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Recent results for the total and inelastic hadronic cross sections from LHC experiments are compared
with predictions from a single-channel eikonal minijet model driven by parton density functions and from
an empirical model. The role of soft gluon resummation in the infrared region in taming the rise of minijets
and their contribution to the increase of the total cross sections at high energies are discussed. Survival
probabilities at the LHC, whose theoretical estimates range from circa 10% to a few per mille, are estimated
in this model and compared with results from QCD-inspired models and from multichannel eikonal
models. We revisit a previous calculation and examine the origin of these discrepancies.
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I. INTRODUCTION

In this paper we present an estimate of survival proba-
bilities in hadronic collisions, obtained with the eikonal
minijet model first proposed in [1] and later implemented
with soft gluon resummation in [2–4]. We shall make use of
latest measurements by the TOTEM Collaboration [5], at
7 TeV for all three cross sections, and at 8 TeV in the
Coulomb region and with luminosity-independent measure-
ments [6,7], by CMS [8] and LHCb [9] for the inelastic cross
section at 7TeV, by theALICECollaboration for the inelastic
cross section at 2.76 and 7 TeV [10], by the ATLAS
Collaboration for the total, inelastic and elastic pp cross
sections at 7 [11] and8TeV [12], and bymeasurements of the
inelastic part at 13 TeV by CMS [13] and ATLAS [14].
Survival probabilities were originally discussed in

[15,16] to estimate the probability associated with a hard
process when no low transverse momentum particle pro-
duction is present in the central region. In [16], such a
probability was estimated to be around 5% at the
Superconducting Super Collider (

ffiffiffi
s

p ¼ 40 TeV), but with
an overall possible uncertainty of a factor 3 in either
direction. Presently, for LHC data up to

ffiffiffi
s

p ¼ 13 TeV,
estimates vary between those of a QCD-inspired model
[17], where the survival probability is calculated to be 13%,

to calculations within the Regge-Pomeron approach which
range between (0.7–2)% in [18] and between (0.25–3)% in
[19]. Such large discrepancies arise due to (i) the choice of
the impact parameter distribution of partons involved in the
scattering and, to a lesser extent, to (ii) the estimate of the
inelastic total cross section. As for data on rapidity gaps,
LHC measurements at 7 TeV by the ATLAS [20] and CMS
[21] Collaborations are affected by rather large errors and
cannot yet discriminate between models.
In the following, in the quest for a clearer definition of

survival probabilities (SPs), we shall employ eikonal
minijet models to clarify and sharpen the physical meaning
of the survival probability concept. Comparison with other
models will also be made.
Minijets were first introduced in estimates of hadronic

physics in [1,22–24] but were not yet recognized as
dominant in proton-proton collisions when the earlier
estimates of SPs appeared [16]. Since then a better under-
standing of the role played by minijets in high-energy
collisions has been achieved, including proposal for beyond
the leading power calculations [25].
In the following, after a brief summary of the main

features of the parton density function (PDF) -driven
minijet model that we employ, we examine the most recent
data for the total cross sections and address the question of
the inelastic cross section in single-channel eikonal models.
We then apply our model to discuss survival probabilities
for hard and soft distributions of partons in the protons and
clarify the difference arising from using different impact
parameter distributions.
Revisiting a previous calculation in [26], we put forward a

new proposal, which reduces the estimate of ≃10% at LHC
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energies by almost an order of magnitude. This proposal is
based on the physical meaning of the survival probability
concept in minijet models and on explicit inclusion in the
calculation of the soft gluon effects accompanying minijet
processes. Our resummation procedure is based on Poisson-
distributed soft gluon emissions and on a hypothesis of
maximal singularity of the soft gluon spectrum.

II. ACCELERATOR DATA AND THE
TOTAL pp CROSS SECTION IN A
PDF-DRIVEN EIKONAL MODEL

We consider an eikonal model, such as

σtotal ¼ 2

Z
d2b½1 − e−χIðb;sÞ�; ð1Þ

where the eikonal function is taken to be purely imaginary
at large energies and contains contributions from both soft
and semihard collisions.
For the imaginary part of the eikonal χIðb; sÞ we write

2χIðb;sÞ¼ n̄softðb;sÞþ n̄hardðb;sÞ
¼AFFðbÞσsoftðsÞþABNðb;sÞσminijetðs;ptminÞ; ð2Þ

where 2χIðb;sÞ can be seen to correspond to the average
number of Poisson-distributed parton-parton collisions
[1,27,28]. The distinction between the two terms at the
right-hand side of Eq. (2) is done on the basis of using a
perturbative QCD (pQCD) calculation for the minijet cross
section, i.e. for all interacting partons with pt ≥ ptmin [3].
Namely, ptmin is the scale of O(1–2 GeV) which phenom-
enologically separates collisions between partons exiting
the scattering with final momenta pt > ptmin, also known
as minijets.
Hadronic activity not associated to minijet production

can be included in n̄softðb; sÞ, such as collisions leading to
final partons with pt < ptmin. However, notice that the
hadronic activity with partons with pt < ptmin can come
both through n̄hardðb; sÞ and n̄softðb; sÞ, because of the soft
gluon emission accompanying the hard (minijet) processes,
as we shall describe below. We should also point out that
the two-component separation of Eq. (2) misses to include
single diffraction, which has an energy dependence differ-
ent from the minijet cross section. We shall return to this
point later in the paper.
The term n̄hardðb; sÞ is obtained from QCD, with the

distribution ABNðb; sÞ to describe the contribution of soft
gluon emission accompanying collisions between partons
with finalmomentapt > ptmin. The subscriptBNrefers to our
choice of exploiting the full range of soft gluon momenta,
down to kt ¼ 0, in the spirit of the Bloch and Nordsieck
description of soft quanta emission in QED [29]. Our
application to QCD has been described in a number of
previous publications, starting from [30] until recently in [28],
where we provide details about our calculation of n̄hardðb; sÞ.
In Eq. (2) both AFFðbÞ and ABNðb; sÞ are normalized to 1.

Together with soft gluon resummation, to which we shall
turn shortly, the distinctive element of our model is that the
minijet cross section is not parametrized but calculated
[at leading order (LO)] from the QCD standard expression,
and with standard PDFs, Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evoluted, fijAðx1; p2

t Þ, i.e.

σABjet ðs;ptmin
Þ ¼

Z ffiffi
s

p
=2

ptmin

dpt

Z
1

4p2
t =s

dx1

Z
1

4p2
t =ðx1sÞ

dx2

×
X
i;j;k;l

fijAðx1; p2
t ÞfjjBðx2; p2

t Þ
dσ̂klijðŝÞ
dpt

ð3Þ

with i, j, k, l to denote the partons and x1, x2 the fractions of
the parent particle momentum carried by the parton.ffiffiffî
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
x1x2s

p
, σ̂ are the center of mass energy of the

two-parton system and the hard parton scattering cross
section, respectively. Following the argument given above,
this expression sums only collisions with outgoing partons
of momentum with pt > ptmin, where ptmin is defined as the
region of validity of perturbative QCD; i.e. the coupling is
given by the asymptotic freedom expression for running
αsðp2

t Þ. When the cutoff ptmin ≳ 1–2 GeV, it is usual to
refer to these type of processes as minijets [22].
The result of our calculation is shown in Fig. 1 for three

different LO PDF sets, together with presently available
data for the total cross section [6,11,12,31,32]. The
comparison between the energy rise of σjetðs;ptminÞ [from
here on, the terms jet and minijet are used interchangeably]
and the actual total cross section highlights the well-known
fact that, around Intersecting Storage Rings (ISR) energies,
hard QCD collisions, as calculated to LO, start becoming
important but then rising too much. This difficulty is
solved in the BN model by dressing the minijet cross
section with the phenomenon of soft gluon emission, which
dampens the rise of the parton-parton cross sections, and
embedding them in the formalism of eikonalization, which
ensures unitarity. Soft gluon emission in impact parameter
space then provides the large distance cutoff which allows
satisfaction of the Froissart bound [33]. For partial com-
pleteness, we shall outline here the main points of our
approach to resummation of soft gluon emission in
hadronic process.

A. Soft gluon resummation in the infrared region

Together with the PDF-driven minijet contribution, the
core feature of our working model lies in the impact
parameter distribution of the pQCD term, ABNðb; sÞ, which
was obtained as the Fourier transform of the resummed
probability for soft gluon emissions accompanying any
QCD scattering process. As we discuss next, the subscript
BN refers to our choice of exploiting the full range of soft
gluon momenta, down to kt ¼ 0, in the spirit of the Bloch
and Nordsieck description of soft quanta emission.
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For the resummed soft gluon distribution, we had
proposed [2] to start from the semiclassical expression [38]

ΠðKt; sÞ ¼
Z

d2b
ð2πÞ2 e

−iKt·b−hðb;sÞ; ð4Þ

hðb; sÞ ¼
Z

d3n̄ðk; sÞ½1 − eik⊥·b� ð5Þ

with d3n̄ðkÞ being the single soft quantum spectrum, which
is exponentiated and regularized through resummation.
Equations (4) and (5) exhibit a crucial result of the
resummation technique developed in [38], i.e. the cancel-
lation at semiclassical level of the QED singularities arising
from infrared emission and virtual exchanges. Such can-
cellation follows from imposing energy-momentum con-
servation to resummation of soft quanta emitted through
Poisson distributions, as we outline in Appendix A.
Unlike ΠðKt; sÞ, which can be obtained through a semi-

classical calculation, the application of the above technique
to elementary particle processes requires the spectrum
d3n̄ðkÞ to be determined from quantum field theory, in
particular from QCD, in the case of soft gluon emission.
Within the context of the Bloch-Nordsieck approach, one

can find an early discussion of the probability distribution
ΠðKt; sÞ for particle production in strong interactions with a
constant large coupling in [39]. Applied to Drell-Yan
production processes, the QCD case of running αs was
examined in [40,41] in the leading logarithmic approxima-
tion and in [42] (PP) within the context of the Bloch-
Nordsieck approach. In particular, the expression proposed
in [42] for the function hðb; sÞ reads

hðPPÞðb; sÞ ¼ 4

3π2

Z
Q2

M2

d2k⊥½1 − eik⊥·b�αsðk2⊥Þ
lnðQ2=k2⊥Þ

k2⊥
ð6Þ

with a lower limit of integration M2 ≠ 0 and using the
asymptotic freedom expression for αs. The contribution of
the infrared region, k2⊥ ≤ M2, was incorporated in an
intrinsic transverse momentum factor, with the assumption
that the neglected terms coming from this region would not
have a singular behavior which could affect the result.
On the other hand, our long-held proposal [2,43] is to

calculate the probability resummation function ΠðKt; sÞ
down into the infrared region, as relevant to the large b
behavior of the total cross section, since this is a regionwhere
a singular behaviormightmanifest itself, through a confining
potential. Thus, in our approach the single-gluon spectrum
depends on the coupling αIRðktÞ in the infrared region. Our
modeling of such behavior has been discussed in many
papers; in particular, we have a thorough discussion in [3,44].
Let Λ be an infrared scale separating the asymptotic

freedom QCD regime from the nonperturbative one, and
then our phenomenological ansatz for the coupling as
kt → 0 [2,43] leads to

αIRðktÞ ∝
�
Λ
kt

�
2p
; kt ≪ Λ: ð7Þ

The above limit can be justified by a semiclassical argu-
ment about confining potentials [3,43], and the parameter p
could be considered as parametrizing such complex proc-
esses as resummation of multiple soft gluon couplings. For
integrability of the rhs in Eq. (5) on the one hand, and for a
correspondence to a rising potential on the other, the
parameter p is limited to the range 1=2 < p < 1 [33].
With such ansatz for αsðkt → 0Þ, one can calculate the

function hðb; sÞ down into the infrared region. The final
calculation of the normalized function ABNðb; sÞ, with the
subscript BN to indicate the resummation approach we
follow, is done by choosing an appropriate value for the
singularity parameter p and specifying the upper limit of
integration in Eq. (5), appropriate to the perturbative QCD
processes of minijets. Calling it qmax, it represents the
maximum momentum allowed to single-gluon emission; it
depends on the energy distribution of the emitting partons
(henceon thePDFs), and the perturbative parton-parton cross
section (it was Drell-Yan in [42]), and ultimately from ptmin.
In our simplified realization of this model, qmax is obtained
from the expression proposed in [45] as discussed in [3].
One can then proceed to calculate the average number of

hard collisions for the BN model as

n̄hardðb; sÞ ¼ ABNðb; sÞσppjet ðs;ptminÞ

¼ e−hðb;sÞR
d2be−hðb;sÞ

σppjet ðs;ptminÞ: ð8Þ

In Fig. 2 we show the distribution ABNðb; sÞ for different
c.m. energies of the pp system and compare it with an
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FIG. 1. The figure shows how the minijet cross section
compares with presently available data for σtotal. The continuous,
dashed and dotted curves correspond to three different parton
density functions, such as Gluck, Reya and Vogt (GRV) [34,35],
Martin, Roberts, Stirling and Thorne (MRST) [36] and Martin,
Stirling, Thorne and Watt (MSTW) [37]. The corresponding
curves over the total cross-section data are obtained with the BN
model referred to in the text.
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often-used impact parameter distribution in total cross-
section calculation, namely the convolution of proton form
factors

AFFðbÞ ¼
μ2

96π
ðμbÞ3K3ðμbÞ ð9Þ

with μ2 ¼ 0.71GeV. In the figure, two different para-
metrizations of the PDFs are used to calculate qmax [and
hence ABNðb; sÞ], MSTWand GRV. The point of interest is
twofold here: for central collisions, i.e. b≃ 0, the form-
factor-type distribution (dot-dashed curve) is much lower
than for the minijet process, whereas only a proton form-
factor-type distribution survives at large b values.

B. The total cross section in the BN model

As is well known, and as apparent from Fig. 1, the
minijet contributions, with their energy dependence, are not
sufficient to describe the normalization of the total cross
section. Total cross-section data at low energy, i.e.ffiffiffi
s

p
≤ 5–10 GeV, suggest to include an additional contri-

bution which can be given, in this model, by the term n̄soft
as in Eq. (2), with σsoftðsÞ parametrized through a best fit to
the total cross section, as

σsoftðsÞ ¼ 48.2þ 101.66
E0.99
lab

−
27.89

E0.59
lab

ðmbÞ: ð10Þ

The reader would note that in [4] a different para-
metrization of n̄soft had been proposed. We leave to a
forthcoming paper a discussion of these two different
approaches.

We now see that the calculation of the total cross section
in the BN model depends on two different sets of
parameters: those extracted from the low-energy regime,
with σsoft described by a constant and one or more
decreasing powers in energy, and those for the high-energy
region, the latter being (i) the choice of the PDFs, (ii) the
separation scale between hard and soft processes, ptmin, and
(iii) the infrared parameter p. The high-energy set charac-
terizes the energy behavior of the total cross section as it
increases with energy, a behavior driven by QCD minijets
but regulated by soft gluon emission, modeled by the
parameter p, as ksingle-gluont → 0.
We also notice, in Fig. 1, that the different trend of the

minijet cross sections in the high-energy region, due to the
small-x behavior of the parton-parton cross section from
different PDFs, is much smoothed down in the total cross
section. This is due to the interplay between minijet rise and
the accompanying soft gluon emission which dampens it.
Such interplay enters through the maximum single-gluon
momentum qmax which is proportional to ptmin, the fixed
minijet scale. The dependence on densities and ptmin
however is not eliminated completely. This appears
clearly in Fig. 3, where the actual calculation of the total
cross section from Eq. (1) is presented in a linear-log scale
(rather than log-log as in Fig. 1).
As discussed and seen in [28], tuning of the parameters

leads to an optimal description of the total cross-section
data up to

ffiffiffi
s

p ¼ 7 and 8 TeV, both using “old” densities,
such as GRV, as well as using more recent parametrizations
such as MSTW. However, the small-x behavior of the
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FIG. 2. The dot-dashed line shows the normalized impact
parameter distribution obtained from the convolution of proton
form factors, compared with the BN model for two different
PDFs, and parameters as indicated. As the energy increases, the
distributions in the MSTW case (black dashes) shift more and
more towards b ¼ 0, whereas GRV curves (full red) flatten out,
with 8 and 14 TeV curves practically indistinguishable.
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FIG. 3. The figure shows the band of expected results for the total
and inelastic cross section for the BN model for two sets of PDFs
and predictions from the empirical model of [46] for total, elastic
and inelastic cross sections. For the inelastic cross section, onlydata
with extrapolation to the full phase space are shown.Other data and
references for the inelastic cross-section measurements at LHC are
summarized in Table I. For a comparison, diffractive data are also
shown, with a constant yellow band to guide the eye.
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parton-parton cross section still leads to (10–20)% uncer-
tainties when extrapolation is done to higher energies such
as those reachable through cosmic ray experiments.
In the next subsection, we shall discuss the other data and

curves appearing in this figure.

C. The inelastic cross sections

For estimates of the survival probabilities [16], the
quantity of interest is the inelastic cross section in impact
parameter space. In single-channel models this can be
obtained through the elastic amplitude

F ðs; tÞ ¼ i
Z

bdbJoðqbÞ½1 − e−χIðb;sÞ� ð11Þ

with q2 ¼ −t, namely from the equation

σinelastic ¼
Z

d2b½1 − e−2χIðb;sÞ�

≡
Z

d2b½1 − Pno-inelðb; sÞ� ð12Þ

with

Pno-inelðb; sÞ ¼ e−n̄ðb;sÞ ≡ e−n̄softðb;sÞ−n̄hardðb;sÞ ð13Þ
in a two-component eikonal as described before. However
one problem arises: as discussed in [28] and clearly seen in
Fig. 3 the inelastic cross section obtained from Eqs. (12)
and (13), and estimated with the parameters leading to the
good description of σtotal, reproduces LHC inelastic data
only in a limited range, ξ ¼ M2

X=s≳ 5 × 10−6 falling short
of the full phase space extrapolated data.
A model-independent estimate of the inelastic cross

section is shown by the dotted lines in Fig. 3. This estimate
is obtained as σinel ¼ σemp

tot − σemp
el by mean of an empirical

parametrization of all the differential pp cross-section data
from ISR to LHC, based on the elastic amplitude

Aðs; tÞ ¼ i½F2
Pðt=t0Þ

ffiffiffiffiffiffiffiffiffi
AðsÞ

p
eBðsÞt=2 þ eiϕðsÞ

ffiffiffiffiffiffiffiffiffiffi
CðsÞ

p
eDðsÞt=2�;

ð14Þ

where F2
PðtÞ is the square of the proton form factor, i.e.

FPðt=t0Þ ¼ 1=½ð1þ jtj=t0Þ�2. Details of this model, which

TABLE I. The inelastic cross section at LHCobtained from the single-channel two-component BNmodel and its comparisonwith existing
data at LHC and cosmic ray energies. The last column shows the estimate obtained (by subtraction) from the empirical model of [46].

ffiffiffi
s

p
TeV σinel mb

Kinematic range
ξX ¼ M2

X=s and ξY ¼ M2
Y=s Experiment

σBNinel mb
GRV-MSTW

Emp. mb
[46]

2.76 62.8þ2.7
−4.2 Full—sim. ALICE [10]

7 no SD 59.8–60.5
60.3� 0.5ðsystÞ � 2.1ðlumÞ ξX > 5 × 10−6 ATLAS [54]

60.2� 0.2ðstatÞ � 1.1ðsystÞ � 2.4ðlumÞ ξX > 5 × 10−6 CMS [8]
62:1þ1.0

−0.9 ðsystÞ � 2.2ðlumÞ ξX > 5 × 10−6 ALICE [10]
55.0� 2.4 pT > 0.2 GeV=c; 2.0 < η < 4.5 LHCb [9]

71.34� 0.36ðstatÞ � 0.83ðsystÞ Full—by subtraction ATLAS [11] 74.8
72.9� 1.5 Lum-independent—full TOTEM [5]

68.0� 4.0ðmodelÞ � 2.0ðsystÞ � 2.4ðlumÞ Full—MC sim. CMS [55]a

66.9� 2.9ðexpÞ � 4.4ðextrÞ Full—Pythia 6 LHCb [9]
73.2þ2.0

−4.6ðmodelÞ � 2.6ðlumÞ Full—diff model ALICE [10]
8 No SD 60.7–62.1

74.7� 1.7 Full—MC sim. TOTEM [7]
71.73� 0.15ðstatÞ � 0.69ðsystÞ Full—by subtraction ATLAS [12] 76.6

13 No SD 64.3–66.6
65.77� 0.03ðstatÞ � 0.76ðsystÞ � 1.78ðlumÞ HF ξ > 10−6 CMS [13]

68.1� 0.6ðexpÞ � 1.3ðlumÞ ξ > 10−6 ATLAS [14]
66.85� 0.06ðstatÞ � 0.44ðsystÞ � 1.96ðlumÞ HF+CASTOR

ξX > 10−7; ξY > 10−6
CMS [13]

71.26� 0.06ðstatÞ � 0.47ðsystÞ�
2.09ðlumÞ � 2.72ðextÞ

Extr.—all models CMS [13]

78.1� 0.6ðexpÞ � 1.3ðlumÞ � 2.6ðextÞ Extr.—full ATLAS [14] 82.9
14 No SD 64.8–67.4
14 83.9
57 No SD 75.6–85.4
57b 92�13.4

14.8 Full—from Glauber and other effects AUGER [31] 103.8
aalso in CMS-PAS-FWD-11-001, superseded by [8].
bwith error �0.3ðstatÞ � 6ðsystÞ.

INELASTIC CROSS SECTION AND SURVIVAL … PHYSICAL REVIEW D 96, 054010 (2017)

054010-5



is a modified version of the 1974 Phillips and Barger
proposal [47], can be found in [46] and are reproduced here
in Appendix B. For a new version of the model, now
augmented to describe the ρ parameter, see [48].
Thus, the empirical model applied to the inelastic

cross section confirms the extrapolations to the full phase
space as obtained throughMonte Carlo (MC) simulations or
other models. At the same time, the single-channel
two-component BN model we just described has so far
not included energy-dependent diffraction processes. Data
for these type of events are displayed in Fig. 3, respectively
from ISR [49], UA5 [50], UA4 [51], CDF [10,52], and
CMS [53].
One obvious missing element in the single-channel model

we have proposed is single diffraction. As seen from Fig. 3,
this process, unlike double diffraction, shows an energy
dependence characteristic of QCD processes; namely, its
contribution increases with energy. Indeed, while the BN
model so far includes QCD processes such as gluon-gluon
collisions and the accompanying resummed soft gluon
emission, it misses one more process which can give energy
dependence to the cross section through perturbative QCD,
namely hard gluon bremsstrahlung from the proton and its
accompanying soft gluon emission, as well. This process, at
the origin of single diffraction contributions, is correlated to
the emitting proton and its inclusion in a single-channel
model has so far been difficult.
However, lacking a clear understanding of diffraction in

minijet-type models, we propose that the quantity Pno-inel
thus calculated can be used to estimate survival probabil-
ities when single diffractive events are not excluded and
proceed to do so in the next section.
We conclude this section with a comparison of our

single-channel BN model with recent experimental results
for the inelastic cross section, in the measured phase
regions, as shown in Table I.

III. SURVIVAL PROBABILITIES

Let us recall early discussions of survival probability
[15,16] that arose in considerations of a hadronic collision
at an impact parameter b producing a final state charac-
terized by energy scales much larger than those of the soft
and semihard background of hadronic collision. Such a
final state can be high-pt jet pair production, or Higgs
production, for instance, and we look for events with no
hadronic activity in the central region.
Let S2ðb; sÞ be the distribution for observing one such

high-pt process with cross section σhard-scaleðsÞ and no
additional inelastic collisions [16]. A simplified factorized
model for such distribution can be written as

S2ðb; sÞ ¼ σABhard-scaleðsÞHðb; sÞPno-collisionsðb; sÞ; ð15Þ

whereHðb; sÞ is the distribution in impact parameter space
of those partons participating to the collision leading to the

production of H (the hard-scale process). Then the dis-
tribution S2ðbÞ can be integrated and normalized and the
average survival probability distribution is obtained from
the simplified expression

S2ðsÞ≡ hjSðb; sÞj2i ¼
Z

d2bAðb; sÞe−n̄ðb;sÞ ð16Þ

having used Eq. (13) and with

Aðb; sÞ ¼ Hðb; sÞR
d2bHðb; sÞ : ð17Þ

Leaving aside for the time being the question of the missing
piece of the inelastic cross section in single-channel eikonal
minijet models such as the one described earlier, we can
write

Pno-collisionsðb; sÞ
¼ Pno-soft-collisionsðb; sÞPno-minijetsðb; sÞ; ð18Þ

where the first factor on the rhs excludes the presence of
soft partons from events for which the cross section is either
constant or decreasing. This term alone does not exclude
production of minijets. Instead, these processes, which can
be described by perturbative QCD, as we have seen, and
constitute the hadronic background for which partons exit
the collision with pt > ptmin ≃ 1 GeV accompanied by the
infrared initial state emission, are suppressed through the
factor Pno-minijetsðb; sÞ ¼ exp½−n̄minijetsðb; sÞ�.
In cases where one puts a pt cut (say, 1 GeV) to eliminate

the minijet emission (as when the hard process to select is
production of a color singlet, for instance), one would have
to consider

S2ðb; sÞ ¼ σABhard-scaleðsÞHminijetsðb; sÞPno-minijetsðb; sÞ ð19Þ
but notice that not all low-pt activity is excluded, since
some hadronic activity from n̄softðb; sÞ has not been
excluded.
If absence of both soft collisions and minijets is required,

then one should use the full probability Pno-collisionsðb; sÞ as
in Eq. (15). We shall now address the question as to which
impact parameter distribution is appropriate to a given
measurement. In what follows, we shall see what is
involved in such calculations and compare with existing
model predictions.

A. SP results from BN-2008 and Block et al. 2015
estimate from QCD-inspired models

Let us start with SP estimates from the BN model, as
done originally in 2008 [26] and revisit it in order to
compare with (2015) results from Block and collaborators
[17]. For quark-initiated processes, the total survival
probability of the gap in this QCD-inspired model is
obtained from the expression
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hjSðbÞj2i ¼
Z

d2bAðb; μqqÞe−2χIðb;sÞ ð20Þ

with Aðb; μqqÞ the distribution of quarks in the proton, for
which the relative parton-parton cross section is decreasing.
In this single-channel eikonal model [56,57], χIðb; sÞ is
obtained as the contribution from three terms: gluon-gluon,
quark-gluon and quark-quark collisions, i.e.

χIðb; sÞ ¼ WðμggÞσggðsÞ þWðμqgÞσqgðsÞ þWðμqqÞσqqðsÞ
ð21Þ

with WðμÞ obtained from a convolution of dipoles, and
different scales μij in correspondence with three basic cross
sections σij, with different energy behaviors. These param-
eters were tuned to the large set of elastic and total cross-
section data available before the LHC operation. As we shall
see in more detail later, this model predicts rather large
survival probabilities at LHC when compared with recent
estimates from the Durham-St. Petersburg group, Khoze,
Martin andRyskin (KMR) in [18] and those from theTelaviv
group of Gotsman, Levin and Maor (GLM) in [19]. In the
following, we shall attempt to understand this difference.
Our earlier estimate of survival probabilities [26] was

similar to a previous one by Block and Halzen [58], but we
now believe that such estimates should be reconsidered. To
understand why (and how), we notice that in [26] our
estimate was done using

hjSðbÞj2i ¼
Z

d2bAsoftðb; sÞe−2χIðb;sÞ ð22Þ

with Asoftðb; sÞ obtained as the distribution of partons with
final pt < ptmin in correspondence with nonminijet colli-
sions. Following our present parametrization of n̄softðb; sÞ,
we now evaluate Eq. (22) using the convolution of proton
form factors as discussed in the previous section and the
updated parametrization for χIðb; sÞwhich led to the curves
for the total cross section in Fig. 3. With this procedure,
which we can call the BN-2008 model for the survival
probability, we show in Fig. 4 the agreement between the
recent Block and collaborators results and the estimate
from Eq. (22).
The reason for the approximate agreement between our

calculation and the recent Block et al. result lies in the very
similar role played by the two distributions Aðb; μqqÞ and
AsoftðbÞ entering Eqs. (20) and (22): they both correspond
to parton processes whose cross section is not rising with
energy. At the same time, in both models, Pno-inel is
constructed with contributions from both rising and con-
stant parton cross sections, with an eikonal such as to
reproduce the total cross section. In the BN model, the
decomposition of collisions corresponds to two types of
soft hadronic activity, one coming from processes in which
the production of soft partons is energy independent or

decreasing, and one with minijet production [dressed with
infrared gluons whose number is increasing with energy]
that drives the rise of the total cross section. In a similar
way, the Aspen model, used for the estimate in [17],
includes three types of contributions, with gg and gq rising
with energy and qq constant or decreasing.
However, this way to estimate the survival probability

certainly needs revision for the following reason. To
exclude all hadronic background processes which at high
energy show an increase with energy, one needs to take into
account the rising contribution from minijets or semihard
collisions from partons whose b distribution is very differ-
ent, as shown in Fig. 2 for the BN model.
These estimates are also compared in Fig. 4 with the

result by Bjorken at
ffiffiffi
s

p ¼ 40 TeV [16], where the lowest
value was obtained with a multiplicative model (red line),
as we summarize below.
Considering only independent collisions and an expres-

sion as inEq. (20), Bjorken estimated the survival probability
to be about 10%, with numerical estimates from [56], and
under the assumption of uncorrelated parton distributions.
However, when Bjorken included the possibility of

hadronic activity clustered around the valence quarks, he
suggested instead the following:

hjSj2iBj ≃
R
d2B⃗FðBÞjSppðBÞj2

R
d2b⃗σHardqq jSqqðbÞj2R

d2B⃗FðBÞ R d2b⃗σHardqq ðbÞ
¼ hjSj2ipphjSj2iqq; ð23Þ

where hjSj2ipp is the survival probability estimated before,
whereas hjSj2iqq is an extra factor. The additional term
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FIG. 4. We show the survival probabilities obtained with the
soft process impact parameter distributions from [17] (full line)
and the BN model in [26], compared with Bjorken’s estimate at
40 TeV [16], based on an impact parameter using a soft
distribution first and then a multiplicative model for hard
processes. We also show the LO estimate by CMS [21].
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could exclude collisions rising with energy and hadronic
activity correlated with the valence quarks alone. In any
case, an additional diminution of the survival probability
was expected and a value of 5% was considered more likely
(red dot in the figure), with a factor 3 uncertainty in either
direction. This is what we have shown in the figure.
A comparison is also shown with the LO result by the

CMS Collaboration [21] for the survival probability in the
measurement of the diffractive contribution to dijet pro-
duction at

ffiffiffi
s

p ¼ 7 TeV. CMS gives an estimate of 0.12�
0.05 at LO and a lower value of S2 ¼ 0.08� 0.04 at next-
to-leading order (NLO). A similar more recent (2015)
measurement by the ATLAS Collaboration [20], not shown
in the plot, uses an estimate of S2 ¼ 0.16� 0.04ðstatÞ �
0.08ðexp:systÞ for dijet production in

ffiffiffi
s

p ¼ 7 TeV pp
collisions with large rapidity gaps, this estimate being
considered to be also consistent with a central value of 0.15.
In the next subsection, we shall present a different

proposal, in which first a split is made between soft and
hard contributions and then the fractioned (lack of)
hadronic activity from each is summed to construct the
SP. We shall compare—with plots and tables—our calcu-
lation with the Telaviv and Durham-St. Petersburg models,
labeled here, for short, as GLM and KMR.

B. Our proposal with all order resummation
of soft gluons

Let us approach the calculation of the survival proba-
bility in a single-channel two-component eikonal model
such as our BNmodel, in which one splits the eikonal into a
component rising with energy and another component
either constant or decreasing.
To exclude all hadronic uncorrelated activity, one can

distinguish between soft and hard collisions as participating
with different weights to the survival probability,

wsoft=hardðsÞ≡ σsoft=jetðsÞ
σsoftðsÞ þ σjetðsÞ

≡ σsoft=jetðsÞ
σBðsÞ

ð24Þ

with σB to represent the “Born term” of the total cross
section, σjet being obtained from Eq. (3) and σsoft from
Eq. (10). As one can see from Fig. 1, at low energy,
wsoft ≫ whard, while their roles are exchanged at high
energy. Then the contribution to the survival probability
will depend on the relative weights as follows:
(1) In the case of emission coming from processes with a

cross section not rising with energy and final hadrons
with pt < ptmin, in our phenomenological approach
(a) the b distribution is given by AFFðbÞ, namely

follows the form factor distribution, with no
extra energy dependence,

(b) the probability of no such emission is given
by e−n̄soft,

(c) the survival probability is obtained as

hjSðbÞj2isoft ¼
Z

d2bAFFðb; sÞe−n̄softðb;sÞ:

(2) In the case of QCDminijet processes, for which final
hadrons have pt > ptmin and an increasing rising
cross section, the b distribution is obtained through
soft gluon emission accompanying the minijet col-
lision, and

hjSðbÞj2ihard ¼
Z

d2bABNðb; sÞe−n̄hardðb;sÞ:

Our proposal is that the survival probability—to exclude
hadronic activity in the central region—is given by

S̄2
totalðsÞ ¼ S̄2

softðsÞ þ S̄2
hardðsÞ

≡ wsoftðsÞhjSðbÞj2isoft þ whardðsÞhjSðbÞj2ihard:
ð25Þ

With the caveat that diffractive events are either poorly or not
at all described by the single-channel model and hence are
not excluded by Pno-inel, we now proceed to calculate the
survival probabilities and compare it with other models.
We present the results of our proposal in Table II for the

two types of densities used to describe the inelastic (and
hence the total) cross section and show in Fig. 5 the values
taken by S̄2

total for GRV and MSTW densities, in compari-
son with GLM and KMR estimated ranges. We also show
comparison with the NLO CMS estimate [21]. Since our
present proposal is obtained by resummation of soft gluons
to all orders, the comparison with NLO result is the
appropriate one. Please notice the change in scales.
These results are now summarized in Table III and Fig. 6,

where we compare our proposal with the experimental
estimates by ATLAS and CMS Collaborations, with those
byBlock, Durand, Ha andHalzen, the twoReggon-Pomeron
models we have mentioned, and the 40 TeV range of values

TABLE II. Survival probabilities, soft, hard and total, in the
TeV region, in the additive model we propose, using MSTW
densities (ptmin ¼ 1.3 GeV and p ¼ 0.66) and GRV
(ptmin ¼ 1.2 GeV and p ¼ 0.69). All values are given in per-
centages, with the values taken by S̄2

total plotted in Fig. 5.
ffiffiffi
s

p
S̄2
soft S̄2

hard S̄2
total

TeV GRV MSTW GRV MSTW GRV MSTW

1.8 3.17 4.77 1.53 2.70 4.70 7.47
2.76 2.15 3.38 1.06 1.95 3.21 5.33
7.0 0.942 1.32 0.490 0.810 1.43 2.13
8.0 0.839 1.17 0.440 0.722 1.28 1.89
13 0.554 0.681 0.297 0.433 0.851 1.11
14 0.526 0.669 0.282 0.425 0.808 1.03
40 0.222 0.182 0.124 0.121 0.346 0.303
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estimated by Bjorken [16]. For the BN model, we also show
the separate estimates for S̄2

soft and S̄2
hard.

As already discussed our estimate is close to Block’s
only when the soft distribution, which we take to be the
folding of two proton form factors, is used. On the other
hand, we find our results to be consistent with the range of
values coming from different models by the Durham [18]
and Telaviv group [19].
In the table, the Durham model results are obtained using

the GW formalism in a two-channel eikonal model, which
includes low mass diffractive dissociation, and is able to
predict both elastic and diffractive cross sections. Four
different models are discussed, all of which give similar
good fit to the various cross sections but have different
values for jSj2. The difference is ascribed to depend on the

details of the Good and Walker splitting and hence to the
impact parameter density of the GW states. The authors’
favored model is indicated between parentheses and
corresponds to energy-dependent coupling of the triple
Pomeron.
The table also displays a band of prediction for GLM,

such as given by the values in Table 3 of Ref. [19]. In this
case the values in parentheses represent the model for
which new parameters of their model were provided (model
IIn)—the ones describing the total, elastic and diffractive
cross sections (low and high mass) at LHC. As emphasized
by them that model gives higher values for the survival
probability. The spread in values given by the Telaviv group
depends on the impact parameter distribution of the hard
amplitude, with a Gaussian e−b

2=4B behavior, which leads
to the correct Froissart limit, on different sets of parameters
(called “new” and “old”), and also on the inclusion of
kinematics corrections. This work develops in the context
of a Color Glass Condensate (CGC)/saturation approach
for soft interactions at high energy and is detailed
in Ref. [19].

FIG. 5. The (black and red) curves indicate the estimated
survival probability rapidity gaps (in percentage) in the LHC
region, in the additive model we propose in Eq. (25), using impact
parameter distributions obtained from the BN model for the
minijet component, with MSTW (dashes) or GRV (full) LO
PDFs, with all order soft gluon (SG) resummation. Comparison
with ranges estimated in the models by GLM (cyan band) and
KMR (yellow band) and with LHC measurements at 7 TeV by
CMS at NLO [21] is also shown.

TABLE III. Survival probability predictions of the models by Block-Durand-Ha-Halzen (BDHH) [17], Khoze-
Martin-Ryskin (KMR) [18] and Gotsman-Levin-Maor (GLM) [19], and the range of prediction by Bjorken (BJ)
[16]. All values are given in percentages. The BN model range includes calculation with two different PDFs.

ffiffiffi
s

p
TeV S̄2

BDHH S̄2
KMR S̄2

GLM S̄2
BNðIÞ GRV-MSTW S̄2

BJ

0.063 38.7� 0.6 8.7–20.8 (10) � � �
0.546 28.6� 0.5 4.1–10.3 (4.7) � � �
0.630 27.8� 0.5 � � � � � �
1.8 22.2� 0.5 2.3–6.3 (2.8) 0.86–7.6 (3.34) 4.70–7.47
7.0 � � � 1.1–3.2 (1.5) 0.3–3.63 (3.1) 1.43–2.13
13 0.851–1.11
14 13.1� 0.3 0.7–2.2 (1.0) 0.25–2.3 (3.05) 0.808–1.03
40 9.8� 0.2 � � � � � � 0.346–0.303 1.5–15 (5)
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FIG. 6. Comparison of the predictions for the survival prob-
ability gap estimates (in percentage) in the context of the BN
model, with other models described in the text and with CMS
[21] and ATLAS [20] measurements at LHC7.
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On the other hand, it is rather clear what our present
single-channel model can predict. The integrand in Eq. (16)
depends on two quantities:
(1) Pno-inelastic which is fixed by the fit to the total

cross section, i.e. in single channel by the function
χIðb; sÞ which describes σtotalðsÞ; in our interpreta-
tion, missing part or all of diffraction, Pno-inelastic≡
Ponly-diffractive-events, and

(2) the impact parameter distribution of partons which
can come from either soft collisions, with AFFðbÞ, or
hard, minijet collisions, with ABNðb; sÞ. In our
single-channel eikonal, we have seen in [33] that
ABNðb; sÞ ∼ e−ðbλ̄Þ2p . With the singularity parameter
1=2 < p < 1 [our phenomenology indicates
p≃ ð0.6–0.7Þ], one can see that the cutoff in b
space is midway between a Gaussian and an ex-
ponential, leading to an asymptotic behavior of the
total cross section σtotal ≲ ½ln s�1=p, satisfying the
Froissart bound. Please notice that an improvement
of the Froissart limit in the context of the AdS=CFT
correspondence has recently been proposed in [59].

From this discussion, it is not completely clear which
model gives the best representation for the survival prob-
abilities. While we are convinced that previous estimates of
survival probabilities through minijet or QCD-inspired
models should be calculated using our proposal Eq. (25)
rather than Eq. (20) or (22), at the same time we are aware
of the limitations of the single-channel model. We expect
that full exclusion of the hadronic background may further
reduce the survival probability.

IV. FINAL COMMENTS AND CONCLUSIONS

The survival probability concept implies the need to be
able to select processes which are unaccompanied by the
usual hadronic activity. This may be useful for a selected
process such as Higgs production, high-pt jets, or any hard
process which one wants to isolate from the background.
The quantity to look for is therefore a no-collision
probability which is characterized by the presence of
rapidity gaps, around the central region. Such quantity is
easily calculated in the eikonal formulation. However, the
single-channel formulation of the inelastic cross section
given in Eq. (12) fails to reproduce the totality of the
inelastic cross section, as the energy increases towards the
LHC regime. At energies lower than those attained at LHC,
data for the full inelastic cross section are obtained by
subtraction from two well-measured quantities, the total
and the elastic, i.e. σinel ¼ σtotal − σel. This quantity
includes events with different topologies, distinguished
in various groups, such as soft, hard diffraction, and central
diffraction. The contribution from processes in the very
forward direction is not uniquely measurable by the differ-
ent experiments, and data are provided in terms of the
covered phase space or through model extrapolations.

Here we propose that the least ambiguous way to use
the concept of survival probability is through selecting
events which do not have hadronic activity outside the
diffractive region. In an early release of elastic cross-section
data at LHC, a common phase space limitation ξ ¼
M2

X=s ≥ 5 × 10−6 was shown to be well described by a
single-channel model such as ours. Therefore one can now
turn this fact around and define this region as the one for
which the present single-channel BN model can provide an
estimate for the survival rapidity gaps in the central region.
Namely, if n̄ðb; sÞ≡ 2χIðb; sÞ is chosen so as to describe
the total cross section, then

Pno-inelðb; sÞ ¼ e−n̄ðb;sÞ ð26Þ

gives the probability distribution for no independently
distributed collisions at impact parameter value b, and given
c.m. energy. The survival probability at any given impact
value b is then dependent on the density of partons in the
overlapping area in b space. For central collisions, the
hadronic matter is denser (confinement dilutes gluonic
matter in the peripheral regions) and vice versa for the
peripheral collisions. By integrating the probability of no
collisionswith the hadronicmatter distribution in the hadron,
we have calculated the survival probability [for the case in
which single diffraction is not excluded] and found an
estimate of ∼1% at LHC8 and LHC13.
The result we have presented obtains through an all order

resummation procedure applied to soft gluon emission in
minijet collisions.
Finally, we notice that results similar to the ones we are

proposing for the BN model can be expected in the model
of Block and Halzen [58] when this model is applied using
our prescription.
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cuts, such as for the CMS and ATLAS diffractive dijet data
presented in the text.

APPENDIX A: DERIVATION OF
SEMICLASSICAL RESUMMATION FORMULA

In this Appendix, we present a derivation of Eq. (4)
following [38]. In the scattering of high-energy charged
particles, a considerable portion of the energy is radiated
away in the form of either hard or soft radiation, photons in
QED, or gluons in QCD. In this Appendix, we shall outline
the method of soft quanta resummation we use in QCD.
When a charged particle is bent in its path by the

electromagnetic field, the cloud of soft photons accom-
panying the motion of the charged particle is not affected
by the external field and continues its path, tangent to the
trajectory at the point when the charged particle entered the
bending field. This is true in QED where the external field
has no effect on the soft photons surrounding the traveling
electron, but it is more difficult to see it in QCD. However,
this is true also in this case, because of the infrared
catastrophe, as can be seen through a reading of the
Block and Nordsieck theorem [29] which demonstrates
that only the emission of an infinite number of soft photons
has a finite probability. This argument can be applied as
well to soft gluon emission, being based on ignoring
the recoil of the emitting particles and summing of all
the Poisson-distributed number of soft quanta. Thus in the
emission, when the gluon energy goes to zero, the number
of emitted gluons is infinite and the emitted energy
accompanying this infinite number of gluons is color
neutral and the soft gluon cohort does not interact with
the external field.
In the language of quantum field theory, we can describe

the process of soft gluon emission as a process in which
straightforward perturbation theory does not apply in the
sense that only the emitted energy-momentum is a finite
quantity, not the single soft gluons. In order to resum this
infinite number of soft gluons (or soft quanta emitted by a
charged source) we can start from the theory of emission
from a classical source as given by Bloch and Nordsieck, in
which the distribution of soft photons is shown to be given
by a Poisson distribution, i.e.

PðfnkgÞ ¼ Πk
½n̄k�nk
nk!

e−n̄k; ðA1Þ

where PðfnkgÞ can now be taken to correspond to the
probability that the emitted massless quanta are emitted with
nk1

gluons with momentum k1, nk2
gluons with momentum

k2, etc. The next step is to consider the overall energy-
momentum loss K accompanying the scattering and impose
energy-momentum conservation to the sum of all the
possible Poisson distributions, i.e.

d4PðKÞ ¼
X
nk0

Pðfnk0gÞδ4
�X

k0
k0nk0 − K

�
d4K: ðA2Þ

The sum over all the distributions runs again along the lines
of a classical derivation, using the four-dimension integral
representation of the δ function, which allows one to
exchange the order of product of distributions and their
summation. One thus reaches the expression

d4PðKÞ ¼ d4K
ð2πÞ4

Z
d4xe−hðxÞþiK·x ðA3Þ

with

hðxÞ ¼
X
k

ð1 − e−ik·xÞn̄k: ðA4Þ

Going from the discrete to the continuum limit and integrat-
ing Eqs. (A3) and (A4) on the unobserved variables of energy
K0 and longitudinal momentumK3, one obtains Eq. (4). The
derivation can be applied to gluons or photons, provided the
resulting integrand in Eq. (6) be an integrable function. In
QED this quantity is not just integrable but is also finite. The
QCD limit is discussed in the text, with the proposal put
forward in [43], that the integrand in Eq. (6) be singular but
integrable. This leads to the condition that the infrared limit
of the soft gluon coupling to the emitting source be no more
singular than ðk2⊥Þ−p with p < 1 and to the adoption of this
limit in the phenomenological approach, which we have
called the BN model.

APPENDIX B: THE FULL INELASTIC CROSS
SECTION FROM THE EMPIRICAL MODEL

For the case when background emission in a wider phase
space has to be excluded, a simple way to estimate the full
inelastic cross section can be obtained from the empirical
model of [46]. We present here the results of this model,
although we shall not use it to estimate the survival
probabilities, in absence of a clear indication of how
calculate the impact parameter distribution of partons to
associate to this model. We consider an empirical model
based on the improved parametrization of the elastic
amplitude following the Phillips and Barger [47] proposal.
As TOTEM data [60] for the differential elastic cross
section appeared, we discussed the validity of this model in
[61] and, in [46], we revised it, proposing two different
modifications, labeled mBP1 and mBP2, aimed to amelio-
rate the description of the amplitude at t ¼ 0 and obtain a
better fit of the total cross section.
Our improved expression is based on a best fit to all pp

differential cross-section data from ISR energies up toffiffiffi
s

p ¼ 7 TeV, using a parametrization of the elastic ampli-
tude, which, in the mBP2 version of the empirical model,
was proposed to be
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Aðs; tÞ ¼ i½F2
Pðt=t0Þ

ffiffiffiffiffiffiffiffiffi
AðsÞ

p
eBðsÞt=2 þ eiϕðsÞ

ffiffiffiffiffiffiffiffiffiffi
CðsÞ

p
eDðsÞt=2�;

ðB1Þ

where F2
PðtÞ is the square of the proton form factor, i.e.

FPðt=t0Þ ¼ 1=½ð1þ jtj=t0Þ�2 with t0 a parameter with weak
energy dependence, approaching 0.7 GeV2 at high energies.
The introduction of this factor in the first term at the right-
hand side of Eq. (B1) modifies the Phillips and Barger
proposal to give a better agreement with total cross-sec-
tion data.
This model has six real parameters: two amplitudes, AðsÞ

and CðsÞ, two slopes, BðsÞ and DðsÞ, one phase ϕ and one
scale t0. The model was able to give an excellent descrip-
tion of available data up to

ffiffiffi
s

p ¼ 7 TeV and can be used to
extrapolate to higher energies. Using the full range of ISR
and LHC7 data, we can make predictions for the two
amplitudes and the two slopes at higher energies by means
of asymptotic theorems. As for the phase and the scale,
while the phase was kept constant, for the energy depend-
ence of t0ðsÞ we use the interpolation and extrapolation fit
result: t0 ¼ 0.66þ 15.4= log2ðs=1 GeV2Þ, which gives a
good description of the t0 parameter in [46]. The values we
propose to be used for the parameters in the LHC energy
range are given in Table IV.
Using the amplitude of Eq. (B1) and the asymptotic

projections for the two amplitudes AðsÞ, CðsÞ and the two

slopes BðsÞ andDðsÞ, we calculate the total cross section at
much higher than present energies and compare it with
data. And then, always from the above amplitude, one can
also calculate and predict values for the elastic total
cross section and, by default, for the inelastic, σemp

inel ¼
σemp
tot − σemp

el . These expectations are shown as dotted lines
in Fig. 3.
We see that both the elastic and the total cross section are

well described by the empirical model parametrization at all
energies—in fact the 8 TeV TOTEM value for the total
cross section is correctly predicted to be 103 mb vs the
TOTEM value at 102.9 mb—while the inelastic cross
section appears slightly higher than the TOTEM data
and clearly higher than CMS.
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