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We have investigated the effects of spin-7/2 and -9/2 nucleon resonances in the kaon photoproduction
process yp — KA. To this end, the corresponding propagators were derived from the generalized spin
projection operators. To remove the lower spin backgrounds in the scattering amplitude, we used the vertex
factors obtained from the consistent interaction Lagrangians inspired by Pascalutsa and Vrancx et al. The
scattering amplitude was included in our previous isobar model, and the effects of four nucleon resonances
with spins 7/2 and 9/2 listed by the Particle Data Group were investigated by making use of all available
kaon photoproduction data. A significant improvement to our previous model has been observed in all
observables, especially in the beam-recoil double-polarization observables C,, C,, Oy, and O,.
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I. INTRODUCTION

Recently, we have investigated the effect of different
formulations of spin-3/2 and -5/2 nucleon resonances on a
phenomenological model of an elementary kaon photo-
production process [1]. For this purpose we used an isobar
model, where the scattering amplitude is formulated by
using the field theoretical approach. The background part
of the model was constructed from the standard s-, u-, and
t-channel Born amplitudes along with the K**(892),
K(1270), A*(1600), and A*(1810) states. The resonance
part used all nucleon resonances listed by the Particle Data
Group (PDG) [2] with spins up to 5/2 and with at least a
two-star rating. Two different interaction Lagrangians of
spin-3/2 and -5/2 nucleon resonances, i.e., the standard
formulation given in Refs. [3,4] and the consistent inter-
action proposed by Pascalutsa [5], were compared. By
fitting the calculated observables to nearly 7400 exper-
imental data points, it was found that the use of consistent
interaction formulation for the spin-3/2 and -5/2 reso-
nances in the model leads to a better agreement with
experimental data.

In spite of this success, however, there exist four nucleon
resonances with spins 7/2 and 9/2 listed by PDG [2] (see
Table I), where three of them have a four-star rating. Since
their statuses are mostly certain and, as such, they fulfill the
criteria of resonances used in our model [1], we believe that
the inclusion of these resonances in our model is
mandatory.

To our knowledge, in the kaon photoproduction and
electroproduction studies, the inclusion of nucleon reso-

factors of higher spin resonances is quite complicated, not
unique, and plagued with the problem of lower spin
backgrounds [5,7-9].

Therefore, it is the aim of this paper to present the
amplitudes of spin-7/2 and -9/2 nucleon resonances and
investigate their effects on the isobar model of kaon
photoproduction. For the sake of completeness and future
studies, we will derive the formalism for electroproduction,
instead of photoproduction, since the latter can be obtained
by setting the longitudinal terms k> and k - € to zero.

This paper is organized as follows. In Sec. II we
present the formalism of spin-7/2 and -9/2 used in our
investigation. In Sec. III we present and discuss the result
of our calculation and compare it with the result of
previous calculations along with the available experimen-
tal data. We will summarize and conclude our findings
in Sec. IV.

II. FORMALISM

A. The consistent interaction theory

In what follows, we adopt the prescriptions of Pascalutsa
[10,11] and Vrancx et al. [7]. We begin with the gauge-

invariant field G,, [10] and the interaction operator O?/ 2

UV)A
[7] to construct the consistent interaction Lagrangian for
massive spin-3/2 particles, where

TABLE I. The status, mass, and width of nucleon resonances
with spins 7/2 and 9/2 used in our calculation [2].

nances with spins higher than 5/2 in the framework of the  Resonance L,;,; J? Status Mass (MeV) Width (MeV)
field theoretical h idered before.
ie eoretical approac .was never considered before N(1990) Fo 72 %% 1990+ 120 240 £ 50
The reason is also obvious: unless we used the multipoles _ 10

h [6]. the f lati ; ‘ d vert N(2190) Gy; 727 ek 219075 500 + 200
approac , the formulation of propagator and vertex N(2220) Hy 9/2¢ ##% 2250 4 50 4004190
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G/u/ = 6/41//1/ - 81/‘/’/4
= <aﬂgw1 - alzgﬂ/l)ll//1
3/2
= 0(;,1/),11///17 (1)
with
3/2
0(;1,,),1 = 0uGua — al/gﬂﬂn (2)

and y,, is the massive Rarita-Schwinger (RS) field obeying
the RS equation of motion and constraint. In the case of the
spin-(n 4 1/2) particle, the RS equations of motion and
constraint read

(la - m)Wﬂ]...ﬂn =0, (3)

7”11///41 T 0. (4)

Since the field G,, in Eq. (1) contains more indices
than the original one, v, it is necessary to introduce a

new field ¥, = O(If i) ﬁy”z//’l [7]. As a consequence, in the
case of the spin-(n + 1/2) particles, the gauge-invariant
field reads

o 0n+1/2

p (/41---ﬂ,,,u]--~un)il---/1n(a)ym . Yy”llfll""l"y (5)

ity =

with the corresponding interaction operator given by

1
n+1/2 o 3/2 32
P(v) P(2)

(ﬂ" vl/n )A’Il ’

(6)

where P() and P(v) indicate the permutations of all possible
u and v indices, respectively. Armed with Egs. (5) and (6) we
can construct a consistent interaction Lagrangian for higher
spin particles inspired by Pascalutsa’s prescription for spin-
3/2 particles [11].

The hadronic interaction Lagrangian for the spin-3/2
nucleon resonance N* decaying to a kaon K and a hyperon
A shown in Fig. 1 reads [11]

IKAN* I X
ﬁhad = :121\/ €I4V0tﬂlpaﬂ¢ 75705(8/4‘//» +H.c, (7)
N*

where W is the spinor field of A, ¢ is the pseudoscalar field
of K, and y,, is the massive RS field of N*. A consistent
interaction can be constructed from Eq. (7) by replacing y,
with ¥, /my-, i.e.,

3

Lhag = gZAN* eﬂmﬂ@aﬂfﬁ*%h(au?u) +H.c, (8)
N

so that in the case of the spin-(n + 1/2) nucleon resonance,
we obtain
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IKAN* 0 af ow
‘Chad — Tﬂeﬂ n ﬁa 1
LN

xd,¥,.., +H.c. 9)

S WD Y sV

The electromagnetic interaction can be obtained by using
the same procedure. Based on Ref. [5] we can write the
Lagrangian for the spin-3/2 particle as

e -
Leom = m—3lpﬂ{(gl€/waﬁaalp + 92759p,0,¥
3
+ 93 yﬂ}/pepvaﬂaalp
+ 94¥s7uY" (0p9up — 0,9,p) P} F*™ +H.c.  (10)

Therefore, the consistent interaction Lagrangian for the
spin-(n + 1/2) nucleon resonance reads

e
‘Cem =

m2n+1 lilﬂlmﬂ" {(gle;wa[)’,l oY + 927/59[)’,11/8;}}‘
N

+ 937yyp€pvaﬁ,, oY
+ 9a757,7" (0,908, — 0u9pp, ) ¥} 0y, - - - Op, _ F*
+ H.c. (11)

The above-mentioned interaction is consistent because it
contains the interaction operator which fulfills

i 172
pN* 0’(1;“'/#;1,111"'1/,;)/11"J,,, (pN*) = O’ (12)
where i = 1,2, ...,n and p?\;* is the four-momentum of the

spin-(n + 1/2) nucleon resonance (see Fig. 1).

With the definition of particle momenta and coupling
strengths given in Fig. 1, the hadronic and electromag-
netic vertex factors derived from Egs. (9) and (11) can be
written as

9KAN* e
D, = =5 €PN - PR dprsvalney
mN*
n+1/2 »
X O o o, (PNY 7 (13)

and
Py«=p+k
p(p) — Apy)
€gi EKAN*
FIG. 1. Feynman diagram for the nucleon resonance (N*)

intermediate state in the kaon photoproduction yp — KTA.
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e BrePuty 0y vy Uy,
l—wgr]n Yy m2n+1 l(1+11/2 e (pN*)y(ll T
2
+ 9475747 (PpGup, — Pu9pp,) Yhp, -

which can be written in more compact forms, i.e.,

1 V1 Un ) +1/2
o, = m—nrﬁlﬂdy O oy (PN?) (15)
N*

(v1-vy

and
1 -
em _ n+1/2 v Vn
2 o m;l\/* (RS2 IR (pN*)F m (16)
with
An+1/2 _Antl/2 o o
(”l“'yn)ﬂl"'ﬂn(pN*) - 0(1-/]"'1./”.(11'--(1 ) Uy, (pN*)y bown 7 .

(17)

The contribution of the spin-(n + 1/2) nucleon reso-
nance to the production amplitude that is relevant to the
present investigation has the following structure:

M2 = DN i (V) R O 1))

(n+1/2)

where P’(‘,; N 72”)' ¥ is the spin-(n + 1/2) nucleon resonance
propagator. For the purpose of the present discussion we
can utilize the propagator discussed by Vrancx et al. [7]
which is based on the work of Huang et al. [12]. We shall
use the covariant part of the propagator, since the non-
covariant one does not preserve the Lorentz invariance.
Explicitly, it is given by [7]

Pl(lr]wlll;zy)] “(pn)
P+ my Y
- o (pae), (19
P —mE. + imy.T " (7H1/2) (pv), (19)
where the on-shell projection operator P rz+lf;2U>1 ()

is obtained from the off-shell projection operator

P +’1‘;2”>‘ “r(py+) with the substitutions py- — my- and
|
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Ya, {gl eyuaﬂ,zpa + 92Y595,0Pu + g3yﬂyﬂ€puaﬂ,,pa

P = m%.. We will discuss the explicit form of projection
operators for spin-7/2 and -9/2 nucleon resonances later.
It is obvious that the difference between the on-shell

projection operator 77” ! +’1‘;2">‘ “(py+) and the off-shell

ﬂn Wity
(n+1/2)

dependent terms. In other words, these terms must contain
at least one p4.. However, these terms completely dis-
appear from the production amplitude of Eq. (18) by
imposing the property of the interaction operator as given
in Eq. (12).

The proof that the on-shell projection operator

P ni1j2) "(p) can be written as the sum of the off-shell
“HpsVyUp

projection operator P (n+1)2)
dependent terms is straightforward for the spin-3/2 case
[see, e.g., Ref. [7], especially Egs. (18)—(20) and the
corresponding explanation therein]. For the general spin-
(n + 1/2) particle whose mass and momentum are m and
p, respectively, the proof is also obvious since the sub-
stitution  — m and p> — m? in the off-shell projection

operator P(, /5" (p) will only affect its momentum-

dependent terms. Thus, the result can be rewritten as the sum
of the off-shell projection operator and the momentum-
dependent terms. The explicit form of projection operators
for spin-7/2 and -9/2 nucleon resonances given in Egs. (23)
and (24), respectively, provides a direct example to this end.

The above discussion has proven that the interaction
Lagrangian used in our formalism, which is taken from
Ref. [11], is consistent in the sense that the use of this
Lagrangian removes the inconsistent lower spin backgrounds
of the propagator. The following discussion will show that the
use of this interaction also removes the nonlocalities in the
production amplitude. By using a slightly different inter-
action Lagrangian, Vrancx et al. [7] have shown this
phenomenon in their paper [see Egs. (60) of Ref. [7]].

By substituting Egs. (15) and (16) in Eq. (18) we obtain

projection operator 73 (py+) is in the momentum-

(p) and the momentum-

1
H1/2 _ o Faea, Fyntl/2 el +1)2 )
MHN* ! F(l ’ 0?(11 /fl) "'ﬂn(pN*) mlzvﬁ P?’L*ql/;)l ’ (pN*) r(l/fl / V1 Uy (pN )Fﬁl ’ u
ap oy, n+1/2 1 ﬁN* + m = Uyl Uy Uy n+1/2 -
= AT 00 oy P ) D TP ) X O (o b Py (20

Equation (20) can be simplified by utilizing the orthogonality of the projection operator, i.e.,

7)/4] Hp V1 Uy

M1 BV Uy
(n+1/2) P

(pN*) (n+1/2) (pN*)YI/,-

where i = 1,2,....n

— pN*” 7)"1 Hp Vo Uy
i

iy (pne) = Py Pl (pwe) =0, (21)
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There are n Dirac matrices in the interaction operator

(N)Z'/;:l/ /? Yoy (py+) on the right-hand side of the propagator

in Eq. (20) as obviously shown by Eq. (17). In Eq. (17)
these matrices are contracted with the operator

OZ'/Z 1/ /f g, ) (py+), which is built from a product of
3/2

n interaction operators O B Clearly, these contractions
yield the terms containing py-47,. and gg, py-. The terms

containing at least one y,, vanish due to Eq. (21). Due to the
|

Py + my-
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permutation P(«) in the interaction operator, we obtain 7!
surviving terms in Eq. (20). By exploiting the symmetry
of the projection operator under the exchange of the index
v;, these surviving terms can be simply written as
[17-, #n+9p,,- The same procedure can also be performed

n+1/2
(ar-a,)uy-py

hand side of the propagator in Eq. (20). Therefore, the
production amplitude given by Eq. (20) can be written as

for the interaction operator O (py+) on the left-

1
al Qy
MN* - uAHﬂN*ga,ﬂ, had 2n .2

2 .
myi py= — My + imy-I’

2n

— . fhad PN
T A pdn 00 2 2 ;

"my P — My + imyI

Equation (22) shows that the nonlocalities in the ampli-
tude are completely removed by the p3% factor. This is
equivalent to Eq. (60) of Ref. [7].

B. Spin-7/2 and -9/2 projection operators
The projection operators for spin-7/2 and -9/2 nucleon
resonances which are suitable to our previous discussion
can be obtained from the generalized higher spin projection
operators given in, e.g., Ref. [12]. For the spin-7/2 nucleon
resonance the projection operator reads

72 1 3
HiHpH3 = % Z {Pﬂll/l P#2D2Pl43l/3 _iPlll#zPVll/szl/z

e P(u).P(v)

1P V10T Haln ™ fi3l3

3
+ 21V P Prsa P, P

3 o
- gypy P}llﬂpylﬁpﬂzﬂzpyzvs}’ (23)

where P(u) and P(v) indicate the permutations of all
possible ¢ and v indices, respectively, while P, = —g,, +
PNuPN-/s and py- = p+k. In the case of spin-9/2
nucleon resonance the projection operator reads

vvpu3ly

1
9/2 _
Hikaksha == % Z {Pﬂll’lPMZD?PH%VsPMM
Pv)

6
9 P#l#z PVI vy P}hl/% Pﬂ41/4

4
+ 5},/) GPMlﬂPWUPﬂszPMsV%PMM

4
- ﬁyp Pﬂl/’Pl/lGPﬂz!%PDz%P}14V4

1
+ ﬁ Pﬂlﬂz PVI”Z Pﬂ3ﬂ4PV3V4 } : (24)

pN* + mN* 1BV Uy

(n+1/2)

1V vn P
7)(,]1+1/21 pN*)HﬂN gﬂ/uj em up

(pN*)Fulln u,lup (22)

|

Both projection operators given by Eqs. (23) and (24)
satisfy the orthogonality condition with respect to the Dirac
matrix and the total momentum of the particle, i.e.,

(n+1/2)
ﬂ,Puwz =
vivpn

= Pt — (25)

vivatn

and

D (p+k)m =0, (26)

viva-n

(p+ k) Phs ') =

viva2vn
where i = 1,2, ..., n. Based on Eq. (22) we can write the
modified propagator for the spin-7/2 nucleon resonance as

3
S + £+ my-
PZ"/I%Q = "% (ﬂ 5 k ’ N ) Zﬂ/]%z, (27)
wivp mN* (S - mN* + lmN*FN*) wivy

where s = p%. = (k + p)?> = W?is one of the Mandelstam
variables. In the following, we will also use the other
Mandelstam variables t = (k — ¢)? and u = (k — p,)°.
By using the same procedure, we obtain the modified
propagator for spin-9/2 nucleon resonances, i.e.,

P2 st (P + K+ my) 9/2 73
My = g 5 ; B - ( )
wirprs me (S - mN* + lmN*FN*) wiryuy

Note that the factors of s°/m$. and s*/m%. on the right-
hand sides of Egs. (27) and (28), respectively, appear as a
consequence of consistent interaction. In our previous work
they were called the regularization factors [1]. These factors
are especially important in the case of the u-channel, where
the value of the Mandelstam variable u could be zero.

C. Electromagnetic and hadronic vertices

As previously discussed, the electromagnetic and
hadronic vertex factors are obtained from an effective
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Lagrangian approach proposed by Pascalutsa [5,11], which
ensures that the lower spin background of the propagator
vanishes [see Eqs. (14) and (13)]. From Eq. (22) it is clear
that in calculating the scattering amplitude, we only need

r-had r-em : had m

%, and)7, instead of [0, and I, . For the sake
of simplicity, in what follows we omit the tilde in both
vertex factors. Therefore, the explicit form of the electro-

magnetic vertex for the spin-7/2 particle reads

v v k*r kv 1
172 VUpo
Iem ® = m}3v [gyN*Ng H pa(kﬂep - kpeu)

+ Cyenrs(p - ket = p - ek”)

+ Gone N € Do (Kew — #hu)r,

+ g?N*N)’S{(kﬁeu — ¢pk")
—(p-ek—p-kf)r'}]. (29)

whereas the hadronic vertex for the spin-7/2 particle is

| R 9IKAN* jehapo
had 3
m N*

PaalsYpdePy PR (30)

Note that these vertex factors are constructed for a positive
parity intermediate state. In the case of a negative parity
intermediate state we can modify these vertices as
explained in Ref. [4]. Therefore, we obtain

—i

T = [ p*(ld — ) + P (k*p e —e*p - k)
3.
+ g ek =k p+ g'rv (ke — v
+ 77 (p- ek — p - kf)|k kT, (31)
and

+ g *
Fﬁ’;&’“( )= :;;N T [(pa-q = Pad)r" + Prd"
3

SIS (32)

where

PHYSICAL REVIEW D 96, 054004 (2017)
= ig;N*N - ig;N*N
= —2ig;N*N - ggN*N + 2ig}§N*N - 29;‘1\/*1\/
= —Zig;N*N + 3ig;N*N + g?N*N
= —ig;N*N + igiN*N

5 9igl ;3 4
g = ZlgyN*N — 9NNt Gnens

gl
g2
g3
g4

with the parity factors I', = iys and I'_ = 1.

For spin-9/2 particles the vertex factors are obtained by
multiplying the vertex factors of spin-7/2 particles with the
appropriate momentum and inverting the parity. Thus, the
vertex factors of spin-9/2 particles may be written as

—i

o™ = = 19! p (ke — #H)

My«

N

+F(kp-e—e'p-k)+ g (e k- kd)p

+ ' (ke — )P+ 5v (p - €k — p - k)]

X kI K2k Ty (33)
and

1H2HM3 g -
Dhad ® = K[;N Ti[(pa-q— Pad)?"

m N*
+ PaG" = APAIPA PR P - (34)
D. Scattering amplitude

The scattering amplitude is obtained by sandwiching the
propagator between the hadronic and electromagnetic
factors. This was briefly discussed after we introduced
Eq. (18). For spin-7/2 nucleon resonances the scattering
amplitude becomes

ML = P P e (39)
At first glance, Eq. (35) seems to be very long and
complicated. Fortunately, a number of terms in Eq. (35)
have the same structure. By exploiting this fact and using
the orthogonality condition of projection operators, we can
recast the scattering amplitude to

1 1
Mz, = iinys{—s £ my-(F + )} [5(70% + 6263){_171\1/ + ;CA(P + k)v} - 106102{—1% +;Ck(l7 + k)y}

s +ae){-mt et b Hn L e - 100{-m L)

<t tarp-pu+iaw o) 2alon o ke Lawp)

o L alp 0,6 W 0+ D e ep 1)+ Gk - KBl (36)
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where

3 1
1 S gKAN g (37)
- 35mlt (s — m3. + imyTye)’

3 2
2 s gKAN g (38)
- 35mlt (s — m3. + imy Ty’

3 _ S39KAN*93 (39)
35mit (s = m%. + imy:Ty+)’

and with the same definitions used in Ref. [1],
|
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b,=p-k, by=ppx-k, b,=q-k
c,=(p+k)-p, ca=(p+k)-pr. cx=(p+k)-k,

1 1

_ 2
¢ = bA_;cAck’

1 2
cszl_ECA’ szm/\_;c/\,

1

03:—ck k2, c4z2bp+k2, c5:4bp+k2.

The scattering amplitude for spin-9/2 nucleon resonan-
ces is obtained by using the same procedure as in the case
of spin-7/2 resonances. The amplitude for spin-9/2
nucleon resonances can be written as

_ 1 1
M), = dnys{s £ my-(F+ )} [2101(30% + 0203){_PAD +;CA(P + k)y} —3cy(Tet + C2C3){_ku + ;Ck(l? + k)y}

+c1(7ct + 30203){—ﬂA +%CA(ﬂ+ k)}{—h +%(1’f+ K (p+ k)y} —3(7ci + 0203){—1% +%CA(IJ+ k)}

x{—k+§ck([/+k)}{—p,\p+§c,\(p+k)y}+66102{ Pa+- CA(%+%)}{_k+%Ck(ﬂ+k)}

okt alp 40, b6 W= I+ D e =ep 1)+ PR = Kbl (40)

with a similar definition of G, G,, and G5 as in the case of
spin-7/2 resonances, except in the case of spin-9/2
resonances the coupling constants G;, G,, and G5 are
multiplied by the regularization factor of 35s/63my..

E. Decomposition of the scattering amplitude

As in our previous work [1], we decompose the scatter-
ing amplitude given by Eq. (36) into the gauge and Lorentz
invariant matrices M,

(st u, k*)M; (41)

p7

HM@

where the gauge and Lorentz invariant matrices M; are
given by [13,14]

= s, (42)

My =ys[(2g—k)-eP-k—(2q—k)-kP-¢],  (43)

Ms =ys(qx - k¢ — q - €f), (44)
My = i€, ,.r" g e’k?, (45)
Ms =ys(q-ek* —q - kk-e¢), (46)
Mg = ys(k - ef = K*¢), (47)

|

with P =1(p+ p,), and €,,,, is the four-dimensional
Levi-Civita tensor with €5,3 = +1. Note that for the sake
of completeness, throughout this paper we give the for-
mulation of electroproduction, where the values of k% and
k - € are nonzero. For photoproduction, by setting k> and
k - € to zero, obviously, only the matrices M; to M, exist.

The functions A; depend on the Mandelstam variables
and the square of virtual photon momentum. The functions
are useful in the calculation of cross-section and polariza-
tion observables. The functions A; for both spin-7/2 and
-9/2 resonances are given in Appendix A.

Obviously, we can see that both spin-7/2 and spin-9/2
amplitudes have a similar pattern. This is different from the
case of the spin-5/2 particle. On the other hand, the main
difference between spin-7/2 and -9/2 amplitudes is that the
momentum dependence increases as the spin number
increases.

III. RESULTS AND DISCUSSION

The isobar model used in the present work is similar to
that of previous work [1], except that in the present
calculation it includes the four nucleon resonances with
spins 7/2 and 9/2 listed in Table I. In total, we have used
21 nucleon resonances with spins ranging from 1/2 to 9/2
in our calculation.

As in the previous work [1] there are a number of
unknown parameters both in the background and resonance
terms. They are dominated by the coupling constants of
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TABLE II. List of the background parameters, the hadronic
form factor cutoffs, and the y*>/N obtained in the present work
compared with those obtained in our previous study [1]. Note that
N is the number of fitted data points. Notation of the parameters is
as in our previous studies [1,17].

Parameters Present work Previous work [1]
gxan/Van -3.00 -3.00
sy / VAT 0.90 1.27
Gy./4n —0.18 0.15
GY./4rn 0.72 0.26
G,‘Ql /4n -0.63 1.46
G%I /4n —2.94 0.07
Ga(1600)/ 47 -7.19 8.41
GA(]S]O)/47T 10.0 -9.61
Ag (GeV) 0.70 0.70
Ag (GeV) 1.18 1.31
Ohaq (deg) 90.0 130
paa (deg) 0.01 177
1*/N 1.25 1.58

resonances and background terms. These parameters were
varied by fitting the calculated observables to nearly 7400
experimental data points to produce the minimum y?/N
value by using the CERN-MINUIT code [15].

The extracted background parameters are given in
Table II, where we also display the corresponding param-
eters of our previous study for comparison. Since the
leading coupling constants were varied within 20% of the
SU(3) symmetry breaking, i.e., ggay/ V47 = —4.4 to =3.0
and ggsy/V4r =09 to 1.3, while the best fits were
achieved by choosing the lowest values, it is obvious from
Table II that the background terms are suppressed in both
present and previous investigations. This conclusion is also
supported by the fact that the extracted hadronic form factor
cutoff of the Born terms is very soft, i.e., Ag = 0.70. Note
that this cutoff value is the lowest allowed value during the
fit process. The soft cutoffs found in the previous and
present investigations might indicate the need for different
types of form factor [16]. However, since our primary aim
in this work is to investigate the effects of spin-7/2 and
-9/2 nucleon resonances, we will address the problem of
soft cutoffs in our future studies.

The resonance cutoff Ay is found to be larger than the
background one. This indicates that the resonance contri-
butions are not extremely suppressed. Nevertheless,
Table II indicates that the suppression is greater in the
present work, which is indicated by a smaller cutoff. This
phenomenon can be understood, because the magnitude of
the scattering amplitude increases after the inclusion of the
spin-7/2 and -9/2 resonances. Therefore, to fit the observ-
ables the resonance cutoff must be decreased; i.e., the form
factor suppression must be increased.

The coupling constants of hyperon resonances are large,
both in previous and present works. This is consistent with
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the finding of previous works, and we note that the two
hyperon resonances are substantial to increase the values of
the leading coupling constants [18].

Since the number of free parameters is larger in the
present work, it is clear that the value of y? of the present
work is smaller. However, we note that the values of
1%/Ngor in the previous and present works are 1.58 and
1.25, respectively, where Ngof = Ngaa — Npars Naaia 18 the
number of fitted data, and Npar is the number of free
parameters. This indicates that the inclusion of the four
resonances with spins 7/2 and 9/2 still improves the
performance of the present isobar model.

For completeness, we compare the fitted resonance
coupling constants obtained in the present work with those
of our previous work [1] in Table IV of Appendix B.
Obviously, except for the difference between the two sets
of coupling constants, there is no certain pattern in the
coupling constants, which distinguishes the present work
from the previous one. Nevertheless, we may conclude that
the fit recalculates all couplings after the inclusion of spin-
7/2 and 9/2 nucleon resonances. Furthermore, we also
note that for higher spin resonances the corresponding
coupling constants tend to be large, especially for the spin-
9/2 ones. Presumably, this behavior originates from the
regularization factor of s*/m%, in the propagator [see
Eq. (28)], which severely suppresses the scattering ampli-
tude due to the large resonance masses. A milder effect, but
still significant, is found in the case of spin-5/2 resonances,
where the regularization factor in the propagator is of
s2/m% [1,7,8].

A direct comparison between the presently obtained
coupling constants with those available in the literature
cannot be easily made because there exists a conceptual
difference in their definitions [19,20]. It is obvious that in
the present approach, known as the Breit-Wigner plus
background parametrization approach in Ref. [20], the
extracted coupling constants are model dependent; i.e.,
they depend on the number of resonances, hadronic form
factors, energy-dependent widths, and other approxima-
tions used in the model. This is in contrast to the pole
extraction method which is less model dependent [20]. We
also note that in the most recent Review of Particle
Properties of PDG [2,21], the properties of baryon reso-
nances determined at the pole position are listed before
those evaluated by using the Breit-Wigner approach.
Furthermore, the extracted coupling constants given in
Table IV of Appendix B are the product of electromagnetic
and hadronic couplings. Different from the coupled-chan-
nels models, the present single-channel analysis cannot
separate these couplings.

Nevertheless, as shown in Refs. [17,22], for a quick
comparison we can calculate the relative decay widths
V/IyNUk#A /Dot from the product of the electromagnetic
and hadronic coupling constants and compare the result
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3.0~
TABLE III.  The relative decay widths /I',yI'k+p/Tioa Ob-
tained in the present work compared to those listed by the PDG [2] 257 e P(Y. KA
and obtained in a constituent quark model (QM) [23]. The error 20t
bars listed in the last column (present work) are obtained from the 2 s
MINUIT code. g
& ol CLAS 2006 —=—
3 Present work
AV Iﬂ;/Nl—‘K*A/Ftotal (X 10 ) 0.5 Previous work ——-—-
Resonances  JP oM PDG Present work oL ‘
16 17 18 19 20 21 22 23 24 25
N(1650)  1/27 1241719 9.07+£571  9.46+0.04 W (GeV)
N(1675) 5/27 0.00£0.00 0.67+0.67 11.09+0.00 FIG. 2. Calculated total cross sections obtained in the previous
N(1680) 5/2% 0.25+0.00 - 0.20£0.00  [1] and present works compared with the experimental data from
N(1700) 3/2= 073+£0.36 2.124+0.87 3.40+0.01 the CLAS Collaboration (solid squares [27]). Note that the
N(1710) 1/2t 1.15+025 7.84+630 3.93+0.04 experimental data shown in this figure are only for comparison
N(1720) 3/26 426108 10.95+£841 10.13 +0.04 and were not included in the fitting process.
+ . . . .
N(1860) 5/ 2_ 3.47+0.03 with those obtained in a constituent quark model [23] and
N(1875) 3/2 e 3.27 £0.02 from the PDG [2].
N(1880) 1/2*0.00 +0.00 7.84 £0.05 The radiative or electromagnetic decay width to the yN
N(1895) 1/2- 3.52+0.10 channel can be obtained by using the formula given by
N(1900) 3/2+ e 87.49 £ 0.04 PDG [2],
N(2000) 5/2t 0.25+0.15 2.95 £0.09 )
N (2060 5/2- +0.10 65.47 +£0.02 k 2my
(2060)  5/2" 07125z T = — (A 4 A, (48)
N(2120)  3/2- 4.06 £ 0.02 w (2] + )my:
1 *0.00 £0. .82 £0.01 . .
x(;gg) ;/ i_ 0-00 +t? 4?0 (9) 28 N 8 82 where k is the photon three-momentum in the resonance
( ) / 0952929 : : rest frame, J is the nucleon spin, and A; , and A3, are the
+ . . . .
N(2220) 9/2% 0.18£0.04 0.35+£0.00 electromagnetic decay amplitudes for their respective
N(2250) 9/2~ 0.00+0.00 0.40 £ 0.07 helicities or, in brief, the helicity amplitudes that can be
calculated from the electromagnetic coupling constants as
0.20 -
0.15¢
0.10 i
0.05} |
= 0.00
g 0.25¢
= 020f
0.15¢
€ o0} i
o 0.05FF
= 0.00 1
040t
030} fra
020} f °
0.10} 4 7
000l
16 1.8 20 22 24 26 16 1.8 20 22 24 26 1.6 1.8 20 22 24 26 28
W (GeV)
FIG. 3. Differential cross sections as a function of the total c.m. energy W for different values of the kaon c.m. angle. The

corresponding value of cos @ is given in each panel. Experimental data are from the CLAS Collaboration (solid squares [27] and open
squares [28]), LEPS Collaboration (solid triangles [30]), and Crystal Ball Collaboration (open circles [31]). Notation of the curves is the

same as in Fig. 2.
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demonstrated in Appendix B. For the hadronic decay width
to the KT A channel, we use [24]

_ lq| 2mp

T 27 (2 + Dmy:

1—‘K*A | KTA 27 (49)
where ¢ is the kaon momentum in the resonance rest frame
and Ag-+, is the hadronic decay amplitude that can be
calculated by means of hadronic coupling constants.

In the case of spin-1/2 nucleon resonance we have

simply [25]

Ay =

PHYSICAL REVIEW D 96, 054004 (2017)

B Ex F my
Ag+a = —9k+an' T ome
A

For nucleon resonances with spins 3/2 and higher, the
formulas are given in Appendix B. As previously stated,
since we cannot separate the extracted resonance coupling
constants, we will use their product to calculate the relative

decay width /I, yI'k+p/Tior- The result is shown in
Table III, where we also display the result obtained by
the quark model [23] and from the PDG [2].

Table III indicates that, except for the N(1675), the
relative decay widths obtained in the present work are in
good agreement with that of PDG. In fact, for both

(51)

Ll

E 1 b i
£ 2195 f 225 f 22550 ]
?‘b ; : : : T ; : : “““‘ : : ]
o 03[ 2285 J 2315 T 2335 +F 2355 I 2375 ]
S o2f j’jﬁ: R » L I 4
% 8(1) ;«-l.._., , :;.n_m, J/lt:}-..._ .)""/\:}.n_.u jm | .
03} 2.395 T 2415 T 2435 T 2.445 T 2455 ]
0.2 [ i ol I [ H
“F e B L o P o
0.1¢ I f A__,;}ﬂ I j
0.0 Foa=s ; AR pbeay f——AapiLLay ey A pratty |
03 2475 g 2495 T 2525 T 2555 T 2575 ]
0.2} s of 5 1 1
0.1¢ f )y’f\ f __m}ﬂ ,,..JA
0.0 [rmapastapases; . Ltacpmsmapasat . Llespusmdpasatl . foceay e ——
03f 2.595 T 2.625 T 2.645 1 2.665 1 2.695 1
0.2¢ T T I I A
0.1}F ﬁ a_jf\ J qu _“,ﬂ
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0.2¢ T A A A Al
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0.0 o L & s & & i & & "
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cos 0

FIG. 4. The same as in Fig. 3, but for the angular distribution of the differential cross section with different values of the total c.m.
energy W. The corresponding value of W in GeV is given in each panel.
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N(1650) and N(1720) resonances the agreement is excel-
lent. This result is important because we note that the
two resonances are the well-established resonances with a
four-star rating. In the case of N(1700) and N(1710)
resonances we still obtain the same order of magnitude as
the PDG values. By comparing our result to that of the
quark model calculation [23], we can safely say that in most
cases the relative decay widths are in the same order of
magnitude.

Comparison between the extracted masses and widths of
the resonances obtained in the present analysis and those of
PDG is shown in Table V of Appendix D. Obviously, in
almost all cases the extracted values are within the PDG
limits. This is not too surprising, because during the fitting
process we put the PDG values with their error bars as a
constraint to the fitted parameters. In very rare cases, we
have to slightly relax this limit in order to get the best y2,
e.g., in the case of N(1440) total width. Note also that we
add a 100 MeV error bar if it is not provided by PDG. This
choice seems to be trivial, but we believe that this is quite
fair since, as shown in Table V, the largest PDG error bar is
300 MeV.

Comparison between the calculated total cross sections
from our present and previous works with experimental
data is shown in Fig. 2. Although the total cross sections
shown in Fig. 2 were not included during the fit process,
sizable improvement is exhibited by the present model,
especially at W ~ 1.85 GeV, where a missing D;3(1895)
was predicted almost two decades ago [17]. At this stage it
is important to note that the peak around 1.85 GeV in the
cross section was finally assigned as the P3(1900) state
[26], instead of the D;3(1895) one. Note also that the
discrepancy between the calculated total cross sections and
the CLAS 2006 data [27] is understandable, since the
CLAS 2010 data [28] used in the fitting database tend to be
smaller at this kinematics and also have smaller error bars.
Obviously, the best fit would be achieved by reproducing
the CLAS 2010 data [28]. In the latter, however, only a
differential cross section and recoil polarization were
reported.

More information can be explored from differential cross
sections, as shown in Figs. 3 and 4. The energy distribution
of the differential cross section displayed in Fig. 3 reveals
the fact that the improvement is more apparent in the
forward direction. Obviously, the experimental data are
more scattered in this case. As a consequence, the best fit
yields a democratic explanation of all available data,
as clearly shown in Fig. 3, in the case of cos@ = 0.90.
At this stage it is important to mention that the predicted
cross sections of hypernuclear photoproduction and
kaon photoproduction off a deuteron are very sensitive
in this kinematics, since the dominant contribution comes
from the forward region [29]. Therefore, a reliable descrip-
tion of the elementary cross section at this kinematics is
urgently needed. Furthermore, an accurate cross-section
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FIG. 5. A recoil polarization as a function of the total c.m.
energy W for different values of the kaon c.m. angle. The
corresponding value of cos@ is given in each panel. Notation
of the curves and experimental data is the same as in Fig. 3.

measurement at the forward directions would become the
most challenging experiment in the future.

In the backward direction (cosd = —0.70) we note
that the inclusion of spin-7/2 and -9/2 nucleon reso-
nances slightly improves the agreement between our
model and experimental data. This is more apparent
in Fig. 4, especially in the lower energy region, where
the cross section tends to slightly increase as cosé@
approaches —1.

Since the recoiled A decays into a nucleon and a pion,
while the decay rate depends linearly on its polarization, the
A polarization data can be obtained directly from experi-
ments. In our previous works, these data were very
important to reveal the existence of the narrow nucleon
resonance at W~ 1650 MeV [32]. The existence of this
resonance was indicated by a sudden drop in the A
polarization near 1650 MeV.

The energy and angular distributions of the recoiled A
polarization are exhibited in Figs. 5 and 6, where we
compare the results of the present and previous works
with experimental data obtained by different collabora-
tions. In Fig. 5 we can see that both results indicate the
sudden drop of polarization, although no narrow reso-
nance is included in both calculations. However, it is
interesting to see that for cos @ = 0.3 both models cannot
perfectly reproduce the experimental data. A thorough
investigation of this subject will be considered in our
future studies.

From Figs. 5 and 6 it is obvious that the improvement is
more apparent at higher energies, which is understandable
since the spin-7/2 and -9/2 nucleon resonances have
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FIG. 6. The same as in Fig. 5, but for the angular distribution of A recoil polarization with different values of the total c.m. energy W.

The corresponding value of W in GeV is given in each panel.

higher masses than the lower spin ones. Figure 6 shows
that the predicted polarizations of the previous and present
works are more distinguishable at high energies. At this
kinematics the inclusion of spin-7/2 and -9/2 resonances
slightly increases the number of oscillations, and the effect
is more apparent at backward angles. Unfortunately,
experimental data are only available near forward angles.

As mentioned in our previous work [1], the photon and
target asymmetries could become a stringent constraint on
the proliferation of phenomenological models that try to
explain the kaon photoproduction data. This happens
because the asymmetries depend sensitively on the ingre-
dient of the scattering amplitude. Therefore, small changes
in the fitted parameters could result in dramatic changes in
these asymmetries.

We compare the calculated photon asymmetry of our
present and previous works with experimental data in
Figs. 7 and 8, whereas for the target asymmetry the
comparison is given in Figs. 9 and 10. Clearly, the most
significant improvement after the inclusion of the spin-
7/2 and -9/2 resonances is obtained for these two
asymmetries. In most cases shown in Figs. 7-10 the
agreement of the calculated asymmetries and experi-
mental data is substantially improved. Thus, we believe
that the role played by the spin-7/2 and -9/2 resonances
is more important in the case of photon and target
asymmetries, rather than in the case of the differential
cross section.

Finally, we show the comparison of phenomenological
calculations and experimental data for the beam-recoil
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FIG.7. Photon asymmetry as a function of the total c.m. energy

W for different values of the kaon c.m. angle. The corresponding
value of cos @ is given in each panel. Notation of the curves is the
same as in Fig. 2. Experimental data are from the LEPS
Collaboration [30] (solid squares) and the GRAAL Collaboration
[33] (solid circles).

double polarizations C,, C,, O, and O, in Figs. 11-18.
In our previous work, we have stated that these observables
are very interesting since experimental measurements
indicate that the A hyperons are produced with
100%  polarization as seen from the relation

R=,/C2+ C§ + P2 =1.01+0.01 [34]; i.e., all of the

photon’s helicities are transferred to the hyperon. To
account for this phenomenon, a simple theoretical ansatz

0.6 T " .
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0.0 f==fmm=n [ I 1 [

-0.2

038

0.6

W 04

0.0
02 1.833 ] 1.883

0.8 ]
0.6 ] N
0.4 AN 1 / \ e -
0.2 e T / it

00 - o
o2l 1994 [~ 2196

-1.0  -05 00 0.5 1.0 -05 00 0.5 1.0
cos 0

FIG. 8. The same as in Fig. 7, but for the angular distribution of
photon asymmetry with different values of the total c.m. energy
W. The corresponding value of W in GeV is given in each panel.
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FIG. 9. Target asymmetry as a function of the total c.m.
energy W for different values of the kaon c.m. angle. The
corresponding value of cos@ is given in each panel. Notation
of the curves is as in Fig. 2. Experimental data are from the
GRAAL Collaboration [33].

was proposed in Ref. [34]. In this framework, the photon
undergoes a hadronization process and turns into a ¢» meson
in a 35, state. Thus, all of the photon “spin” can be
successfully transferred to the created hyperon. However,
in this ansatz the photoproduction process cannot excite a
resonance (N* or A) in the s-channel, and the predicted
total polarization for the double polarizations O, and O,

ie, R=,/0% + 0} + P>~ 1, is only partially fulfilled

Y. KHA

05 1.649 1.676

~10 05 00 05 10 -05
cos O

FIG. 10. The same as in Fig. 9, but for the angular distribution
of the target asymmetry with different values of the total c.m.
energy W. The corresponding value of W in GeV is given in
each panel.
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FIG. 11. Beam-recoil double polarization observable

C, as a function of the total c.m. energy W for different
values of the kaon c.m. angle. The corresponding value of
cos® is given in each panel. Notation of the curves is the
same as in Fig. 2. Experimental data are from the CLAS
Collaboration [36].

[35]. Therefore, further phenomenological or theoretical
explanation to this end is urgently required. In view of the
present work, where the nucleon resonances dominate the
ingredient of scattering amplitude, we believe that it is
important for the present isobar model to accurately
reproduce the experimental data of these double-polariza-
tion observables.
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FIG. 12. The same as in Fig. 11, but for the angular distribution
of the beam-recoil double polarization observable C, with
different values of the total c.m. energy W. The corresponding
value of W in GeV is given in each panel.
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FIG. 13. The same as in Fig. 11, but for the beam-recoil double
polarization observable C,. The corresponding value of cos @ is
given in each panel.

In the previous work [1] we have nicely reproduced
these observables. However, from Figs. 11-18, we can
conclude that substantial improvement can still be
achieved by including the spin-7/2 and -9/2 resonances
in this isobar model. Especially in the case of double
polarization C, shown in Fig. 12, the angular distribution
of this polarization can be perfectly reproduced within
the experimental error bars. A similar result is obtained in
the case of the O, and O, observables, as clearly shown
in Figs. 16 and 18.

-0.5 2.035 ] 2.126

FIG. 14. The same as in Fig. 12, but for the beam-recoil double
polarization observable C,. The corresponding value of W in
GeV is given in each panel.
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FIG. 15. Beam-recoil double polarization observable O
as a function of the total c.m. energy W for different values of
the kaon c.m. angle. The corresponding value of cos 8 is given in
each panel. Notation of the curves is the same as in Fig. 2.
Experimental data are from the GRAAL Collaboration [35].
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FIG. 16. The same as in Fig. 15, but for the angular distribution
of the beam-recoil double polarization observable O, with
different values of the total c.m. energy W. The corresponding
value of W in GeV is given in each panel.

IV. SUMMARY AND CONCLUSION

We have derived the formulas for spin-7/2 and -9/2
nucleon resonance amplitudes by using the gauge-invariant
formulation proposed by Pascalutsa and Vrancx et al. These
amplitudes were included in our previous isobar model of
kaon photoproduction, and the model was refitted to the same
experimental data used in the previous model. Two nucleon
resonances with spin-7/2 and two nucleon resonances with
spin-9/2 were taken into account in this study. Significant
reduction of the )(2 /N value was obtained, and the agreement
of the model calculation and experimental data was improved
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FIG. 18. The same as in Fig. 16, but for the beam-recoil double
polarization observable O_. The corresponding value of W in
GeV is given in each panel.

in almost all observables considered in the present study. A
substantial improvement in the description of double polari-
zation observables was observed after the inclusion of these
resonances in our isobar model, i.e., the beam-recoil polari-
zation C, and C_, as well as O, and O,.
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APPENDIX A: FUNCTIONS A; FOR SPIN-7/2 AND -9/2 RESONANCES

Note that in this appendix we use my = m,,. The extracted functions A; given in Eq. (41) for spin-7/2 resonances can be
written as

1
A = {1001(7& +3cye3) (s £ my-my) + 6(5¢} + c2c3){(m3\ck —b,cp) £my-my <— CrCp — bp> H G,
s
1 1 2, )
+§(m,,—|—m,\) (mycp —mpc,) & my- mpip =~ CAC 10¢; (¢; —bpcs)—;k cr¢, + (5S¢t + cpe3)
1 5 5 2, 1
_bp my j:;mN*cA (5C1+C2C3)i5mN* (Cl—bpcs)(7C1+C2C3)—;k C1C2Cp G2+mp E(mp—l-mA)

1 1
X {(s + my-m,) |:—5CS(7C% + cye3) — 100102s0k} - {(m,,m/\ + Tcp) £ my- <smpcA + 7mA>} (5¢% + cyc3)

1 1
— |:(pr/\ — mpmACk) :IZ m py« <mAbp —;mpCACk):| (—IOCICS - 2C2;Ck> } + {(4mPCA + 4mACp + mACk>

4 1
+ my- <4mpmA Tt sckCA> }(50% + ce3) F Smyeci (Tei + 30203)} Gs, (A1)
1 2ie 2 2.2
Az = PR —12k (SCI + CzC3)(CA + mN*mA>G1 + S(S + mN*mp) (Cl - prS)(7C1 + C2C3> _;k C162€)
K

1 1
- m,k* (mA + —mN*cA> (5¢% + cye3) + 2{(mpmAck —b,cp) £my- (—mpcAck - mAbp) }
s s
1
X {SCI(prS - Cl) +;k2C2Cp}:| G2
1 ’ ) 4
+m, mA:I:;mN*cA k*| 5¢1 + cpc3 = C2CkCp +20cci(cy = byey)
) 1 1
+2k*S (mycp +mpc,) £ my- m,,mA+;cAcp 501€S+E020k

2
5y {163+ eac) 00, 20) - crea (242, ) || . (A2)

1
A3 = 6Ck(5C% =+ C2C3) <m,\ + —mN*c,\> + IOmN*Cl (7C% + 3C2C3):| G]
S

1 1 1 2
+ > H(m,,cA —mpc,) £ my- (mpmA - ECACF> }{10c1 <cl +b, <1 + ;CA>> - ;k2c2c,, + (5¢2 + c2c3)}

1 1 2
— bp <mA j:;mN*cA> (SC% + C2C3) + SmN*{ (Cl + bp <1 +ECA)> (76% + C2C3) —Ek2C1C2Cp}:| G2
1 1 ) 1
+§ml, 5(s £ my-my)< |1 +Ec,\ (7et + cac3) —20102;%

1 1
- {(mpmA + 7CA) + my+ (;mpCA + 7mA> }(SC% + C2C3) - {(prA - mpmACk) + M = (mAbp —;mpCACk>}

1 1
X {1061(1+SCA> —ZCZSCk}:|G3, (A3)
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1
A4 = |:6Ck(5C% =+ C2C3) <m,\ + —mN*cA> + IOmN*Cl (7C% + 3C2C3):| G]
S

1 2
+ H(mpcA —mpc,) £ my- <mpmA - ;cAcp> }{1061(61 —b,c,) — ;kZCQCp + (5¢ + czc3)}

N =

1 2
- bp (mA j:;mN*cA> <5C% + C2C3) + SmN*{(Cl — bpcs)(7C% + C2C3) - ;k2C1C2Cp}:| G2

1 1 1
+ M |:5(S + mN*mI,){—cs(%% + cre3) — 2c1c2;ck} - {(mpmA +Tcp) £ my- <;mpc/\ + 7mA> }(SC% + ¢yc3)

1 1
- {(prA —mympcy) £ my- <mAbp - EmpcAck> } X (—10(3165 - 26‘2;Ck>:| G3, (A4)

1
As = p— {605(50% + ca03)(cp £ my-my)Gy
K
1 1 , 2 1 ,
+§ S(S :F mN*mp) - bp+bA—;CAC5 (7C1 +C2C3)+;C1C2C5Cp —|—mpc5 mA:I:;mN*cA <5C1 +C2C3)

1 1 1
+ 2{(mpm,\ck —b,cp) £my- (—mpc,\ck - mAbp) } X {56’1 <bp + by — —CACS) — —cchc5H G,
s s s
1 1 ) 4 1
—l—mp —5 mA:tgmN*CA Cs 5C1+C2C3—§C2Ckcp +2OC1Ck bP—’_bA_ECACS
1 , 1 1
=9 (mycp +mpc),) & my- mpmA+;cAcp Sci| 4by —k ~ L CACs —|—Ec205ck

1 1 1
+ SmN*{E (7¢2 + cyc3) <k2 —-2b, + ;cAcs) + cycycs <1 +;cp> H G3}, (AS)

A(, = {6{(111/\.9 + mpCA) + m = (CA + umA)}(5C% + C2C3):| Gl

1

1 2
+ 3 H(mpcA —mpc,) £ my- (mpmA - ;cAc,,> }{(SC% + ca¢3) + 10c(¢q + bpey) = ;czc4cl,}

1 2
+b, (mA + ;mN*cA> (5¢1 + cye3) £ SmN*{(7c% +cac3)(cy + byeg) = ;clczc4cpH G,

1 1

+ 2™Mp [S(S + mN*mP){(7c% + cye3)cy — 2¢10o (1 + ;c,,) } + (5¢2 + ¢5¢3)
1

X q (m,mp —=5cp) £ my- SMpCA ~ Smp

1 1
+ 2{5c1cs + ¢, <1 + —c,,) }{(mpm,\ck —b,cp) £ my- <—mpcAck - mAbp) H G;. (A06)
s s
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For spin-9/2 resonances the functions are given by
1
A = {6(210‘1‘ + 14cicyes + c363) (s £ my-myp) + 8¢ (Tc3 + 3c¢;c3) { (micy —bycp) £ my-my (— Crep — bp) }} G,
s
1
+§(m,, +mp) | =(mycp —mpc,) = my- | m,my ——cAc,,
2 6 1 2
x 4 3(7ct + cye3)(cy = byey) = k creac, +ci(Tet +3eaes) ¢ — b, | —mpy £—my-cy )i (Tei + 3eacs)
s
2 3.2 2
+ my-q21ci(cy = b,c,)(3ct + cac3) _Ek crc,(Te] + cac3) ¢ |Gy
! 2 ! 2
+m, 3 (m, +mp)q (=s £my-m,) |=21c,c; (3 + cpe3) = 3Eczck(7cl + cre3)
1 2
— C —(mpm,\ +9CA) + M+ ;mpc,\ +9mA (701 +3C2C3)
I , 2
+ 3| =(bpcn —mympcy) £ my- | mpb, — ;mpc,\ck cs(Tet + cre3) + ;clczck

5 1
+ ¢ {—(Smpc,\ +5mpc, +mpcy) £ my- <5mpm,\ —l—;cpc,\ + ;ckc,\) }(7c% +3¢y¢3)

F 3my (21t + 14c3cye5 + c%c%)] Gs, (A7)
1
AZI 16k C](7Cl —|—3czc3)(—cA:|:mN*mA)G1
t—m%

1 1
+ {3(s :I:mN*m,,){7c1(bpcS —c1)(Bct +cacs) +—k*eae, (Tet + 0203)} —m,k*c, (—mA :I:—mN*cA> (7¢2 4+ 3cyc3)
s s
1 2 2,
+3 —(mpmACk—pr/\)ZlZmN* ;mPCACk—m/\bp X (7CI+CZC3)(bPCS—C])+Ek C]Cch GZ
2 2 2 12,
mA:t SN CA k*ci(Tci +3cyc3) +6¢k(c —bpeg) X (Tet + cpe3) ——k*cieacie),
s
2 1 2 2
+3k* =(mpcp +mpcy,) Emy | mymp +— SCAC) cs(Te1 + cpe3) +=cicpcy
s
1
+ my- {21c1 3¢+ cre3)(KPey—2b,) —3k202<1 +c,,> (7c3 +c2c3)}] G3}, (AB)
s
1
Ay= [8ckc1(7cf+3czc3)< my+— mN*cA>:l:6mN*(21c + l4c czc3+czc3)]G1
I I , 1 6, ,
+§ —(myca—mpc,)Emy. MpIA=—CAC) 3(Tci+caes)| e +b, 1+;c,\ —;k ciexc,+cy(Tei+3cyc3)
b ! 7¢243 +3 7 b, 1 ! 3c? 1k2 e G
+ pcl mA:FEmN*cA (C1+ 02C3) mN* Cq C]+ p +;C/\ (C1+C2C3)—E C2Cp( C1+C2C3) 2
1 1 , 1 ,
—|—§m,, 3(sFmy-m,) Eczck(7c1+czc3)—7c1 1+;cA (Bci+cac3)
1 , 1
+c19 (mympa+9cy) Fmy- Empc,\+9m,\ (Tet+3cy03) 439 (bca—mympcy) £ my- Empc,\ck—m,\bp

1 2
X{<1 +—CA> (7C%+C2C3)——C1C2Ck}:|G3, (Ag)
N N
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1
Ay = {8ckc1(7c% + 3cs03) <—mA + —mN*cA) + 6my (21ct + 14c3cye5 + c%c%)] G
s
1 1 2 6,5 2
+ 2 —(mycp —mpc,) £ my- | mymy — SEAC 3(7et + cpe3)(cy = bpey) = ;k cicx¢, 41 (Tet + 3cpc3)
1 1
- bpcl (—mA + SmN*cA> (76‘% =+ 3C2C3) + 3mN* {7Cl (C] - bPCS)(3C% + C2C3) - ;kZCZCp(7C% + C2C3)}:| G2
1 2 1 2
+ 7™M 3(=s £ my-m,)q =Tcycg(3ct + cac3) — ;c2ck(7c1 + ¢r03)
1 2
— 13 —(mpmp +9¢cp) £ my- RN +9my | ¢(Tc7 +3cy¢3)
1 , 2
+ 34 (bycp — mympcy) £ my- SMpCaC = mpb, —c (et + cpe3) — Scieac G;, (A10)

1
t—7 {8C1C5(7C% + 3C2C3)(—CA + mN*mA)Gl
K

AS ==
1 1 , 1 ,
—1—5 3(s £ my-m,)3 Tey | b, + by — S CACs (3¢t + cac3) —;czcscp(7cl + cre3)
1 2
+mPClC5 —mp iEmN*CA (7C1 +3C2C3)
1 , i 2
—|—3 —(mpmAck—bpcA):I:mN* ;mpcAck—mAbp (7C1 +C2C3) bp-f—bA—;CACS —EC1C2C5CP G2
1 1 , 1 , 6
+mp mp :F;mN*CA 5C1C5(7Cl+3C2C3)+3ck bp+b/\_;cACS (7C1+C2C3)—EC102C5C]{CP
3 i , | , 2
+§ (mycp +mpc,) F my- m,,mA—i—;cAc,, 4by — k ~ S CACs (Tet + cac3) +;clczcsck

3 1 1
Zl: EmN* {7C1<3C% + C2(j’3> <k2 _ 2bq + ;CAC'S) + C2C5 (1 + ;Cp> (7C% + C2C3)}:| G3}, (All)

Ag = [8{=(mps +mycn) £ my (cp +mymp)}ei(Tei +3eae3)|Gy
1 1 6
+ 5 H—(mpc,\ —myc,) £ my- (mpm,\ - ;c,\cp> }{01(70% +3cy¢3) +3(7¢t + cae3) (e + byey) — ;clczc4cp}

1 3
+b, (—mA + smN*cA> c1(7¢2 +3cyc3) £ mys {21c1 (3¢} + cye3) (e + b,c,) — Ec2c4cp(7c% + CQC3)}:| G,

1
2

1
—cy(7et + 3c203){(mpm,\ —Tcp) F my- <Smpc,\ - 7mA> }

1
+5m, {(—s + mN*mp){2101(3c% + ca¢3)cs — 3¢y(Te3 + cyc3) (1 + ;cp> }

1 1
+ {3(76‘% + crc3)cy — 61 ¢ (1 + Ecp) }{(bpcA —mympcy) £ my- (;mpc,\ck - mAbp> H G;. (A12)

APPENDIX B: EXTRACTED NUCLEON RESONANCE COUPLING CONSTANTS

In this appendix we list the extracted coupling constants of nucleon resonances used in our analysis and compare them
with those of our previous study [1]. Note that not all resonances used in the present study were available in the previous
one. Furthermore, for the sake of brevity we do not list the corresponding error bars.
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TABLEIV. The extracted nucleon resonance coupling constants
from fits to experimental data in the present and previous [1]
works.

Coupling Loray Jr Present Previous
G (1440) /47 Py 1/2* —0.17 1.52
Gl a0y /47 Dys 3/2° 0.30 —0.00
G§v231520> /4n -0.91 0.68
Gy hisao) /47 0.29 0.07
s /47 0.32 -0.32
Gy(15335) /47 S 1/2- 0.13 —-0.15
G(1650)/47 S 1/27 0.09 —0.04
Gl 75, /47 Dis 5/2° -2.12 0.01
Gyhers) /47 0.35 0.87
Gyhers)/ 47 —1.88 0.07
Gyhars)/47 -0.63 —0.01
Gx()lsso) /An Fis 5/2F -0.21 2.74
Gy hesoy /47 6.15 0.05
Gy heso) /47 —0.37 2.54
G g0)/47 -3.01 0.44
G o0 /47 Dy 3/2° ~0.10 0.25
G§v2317oo> /4n -0.95 0.62
Gy oo /47 -0.38 0.51
G0y /47 0.43 ~0.20
Gn(i710)/47 Py 1/2+ 0.29 —0.41
Gy /47 Py 3/2% 0.03 0.28
G(Nz()m 0/47 0.22 -0.36
G(stm 0)/47 0.04 0.17
G<N4(>1720) /4 0.08 -0.21
Ghiseo) /47 Fis 5/2+ 0.90 ~2.20
G(Nz()lgém J4n 1.11 -9.99
G(N3()1 w60/ 47 1.23 -2.28
G0 /47 0.48 3.12
Gl g5, /47 Dy 3/2° -0.18 -0.13
G2 s /b -1.76 —0.09
Gl(\?()l s75/47 0.20 -0.54
G5 /47 0.65 0.11
Gy(iss0)/47 Py 1/2* —-0.40 0.33
Gn(is9s)/47 S 1/2- -0.01 0.01
GE\}()1900)/4” Pi3 3/2% 0.23 0.02
Gy hoon /47 0.22 -0.21
GE\?()1900)/4” 0.16 0.05

(Table continued)

PHYSICAL REVIEW D 96, 054004 (2017)
TABLE IV. (Continued)

Coupling Loy JP Present Previous
G g /47 ~0.29 0.38
GV gy /4 Fiy 7/2+ 453

Gz(\%()1990)/4” 167

Gz(\?()1990)/4” 371

Gz(s()199o)/4” —L19

G0 /47 Fis 5/2+ ~0.76 ~1.44
G2 /47 ~10.0 9.75
G /47 ~157 0.33
Gy /47 441 ~4.13
G /47 Dis 5/2° 3.56 ~0.69
G2 /47 ~2.57 0.82
G /47 3.18 -091
G /47 2.73 -151
G/ 47 Dy 3/2- ~0.05 0.05
G,y /47 1.53 1.40
G /47 0.09 0.06
G, /4 ~0.62 -0.57
G0 /47 Gy 7/2" ~1.28

G;?(>2190)/4” 6.08

GS(>2190)/4” 316

G;j(>2190)/4” =305

G /4 Hig 9/2+ 155

Gz(vz()zzzo)/4” 100

Gngzzo)/ 4n 100

G;jgzzzo)/ 4n 10.0

Gy /47 Guo 9/~ -10.0

G;?gzzso)/“” ~10.0

GS<>2250>/4” —8.38

69 an ~0.40

N(2250)

APPENDIX C: ELECTROMAGNETIC AND
HADRONIC DECAY AMPLITUDES

To calculate the relative decay widths listed in Table III,
we used Eqgs. (48) and (49) which compute the radiative
and hadronic decay widths, respectively. The former
requires information on the helicity amplitudes A;/, and
A3y, whereas the latter needs the hadronic decay ampli-
tude Ag+,. The helicity amplitudes can be related to the
electromagnetic coupling constants ¢y, ..., g4 by using the
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electromagnetic interaction Lagrangian given by Eq. (10).

To this end we follow the prescription given in Ref. [24]. B e mi. —mi. .
The hadronic decay amplitude required for the calculation Asp= F 4m3. my [2ig) (my- £ my)
of the decay width given by Eq. (49) can be obtained by )
using the same prescription. + ga(my- F my) + 2igs(my- £ 2my)
The electromagnetic and hadronic decay amplitudes for +2g4(my F 2my)], (C2)

spin-3/2 resonances read

e m2,. — m3 gx-an-  [En F myp
Ay = N Ni_2i (my- £ Agipn = +i (Ep £my). (C3
1/2 4m?v 3my [ igimy:(my- £ my) KA = — 3my A E£my). (C3)

+ gomy-(my F my) — 2igs(m3. +m3, £ my-my)

For spin-5/2 resonances the electromagnetic and hadronic

+2g4(myy +myy F my-my)), (C1) decay amplitudes are
|
Ay = 1 /[ —m%)[=2igimy-(my- F my) + gomy-(my- £ my) — 2igz(m%. + m% F my-my)
+Zg4 m3. +mNimN*mN (C4)

m3. —m%
Azpp= 11/0 Mm% —m3)[2ig) (my- F my) + go(my- £ my) +2igs (my- F 2my) +2g4(my- +2my)], (CS)

kAN [En F my
Apen = =i T[S TR — ), (C6)
o

whereas for the spin-7/2 nucleon resonances the electromagnetic and hadronic decay amplitudes read

[m3,.
Aip = 1;5 \mN* —my,)2[=2igymy- (my- & my) + gamy- (my- F my) = 2igs(my. + m* & my-my)
my

+ 2g4 my. +m¥ F my-my)) (C7)
my. —m3,
Azpp = 2my, Nm2. —m3)?2igy(my- £ my) + gy(my- F my) + 2igs(my- + 2my) + 2g4(my- F 2my)),
(C8)

v J4(E
AK+A:j:igK é\N (Ep F my)

E,\ + E2 —m?3). C9
m,. 35m, (Ep £mp)(ER —my) (C9)

Finally, the electromagnetic and hadronic decay amplitudes for spin-9/2 resonances are given by

e my. —my,
Ayp== 16m° 63m My« — my )} [=2igimy-(my- F my) + gamy-(my- £ my)
U my

= 2igs(my. + my F my-my) + 2g4(my. + my £ my-my)], (C10)

2 2
e My — My,

A =
27 06m8. \| 42my

(m%. —m3,)? [2ig) (my+ F my) + ga(my- £my) +2ig3(my- F 2my) +2g4(my- £2my)],  (C11)

Agin === (EZ —m3)%. (C12)
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APPENDIX D: EXTRACTED MASSES AND WIDTHS OF NUCLEON RESONANCES

In this appendix we list the masses and widths of nucleon resonances used in our analysis. We also compare them with
those obtained from the Review of Particle Properties of PDG [2]. For the sake of brevity we omit the error bars of the fitted

masses or widths.

TABLE V. The masses (M) and widths (I") of the resonances used, obtained from PDG [2], and present work (PW). In the case that no

error bars are provided by PDG, we add =100 MeV error bars.

M (MeV) I (MeV)
Resonance PDG PW PDG PW
N(1440) 1430 = 20 1420 350 4 100 200
N(1520) 1515+5 1515 115719 100
N(1535) 1535 £ 10 1541 150 + 25 125
N(1650) 1655113 1670 140 + 30 147
N(1675) 1675+5 1680 150757 130
N(1680) 1685+ 5 1680 130 £ 10 140
N(1700) 1700 + 50 1693 150 + 100 106
N(1710) 1710 + 30 1740 100130 196
N(1720) 1720739 1700 250750 211
N(1860) 18607190 1960 2701430 220
N(1875) 187514 1890 250 4 70 306
N(1880) 1870 + 35 1905 235 4 65 300
N(1895) 1895 + 15 1910 9073 120
N(1900) 1900 + 30 1885 200 + 50 300
N(2050) 2050 + 100 2150 460 + 100 410
N(2060) 2060 + 100 2005 375 425 350
N(2120) 2120 + 100 2052 330 4 45 285
N(1990) 2060 £ 100 2110 240 + 50 190
N(2190) 2190749 2200 500 4 200 300
N(2220) 2250 + 50 2300 4007100 350
N(2250) 2275+ 75 2200 500739 800
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