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We have investigated the effects of spin-7=2 and -9=2 nucleon resonances in the kaon photoproduction
process γp → KþΛ. To this end, the corresponding propagators were derived from the generalized spin
projection operators. To remove the lower spin backgrounds in the scattering amplitude, we used the vertex
factors obtained from the consistent interaction Lagrangians inspired by Pascalutsa and Vrancx et al. The
scattering amplitude was included in our previous isobar model, and the effects of four nucleon resonances
with spins 7=2 and 9=2 listed by the Particle Data Group were investigated by making use of all available
kaon photoproduction data. A significant improvement to our previous model has been observed in all
observables, especially in the beam-recoil double-polarization observables Cx, Cz, Ox0 , and Oz0 .
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I. INTRODUCTION

Recently, we have investigated the effect of different
formulations of spin-3=2 and -5=2 nucleon resonances on a
phenomenological model of an elementary kaon photo-
production process [1]. For this purpose we used an isobar
model, where the scattering amplitude is formulated by
using the field theoretical approach. The background part
of the model was constructed from the standard s-, u-, and
t-channel Born amplitudes along with the K�þð892Þ,
K1ð1270Þ, Λ�ð1600Þ, and Λ�ð1810Þ states. The resonance
part used all nucleon resonances listed by the Particle Data
Group (PDG) [2] with spins up to 5=2 and with at least a
two-star rating. Two different interaction Lagrangians of
spin-3=2 and -5=2 nucleon resonances, i.e., the standard
formulation given in Refs. [3,4] and the consistent inter-
action proposed by Pascalutsa [5], were compared. By
fitting the calculated observables to nearly 7400 exper-
imental data points, it was found that the use of consistent
interaction formulation for the spin-3=2 and -5=2 reso-
nances in the model leads to a better agreement with
experimental data.
In spite of this success, however, there exist four nucleon

resonances with spins 7=2 and 9=2 listed by PDG [2] (see
Table I), where three of them have a four-star rating. Since
their statuses are mostly certain and, as such, they fulfill the
criteria of resonances used in our model [1], we believe that
the inclusion of these resonances in our model is
mandatory.
To our knowledge, in the kaon photoproduction and

electroproduction studies, the inclusion of nucleon reso-
nances with spins higher than 5=2 in the framework of the
field theoretical approach was never considered before.
The reason is also obvious: unless we used the multipoles
approach [6], the formulation of propagator and vertex

factors of higher spin resonances is quite complicated, not
unique, and plagued with the problem of lower spin
backgrounds [5,7–9].
Therefore, it is the aim of this paper to present the

amplitudes of spin-7=2 and -9=2 nucleon resonances and
investigate their effects on the isobar model of kaon
photoproduction. For the sake of completeness and future
studies, we will derive the formalism for electroproduction,
instead of photoproduction, since the latter can be obtained
by setting the longitudinal terms k2 and k · ϵ to zero.
This paper is organized as follows. In Sec. II we

present the formalism of spin-7=2 and -9=2 used in our
investigation. In Sec. III we present and discuss the result
of our calculation and compare it with the result of
previous calculations along with the available experimen-
tal data. We will summarize and conclude our findings
in Sec. IV.

II. FORMALISM

A. The consistent interaction theory

In what follows, we adopt the prescriptions of Pascalutsa
[10,11] and Vrancx et al. [7]. We begin with the gauge-
invariant field Gμν [10] and the interaction operator O3=2

ðμ;νÞλ
[7] to construct the consistent interaction Lagrangian for
massive spin-3=2 particles, where

TABLE I. The status, mass, and width of nucleon resonances
with spins 7=2 and 9=2 used in our calculation [2].

Resonance L2I·2J JP Status Mass (MeV) Width (MeV)

Nð1990Þ F17 7=2þ ** 1990� 120 240� 50
Nð2190Þ G17 7=2− **** 2190þ10

−90 500� 200

Nð2220Þ H19 9=2þ **** 2250� 50 400þ100
−50

Nð2250Þ G19 9=2− **** 2275� 75 500þ300
−270*terry.mart@sci.ui.ac.id
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Gμν ¼ ∂μψν − ∂νψμ

¼ ð∂μgνλ − ∂νgμλÞψλ

¼ O3=2
ðμ;νÞλψ

λ; ð1Þ

with

O3=2
ðμ;νÞλ ¼ ∂μgνλ − ∂νgμλ; ð2Þ

and ψμ is the massive Rarita-Schwinger (RS) field obeying
the RS equation of motion and constraint. In the case of the
spin-ðnþ 1=2Þ particle, the RS equations of motion and
constraint read

ði∂ −mÞψμ1…μn ¼ 0; ð3Þ

γμ1ψμ1…μn ¼ 0: ð4Þ

Since the field Gμν in Eq. (1) contains more indices
than the original one, ψμ, it is necessary to introduce a

new field Ψμ ¼ O3=2
ðμ;νÞλγ

νψλ [7]. As a consequence, in the

case of the spin-ðnþ 1=2Þ particles, the gauge-invariant
field reads

Ψμ1���μn ¼ Onþ1=2
ðμ1���μn;ν1���νnÞλ1���λnð∂Þγν1 � � � γνnψλ1���λn ; ð5Þ

with the corresponding interaction operator given by

Onþ1=2
ðμ1���μn;ν1���νnÞλ1���λnð∂Þ¼

1

ðn!Þ2
X
PðνÞ

X
PðλÞ

O3=2
ðμ1;ν1Þλ1 � � �O

3=2
ðμn;νnÞλn ;

ð6Þ

where PðμÞ and PðνÞ indicate the permutations of all possible
μ and ν indices, respectively. Armedwith Eqs. (5) and (6) we
can construct a consistent interaction Lagrangian for higher
spin particles inspired by Pascalutsa’s prescription for spin-
3=2 particles [11].
The hadronic interaction Lagrangian for the spin-3=2

nucleon resonance N� decaying to a kaon K and a hyperon
Λ shown in Fig. 1 reads [11]

Lhad ¼
gKΛN�

m2
N�

ϵμναβΨ̄∂βϕ
�γ5γαð∂μψνÞ þ H:c:; ð7Þ

where Ψ̄ is the spinor field of Λ, ϕ is the pseudoscalar field
of K, and ψμ is the massive RS field of N�. A consistent
interaction can be constructed from Eq. (7) by replacing ψμ

with Ψμ=mN� , i.e.,

Lhad ¼
gKΛN�

m3
N�

ϵμναβΨ̄∂βϕ
�γ5γαð∂μΨνÞ þ H:c:; ð8Þ

so that in the case of the spin-(nþ 1=2) nucleon resonance,
we obtain

Lhad ¼
gKΛN�

m2nþ1
N�

ϵμνnαβ∂ν1 � � � ∂νn−1Ψ̄∂βϕ
�γ5γα

× ∂μΨν1���νn þ H:c: ð9Þ

The electromagnetic interaction can be obtained by using
the same procedure. Based on Ref. [5] we can write the
Lagrangian for the spin-3=2 particle as

Lem ¼ e
m3

N�
Ψ̄βfðg1ϵμναβ∂αΨþ g2γ5gβν∂μΨ

þ g3γμγρϵρναβ∂αΨ

þ g4γ5γμγρð∂ρgνβ − ∂νgρβÞΨgFμν þ H:c: ð10Þ

Therefore, the consistent interaction Lagrangian for the
spin-(nþ 1=2) nucleon resonance reads

Lem ¼ e

m2nþ1
N�

Ψ̄β1���βnfðg1ϵμναβn∂αΨþ g2γ5gβnν∂μΨ

þ g3γμγρϵρναβn∂αΨ

þ g4γ5γμγρð∂ρgνβn − ∂νgρβnÞΨg∂β1 � � � ∂βn−1F
μν

þ H:c: ð11Þ

The above-mentioned interaction is consistent because it
contains the interaction operator which fulfills

pλi
N�Onþ1=2

ðμ1���μn;ν1���νnÞλ1���λnðpN� Þ ¼ 0; ð12Þ

where i ¼ 1; 2;…; n and pλi
N� is the four-momentum of the

spin-(nþ 1=2) nucleon resonance (see Fig. 1).
With the definition of particle momenta and coupling

strengths given in Fig. 1, the hadronic and electromag-
netic vertex factors derived from Eqs. (9) and (11) can be
written as

Γhad
μ1���μn ¼

gKΛN�

m2nþ1
N�

ϵμνnαβpν1
Λ � � �pνn−1

Λ qβγ5γαpN�μ

×Onþ1=2
ðν1���νn;α1���αnÞμ1���μnðpN� Þγα1 � � � γαn ð13Þ

and

ige

N*

gKΛN*

Λ (     )pΛ

(   )q

p

γ k(   ) K +

= p + kp
(   )p

FIG. 1. Feynman diagram for the nucleon resonance (N�)
intermediate state in the kaon photoproduction γp → KþΛ.
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Γem
ν1���νn ¼

e

m2nþ1
N�

Oðβ1���βn;α1���αnÞν1���νn
nþ1=2 ðpN�Þγα1 � � � γαnfg1ϵμναβnpα þ g2γ5gβnνpμ þ g3γμγρϵρναβnp

α

þ g4γ5γμγρðpρgνβn − pνgρβnÞgkβ1 � � � kβn−1ðkμϵν − kνϵμÞ; ð14Þ

which can be written in more compact forms, i.e.,

Γhad
μ1���μn ¼

1

mn
N�

~Γν1���νn
had

~Onþ1=2
ðν1���νnÞμ1���μnðpN� Þ ð15Þ

and

Γem
μ1���μn ¼

1

mn
N�

~Onþ1=2
ðν1���νnÞμ1���μnðpN� Þ ~Γν1���νn

em ; ð16Þ

with

~Onþ1=2
ðν1���νnÞμ1���μnðpN�Þ ¼ Onþ1=2

ðν1���νn;α1���αnÞμ1���μnðpN� Þγα1 � � � γαn :
ð17Þ

The contribution of the spin-(nþ 1=2) nucleon reso-
nance to the production amplitude that is relevant to the
present investigation has the following structure:

Mnþ1=2
N� ¼ ūΛΓhad

μ1���μnP
μ1���μn;ν1���νn
ðnþ1=2Þ ðpN�ÞΓem

ν1���νnup; ð18Þ

where Pμ1���μn;ν1���νn
ðnþ1=2Þ is the spin-(nþ 1=2) nucleon resonance

propagator. For the purpose of the present discussion we
can utilize the propagator discussed by Vrancx et al. [7]
which is based on the work of Huang et al. [12]. We shall
use the covariant part of the propagator, since the non-
covariant one does not preserve the Lorentz invariance.
Explicitly, it is given by [7]

Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ

¼ =pN� þmN�

p2
N� −m2

N� þ imN�Γ
~Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpN�Þ; ð19Þ

where the on-shell projection operator ~Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ

is obtained from the off-shell projection operator
Pμ1���μn;ν1���νn

ðnþ1=2Þ ðpN� Þ with the substitutions =pN� → mN� and

p2
N� → m2

N� . We will discuss the explicit form of projection
operators for spin-7=2 and -9=2 nucleon resonances later.
It is obvious that the difference between the on-shell

projection operator ~Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ and the off-shell

projection operator Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ is in the momentum-

dependent terms. In other words, these terms must contain
at least one pμ

N� . However, these terms completely dis-
appear from the production amplitude of Eq. (18) by
imposing the property of the interaction operator as given
in Eq. (12).
The proof that the on-shell projection operator

~Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpÞ can be written as the sum of the off-shell

projection operator Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpÞ and the momentum-

dependent terms is straightforward for the spin-3=2 case
[see, e.g., Ref. [7], especially Eqs. (18)–(20) and the
corresponding explanation therein]. For the general spin-
(nþ 1=2) particle whose mass and momentum are m and
p, respectively, the proof is also obvious since the sub-
stitution =p → m and p2 → m2 in the off-shell projection
operator Pμ1���μn;ν1���νn

ðnþ1=2Þ ðpÞ will only affect its momentum-

dependent terms. Thus, the result can be rewritten as the sum
of the off-shell projection operator and the momentum-
dependent terms. The explicit form of projection operators
for spin-7=2 and -9=2 nucleon resonances given in Eqs. (23)
and (24), respectively, provides a direct example to this end.
The above discussion has proven that the interaction

Lagrangian used in our formalism, which is taken from
Ref. [11], is consistent in the sense that the use of this
Lagrangian removes the inconsistent lower spin backgrounds
of the propagator. The followingdiscussionwill show that the
use of this interaction also removes the nonlocalities in the
production amplitude. By using a slightly different inter-
action Lagrangian, Vrancx et al. [7] have shown this
phenomenon in their paper [see Eqs. (60) of Ref. [7]].
By substituting Eqs. (15) and (16) in Eq. (18) we obtain

Mnþ1=2
N� ¼ ūΛ ~Γ

α1���αn
had

~Onþ1=2
ðα1���αnÞμ1���μnðpN� Þ 1

m2n
N�

Pμ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ ~Onþ1=2

ðβ1���βnÞν1���νnðpN� Þ ~Γβ1���βn
em up

¼ ūΛ ~Γ
α1���αn
had

~Onþ1=2
ðα1���αnÞμ1���μnðpN� Þ 1

m2n
N�

=pN� þmN�

p2
N� −m2

N� þ imN�Γ
Pμ1���μn;ν1���νn

ðnþ1=2Þ ðpN� Þ × ~Onþ1=2
ðβ1���βnÞν1���νnðpN� Þ ~Γβ1���βn

em up: ð20Þ

Equation (20) can be simplified by utilizing the orthogonality of the projection operator, i.e.,

γμiP
μ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ ¼ Pμ1���μn;ν1���νn

ðnþ1=2Þ ðpN�Þγνi ¼ pN�μiP
μ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ ¼ pN�νiP

μ1���μn;ν1���νn
ðnþ1=2Þ ðpN� Þ ¼ 0; ð21Þ

where i ¼ 1; 2;…; n.
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There are n Dirac matrices in the interaction operator
~Onþ1=2
ðβ1���βnÞν1���νnðpN�Þ on the right-hand side of the propagator

in Eq. (20) as obviously shown by Eq. (17). In Eq. (17)
these matrices are contracted with the operator
Onþ1=2

ðβ1���βn;α1���αnÞν1���νnðpN� Þ, which is built from a product of

n interaction operators O3=2
ðβi;αiÞνi . Clearly, these contractions

yield the terms containing pN�βiγνi and gβiνi =pN� . The terms
containing at least one γνi vanish due to Eq. (21). Due to the

permutation PðαÞ in the interaction operator, we obtain n!
surviving terms in Eq. (20). By exploiting the symmetry
of the projection operator under the exchange of the index
νi, these surviving terms can be simply written asQ

n
i¼1 =pN�gβiνi . The same procedure can also be performed

for the interaction operator ~Onþ1=2
ðα1���αnÞμ1���μnðpN�Þ on the left-

hand side of the propagator in Eq. (20). Therefore, the
production amplitude given by Eq. (20) can be written as

MN� ¼ ūΛ
Yn
i¼1

=pN�gαiμi ~Γ
α1���αn
had

1

m2n
N�

=pN� þmN�

p2
N� −m2

N� þ imN�Γ
Pμ1���μn;ν1���νn

ðnþ1=2Þ ðpN� Þ
Yn
j¼1

=pN�gβjνj ~Γ
β1���βn
em up

¼ ūΛ ~Γhad
μ1���μn

p2n
N�

m2n
N�

=pN� þmN�

p2
N� −m2

N� þ imN�Γ
Pμ1���μn;ν1���νn

ðnþ1=2Þ ðpN�Þ ~Γem
ν1���νnup: ð22Þ

Equation (22) shows that the nonlocalities in the ampli-
tude are completely removed by the p2n

N� factor. This is
equivalent to Eq. (60) of Ref. [7].

B. Spin-7=2 and -9=2 projection operators

The projection operators for spin-7=2 and -9=2 nucleon
resonances which are suitable to our previous discussion
can be obtained from the generalized higher spin projection
operators given in, e.g., Ref. [12]. For the spin-7=2 nucleon
resonance the projection operator reads

P7=2
μ1μ2μ3
ν1ν2ν3

¼ 1

36

X
PðμÞ;PðνÞ

�
Pμ1ν1Pμ2ν2Pμ3ν3 −

3

7
Pμ1μ2Pν1ν2Pμ3ν3

þ 3

7
γργσPμ1ρPν1σPμ2ν2Pμ3ν3

−
3

35
γργσPμ1ρPν1σPμ2μ3Pν2ν3

�
; ð23Þ

where PðμÞ and PðνÞ indicate the permutations of all
possible μ and ν indices, respectively, while Pμν ¼ −gμν þ
pN�μpN�ν=s and pN� ¼ pþ k. In the case of spin-9=2
nucleon resonance the projection operator reads

P9=2
μ1μ2μ3μ4
ν1ν2ν3ν4

¼ 1

576

X
PðμÞ;PðνÞ

�
Pμ1ν1Pμ2ν2Pμ3ν3Pμ4ν4

−
6

9
Pμ1μ2Pν1ν2Pμ3ν3Pμ4ν4

þ 4

9
γργσPμ1ρPν1σPμ2ν2Pμ3ν3Pμ4ν4

−
4

21
γργσPμ1ρPν1σPμ2μ3Pν2ν3Pμ4ν4

þ 1

21
Pμ1μ2Pν1ν2Pμ3μ4Pν3ν4

�
: ð24Þ

Both projection operators given by Eqs. (23) and (24)
satisfy the orthogonality condition with respect to the Dirac
matrix and the total momentum of the particle, i.e.,

γμiPðnþ1=2Þ
μ1μ2 ���μn
ν1ν2 ���νn

¼ Pðnþ1=2Þ
μ1μ2 ���μn
ν1ν2 ���νn

γνi ¼ 0 ð25Þ

and

ðpþ kÞμiPðnþ1=2Þ
μ1μ2 ���μn
ν1ν2 ���νn

¼ Pðnþ1=2Þ
μ1μ2 ���μn
ν1ν2 ���νn

ðpþ kÞνi ¼ 0; ð26Þ

where i ¼ 1; 2;…; n. Based on Eq. (22) we can write the
modified propagator for the spin-7=2 nucleon resonance as

P7=2
μμ1μ2
νν1ν2

¼ s3

m6
N�

ð=pþ =kþmN� Þ
ðs −m2

N� þ imN�ΓN� ÞP
7=2
μμ1μ2
νν1ν2

; ð27Þ

where s ¼ p2
N� ¼ ðkþ pÞ2 ¼ W2 is one of the Mandelstam

variables. In the following, we will also use the other
Mandelstam variables t ¼ ðk − qÞ2 and u ¼ ðk − pΛÞ2.
By using the same procedure, we obtain the modified

propagator for spin-9=2 nucleon resonances, i.e.,

P9=2
μμ1μ2μ3
νν1ν2ν3

¼ s4

m8
N�

ð=pþ =kþmN� Þ
ðs −m2

N� þ imN�ΓN� ÞP
9=2
μμ1μ2μ3
νν1ν2ν3

: ð28Þ

Note that the factors of s3=m6
N� and s4=m8

N� on the right-
hand sides of Eqs. (27) and (28), respectively, appear as a
consequence of consistent interaction. In our previous work
they were called the regularization factors [1]. These factors
are especially important in the case of the u-channel, where
the value of the Mandelstam variable u could be zero.

C. Electromagnetic and hadronic vertices

As previously discussed, the electromagnetic and
hadronic vertex factors are obtained from an effective
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Lagrangian approach proposed by Pascalutsa [5,11], which
ensures that the lower spin background of the propagator
vanishes [see Eqs. (14) and (13)]. From Eq. (22) it is clear
that in calculating the scattering amplitude, we only need
~Γhad
μ1���μn and ~Γem

ν1���νn , instead of Γ
had
μ1���μn and Γ

em
ν1���νn . For the sake

of simplicity, in what follows we omit the tilde in both
vertex factors. Therefore, the explicit form of the electro-
magnetic vertex for the spin-7=2 particle reads

Γνν1ν2
em ¼ kν1kν2

m3
N�

½g1γN�Nε
νμρσpσðkμϵρ − kρϵμÞ

þ g2γN�Nγ5ðp · kϵν − p · ϵkνÞ
þ g3γN�Nε

νμρσpσð=kϵμ − =ϵkμÞγρ
þ g4γN�Nγ5fð=k=pϵν − =ϵ=pkνÞ
− ðp · ϵ=k − p · k=ϵÞγνg�; ð29Þ

whereas the hadronic vertex for the spin-7=2 particle is

Γμμ1μ2
had ¼ gKΛN�

m3
N�

iεμαρσpΛαγ5γρqσp
μ1
Λ p

μ2
Λ : ð30Þ

Note that these vertex factors are constructed for a positive
parity intermediate state. In the case of a negative parity
intermediate state we can modify these vertices as
explained in Ref. [4]. Therefore, we obtain

Γνν1ν2ð�Þ
em ¼ −i

m3
N�

½g1pνð=k=ϵ − =ϵ=kÞ þ g2ðkνp · ϵ − ϵνp · kÞ

þ g3ðϵν=k − kν=ϵÞ=pþ g4γνð=k=ϵ − =ϵ=kÞ=p
þ g5γνðp · ϵ=k − p · k=ϵÞ�kν1kν2Γ� ð31Þ

and

Γμμ1μ2ð�Þ
had ¼ gKΛN�

m3
N�

Γ∓½ðpΛ · q − =pΛ=qÞγμ þ =pΛqμ

− =qpμ
Λ�pμ1

Λ p
μ2
Λ ; ð32Þ

where

g1 ¼ ig1γN�N − ig3γN�N

g2 ¼ −2ig1γN�N − g2γN�N þ 2ig3γN�N − 2g4γN�N

g3 ¼ −2ig1γN�N þ 3ig3γN�N þ g4γN�N

g4 ¼ −ig1γN�N þ ig3γN�N

g5 ¼ 2ig1γN�N − ig3γN�N þ g4γN�N;

with the parity factors Γþ ¼ iγ5 and Γ− ¼ 1.
For spin-9=2 particles the vertex factors are obtained by

multiplying the vertex factors of spin-7=2 particles with the
appropriate momentum and inverting the parity. Thus, the
vertex factors of spin-9=2 particles may be written as

Γνν1ν2ν3ð�Þ
em ¼ −i

m3
N�

½g1pνð=k=ϵ − =ϵ=kÞ

þ g2ðkνp · ϵ − ϵνp · kÞ þ g3ðϵν=k − kν=ϵÞ=p
þ g4γνð=k=ϵ − =ϵ=kÞ=pþ g5γνðp · ϵ=k − p · k=ϵÞ�
× kν1kν2kν3Γ∓ ð33Þ

and

Γμμ1μ2μ3ð�Þ
had ¼ gKΛN�

m3
N�

Γ�½ðpΛ · q − =pΛ=qÞγμ

þ =pΛqμ − =qpμ
Λ�pμ1

Λ p
μ2
Λ p

μ3
Λ : ð34Þ

D. Scattering amplitude

The scattering amplitude is obtained by sandwiching the
propagator between the hadronic and electromagnetic
factors. This was briefly discussed after we introduced
Eq. (18). For spin-7=2 nucleon resonances the scattering
amplitude becomes

M7=2
res ¼ ūΛΓ

μμ1μ2ð�Þ
KΛN� P7=2

μμ1μ2
νν1ν2

Γνν1ν2ð�Þ
N�pγ up: ð35Þ

At first glance, Eq. (35) seems to be very long and
complicated. Fortunately, a number of terms in Eq. (35)
have the same structure. By exploiting this fact and using
the orthogonality condition of projection operators, we can
recast the scattering amplitude to

M�
7=2 ¼ ūΛγ5f−s�mN� ð=pþ =kÞg

�
5ð7c21 þ c2c3Þ

�
−pΛν þ

1

s
cΛðpþ kÞν

�
− 10c1c2

�
−kν þ

1

s
ckðpþ kÞν

�

þ ð5c21 þ c2c3Þ
�
−=pΛ þ 1

s
cΛð=pþ =kÞ

��
−γν þ

1

s
ð=pþ =kÞðpþ kÞν

�
− 10c1

�
−=pΛ þ 1

s
cΛð=pþ =kÞ

�

×

�
−=kþ 1

s
ckð=pþ =kÞ

��
−pΛν þ

1

s
cΛðpþ kÞν

�
þ 2c2

�
−=pΛ þ 1

s
cΛð=pþ =kÞ

��
−=kþ 1

s
ckð=pþ =kÞ

�

×

�
−kν þ

1

s
ckðpþ kÞν

��
½G1pνð=k=ϵ − =ϵ=kÞ þG2ðkνp · ϵ − ϵνp · kÞ þ G3ðϵν=k − kν=ϵÞ=p�up; ð36Þ
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where

G1 ¼ s3gKΛN�g1

35m14
N�ðs −m2

N� þ imN�ΓN�Þ ; ð37Þ

G2 ¼ s3gKΛN�g2

35m14
N�ðs −m2

N� þ imN�ΓN�Þ ; ð38Þ

G3 ¼ s3gKΛN�g3

35m14
N�ðs −m2

N� þ imN�ΓN�Þ ; ð39Þ

and with the same definitions used in Ref. [1],

bp¼p ·k; bΛ ¼pΛ ·k; bq ¼ q ·k

cp¼ðpþkÞ ·p; cΛ ¼ðpþkÞ ·pΛ; ck ¼ðpþkÞ ·k;

cs¼ 1−
1

s
cΛ; c1 ¼ bΛ−

1

s
cΛck; c2¼m2

Λ−
1

s
c2Λ;

c3¼
1

s
c2k−k2; c4 ¼ 2bpþk2; c5 ¼ 4bpþk2:

The scattering amplitude for spin-9=2 nucleon resonan-
ces is obtained by using the same procedure as in the case
of spin-7=2 resonances. The amplitude for spin-9=2
nucleon resonances can be written as

M�
9=2 ¼ ūΛγ5fs�mN�ð=pþ =kÞg

�
21c1ð3c21 þ c2c3Þ

�
−pΛν þ

1

s
cΛðpþ kÞν

�
− 3c2ð7c21 þ c2c3Þ

�
−kν þ

1

s
ckðpþ kÞν

�

þ c1ð7c21 þ 3c2c3Þ
�
−=pΛ þ 1

s
cΛð=pþ =kÞ

��
−γν þ

1

s
ð=pþ =kÞðpþ kÞν

�
− 3ð7c21 þ c2c3Þ

�
−=pΛ þ 1

s
cΛð=pþ =kÞ

�

×
�
−=kþ 1

s
ckð=pþ =kÞ

��
−pΛν þ

1

s
cΛðpþ kÞν

�
þ 6c1c2

�
−=pΛ þ 1

s
cΛð=pþ =kÞ

��
−=kþ 1

s
ckð=pþ =kÞ

�

×

�
−kν þ

1

s
ckðpþ kÞν

��
½G1pνð=k=ϵ − =ϵ=kÞ þ G2ðkνp · ϵ − ϵνp · kÞ þ G3ðϵν=k − kν=ϵÞ=p�up; ð40Þ

with a similar definition of G1, G2, and G3 as in the case of
spin-7=2 resonances, except in the case of spin-9=2
resonances the coupling constants G1, G2, and G3 are
multiplied by the regularization factor of 35s=63m4

N� .

E. Decomposition of the scattering amplitude

As in our previous work [1], we decompose the scatter-
ing amplitude given by Eq. (36) into the gauge and Lorentz
invariant matrices Mi,

M ¼ ūΛ
X6
i¼1

Aiðs; t; u; k2ÞMiup; ð41Þ

where the gauge and Lorentz invariant matrices Mi are
given by [13,14]

M1 ¼
1

2
γ5ð=ϵ=k − =k=ϵÞ; ð42Þ

M2 ¼ γ5½ð2q − kÞ · ϵP · k − ð2q − kÞ · kP · ϵ�; ð43Þ

M3 ¼ γ5ðqK · k=ϵ − q · ϵ=kÞ; ð44Þ

M4 ¼ iϵμνρσγμqνϵρkσ; ð45Þ

M5 ¼ γ5ðq · ϵk2 − q · kk · ϵÞ; ð46Þ

M6 ¼ γ5ðk · ϵ=k − k2=ϵÞ; ð47Þ

with P ¼ 1
2
ðpþ pΛÞ, and ϵμνρσ is the four-dimensional

Levi-Civita tensor with ϵ0123 ¼ þ1. Note that for the sake
of completeness, throughout this paper we give the for-
mulation of electroproduction, where the values of k2 and
k · ϵ are nonzero. For photoproduction, by setting k2 and
k · ϵ to zero, obviously, only the matrices M1 to M4 exist.
The functions Ai depend on the Mandelstam variables

and the square of virtual photon momentum. The functions
are useful in the calculation of cross-section and polariza-
tion observables. The functions Ai for both spin-7=2 and
-9=2 resonances are given in Appendix A.
Obviously, we can see that both spin-7=2 and spin-9=2

amplitudes have a similar pattern. This is different from the
case of the spin-5=2 particle. On the other hand, the main
difference between spin-7=2 and -9=2 amplitudes is that the
momentum dependence increases as the spin number
increases.

III. RESULTS AND DISCUSSION

The isobar model used in the present work is similar to
that of previous work [1], except that in the present
calculation it includes the four nucleon resonances with
spins 7=2 and 9=2 listed in Table I. In total, we have used
21 nucleon resonances with spins ranging from 1=2 to 9=2
in our calculation.
As in the previous work [1] there are a number of

unknown parameters both in the background and resonance
terms. They are dominated by the coupling constants of
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resonances and background terms. These parameters were
varied by fitting the calculated observables to nearly 7400
experimental data points to produce the minimum χ2=N
value by using the CERN-MINUIT code [15].
The extracted background parameters are given in

Table II, where we also display the corresponding param-
eters of our previous study for comparison. Since the
leading coupling constants were varied within 20% of the
SU(3) symmetry breaking, i.e., gKΛN=

ffiffiffiffiffiffi
4π

p ¼ −4.4 to −3.0
and gKΣN=

ffiffiffiffiffiffi
4π

p ¼ 0.9 to 1.3, while the best fits were
achieved by choosing the lowest values, it is obvious from
Table II that the background terms are suppressed in both
present and previous investigations. This conclusion is also
supported by the fact that the extracted hadronic form factor
cutoff of the Born terms is very soft, i.e., ΛB ¼ 0.70. Note
that this cutoff value is the lowest allowed value during the
fit process. The soft cutoffs found in the previous and
present investigations might indicate the need for different
types of form factor [16]. However, since our primary aim
in this work is to investigate the effects of spin-7=2 and
-9=2 nucleon resonances, we will address the problem of
soft cutoffs in our future studies.
The resonance cutoff ΛR is found to be larger than the

background one. This indicates that the resonance contri-
butions are not extremely suppressed. Nevertheless,
Table II indicates that the suppression is greater in the
present work, which is indicated by a smaller cutoff. This
phenomenon can be understood, because the magnitude of
the scattering amplitude increases after the inclusion of the
spin-7=2 and -9=2 resonances. Therefore, to fit the observ-
ables the resonance cutoff must be decreased; i.e., the form
factor suppression must be increased.
The coupling constants of hyperon resonances are large,

both in previous and present works. This is consistent with

the finding of previous works, and we note that the two
hyperon resonances are substantial to increase the values of
the leading coupling constants [18].
Since the number of free parameters is larger in the

present work, it is clear that the value of χ2 of the present
work is smaller. However, we note that the values of
χ2=Ndof in the previous and present works are 1.58 and
1.25, respectively, where Ndof ¼ Ndata − Npar, Ndata is the
number of fitted data, and Npar is the number of free
parameters. This indicates that the inclusion of the four
resonances with spins 7=2 and 9=2 still improves the
performance of the present isobar model.
For completeness, we compare the fitted resonance

coupling constants obtained in the present work with those
of our previous work [1] in Table IV of Appendix B.
Obviously, except for the difference between the two sets
of coupling constants, there is no certain pattern in the
coupling constants, which distinguishes the present work
from the previous one. Nevertheless, we may conclude that
the fit recalculates all couplings after the inclusion of spin-
7=2 and 9=2 nucleon resonances. Furthermore, we also
note that for higher spin resonances the corresponding
coupling constants tend to be large, especially for the spin-
9=2 ones. Presumably, this behavior originates from the
regularization factor of s4=m8

N in the propagator [see
Eq. (28)], which severely suppresses the scattering ampli-
tude due to the large resonance masses. A milder effect, but
still significant, is found in the case of spin-5=2 resonances,
where the regularization factor in the propagator is of
s2=m4

N [1,7,8].
A direct comparison between the presently obtained

coupling constants with those available in the literature
cannot be easily made because there exists a conceptual
difference in their definitions [19,20]. It is obvious that in
the present approach, known as the Breit-Wigner plus
background parametrization approach in Ref. [20], the
extracted coupling constants are model dependent; i.e.,
they depend on the number of resonances, hadronic form
factors, energy-dependent widths, and other approxima-
tions used in the model. This is in contrast to the pole
extraction method which is less model dependent [20]. We
also note that in the most recent Review of Particle
Properties of PDG [2,21], the properties of baryon reso-
nances determined at the pole position are listed before
those evaluated by using the Breit-Wigner approach.
Furthermore, the extracted coupling constants given in
Table IVof Appendix B are the product of electromagnetic
and hadronic couplings. Different from the coupled-chan-
nels models, the present single-channel analysis cannot
separate these couplings.
Nevertheless, as shown in Refs. [17,22], for a quick

comparison we can calculate the relative decay widthsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓγNΓKþΛ

p
=Γtotal from the product of the electromagnetic

and hadronic coupling constants and compare the result

TABLE II. List of the background parameters, the hadronic
form factor cutoffs, and the χ2=N obtained in the present work
compared with those obtained in our previous study [1]. Note that
N is the number of fitted data points. Notation of the parameters is
as in our previous studies [1,17].

Parameters Present work Previous work [1]

gKΛN=
ffiffiffiffiffi
4π

p
−3.00 −3.00

gKΣN=
ffiffiffiffiffi
4π

p
0.90 1.27

GV
K�=4π −0.18 0.15

GT
K�=4π 0.72 0.26

GV
K1
=4π −0.63 1.46

GT
K1
=4π −2.94 0.07

GΛð1600Þ=4π −7.19 8.41
GΛð1810Þ=4π 10.0 −9.61
ΛB (GeV) 0.70 0.70
ΛR (GeV) 1.18 1.31
θhad (deg) 90.0 130
ϕhad (deg) 0.01 177
χ2=N 1.25 1.58
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with those obtained in a constituent quark model [23] and
from the PDG [2].
The radiative or electromagnetic decay width to the γN

channel can be obtained by using the formula given by
PDG [2],

ΓγN ¼ k2

π

2mN

ð2J þ 1ÞmN�
ðjA1=2j2 þ jA3=2j2Þ; ð48Þ

where k is the photon three-momentum in the resonance
rest frame, J is the nucleon spin, and A1=2 and A3=2 are the
electromagnetic decay amplitudes for their respective
helicities or, in brief, the helicity amplitudes that can be
calculated from the electromagnetic coupling constants as

TABLE III. The relative decay widths
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓγNΓKþΛ

p
=Γtotal ob-

tained in the present work compared to those listed by the PDG [2]
and obtained in a constituent quark model (QM) [23]. The error
bars listed in the last column (present work) are obtained from the
MINUIT code. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓγNΓKþΛ
p

=Γtotal (×10−3)

Resonances JP QM PDG Present work

Nð1650Þ 1=2− 12.41þ1.19
−3.34 9.17� 5.71 9.46� 0.04

Nð1675Þ 5=2− 0.00� 0.00 0.67� 0.67 11.09� 0.00
Nð1680Þ 5=2þ 0.25� 0.00 � � � 0.20� 0.00
Nð1700Þ 3=2− 0.73� 0.36 2.12� 0.87 3.40� 0.01
Nð1710Þ 1=2þ 1.15� 0.25 7.84� 6.30 3.93� 0.04
Nð1720Þ 3=2þ 4.26þ0.69

−0.79 10.95� 8.41 10.13� 0.04

Nð1860Þ 5=2þ � � � � � � 3.47� 0.03
Nð1875Þ 3=2− � � � � � � 3.27� 0.02
Nð1880Þ 1=2þ 0.00� 0.00 � � � 7.84� 0.05
Nð1895Þ 1=2− � � � � � � 3.52� 0.10
Nð1900Þ 3=2þ � � � � � � 87.49� 0.04
Nð2000Þ 5=2þ 0.25� 0.15 � � � 2.95� 0.09
Nð2060Þ 5=2− 0.71þ0.10

−0.20 � � � 65.47� 0.02

Nð2120Þ 3=2− � � � � � � 4.06� 0.02
Nð1990Þ 7=2þ 0.00� 0.00 � � � 9.82� 0.01
Nð2190Þ 7=2− 0.95þ0.44

−0.29 � � � 0.88� 0.02

Nð2220Þ 9=2þ 0.18� 0.04 � � � 0.35� 0.00
Nð2250Þ 9=2− 0.00� 0.00 � � � 0.40� 0.07

 0
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σ t
ot
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CLAS 2006
Present work

Previous work

FIG. 2. Calculated total cross sections obtained in the previous
[1] and present works compared with the experimental data from
the CLAS Collaboration (solid squares [27]). Note that the
experimental data shown in this figure are only for comparison
and were not included in the fitting process.

cos θ = −0.70
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FIG. 3. Differential cross sections as a function of the total c.m. energy W for different values of the kaon c.m. angle. The
corresponding value of cos θ is given in each panel. Experimental data are from the CLAS Collaboration (solid squares [27] and open
squares [28]), LEPS Collaboration (solid triangles [30]), and Crystal Ball Collaboration (open circles [31]). Notation of the curves is the
same as in Fig. 2.
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demonstrated in Appendix B. For the hadronic decay width
to the KþΛ channel, we use [24]

ΓKþΛ ¼ jqj
2π

2mΛ

ð2J þ 1ÞmN�
jAKþΛj2; ð49Þ

where q is the kaon momentum in the resonance rest frame
and AKþΛ is the hadronic decay amplitude that can be
calculated by means of hadronic coupling constants.
In the case of spin-1=2 nucleon resonance we have

simply [25]

A1=2 ¼ −
eg1

mN� þmN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

2mN

s
; ð50Þ

AKþΛ ¼ −gKþΛN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EΛ ∓ mΛ

2mΛ

s
: ð51Þ

For nucleon resonances with spins 3=2 and higher, the
formulas are given in Appendix B. As previously stated,
since we cannot separate the extracted resonance coupling
constants, we will use their product to calculate the relative
decay width

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓγNΓKþΛ

p
=Γtotal. The result is shown in

Table III, where we also display the result obtained by
the quark model [23] and from the PDG [2].
Table III indicates that, except for the Nð1675Þ, the

relative decay widths obtained in the present work are in
good agreement with that of PDG. In fact, for both
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FIG. 4. The same as in Fig. 3, but for the angular distribution of the differential cross section with different values of the total c.m.
energy W. The corresponding value of W in GeV is given in each panel.
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Nð1650Þ and Nð1720Þ resonances the agreement is excel-
lent. This result is important because we note that the
two resonances are the well-established resonances with a
four-star rating. In the case of Nð1700Þ and Nð1710Þ
resonances we still obtain the same order of magnitude as
the PDG values. By comparing our result to that of the
quark model calculation [23], we can safely say that in most
cases the relative decay widths are in the same order of
magnitude.
Comparison between the extracted masses and widths of

the resonances obtained in the present analysis and those of
PDG is shown in Table V of Appendix D. Obviously, in
almost all cases the extracted values are within the PDG
limits. This is not too surprising, because during the fitting
process we put the PDG values with their error bars as a
constraint to the fitted parameters. In very rare cases, we
have to slightly relax this limit in order to get the best χ2,
e.g., in the case of Nð1440Þ total width. Note also that we
add a 100 MeVerror bar if it is not provided by PDG. This
choice seems to be trivial, but we believe that this is quite
fair since, as shown in Table V, the largest PDG error bar is
300 MeV.
Comparison between the calculated total cross sections

from our present and previous works with experimental
data is shown in Fig. 2. Although the total cross sections
shown in Fig. 2 were not included during the fit process,
sizable improvement is exhibited by the present model,
especially at W ≈ 1.85 GeV, where a missing D13ð1895Þ
was predicted almost two decades ago [17]. At this stage it
is important to note that the peak around 1.85 GeV in the
cross section was finally assigned as the P13ð1900Þ state
[26], instead of the D13ð1895Þ one. Note also that the
discrepancy between the calculated total cross sections and
the CLAS 2006 data [27] is understandable, since the
CLAS 2010 data [28] used in the fitting database tend to be
smaller at this kinematics and also have smaller error bars.
Obviously, the best fit would be achieved by reproducing
the CLAS 2010 data [28]. In the latter, however, only a
differential cross section and recoil polarization were
reported.
More information can be explored from differential cross

sections, as shown in Figs. 3 and 4. The energy distribution
of the differential cross section displayed in Fig. 3 reveals
the fact that the improvement is more apparent in the
forward direction. Obviously, the experimental data are
more scattered in this case. As a consequence, the best fit
yields a democratic explanation of all available data,
as clearly shown in Fig. 3, in the case of cos θ ¼ 0.90.
At this stage it is important to mention that the predicted
cross sections of hypernuclear photoproduction and
kaon photoproduction off a deuteron are very sensitive
in this kinematics, since the dominant contribution comes
from the forward region [29]. Therefore, a reliable descrip-
tion of the elementary cross section at this kinematics is
urgently needed. Furthermore, an accurate cross-section

measurement at the forward directions would become the
most challenging experiment in the future.
In the backward direction (cos θ ¼ −0.70) we note

that the inclusion of spin-7=2 and -9=2 nucleon reso-
nances slightly improves the agreement between our
model and experimental data. This is more apparent
in Fig. 4, especially in the lower energy region, where
the cross section tends to slightly increase as cos θ
approaches −1.
Since the recoiled Λ decays into a nucleon and a pion,

while the decay rate depends linearly on its polarization, the
Λ polarization data can be obtained directly from experi-
ments. In our previous works, these data were very
important to reveal the existence of the narrow nucleon
resonance at W ≈ 1650 MeV [32]. The existence of this
resonance was indicated by a sudden drop in the Λ
polarization near 1650 MeV.
The energy and angular distributions of the recoiled Λ

polarization are exhibited in Figs. 5 and 6, where we
compare the results of the present and previous works
with experimental data obtained by different collabora-
tions. In Fig. 5 we can see that both results indicate the
sudden drop of polarization, although no narrow reso-
nance is included in both calculations. However, it is
interesting to see that for cos θ ¼ 0.3 both models cannot
perfectly reproduce the experimental data. A thorough
investigation of this subject will be considered in our
future studies.
From Figs. 5 and 6 it is obvious that the improvement is

more apparent at higher energies, which is understandable
since the spin-7=2 and -9=2 nucleon resonances have
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FIG. 5. Λ recoil polarization as a function of the total c.m.
energy W for different values of the kaon c.m. angle. The
corresponding value of cos θ is given in each panel. Notation
of the curves and experimental data is the same as in Fig. 3.
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higher masses than the lower spin ones. Figure 6 shows
that the predicted polarizations of the previous and present
works are more distinguishable at high energies. At this
kinematics the inclusion of spin-7=2 and -9=2 resonances
slightly increases the number of oscillations, and the effect
is more apparent at backward angles. Unfortunately,
experimental data are only available near forward angles.
As mentioned in our previous work [1], the photon and

target asymmetries could become a stringent constraint on
the proliferation of phenomenological models that try to
explain the kaon photoproduction data. This happens
because the asymmetries depend sensitively on the ingre-
dient of the scattering amplitude. Therefore, small changes
in the fitted parameters could result in dramatic changes in
these asymmetries.

We compare the calculated photon asymmetry of our
present and previous works with experimental data in
Figs. 7 and 8, whereas for the target asymmetry the
comparison is given in Figs. 9 and 10. Clearly, the most
significant improvement after the inclusion of the spin-
7=2 and -9=2 resonances is obtained for these two
asymmetries. In most cases shown in Figs. 7–10 the
agreement of the calculated asymmetries and experi-
mental data is substantially improved. Thus, we believe
that the role played by the spin-7=2 and -9=2 resonances
is more important in the case of photon and target
asymmetries, rather than in the case of the differential
cross section.
Finally, we show the comparison of phenomenological

calculations and experimental data for the beam-recoil
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double polarizations Cx, Cz, Ox0 , and Oz0 in Figs. 11–18.
In our previous work, we have stated that these observables
are very interesting since experimental measurements
indicate that the Λ hyperons are produced with
100% polarization as seen from the relation

R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
x þ C2

y þ P2
q

¼ 1.01� 0.01 [34]; i.e., all of the

photon’s helicities are transferred to the hyperon. To
account for this phenomenon, a simple theoretical ansatz

was proposed in Ref. [34]. In this framework, the photon
undergoes a hadronization process and turns into a ϕmeson
in a 3S1 state. Thus, all of the photon “spin” can be
successfully transferred to the created hyperon. However,
in this ansatz the photoproduction process cannot excite a
resonance (N� or Δ) in the s-channel, and the predicted
total polarization for the double polarizations Ox0 and Oz0 ,

i.e., R≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

x0 þO2
y0 þ P2

q
≈ 1, is only partially fulfilled
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[35]. Therefore, further phenomenological or theoretical
explanation to this end is urgently required. In view of the
present work, where the nucleon resonances dominate the
ingredient of scattering amplitude, we believe that it is
important for the present isobar model to accurately
reproduce the experimental data of these double-polariza-
tion observables.

In the previous work [1] we have nicely reproduced
these observables. However, from Figs. 11–18, we can
conclude that substantial improvement can still be
achieved by including the spin-7=2 and -9=2 resonances
in this isobar model. Especially in the case of double
polarization Cx shown in Fig. 12, the angular distribution
of this polarization can be perfectly reproduced within
the experimental error bars. A similar result is obtained in
the case of the Ox0 and Oz0 observables, as clearly shown
in Figs. 16 and 18.
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IV. SUMMARY AND CONCLUSION

We have derived the formulas for spin-7=2 and -9=2
nucleon resonance amplitudes by using the gauge-invariant
formulation proposed by Pascalutsa and Vrancx et al. These
amplitudes were included in our previous isobar model of
kaonphotoproduction, and themodelwas refitted to the same
experimental data used in the previous model. Two nucleon
resonances with spin-7=2 and two nucleon resonances with
spin-9=2 were taken into account in this study. Significant
reduction of the χ2=N valuewas obtained, and the agreement
of themodel calculation and experimental datawas improved

in almost all observables considered in the present study. A
substantial improvement in the description of double polari-
zation observables was observed after the inclusion of these
resonances in our isobar model, i.e., the beam-recoil polari-
zation Cx and Cz, as well as Ox0 and Oz0 .
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APPENDIX A: FUNCTIONS Ai FOR SPIN-7=2 AND -9=2 RESONANCES

Note that in this appendix we usemN ¼ mp. The extracted functions Ai given in Eq. (41) for spin-7=2 resonances can be
written as
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For spin-9=2 resonances the functions are given by
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3Þð−s�mN�mΛÞ þ 8c1ð7c21 þ 3c2c3Þ

�
−ðm2

Λck − bpcΛÞ �mN�mΛ

�
1

s
ckcΛ − bp

���
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þ 1

2
ðmp þmΛÞ

��
−ðmpcΛ −mΛcpÞ �mN�

�
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1

s
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6

s
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�
− bp

�
−mΛ � 1

s
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�
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�
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3

s
k2c2cpð7c21 þ c2c3Þ

��
G2

þmp

�
1

2
ðmp þmΛÞ
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ð−s�mN�mpÞ

�
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1

s
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�

− c1

�
−ðmpmΛ þ 9cΛÞ �mN�

�
1

s
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��
ð7c21 þ 3c2c3Þ

þ 3

�
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�
mΛbp −

1

s
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���
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2

s
c1c2ck

��

þ c1

�
−ð5mpcΛ þ 5mΛcp þmΛckÞ �mN�

�
5mpmΛ þ 5

s
cpcΛ þ 1

s
ckcΛ

��
ð7c21 þ 3c2c3Þ

∓ 3mN� ð21c41 þ 14c21c2c3 þ c22c
2
3Þ
�
G3; ðA7Þ

A2 ¼
1

t−m2
K

�
−16k2c1ð7c21þ 3c2c3Þð−cΛ�mN�mΛÞG1

þ
�
3ðs�mN�mpÞ

�
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1

s
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�
−mpk2c1
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1

s
mN�cΛ

�
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þ 3

�
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�
1

s
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�
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þmp
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��
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�
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�
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1

s
mN�cΛ

�
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2
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�
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A4 ¼
�
8ckc1ð7c21 þ 3c2c3Þ

�
−mΛ � 1

s
mN�cΛ
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�
mpmΛ −

1

s
cΛcp

���
3ð7c21 þ c2c3Þðc1 − bpcsÞ −

6

s
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��
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−mΛ � 1

s
mN�cΛ

�
c1ð7c21 þ 3c2c3Þ �mN�
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APPENDIX B: EXTRACTED NUCLEON RESONANCE COUPLING CONSTANTS

In this appendix we list the extracted coupling constants of nucleon resonances used in our analysis and compare them
with those of our previous study [1]. Note that not all resonances used in the present study were available in the previous
one. Furthermore, for the sake of brevity we do not list the corresponding error bars.
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APPENDIX C: ELECTROMAGNETIC AND
HADRONIC DECAY AMPLITUDES

To calculate the relative decay widths listed in Table III,
we used Eqs. (48) and (49) which compute the radiative
and hadronic decay widths, respectively. The former
requires information on the helicity amplitudes A1=2 and
A3=2, whereas the latter needs the hadronic decay ampli-
tude AKþΛ. The helicity amplitudes can be related to the
electromagnetic coupling constants g1;…; g4 by using the

TABLE IV. The extracted nucleon resonance coupling constants
from fits to experimental data in the present and previous [1]
works.

Coupling L2I·2J JP Present Previous

GNð1440Þ=4π P11 1=2þ −0.17 1.52

Gð1Þ
Nð1520Þ=4π

D13 3=2− 0.30 −0.00

Gð2Þ
Nð1520Þ=4π

−0.91 0.68

Gð3Þ
Nð1520Þ=4π

0.29 0.07

Gð4Þ
Nð1520Þ=4π

0.32 −0.32

GNð1535Þ=4π S11 1=2− 0.13 −0.15
GNð1650Þ=4π S11 1=2− 0.09 −0.04
Gð1Þ

Nð1675Þ=4π
D15 5=2− −2.12 0.01

Gð2Þ
Nð1675Þ=4π

0.35 0.87

Gð3Þ
Nð1675Þ=4π

−1.88 0.07

Gð4Þ
Nð1675Þ=4π

−0.63 −0.01

Gð1Þ
Nð1680Þ=4π

F15 5=2þ −0.21 2.74

Gð2Þ
Nð1680Þ=4π

6.15 0.05

Gð3Þ
Nð1680Þ=4π

−0.37 2.54

Gð4Þ
Nð1680Þ=4π

−3.01 0.44

Gð1Þ
Nð1700Þ=4π

D13 3=2− −0.10 0.25

Gð2Þ
Nð1700Þ=4π

−0.95 0.62

Gð3Þ
Nð1700Þ=4π

−0.38 0.51

Gð4Þ
Nð1700Þ=4π

0.43 −0.20

GNð1710Þ=4π P11 1=2þ 0.29 −0.41
Gð1Þ

Nð1720Þ=4π
P13 3=2þ 0.03 0.28

Gð2Þ
Nð1720Þ=4π

0.22 −0.36

Gð3Þ
Nð1720Þ=4π

0.04 0.17

Gð4Þ
Nð1720Þ=4π

0.08 −0.21

Gð1Þ
Nð1860Þ=4π

F15 5=2þ 0.90 −2.20

Gð2Þ
Nð1860Þ=4π

1.11 −9.99

Gð3Þ
Nð1860Þ=4π

1.23 −2.28

Gð4Þ
Nð1860Þ=4π

0.48 3.12

Gð1Þ
Nð1875Þ=4π

D13 3=2− −0.18 −0.13

Gð2Þ
Nð1875Þ=4π

−1.76 −0.09

Gð3Þ
Nð1875Þ=4π

0.20 −0.54

Gð4Þ
Nð1875Þ=4π

0.65 0.11

GNð1880Þ=4π P11 1=2þ −0.40 0.33
GNð1895Þ=4π S11 1=2− −0.01 0.01

Gð1Þ
Nð1900Þ=4π

P13 3=2þ 0.23 0.02

Gð2Þ
Nð1900Þ=4π

0.22 −0.21

Gð3Þ
Nð1900Þ=4π

0.16 0.05

(Table continued)

TABLE IV. (Continued)

Coupling L2I·2J JP Present Previous

Gð4Þ
Nð1900Þ=4π

−0.29 0.38

Gð1Þ
Nð1990Þ=4π

F17 7=2þ 4.53 � � �
Gð2Þ

Nð1990Þ=4π
1.67 � � �

Gð3Þ
Nð1990Þ=4π

3.71 � � �
Gð4Þ

Nð1990Þ=4π
−1.19 � � �

Gð1Þ
Nð2000Þ=4π

F15 5=2þ −0.76 −1.44

Gð2Þ
Nð2000Þ=4π

−10.0 9.75

Gð3Þ
Nð2000Þ=4π

−1.57 0.33

Gð4Þ
Nð2000Þ=4π

4.41 −4.13

Gð1Þ
Nð2060Þ=4π

D15 5=2− 3.56 −0.69

Gð2Þ
Nð2060Þ=4π

−2.57 0.82

Gð3Þ
Nð2060Þ=4π

3.18 −0.91

Gð4Þ
Nð2060Þ=4π

2.73 −1.51

Gð1Þ
Nð2120Þ=4π

D13 3=2− −0.05 0.05

Gð2Þ
Nð2120Þ=4π

1.53 1.40

Gð3Þ
Nð2120Þ=4π

0.09 0.06

Gð4Þ
Nð2120Þ=4π

−0.62 −0.57

Gð1Þ
Nð2190Þ=4π

G17 7=2− −1.28 � � �
Gð2Þ

Nð2190Þ=4π
6.08 � � �

Gð3Þ
Nð2190Þ=4π

3.16 � � �
Gð4Þ

Nð2190Þ=4π
−5.05 � � �

Gð1Þ
Nð2220Þ=4π

H19 9=2þ −1.55 � � �
Gð2Þ

Nð2220Þ=4π
10.0 � � �

Gð3Þ
Nð2220Þ=4π

−10.0 � � �
Gð4Þ

Nð2220Þ=4π
10.0 � � �

Gð1Þ
Nð2250Þ=4π

G19 9=2− −10.0 � � �
Gð2Þ

Nð2250Þ=4π
−10.0 � � �

Gð3Þ
Nð2250Þ=4π

−8.38 � � �
Gð4Þ

Nð2250Þ=4π
−0.40 � � �

ISOBAR MODEL FOR KAON PHOTOPRODUCTION WITH … PHYSICAL REVIEW D 96, 054004 (2017)

054004-19



electromagnetic interaction Lagrangian given by Eq. (10).
To this end we follow the prescription given in Ref. [24].
The hadronic decay amplitude required for the calculation
of the decay width given by Eq. (49) can be obtained by
using the same prescription.
The electromagnetic and hadronic decay amplitudes for

spin-3=2 resonances read

A1=2 ¼
e

4m3
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

3mN

s
½−2ig1mN� ðmN� �mNÞ

þ g2mN� ðmN� ∓ mNÞ− 2ig3ðm2
N� þm2

N �mN�mNÞ
þ 2g4ðm2

N� þm2
N ∓ mN�mNÞ�; ðC1Þ

A3=2 ¼ ∓ e
4m2

N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

mN

s
½2ig1ðmN� �mNÞ

þ g2ðmN� ∓ mNÞ þ 2ig3ðmN� � 2mNÞ
þ 2g4ðmN� ∓ 2mNÞ�; ðC2Þ

AKþΛ ¼ �i
gKþΛN�

mN�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EΛ ∓ mΛ

3mΛ

s
ðEΛ �mΛÞ: ðC3Þ

For spin-5=2 resonances the electromagnetic and hadronic
decay amplitudes are

A1=2 ¼ � e
8m5

N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

5mN

s
ðm2

N� −m2
NÞ½−2ig1mN� ðmN� ∓ mNÞ þ g2mN� ðmN� �mNÞ − 2ig3ðm2

N� þm2
N ∓ mN�mNÞ

þ 2g4ðm2
N� þm2

N �mN�mNÞ�; ðC4Þ

A3=2¼
e

4m4
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

10mN

s
ðm2

N� −m2
NÞ½2ig1ðmN� ∓mNÞþg2ðmN� �mNÞþ2ig3ðmN� ∓ 2mNÞþ2g4ðmN� �2mNÞ�; ðC5Þ

AKþΛ ¼ −i
gKþΛN�

m2
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EΛ ∓ mΛ

5mΛ

s
ðE2

Λ −m2
ΛÞ; ðC6Þ

whereas for the spin-7=2 nucleon resonances the electromagnetic and hadronic decay amplitudes read

A1=2 ¼
e

8m7
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

35mN

s
ðm2

N� −m2
NÞ2½−2ig1mN� ðmN� �mNÞ þ g2mN� ðmN� ∓ mNÞ − 2ig3ðm2

N� þm2 �mN�mNÞ

þ 2g4ðm2
N� þm2

N ∓ mN�mNÞ�; ðC7Þ

A3=2 ¼∓ e
8m6

N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

21mN

s
ðm2

N� −m2
NÞ2½2ig1ðmN� �mNÞ þ g2ðmN� ∓ mNÞ þ 2ig3ðmN� � 2mNÞ þ 2g4ðmN� ∓ 2mNÞ�;

ðC8Þ

AKþΛ ¼ �i
gKþΛN�

m3
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðEΛ ∓ mΛÞ

35mΛ

s
ðEΛ �mΛÞðE2

Λ −m2
ΛÞ: ðC9Þ

Finally, the electromagnetic and hadronic decay amplitudes for spin-9=2 resonances are given by

A1=2 ¼ � e
16m9

N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

63mN

s
ðm2

N� −m2
NÞ3½−2ig1mN� ðmN� ∓ mNÞ þ g2mN� ðmN� �mNÞ

− 2ig3ðm2
N� þm2

N ∓ mN�mNÞ þ 2g4ðm2
N� þm2

N �mN�mNÞ�; ðC10Þ

A3=2¼
e

16m8
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N� −m2
N

42mN

s
ðm2

N� −m2
NÞ3½2ig1ðmN� ∓mNÞþg2ðmN� �mNÞþ2ig3ðmN� ∓2mNÞþ2g4ðmN� �2mNÞ�; ðC11Þ

AKþΛ ¼ −i
gKþΛN�

m4
N�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðEΛ ∓ mΛÞ

63mΛ

s
ðE2

Λ −m2
ΛÞ2: ðC12Þ
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APPENDIX D: EXTRACTED MASSES AND WIDTHS OF NUCLEON RESONANCES

In this appendix we list the masses and widths of nucleon resonances used in our analysis. We also compare them with
those obtained from the Review of Particle Properties of PDG [2]. For the sake of brevity we omit the error bars of the fitted
masses or widths.
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