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We work out the low-energy expansion of the anomalous f1ð1285Þ → ργ decay amplitude by using the
Nambu–Jona-Lasinio model with Uð2Þ × Uð2Þ chiral symmetric four-quark interactions in the one-quark-
loop approximation. The related processes f1ð1285Þ → ωγ, a1ð1260Þ → ωγ, and a1ð1260Þ → ργ, are also
considered. An effective meson Lagrangian responsible for f1ργ, f1ωγ, a1ργ and a1ωγ interactions is
found. The predicted radiative decay widths, Γf1→ρ0γ ¼ 311 keV, Γf1→ωγ ¼ 34.3 keV, Γa1→ρ0γ ¼ 26.8 keV,
Γa1→ωγ ¼ 238 keV, allow an experimental test of the hypothesis that f1ð1285Þ and a1ð1260Þ-mesons have
a quark-antiquark nature. At present, only the f1ð1285Þ → ργ decay has been measured. Our result is in
remarkably good agreement with the recent data of CLAS Collaboration Γf1→ρ0γ ¼ 453� 177 keV, but
disagrees with the Particle Data Group-based estimate of Γf1→ρ0γ ¼ 1326� 313 keV. The calculations
presented require a minimum of theoretical input, and are shown to be consistent with the non-
renormalization theorems of QCD.
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I. INTRODUCTION

Anomalies have important consequences for a wide
range of issues in quantum field theory. This is why they
are invariably under special attention of theoreticians and
experimentalists. For instance, the Wess-Zumino effective
Lagrangian [1] summarizes the effects of anomalies in
current algebra and finally relates uniquely the π0 → γγ
decay amplitude with other ones, such as γ → 3π, γγ → 3π
and a five pseudoscalar vertex. Thus, the anomaly based
results are tightly restrictive and potentially very accurate.
The latter is the consequence of the Adler-Bardeen theorem
[2] which states that chiral anomaly is not modified by
higher order corrections.
The world average phenomenological data on the

radiative decay f1 → ρ0γ [3] selected through the study
of the reaction π−N → π−f1ð1285ÞN → π−πþπ−γN, and
new results of CLAS Collaboration at Jefferson Lab on
the f1ð1285Þ photoproduction off a proton target [4] are
especially important due to the presence of the anomaly:
the underlying triangle quark loop diagrams describing
the f1ρ0γ and f1ωγ vertices. These vertices determine the
widths of the f1 → ρ0γ and f1 → ωγ decays and are basic
elements in the description of the f1ð1285Þ photoproduction
data. In this respect the presently available phenomenologi-
cal data allow a sensitive test of the f1ργ anomaly. Yet some
of the essential properties of the theoretical description of
this vertex are only poorly understood.
The connections of vector and axial-vector mesons

with the anomaly can be studied on general grounds,

i.e., without assuming the quark-antiquark structure for
spin-1 states. For instance, the method, based on the
massive Yang-Mills approach [5], leads to the Bardeen’s
form of the non-Abelian anomaly. Unfortunately, this
breaks explicitly the chiral SUð3ÞL × SUð3ÞR symmetry
and forbids the f1ρ0γ, f1ωγ, a1ργ, and a1ωγ vertices.
On the opposite, if one starts from the most general

anomalous action in terms of pseudoscalars and spin-1
states, which is chirally (gauge) symmetric and embodies
the chiral anomalies only through the Wess-Zumino-Witten
action of the pseudoscalars [6], one gets a consistent
scheme, and in this case there is the possibility for
anomalous f1ρ0γ, f1ωγ, a1ργ, and a1ωγ vertices [7,8].
However, the method fails to predict the couplings of the
effective Lagrangian, and cannot be used to estimate the
width of the f1 → ρ0γ decay.
The purpose of the paper is to clarify exactly this

obscure aspect of the radiative decay f1 → ρ0γ of the
f1ð1285Þ axial-vector IGðJPCÞ ¼ 0þð1þþÞ meson. For
definiteness we will consider the Nambu–Jona-Lasinio
(NJL) model with Uð2Þ ×Uð2Þ chiral symmetry sponta-
neously broken down to the diagonal SUð2ÞI subgroup
(the quantum anomaly breaks the axial Uð1Þ symmetry)
[9–16]. The NJL model not only gives the structure of the
vertex but also fixes the values of the coupling constants
involved.
There are at least three essential reasons for our calcu-

lations. First, we show that if one assumes that the
f1ð1285Þ meson is a bound quark-antiquark state, one
can obtain its radiative decay width by considering the
anomalous quark triangle diagram. The result is restrictive
because there are general statements about the longitudinal
and transversal parts of the triangle [2,17].
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Second, the phenomenological data on this decay
presently are very contradictive. The Particle Data
Group (PDG)-based estimate is Γf1→ρ0γ ¼ 1326�313 keV.
The recent CLAS data give three times less this value
Γf1→ρ0γ ¼ 453� 177 keV. We argue that the quite low
value reported by the CLAS Collaboration can be perfectly
understood if the f1-meson is approximately a quark-
antiquark n̄n ¼ 1ffiffi

2
p ðūuþ d̄dÞ state.

Third, it has been noted in [18] that known theoretical
models [19,20] failed to fit new CLAS data. We suppose
that one of the reasons is related with the oversimplified
expressions used for f1ρ0γ and f1ωγ vertices. In this
respect a new attempt made in [18] also suffers from a
superficial approach to the anomalous structure of these
vertices. We suggest a different effective Lagrangian that
consistently describes the triangle anomaly and can be
applied to fit CLAS data.

II. ANOMALOUS TRIANGLE DIAGRAM
FOR THE f 1 → ρ0γ DECAY

The relevant vertices of the NJL quark-meson
Lagrangian density are

Lf ¼ gρ
2
q̄γαγ5qfα1; ð1Þ

Lρ ¼
gρ
2
q̄τ3γβqρ0β; ð2Þ

Lγ ¼ eq̄QγγqAγ; Q ¼ 1

2

�
τ3 þ

1

3

�
; ð3Þ

where the qðxÞ are constituent quarks of mass m (the color
and flavor indices are suppressed); fα1ðxÞ is an axial-vector
f1ð1285Þ field; ρ0βðxÞ is a neutral ρð770Þ-meson field;
AγðxÞ is a photon field; Q is the matrix of the light quark’s
charges, where τ3 is a diagonal Pauli-matrix; γμ are the
standard Dirac matrices in four dimensions. The couplings
gρ and e are well established: e is the proton charge with
α ¼ e2=ð4πÞ ¼ 1=137 and gρ is fixed from the ρ → ππ
decay, αρ ¼ g2ρ=ð4πÞ≃ 3. The constituent quark mass m is
equal to m ¼ 280 MeV [11].
The amplitude of the f1 → ρ0γ decay can be written as

follows

M ¼ −iNc
eg2ρ
16π2

ϵαðlÞϵ�βðpÞϵ�γðqÞTαβγðp; qÞ; ð4Þ

where Nc ¼ 3 is a number of colors, ϵαðlÞ is the polari-
zation vector of the f1-meson, ϵβðpÞ is a polarization vector
of ρ-meson and ϵγðqÞ is the polarization vector of the
photon; p and q are 4-momenta of ρð770Þ and photon
correspondingly, l ¼ pþ q is the four-momentum of f1-
meson. The tensor Tαβγðp; qÞ is a sum of two Feynman
diagrams (see Fig. 1)

Tαβγðp; qÞ ¼ ~Tαβγðp; qÞ þ ~Tαγβðq; pÞ; ð5Þ

where

~Tαβγðp; qÞ

¼
Z

d4k
4π2

Tr½γ5γαðk̂ − p̂þmÞγβðk̂þmÞγγðk̂þ q̂þmÞ�
ðk2 −m2Þ½ðk − pÞ2 −m2�½ðkþ qÞ2 −m2� :

ð6Þ

It is obvious from (5) that the Lorentz tensor Tαβγðp; qÞ
obeys the Bose symmetry requirement

Tαβγðp; qÞ ¼ Tαγβðq; pÞ: ð7Þ

Making a replacement of variables kμ → −kμ in one of
the integrals in (5), and calculating traces, we obtain that
~Tαβγðp; qÞ ¼ ~Tαγβðq; pÞ.
After some mildly tedious calculations we find that the

amplitude can be written in the form

Tαβγðp;qÞ¼ eαβγσðaþq−pÞσ

þ 1

6m2
feαβγσ½qσðqpþ2p2Þ−pσðqpþ2q2Þ�

− ðqþ2pÞβeαγρσqρpσþðpþ2qÞγeαβρσqρpσg
þOðp5Þ; ð8Þ

where we have restricted ourselves up to the terms of the
third power in momenta. (To describe correctly the low-
energy limit, the amplitude must have the smallest possible
number of momenta. One should not think about this
truncation in terms of p2=m2 expansion which is not
applicable here. We are following instead the idea of
1=N expansion. According to it, the meson physics in
the large N limit is described by the tree diagrams of an
effective local Lagrangian, with local vertices and local
meson fields [21]. This is exactly what one obtains
restricting to the leading in momenta terms of the con-
stituent quark loops. The details of such description of
low-energy meson physics in the framework of NJL model

FIG. 1. The one-quark-loop contribution to the radiative decay
amplitude f1αðlÞ → ρβðpÞγγðqÞ. The first diagram corresponds
to the Lorentz tensor ~Tαβγðp; qÞ, the second one to the tensor
~Tαγβðq; pÞ. External lines represent the f1 axial-vector field with
polarization vector ϵαðlÞ, the vector ρ-meson field with polari-
zation vector ϵ�βðpÞ, and electromagnetic field Aγ with polariza-
tion vector ϵ�γ ðqÞ.
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are given in [10–12]. In particular, our result (8) differs
from the one obtained by Kaiser and Meissner [8] only by
prescribing the definite values to the corresponding cou-
plings of the effective AVV-vertices in accord with the NJL
model. In Sec. V we show that the truncated triangle
diagrams of Fig. 1 do reflect the QCD anomaly structure, in
the infrared.)
The result (8) contains an ambiguous surface term,

represented by the 4-vector aσ. It is a well-known remain-
der of superficial linear divergence of the quark-loop
integral [22]. Most generally aσ ¼ aqσ þ bpσ, where a
and b are free constants. The property (7) relates these
constants a ¼ −b. The requirement of gauge symmetry is
qγTαβγðp; qÞ ¼ 0. That totally fix the constants. Indeed,
we get from (8)

qγTαβγðp; qÞ ¼ qγeαβγσðb − 1Þpσ ¼ 0; ð9Þ

and if one takes b ¼ 1 the Ward identity (9) is obviously
fulfilled. We conclude that the surface term is completely
fixed by Bose and gauge symmetry requirements, aσ ¼
pσ − qσ . As a result, the linear in momenta contribution
in (8) is zero.
We can gain some deep understanding of this formula by

considering the product pβTαβγðp; qÞ. It is easy to find out
that the result is zero. It means that if one considers the
transition of ρ0 → γ in our amplitude (in accord with the
idea of vector meson dominance) the formula (8) obeys
the additional requirement of gauge symmetry.
Moreover, the celebrated Landau-Yang theorem [23]

states that a massive vector (i.e., spin-1) particle cannot
decay into two on shell massless photons. Let us show that
our amplitude does not contradict this general result.
Indeed, in a frame where f1ð1285Þ meson is at rest, we
can always choose the direction of the z-axis along the
spatial part of the photons momenta, i.e., q ¼ ðq0; 0; 0; q0Þ
and p ¼ ðq0; 0; 0;−q0Þ. The photon polarization vectors
ϵ�γðqÞ and ϵ�βðpÞ are orthogonal to the photon momenta, and
thus can be chosen as follows: ϵ�γðqÞ ¼ ð0; ϵ�1ðqÞ; ϵ�2ðqÞ; 0Þ
and ϵ�βðpÞ ¼ ð0; ϵ�1ðpÞ; ϵ�2ðpÞ; 0Þ. The polarization vector of
a massive f1 meson is given by ϵαðlÞ ¼ ð0; ϵ1ðlÞ; ϵ2ðlÞ;
ϵ3ðlÞÞ. It follows then that

ϵ�γðqÞqγ ¼ 0; ϵ�βðpÞpβ ¼ 0; ð10Þ

ϵ�γðqÞpγ ¼ 0; ϵ�βðpÞqβ ¼ 0; ð11Þ

eαβγσϵ�γðqÞϵ�βðpÞϵαðlÞðq − pÞσ ¼ 0: ð12Þ

Hence, the amplitude of f1 → γγ decay is equal to zero in
the f1 boson rest frame. Since the amplitude is Lorentz
invariant, it equals zero in any other frame as well.
Now, it is not difficult to relate the amplitude (4) [with

Tαβγ given by (8)] with the Lagrangian density, describing
this anomalous decay and leading to the same amplitude

Lf1ρ0γ ¼ −
eαρ
8πm2

eμναβ
�
ρ0μνFασ∂σfβ

þ 1

2
fμνFα

σρ0σβ þ Fμν∂σρ0σαfβ
�
: ð13Þ

Here the quantities ρ0μν, Fμν, fμν stand for the field strengths
associated with neutral vector ρð770Þ-meson field ρ0μ,
ρ0μν¼∂μρ

0
ν−∂νρ

0
μ, electromagnetic field Aμ, Fμν¼∂μAν−

∂νAμ, and the neutral axial-vector f1ð1285Þ field, fμν ¼
∂μfν − ∂νfμ. This expression gives a definite meaning to
our statement about the oversimplified form of the
Lagrangian used in the literature for this vertex. To see
the difference it is enough to compare (13) with the f1ρ0γ
vertex used, for instance, in [18], where Lf1ρ0γ ¼
1
2
egρf1γe

μναβFμνρ
0
αfβ.

On the mass surface of ρ, γ and f1 mesons from (4)
and (8) we get

M ¼ −i
eαρ
8πm2

ϵαðlÞϵ�βðpÞϵ�γðqÞ½eαβγσΔσ

þ pρqσðeαγρσqβ − eαβρσpγÞ�; ð14Þ

where Δσ ¼ ðqpþ 2p2Þqσ − ðqpÞpσ . Then it follows that

jMj2 ¼ m4
ρ

2

�
eαρ
4πm2

�
2

ðqpÞ2
�

1

m2
ρ
þ 1

m2
f

�
; ð15Þ

and the radiative decay width f1 → ρ0γ is given by

Γf1→ρ0γ ¼
αα2ρ

6ð16πÞ2m5
f

m2
ρ

m4
ðm2

f −m2
ρÞ3ðm2

f þm2
ρÞ

¼ 311 keV: ð16Þ

This model estimate is in a perfect agreement with the
experimental result, given by the CLAS Collaboration:
Γf1→ρ0γ ¼ 453� 177 keV, and about four times less than
the PDG estimate: Γf1→ρ0γ ¼ 1326� 311 keV [3].

III. THE RELATED DECAYS

Our purpose now is to describe the related processes, i.e.,
the radiative decays f1ð1285Þ → ωγ, a1ð1260Þ → ωγ, and
a1ð1260Þ → ργ. Their amplitudes are originated by the
same quark-loop integrals as the amplitude (4). Therefore,
the general factor which comes out from the isotopic trace
calculations will be the only difference in the results. Let
us remind that for the f1 → ργ amplitude this factor is
trðτ3QÞ ¼ 1. Now, the corresponding factor in the ampli-
tude f1 → ωγ is trðQÞ ¼ 1=3. It gives immediately the
Lagrangian density
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Lf1ωγ ¼ −
eαρ

24πm2
eμναβ

�
ωμνFασ∂σfβ

þ 1

2
fμνFα

σωσβ þ Fμν∂σωσαfβ
�
; ð17Þ

and the radiative f1 → ωγ decay width

Γf1→ωγ ¼
αα2ρm2

ω

6ð48πÞ2m5
fm

4
ðm2

f −m2
ωÞ3ðm2

f þm2
ωÞ

¼ 34.3 keV: ð18Þ
The a01 → ωγ amplitude has the factor trðτ3QÞ ¼ 1. It

means that

La0
1
ωγ ¼ −

eαρ
8πm2

eμναβ
�
ωμνFασ∂σa0β

þ 1

2
a0μνFα

σωσβ þ Fμν∂σωσαa0β
�
; ð19Þ

and the radiative a01 → ωγ decay width is equal to

Γa0
1
→ωγ ¼

αα2ρm2
ω

6ð16πÞ2m5
a1m

4
ðm2

a1 −m2
ωÞ3ðm2

a1 þm2
ωÞ

¼ 238 keV: ð20Þ
The radiative decay a1 → ργ has three different chan-

nels: a01 → ρ0γ, and a�1 → ρ�γ. Due to the property
~Tαβγðp; qÞ ¼ ~Tαγβðq; pÞ, we can sum the traces over
Pauli matrices of these two contributions. That gives

trðτ⃗a⃗1fτ⃗ ρ⃗; QgÞ ¼ 2

3
ða⃗1ρ⃗Þ: ð21Þ

We conclude that each of the three possible modes has a
similar amplitude and the same expression for the decay
width, i.e.,

La1ργ ¼ −
eαρ

24πm2
eμναβ

�
ρ⃗μνFασ∂σa⃗β

þ 1

2
a⃗μνFσ

αρ⃗σβ þ Fμν∂σρ⃗σαa⃗β
�
; ð22Þ

and Γa1→ργ ¼ Γa0
1
→ρ0γ ¼ Γa�

1
→ρ�γ , with

Γa1→ργ ¼
αα2ρm2

ρ

6ð48πÞ2m5
am4

ðm2
a −m2

ρÞ3ðm2
a þm2

ρÞ

¼ 26.8 keV: ð23Þ

IV. COMPARISON WITH OTHER APPROACHES

Not much effort has been placed until now toward a
theoretical description of the processes considered. This is
probably related to the very poor experimental information
available on these radiative decays. In Table I we collect

the relatively old estimations made in the framework of
the covariant oscillator quark model [24]. Our results, in
general, have a tendency to be twice smaller of those
predictions. Let us remind that the isoscalar member
of the axial-vector 3P1-nonet (2sþ1LJ), f1ð1285Þ-meson,
has mostly ðūuþ d̄dÞ= ffiffiffi

2
p

content, but can mix with the
mainly s̄s isosinglet state (and gluons). The authors of [24]
considered two possible candidates for such partner: the
usual candidate, f1ð1420Þ, and the another promising state
f1ð1530Þ

f1ð1285Þ ¼ n̄n cosϕ − ðs̄sÞ sinϕ: ð24Þ

In the case of the combination of two isoscalar members,
f1ð1285Þ and f1ð1530Þ, the mass formula of their model
gives the mixing angle ϕ ¼ 21°. In the case of the other
combination, f1ð1285Þ and f1ð1420Þ, the mass formula
gives ϕ≃ 10°. One can see that data on f1ð1285Þ → ργ and
f1ð1285Þ → ωγ modes in that model slightly depend on
the mixing angle ϕ. The tendency is the smaller ϕ the
more radiative decay width (see Table I).
In our work, we consider the f1ð1285Þ-meson as a

pure nonstrange state (ϕ ¼ 0). Presently, there are some
indications that such mixing in the axial-vector nonet
is really small and f1ð1285Þ is mostly made of u and d
quarks. For instance, LHCb Collaboration [26] gives
ϕ ¼ �ð24.0þ3.1þ0.6

−2.6−0.8 Þ°, assuming that f1ð1285Þ is mixed
with the f1ð1420Þ state. This agrees with an earlier deter-
mination of ϕ ¼ ð−15þ5

−10Þ° in [27].
Calculating the triangle diagrams, we considered the

lowest order terms in an external momenta expansion
(minimal couplings). It means that we are only concerned
with the part of the effective action having the smallest
possible number of derivatives that is responsible for the
intrinsic parity violating processes. This approximation
corresponds to the standard counting of the spin-1 mesons
in Resonance Chiral Theory. In that approach, they
contribute at an Oðp6Þ order of chiral counting in the
effective meson Lagrangian (i.e., with terms kept up to four
derivatives). For further arguments supporting this approxi-
mation,we refer to the original papers [28–30].Nonetheless,

TABLE I. NJL-model predictions for anomalous radiative
decays of f1ð1285Þ and a1ð1260Þ axial-vector mesons, ΓNJL.
We also give some known empirical data, Γexp, and predictions of
the covariant oscillator quark model [24]. All decay widths are
given in keV.

Mode f1 → ρ0γ f1 → ωγ a1 → ωγ a1 → ργ

ΓNJL 311 34.3 238 26.8
Γexp 453� 177 [4]

675� 313 [25]
1326� 313 [3]

Γmod [24] 509–565 48-57 537 62
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due to the importance of the question, we give some
additional arguments in the following two sections.
The quark model predictions by Lakhina and Swanson

(see Ref. [52] in [4]) are worth being mentioned here. They
have found that a nonrelativistic Coulomb-plus-linear
quark potential model predicts Γf1→γρ0 ¼ 1200 keV, while
a relativized version of the model gives much less value
Γf1→γρ0 ¼ 480 keV. One sees that the NJL model result
based on the relativistic quantum field theory calculations is
in agreement with the relativized version of the Lakhina
and Swanson model. Both models nicely reproduce the
CLAS Collaboration result. On the other hand, the
PDG-based estimate favors the nonrelativistic result.

V. RESTRICTIONS FROM QCD

The anomalous quark triangle diagrams considered here
are the subject of special attention in the literature. The
pioneering studies have been done by Rosenberg [31] and
Adler [32]. Rosenberg got an explicit expression for the
fermion triangle graph:

Tαβγðp; qÞ ¼
1

4π2
feαβγσ½qσðqpA3 þ p2A4Þ

− pσðqpA3 þ q2A4Þ�
− eαγρσqρpσðqβA3 þ pβA4Þ
þ eαβρσqρpσðqγA4 þ pγA3Þg; ð25Þ

where we follow his notations

A3ðp; qÞ ¼ −16π2I11ðp; qÞ; ð26Þ

A4ðp; qÞ ¼ 16π2½I20ðp; qÞ − I10ðp; qÞ�; ð27Þ

Istðp;qÞ

¼
Z

1

0

dx
Z

1−x

0

dy
xsyt

xð1−xÞp2þyð1−yÞq2þ2xyðqpÞ−m2
:

ð28Þ
Here m is a mass of the fermion in the triangle. The
effective Lagrangian corresponding to (25) is, strictly
speaking, local only if (28) can be well approximated by
Istð0; 0Þ. In this case, we obtain from above

A3ð0; 0Þ ¼
2π2

3m2
; A4ð0; 0Þ ¼

4π2

3m2
: ð29Þ

This is exactly the approximation that has been used in our
estimates of Tαβγðp; qÞ (in our case m is the constituent
quark mass). The locality of the model requires us to work
with form factorsA3ðp;qÞ andA4ðp;qÞ considered at p2¼0

and l2 ¼ 0, i.e., off a mass shell of variables p2 and l2.
It is, however, not well understood what is the accuracy

of such a step. Some interesting insight can be obtained by

considering the amplitude in the limit of small external
photon momentum q [33]. In this limit the tensor Tαβγðp; qÞ
is linear in q (one neglects quadratic and higher powers
of q), and we obtain from (25)

Tαβγðp; qÞ ¼
1

4π2
½A4ðp; 0Þðeαβγσp2 þ eαγρσpρpβÞqσ

þ A3ðp; 0Þðeαβρσqρpγ − eαβγσqpÞpσ�: ð30Þ

Due to special kinematics, which correspond now to the
decay of the axial-vector state in flight, the expressions
for the form-factors A3ðp; 0Þ and A4ðp; 0Þ of the fermion
triangle graph are considerably simplified

A3ðp; 0Þ ¼ −8π2
Z

1

0

dx
xð1 − xÞ2

xð1 − xÞp2 −m2
;

A4ðp; 0Þ ¼ 2A3ðp; 0Þ; ð31Þ

but still follow the pattern A4ð0; 0Þ ¼ 2A3ð0; 0Þ. In general
these two form-factors are independent.
Equation (30) can be cast into the standard form with the

aid of the Schouten’s identity [34]

ðfaÞjbcdej þ ðfbÞjcdeaj þ ðfcÞjdeabj þ ðfdÞjeabcj
þ ðfeÞjabcdj ¼ 0; ð32Þ

where jabcdj≡ aμbνcαdβeμναβ. This identity allows us to
write

Tαβγðp; qÞ ¼
pσqρ

4π2
½wLðp2Þpαeβγσρ

− wTðp2Þð−pσeαβγρ þ pαeβγσρ þ pβeγασρÞ�;
ð33Þ

where the invariant functions wLðp2Þ≡ A4ðp; 0Þ, and
wTðp2Þ≡ A4ðp; 0Þ − A3ðp; 0Þ are the longitudinal and
transversal parts of the quark triangle with respect to the
axial-vector momentum lα. Both structures are transversal
with respect to the photon momentum qγ , qγTαβγ¼0.
Let us consider now the problem from a different angle,

namely, by using the one-quark-loop QCD result for the
triangle graph. In this case, the longitudinal and transversal
form factors are still given by the Eqs. in (31), where one
should only replace the constituent quark mass m by the
current quark mass m̂. The result is (for p2 ≥ 4m̂2)
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wLðp2Þ ¼ 2wTðp2Þ ¼ −
8π2

p2

×

2
6641þ

2m̂2

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

p2

q
0
B@ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

p2

q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

p2

q − iπ

1
CA

3
775

ð34Þ

In particular, in the chiral limit, m̂ → 0, one gets

wLðp2Þ ¼ 2wTðp2Þ ¼ −
8π2

p2 þ iϵ
; ðm̂ ¼ 0Þ: ð35Þ

The longitudinal part represents the axial anomaly
associated with the divergence of the axial-vector current
J5α ¼ q̄γαγ5Aq (where A ¼ τ0=2 for the f1 meson case, or
A ¼ τ3=2 for the a1 meson case) constructed from the light
quark fields. Indeed,

∂αJ5α½m̂ ¼ 0� ∼ lαTαβγϵ
βðpÞϵγðqÞ

¼ p2

4π2
wLðp2ÞeβγσρϵβðpÞϵγðqÞpσqρ ¼ ρσβ ~Fσβ; ð36Þ

where ρσβ ¼pσϵβ−pβϵσ, and ~Fσβ ¼ 1
2
eσβργFργ. Note, that

the imaginary part of ∂αJ5α½m̂ ¼ 0� is equal to zero since
p2δðp2Þ ¼ 0 [35].
The Adler-Bardeen theorem [2] implies that the one-loop

result (35) for wLðp2Þ stays intact when the interaction with
gluons is switched on. It is not corrected at the non-
perturbative level too. Moreover, for the special kinematics
considered (the photon carries a soft momentum) the
transversal part wTðp2Þ is unambiguously fixed by the
longitudinal one wLðp2Þ ¼ 2wTðp2Þ in the chiral limit of
perturbation theory [up to the nonperturbative corrections
to wTðp2Þ] [17].
The model result (8) taken in special kinematics can be

compared with these general QCD statements. Indeed, one
can see that (a) it follows the QCD pattern wL ¼ 2wT ; (b) it
does not contain the imaginary part, which otherwise would
contribute in the chiral limit m̂ → 0 to the divergence of the
axial-vector current; (c) it correctly reflects the underlying
anomaly. The latter needs some explanation. On the mass
shell of the ρ-meson, we have

lαTαβγϵ
βðpÞϵγðqÞ ¼ −

m2
ρ

6m2
ρσβ ~Fσβ: ð37Þ

Numerically the factor m2
ρ=6m2 ¼ 1.28 agrees quite well

with factor one in (36). [The difference in the overall sign is
not essential here because the sign in (36) can be changed
by the appropriate definition of the QCD AVV currents
correlator.] But it is valid to expect it from (36) and (37)
of the full agreement, because we are dealing with the
anomaly. And this expectation is actually correct. To show
this, let us use the mass formulas of the model

m2
ρ

6m2
¼ 1

Z − 1
; Z ¼ m2

a1

m2
ρ
: ð38Þ

It follows then, that the value Z ¼ 2 would be in a total
agreement with QCD requirement (36). Exactly this value
of Z was obtained long ago on the basis of spectral-function
sum rules [36], which are valid in QCD for m̂ ¼ 0, and of
the KSFR relation for the ρ coupling to the isospin current
[37,38]. Now, we come to the same conclusion on the basis
of the anomaly consideration.
This reasoning, however, requires a caveat. From the

QCD calculations, it follows that the axial anomaly has a
pole at p2 ¼ 0. This pole implies the presence of zero-mass
bound states in the physical spectrum [39,40]. In the case
of a1 radiative decays, the 1=p2 pole in wLðp2Þ can be
associated with pions. However, for the f1 case, there is no
such a light pseudoscalar state [the Uð1Þ problem]. For
further progress with the singlet case, the Uð1Þ gluon
anomaly must be included. Some interesting attempts may
be found in [41–43], where the authors argue that the
photon anomaly must be canceled by the gluon one. The
question has been also addressed in the instanton liquid
model of QCD vacuum [44], where it has been shown that

the singlet longitudinal amplitude wðsÞ
L ðp2Þ is renormalized

at low momenta by the presence of the Uð1Þ gluon

anomaly. As a result, the product p2wðsÞ
L ðp2Þ vanishes at

p2 ¼ 0, taking the value p2wðsÞ
L ðp2Þ≃ 0.8 on the ρ-meson

mass shell. On the contrary, the normalized nonsinglet

amplitude wðnsÞ
L ðp2Þ follows the pattern p2wðnsÞ

L ðp2Þ ¼ 1

[this value exactly corresponds to the factor 1 in Eq. (36)].
This shows that inclusion of the gluon anomaly will
slightly change our estimates for the singlet f1 decays.

Nonetheless, the deviation from the equality wðnsÞ
L ðp2Þ ¼

wðsÞ
L ðp2Þ used in our calculations is rather small for the

physical region of p2 ¼ m2
ρ ≃m2

ω considered here.

VI. THE f 1 → γγ RESULTS

It is straightforward now to obtain in the approximation
considered above the f1ð1285Þ → γ�γ� amplitude. The
result is

Mf1γ�γ� ¼ Tμνα
f1γ�γ� ðq1; q2Þϵ�μðq1Þϵ�νðq2ÞϵαðlÞ; ð39Þ

where q1, q2 are four-momenta of photons, l is a four-
momentum of the f1ð1285Þ meson, ϵμðq1Þ, ϵνðq2Þ, ϵαðlÞ,
are polarization vectors and

Tμνα
f1γ�γ� ðq1;q2Þ¼−i

5αgρ
36πm2

feμνσα½q1σðq1q2þ2q21Þ
−q2σðq1q2þ2q22Þ�þeρσναq2ρq1σðq2þ2q1Þμ
þeρσμαq1ρq2σðq1þ2q2Þνg: ð40Þ
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In particular, in the rest frame of f1, where q1 ¼ −q2 ¼ k,
we obtain

Tμνα
f1γ�γ� ðk;−kÞ ¼ i

5αgρ
18πm2

eμνασk2kσ

≡ 8πiαeμνασk2kσF
ð0Þ
AVγ�γ� ðm2

f; k
2; k2Þ: ð41Þ

Although the decay f1 → γγ of a spin-one resonance is
suppressed for real photons, according to the Landau-Yang

theorem [23], the value Fð0Þ
AVγ�γ�ðm2

f; 0; 0Þ of the matrix
element (41) is measured with a good accuracy [45,46].
For instance, an estimate [47] based on L3 Collaboration
data gives

Fð0Þ
AVγ�γ� ðm2

f; 0; 0Þ ¼ ð0.266� 0.043Þ GeV−2: ð42Þ

A similar result one obtains from PDG [3] values

Fð0Þ
AVγ�γ� ðm2

f; 0; 0Þ ¼ ð0.234� 0.034Þ GeV−2: ð43Þ

Our estimate,

Fð0Þ
AVγ�γ� ðm2

f; 0; 0Þ ¼
5gρ

ð12πmÞ2 ¼ 0.276 GeV−2; ð44Þ

agrees well with these phenomenological values and gives
an additional argument in favor of approximations made in
the previous sections.

VII. CONCLUSIONS

In this work, we evaluate the radiative decay widths of
the f1ð1285Þ and a1ð1260Þ axial-vector mesons with the
assumption that these states are mostly made of u and d
quarks. The anomalous triangle diagrams are considered.
We show that surface term of these diagrams are fixed by
the vector Ward identity and Bose statistics. These leads to
the total cancellation of the linear in external momenta

contributions in the low-energy expansion of the ampli-
tudes. As a result, the leading order contribution (in the
external momenta expansion) is determined by the cubic in
momenta terms. This finite contribution in the framework
of NJL model is totally fixed by the coupling of the ρ → ππ
decay, gρ, the finite structure constant α ¼ 1=137, and
masses of light quarks mu ¼ md ¼ 280 MeV and mesons.
Note, that the constituent quark mass in the NJL model can
be related with the phenomenological parameters only. The
relation is given by the formula

6

�
m

gρfπ

�
2
�
1 −

6m2

m2
a1

�
¼ 1: ð45Þ

The effective Lagrangian describing the radiative decays
of these mesons are obtained.
The decay width found, Γf1→ργ ¼ 311 keV, is compat-

ible with the recently measured value Γf1→ρ0γ ¼ 453�
177 keV within errors, and four times less the value,
equated by the Particle Data Group. Further study of the
f1ð1285Þ decay modes seems called for. The main point
learned here is that the radiative decays of f1 and a1
mesons are very restricted by the anomalous character of
these interactions.
The method used here can be easily extended to study the

radiative decays of the first radial excitations of the main
axial-vector nonet. In particular, the model [48,49] can be
used for that. Another interesting application of our result
could be the study of γ� → f1ð1285Þγ mode in the eþe−
beams. The Lagrangians suggested can also be checked of
mass shells in the study of τ-lepton decays, e.g., τ → ντωρ,
or τ → ντωπ

−π0.
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