓðYð4390Þ → πþπ−hcÞ. With the measured cross-sections,
we can approximately estimate

σðeþe− → ηJ=ψÞ
σðeþe− → πþπ−hcÞ

¼ 0.11–0.55; ð19Þ

which could overlap with the ratio in Eq. (18) estimated in
the molecular scenario. As for Yð4390Þ → η0J=ψ, this
process is suppressed due to the η − η0 mixing as well as
the phase space. The estimated partial width varies from
0.16 MeV to 0.51 MeV, thus the ratio of ΓðYð4390Þ →
η0J=ψÞ and ΓðYð4390Þ → ηJ=ψÞ is estimated to be,

ΓðYð4390Þ → η0J=ψÞ
ΓðYð4390Þ → ηJ=ψÞ ¼ 0.19–0.28; ð20Þ

which could be test by further experimental measurements
in the BES III and Belle II.
The partial width of Yð4390Þ → ηhc is estimated to be

0.50–1.45 MeV in the considered parameter range when
taking the measurement error of the mass of Yð4390Þ into
consideration. We can also obtain the following ratios,

ΓðYð4390Þ→ηhcÞ
ΓðYð4390Þ→πþπ−hcÞ

¼0.45–2.63;

ΓðYð4390Þ→ηhcÞ
ΓðYð4390Þ→ηJ=ψÞ¼0.80–0.88: ð21Þ

In the cross-sections for eþe− → ηhc, no significant signal
is observed at center-of-mass energy of 4.3874 MeV under
the present measurement precision and the upper limit of
the cross-section is 26.2 pb. Thus, we can conclude,

σðeþe− → ηhcÞ
σðeþe− → πþπ−hcÞ

< 0.71;
σðeþe− → ηhcÞ

σðeþe− → πþπ−hcÞ
< 4.15;

ð22Þ
which are also consistent with our estimated ratios
in Eq. (21).

IV. SUMMARY

Recently, the BES III Collaboration reported three char-
monium-like states in the cross-sections for eþe− →
πþπ−J=ψ and eþe− → πþπ−hc, which include Yð4220Þ,
Yð4320Þ, and Yð4390Þ. These observations make the vector
charmonium-like states abundant and stimulate theorists’
great interests in the nature of those states. We notice that
the mass splitting of the Yð4260Þ and Yð4390Þ are very close
to the oneofD andD�, which indicates thatYð4390Þ could be
a counterpart of the Yð4260Þ in the molecular scenario,
i.e., they are the molecular states ofD�D̄1 þ H:c: andDD̄1þ
H:c:, respectively. The potential model in the Bethe-Salpeter
approach also supports such interpretation [33].

FIG. 2. The α dependences of the partial width of
Yð4390Þ → πþπ−hc.

FIG. 3. The partial widths of the hidden-charm decay of
Yð4390Þ depending on the model parameter α.
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To further test the molecular possibility of Yð4390Þ, we
investigated its hidden-charm decays in the molecular
scenario. We find it is very natural to understand the
observations of Yð4390Þ in the eþe− → πþπ−hc as well as
the absence in the πþπ−J=ψ mode if we assign Yð4390Þ as
a D�D̄1 þ H:c: molecule. The numerical calculations also
indicate the branching ratio of Yð4390Þ → πþπ−hc should
be of order of one percent, which is large enough to be
observed.
Some other unobserved hidden-charm decay processes

are also considered in the present work, The partial widths
of the Yð4390Þ → ηðη0ÞJ=ψ and Yð4390Þ → ηhc slightly
depend on the model parameter. The estimated
ΓðYð4390Þ → ηJ=ψÞ and ΓðYð4390Þ → ηhcÞ are of the
same order of magnitude as ΓðYð4390Þ → πþπ−hcÞ. We
find the ratios of the considered partial widths are

consistent with the present experimental measurements,
which indicates that the assignment of Yð4390Þ as a
D�D1 þ H:c: is possible. The present calculations indicate
that the signals of the Yð4390Þ in the cross-sections for
eþe− → ηJ=ψ and eþe− → ηhc are significant, which
indicates that searching Yð4390Þ in these processes could
be accessible by BES III and Belle II.
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