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We study the (anti)kaon nucleon interaction in the Skyrme model. The kaon field is introduced as a
fluctuation around the rotating Skyrmion for the nucleon. As an extension of our previous work, we study
scattering states and examine phase shifts in various kaon-nucleon channels. Then we study the interaction,
where we find that it consists of central and spin-orbit components for isospin channels, I ¼ 0, 1, with an
energy dependence and a nonlocality. The interaction is then fitted to a Shrödinger equivalent local
potential for s and p waves.
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I. INTRODUCTION

The antikaon and nucleon (K̄N) system is one of the
interesting systems in hadron physics. It is considered that
the K̄N interaction is strongly attractive. Based on the
properties of the K̄N strong attraction, a lot of discussions
about the K̄N systems have been done. One example is
the Λð1405Þ resonance known as a candidate of the K̄N
quasibound state [1,2], whose properties can not be
explained easily by a simple quark model [3]. Another
example is the kaonic nucleus, where the antikaon is bound
to a nucleus by a strong attraction between them. It is
expected that, because of the strong attraction, the structure
of the kaonic nucleus is largely modified from normal
nuclei [4,5]. In such discussions, the K̄N interaction is
obviously the most important input.
In this article, we first discuss the phase shift for both

the kaon-nucleon (KN) and K̄N scattering states by a
modified bound state approach proposed in the previous
work [6]. Our approach is based on the bound state
approach, which is proposed by Callan and Klebanov
[7,8]. In their original approach, the kaon is introduced as
a fluctuation around the hedgehog soliton, and then the
kaon-hedgehog system is collectively quantized as hyper-
ons. On the other hand, in our approach, we first generate
the nucleon by quantizing the hedgehog soliton, and then
introduce the kaon fluctuation around the physical
nucleon. There are works for (anti)kaon-nucleon scatter-
ings in the Skyrme model [9,10]. In these works, (anti)
kaon fluctuations were introduced around the Skyrmion
background, which corresponds to the Callan-Klebanov
approach [7,8]. The difference between the Callan-
Klebanov and our approaches is in the order of the
projection and variation. The Callan-Klebanov approach
corresponds to the projection after variation, while ours to
the variation after projection. In the previous paper, we
have investigated K̄N bound states. As a result, we found
one bound state for the K̄NðJP ¼ 1=2−; I ¼ 0Þ channel
with a binding energy of an order of 10 MeV correspond-
ing to Λð1405Þ.

Secondly, we derive a Schrödinger equivalent local
potential for the (anti)kaon and nucleon. The resulting
potential is fitted by Gaussian type functions, which are
convenient for the study of few-body nuclear systems with
the antikaon. In general, the (anti)kaon-nucleon potential
has four components: the isospin independent and depen-
dent central terms, and the spin-orbit terms (LS terms).
These complete all the possible components for the
pseudoscalar and isoscalar (anti)kaon and the spinor and
isospinor nucleon. Furthermore, the interaction is energy
dependent and nonlocal.
We organize the paper as follows. In the next section, we

briefly review our approach, which we have constructed in
the previous work. In Sec. III, we discuss the phase shifts
for (anti)kaon nucleon scattering states with lower (anti)
kaon partial waves. In Sec. IV, we derive various compo-
nents of the potential and perform a fitting to Gaussian type
functions. Then, we discuss the scaling properties of the
potential associated with the scaling properties of soliton
solutions. In the end, we summarize the present work and
discuss further studies.

II. FORMALISM

In this section, we review our modified bound state
approach. Detailed discussions have been done in Ref. [6].
Let us start with the following action for the SU(3)-valued
field U ¼ UðrÞ:

Γ ¼
Z

d4x

�
1

16
F2
πtrð∂μU∂μU†Þ

þ 1

32e2
tr½ð∂μUÞU†; ð∂νUÞU†�2 þ LSB

�
þ ΓWZ; ð1Þ

where the first and second terms are the Skyrme actions
[11–13] and the third term is the symmetry breaking term
due to the finite masses of the SU(3) pseudoscalar mesons
with [14,15]
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LSB ¼ 1

48
F2
πðm2

π þ 2m2
KÞtrðU þ U† − 2Þ

þ
ffiffiffi
3

p

24
F2
πðm2

π −m2
KÞtr½λ8ðU þ U†Þ�: ð2Þ

In this paper, we treat the pion as a massless particle while
the kaon as massive one. We call the three terms in Eq. (1)
as normal terms in this paper. The last term in Eq. (1) is the
contribution of the chiral anomaly called the Wess-Zumino
term given by [16–18]

ΓWZ ¼ −
iNc

240π2

Z
d5xεμναβγ

× tr½ðU†∂μUÞðU†∂νUÞðU†∂αUÞðU†∂βUÞðU†∂γUÞ�;
ð3Þ

where Nc is the number of colors, Nc ¼ 3.
The flavor SU(3) symmetry breaking is reflected in the

difference of both the masses and the decay constants of
the SU(3) pseudoscalar mesons [19–21]. Because in the
present study, the η-meson is irrelevant, we have two decay
constants Fπ and FK. Experimentally, they differ only by
about 20%, and therefore, we will take a common value of
them, typically their average. The use of the different values
of Fπ and FK will be discussed shortly in the next section.
Therefore, the action Eq. (1) contains three parameters:
the pion decay constant, Fπ, the Skyrme parameter, e, and
the mass of the (anti)kaon, mK . Here, we keep mK at the
experimental value, 495 MeV, and we consider three
parameter sets for Fπ and e. We will show them in the next
section.
To study the interaction of the kaon with the physical

nucleon, we introduce the ansatz,

U ¼ AðtÞ
ffiffiffiffiffiffi
Uπ

p
A†ðtÞUKAðtÞ

ffiffiffiffiffiffi
Uπ

p
A†ðtÞ; ð4Þ

where AðtÞ is an isospin rotation matrix, Uπ is the hedge-
hog pion field with the soliton profile function, FðrÞ,

Uπ ¼
�
ξ2 0

0 1

�
; ξ2 ¼ exp ½iFðrÞτ · r̂�; ð5Þ

and

UK ¼ exp

�
2

ffiffiffi
2

p
i

Fπ

�
0 K

K† 0

��
; K ¼

�
Kþ

K0

�
: ð6Þ

As discussed in Ref. [6], the ansatz Eq. (4) describes the
kaon fluctuation around the rotating hedgehog soliton, and
differs from the ansatz of Callan and Klebanov for the kaon
around the static hedgehog soliton [7,8]. Therefore, in our
approach, the system describes the physical (anti)kaon

and nucleon. Contrary, in the Callan-Klebanov approach,
the antikaon around the background hedgehog soliton
behaves as an s quark after collective quantization.
Now we derive the equation of motion for the kaon field.

To do that, we first substitute our ansatz Eq. (4) for the
action Eq. (1), and then we expand UK up to the second
order of the kaon field, K. As a result, we obtain the
following Lagrangian for the kaon-nucleon system:

L ¼ LSUð2Þ þ LKN; ð7Þ

LKN¼ðDμKÞ†DμK−K†a†μaμK−m2
KK

†K

þ 1

ðeFπÞ2
f−K†Ktr½∂μ

~U ~U†;∂ν
~U ~U†�2

−2ðDμKÞ†DνKtrðaμaνÞ

−
1

2
ðDμKÞ†DμKtrð∂ν

~U†∂ν ~UÞþ6ðDνKÞ†½aν;aμ�DμKg

þ 3i
F2
π
Bμ½ðDμKÞ†K−K†ðDμKÞ�; ð8Þ

where the covariant derivative is defined as Dμ ¼ ∂μ þ vμ,
and the vector and axial vector currents are

vμ ¼
1

2
ð~ξ†∂μ

~ξþ ~ξ∂μ
~ξ†Þ; ð9Þ

aμ ¼
1

2
ð~ξ†∂μ

~ξ − ~ξ∂μ
~ξ†Þ: ð10Þ

In these equations, the tilded quantities are rotating,

~U ¼ AðtÞξ2A†ðtÞ; ~ξ ¼ AðtÞξA†ðtÞ; ð11Þ

as required by our ansatz Eq. (4). Finally, the last term of
Eq. (8) is derived from the Wess-Zumino term with the
baryonic current [22], Bμ.
Next, we decompose the kaon field into the two-

component isospinor and spatial wave functions, and
expand the latter into partial waves by the spherical
harmonics, Ylmðr̂Þ,

�
Kþ

K0

�
¼ ψ IKðt; rÞ → ψ IKðrÞ exp ð−iEtÞ; ð12Þ

KðrÞ ¼
X
αlm

ClmαYlmðr̂Þkαl ðrÞ; ð13Þ

where ψ I is the two component isospinor.
Finally, taking a variation with respect to the kaon wave

function, we obtain the equation of motion for each partial
wave, kαl ðrÞ,
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−
1

r2
d
dr

�
r2hðrÞ dk

α
l ðrÞ
dr

�
− E2fðrÞkαl ðrÞ

þ ðm2
K þ VðrÞÞkαl ðrÞ ¼ 0; ð14Þ

where hðrÞ and fðrÞ are functions depending on the profile
function, FðrÞ, and E is the energy of the kaon including
the rest mass of the kaon. The last term in Eq. (14), VðrÞ, is
the (anti)kaon-nucleon interaction term. In Appendix A, we
show explicit forms of each term in Eq. (14).

III. SCATTERING STATES

Let us first discuss the model parameters. As we
mentioned in the previous section, in this paper, we
consider three parameter sets for Fπ and e as shown in
the Table I. These parameter sets reproduce the same
moment of inertia such that the mass splitting of the
nucleon and delta becomes the physical value. Further
explanations are as follows:

(i) Parameter set A: we employ the pion decay constant
slightly larger than the physical one. This is moti-
vated by the facts that the kaon decay constant, FK ,
is larger than the pion one (FK ¼ 221 MeV [23])
and that we are interested in a physical system of
the pion and kaon. Therefore, we choose Fπ ¼
186 × 1.1 ¼ 205 MeV. The Skyrme parameter, e,
is then fixed to reproduce the NΔ mass splitting
together with the above Fπ value. The reason that we
use an experimentally inspired value for the decay
constant is that it determines the interaction strength
of the pion (kaon) and nucleon. As the Tomozawa-
Weinberg theorem says, the choice of the exper-
imental value is needed to explain the pion-nucleon
scattering length [24,25]. For the Skyrme parameter
e, the present value overestimates the absolute
masses of the nucleon and delta. However, these
masses are subject to the correction from the Casimir
energy of order (1=N0

c) which reduces their large
masses [26,27].

(ii) Parameter set B: this is adjusted to fit the NΔ mass
splitting with Fπ fixed at the experimental value.

(iii) Parameter set C: this is proposed by Adkins, Nappi,
and Witten [22], which reproduces the observed
masses of the nucleon and the delta.

For the parameter set A, there is one bound state for the
I ¼ 0 channel with the binding energy 20.6 MeV while,
for the I ¼ 1 channel, no bound state exists. There is one

bound state for the I ¼ 0 and I ¼ 1 channels with the sets B
and C [28]. For the KN channel, the kaon and nucleon
does not form a bound state due to the strong repulsion by
the Wess-Zumino term for the three parameter sets.
In addition to the three parameter sets, A, B, and C, we

have considered another one with different decay constants:
FK ¼ 221 MeV, Fπ ¼ 186 MeV, and e ¼ 4.82. Here, the
Skyrme parameter e ¼ 4.82 has been determined such that
the NΔ mass splitting is reproduced as before. Then we
have found similar results both for bound and scattering
state properties to those in the parameter set A. For
instance, the binding energy of the K̄NðI ¼ 0Þ system
turns out to be 17.6 MeV. The difference of Fπ and FK due
to the flavor SU(3) symmetry breaking is important for
more quantitative discussions. In that case, we also need to
consider other issues such as the explicit chiral symmetry
breaking of the finite pion mass. In the present work,
however, we consider a simple case as a first attempt for
the study of the essential features of the kaon and nucleon
systems.
Now, we show the results for the scattering states. We

have calculated the phase shifts for the s- and p-wave (anti)
kaon nucleon scattering states for all of the parameter sets.
However, for the realistic situations of the (anti)kaon and
nucleon systems, it turns out that the use of the physical
pion decay constant is important. Therefore, in the follow-
ing discussions, we will present in most cases the results of
using the parameter sets A and B.
First, we show in Fig. 1 phase shifts for s-wave

scatterings with various channels as functions of the kinetic
energy ε, which is defined by E ¼ mK þ ε. For the set A
(left), the phase shift of the K̄NðI ¼ 0Þ channel starts from
π at ε ¼ 0, reflecting the fact that there is one bound state.
For the K̄NðI ¼ 1Þ channel, there is not a bound state but
it shows an attractive nature as the positive phase shifts
indicate. For the KN scattering, both I ¼ 0 and I ¼ 1
channels are weakly repulsive but the I ¼ 1 channel is
stronger.
For the set B (right), K̄N channels allow a bound state for

both I ¼ 0 and I ¼ 1. The bound state of I ¼ 1 is, however,
very shallow indicating that the attractive interaction is
weaker than in the I ¼ 0 channel. The I ¼ 1 bound state
disappears by slightly increasing the pion decay constant as
chosen in the parameter set A. We may further attempt fine-
tuning of the parameters, but we will not do this because
our present model contains only KN channels. Physically,
the inclusion of the πΣ channels is very important, which
we will do in the future.
From Fig. 1, we find that the strength of the repulsion for

KN and the attraction for K̄N are stronger for the set B than
for the set A. This reflects the fact that the obtaining
potential is approximately proportional to 1=F2

π as the
Weinberg-Tomozawa theorem implies [24,25].
To complete the discussions up to here, we show the

phase shifts for all parameter sets A, B, and C for the

TABLE I. Parameter sets and binding energy (B.E.).

Fπ [MeV] e B.E. [MeV]

Parameter set A 205 4.67 20.6
Parameter set B 186 4.82 32.2
Parameter set C 129 5.45 81.3
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K̄NðJP ¼ 1=2−; I ¼ 0Þ channel in Fig. 2. In this figure, we
can find that the attraction between the antikaon and the
nucleon becomes stronger in the order of the set A, B, and
C, which is consistent with the properties of the K̄N bound
states shown in Table. I.
Next, in Fig. 3, we have shown the phase shifts for p

waves, first for JP ¼ 3=2þ channels. In both sets A and B,
the phase shifts show the attractive and repulsive behaviors
for the K̄N and KN channels, respectively. However,
the strength of them are weaker than those of the s wave.

The phase shifts in the K̄N channels show that the I ¼ 1
channel is more attractive than the I ¼ 0 one due to the
stronger isospin-dependent LS force in the I ¼ 1 channel.
For the other LS partner of JP ¼ 1=2þ channel, the

interaction shows a strong attraction as proportional to
1=r2. Because of this, the system becomes unstable
and physically meaningful solutions are not allowed.
We consider that it is related to the hedgehog structure,
but the physical meaning is not yet clarified.
Finally, let us evaluate the scattering length, a, for the

K̄NðJP ¼ 1=2−Þ scattering state, which is defined by

a ¼ −lim
k→0

tan δðkÞ
k

; ð15Þ

where k is the wave number and δðkÞ is the phase shift.
From this equation, we have obtained a0 ¼ 1.56 fm and
a1 ¼ −3.38 fm for the K̄N scattering with isospin 0 and 1
channels, respectively, for the set A. As a result, we have
aK̄N ¼ −0.91 fm as the K̄N scattering length with the
parameter set A.
For the set B, we have obtained a0 ¼ 1.32 fm and

a1 ¼ 8.22 fm for the K̄NðI ¼ 0; 1Þ scatterings. We find
that a0 for the set A is longer than that for the set B, while
a1 changes its sign and the absolute value of it is shorter for
the set A than for the set B. This is because the attraction

FIG. 1. Phase shifts for the (anti)kaon-nucleon scattering state with JP ¼ 1=2− for the parameter sets A (left) and B (right).
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FIG. 2. The phase shifts for the K̄NðJP ¼ 1=2−; I ¼ 0Þ channel
with the three parameter sets A, B, and C.

FIG. 3. Phase shifts for the (anti)kaon-nucleon scattering state with JP ¼ 3=2þ for the parameter sets A (left) and B (right).
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between K̄ and N for the set B is stronger than that for the
set A.
All the scattering lengths derived here are real. However,

those obtained from experiments and other theoretical
calculations are complex [29–33]. The reason is that we
do not consider the coupled channel effect of the πΣ
channel, which is needed for a more realistic comparison.
Because of this, in the present paper, we will not make
further quantitative discussions.

IV. POTENTIAL

In this section, we investigate the K̄N potential in detail.
Numerical results are then fitted to a simple functional
form, which is useful for various applications to the study
of K̄-nucleon systems. First, we consider the potential for
the parameter set A. For the sets B and C, we discuss them
with scaling rules from the set A to the sets B and C.

A. Derivation and classification of the potential

Let us start with the equation of motion Eq. (14) in the
following Schrödinger-like form with the potential UðrÞ in
units of MeV:

−
1

mK þ E
1

r2
d
dr

�
r2
dkαl ðrÞ
dr

�
þUðrÞkαl ðrÞ ¼ εkαl ðrÞ;

ð16Þ

where E ¼ mK þ ε, and

UðrÞ ¼ −
1

mK þ E

�
hðrÞ − 1

r2
d
dr

�
r2

d
dr

�
þ dhðrÞ

dr
d
dr

�

−
ðfðrÞ − 1ÞE2

mK þ E
þ VðrÞ
mK þ E

: ð17Þ

The potential UðrÞ has the following properties [6]: it is
nonlocal and depends on the energy of the kaon. Second,
it contains isospin independent and dependent central terms
and spin-orbit (LS) terms. Finally, there are repulsive
components proportional to 1=r2 at short distances.
Because this expression contains the derivative opera-

tors, we define the equivalent local potential ~UðrÞ with the
kaon partial wave function, kαl ðrÞ,

~UðrÞ≡UðrÞkαl ðrÞ
kαl ðrÞ

: ð18Þ

This definition, however, can not be used when the wave
function becomes zero at nodal points. We may avoid this
problem by using a bound state for the K̄NðI ¼ 0Þ channel,
which allows one bound state, and for the other channels,
by using a scattering state with a small energy such that the
first node of the wave function appears at a large r, where
the potential is sufficiently suppressed. In the following, we

show the results for the scattering energy ε ¼ 27 MeV,
while we have confirmed that results do not change as long
as the scattering energy is small.
As mentioned already, the equivalent local potential

~UðrÞ has four kinds of components. Here, we decompose
them further into seven components reflecting different
origins of the potential,

~UðrÞ ¼ ~Uc
0ðN; rÞ þ ~Uc

τðN; rÞIKN
þ ~ULS

0 ðN; rÞJKN þ ~ULS
τ ðN; rÞJKNIKN

þ ~Uc
0ðWZ; rÞ þ ~ULS

0 ðWZ; rÞJKN þ ~UlðrÞ; ð19Þ

where superscripts, c and LS, stand for the central and
spin-orbit (LS) forces, respectively, and subscripts, 0 and τ,
are for isospin independent and dependent components,
respectively. The arguments, N and WZ, indicate the terms
derived from the normal terms of the Skyrme Lagrangian
and the Wess-Zumino term, respectively. In Eq. (19),
we have defined IKN and JKN as IKN ¼ IK · IN and JKN ¼
LK · JN , respectively. The former, IKN , corresponds to the
product of the isospin operator for the kaon and the nucleon
and the latter, JKN , to the product of the angular momentum
of the kaon and the spin of the nucleon. The last term in
Eq. (19), ~UlðrÞ, is the centrifugal force of the kaon.
Because the Wess-Zumino term corresponds physically
to the ω-meson exchange, that is the isoscalar particle
exchange [16–18,34], it has no isospin dependent contri-
butions in Eq (19).
The seven potential components have energy depend-

ence, for which we make a linear approximation in terms of
ΔE ≡ ε=2mK ,

~UðrÞ≃ ~UðrÞ þ ∂ ~UðrÞ
∂ε ΔE

≡ uðrÞ þ vðrÞΔE: ð20Þ

We then fit all the components of uðrÞ and vðrÞ by several
Gaussian type functions,

G−2ðrÞ ¼ C−2
1

r2=R−2
2
exp

�
−

r2

R−2
2

�
ð21Þ

G0ðrÞ ¼ C0 exp

�
−

r2

R0
2

�
ð22Þ

G2ðrÞ ¼ C2

r2

R2
2
exp

�
−

r2

R2
2

�
; ð23Þ

as summarized in Table II. For example, the isospin
independent components of the central terms derived from
the normal Skyrme Lagrangian, uc0ðN; rÞ and vc0ðN; rÞ,
are fitted by the three functions, G−2ðrÞ, G0ðrÞ, and G2ðrÞ.
The first one, G−2ðrÞ, is the Gaussian divided by r2, which
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is needed to reproduce a repulsive behavior in the short
range, and the second and third are the Gaussians with the
polynomial of r0 and r2.
For the centrifugal term, we have fitted as follows:

~UlðrÞ ¼
lðlþ 1Þ
2mKr2

½Gð1Þ
0 ðrÞ þ Gð2Þ

0 ðrÞ þ 1�; ð24Þ

where l and mK are the angular momentum and the mass
of the kaon, respectively. At short and middle distances,
the centrifugal term deviates from the ordinary one of 1=r2

due to background fields of the hedgehog soliton. However,
at long distances, it reduces to the ordinary form.
Asmentioned in the Introduction, the Gaussian functional

form is convenient for practical applications. However, its
functional form falls off much faster than the actual func-
tional form that falls off only by the inverse polynomial
power of the radial distance r for the massless pion
Skyrmion. The difference at large distances, however, does
not affect the properties of the (anti)kaon-nucleon systems.

B. Numerical fitting

In this subsection, we compare numerically obtained
potentials with those fitted by the Gaussian forms for each
component in Figs. 4–10. The fitting parameters are shown
in Tables III–IX in Appendix B.

We have treated both ranges, Ri, and strengths, Ci, as
fitting parameters. Practically, we have performed the
fitting as follows: first, we have fitted both range and
strength parameters for the energy independent compo-
nents because they are the dominant contributions. Then,
we have determined the strength parameters of the energy
dependent components with the same range parameters as
the energy independent ones. This is because we consider
that the energy independent and dependent components
have the same physical origin, if based on a boson
exchange picture.
Let us now make detailed discussions for each compo-

nent below. We concentrate on the K̄N potentials but we
can estimate the KN ones with taking into account the
difference of the quantum numbers. However, due to the
nonlocality, we need to solve the equation of motion to
derive more accurate potentials.
From Figs. 4–10, we can see that the fitting is done by

the Gaussian forms in a good manner. We find that four
components, Uc

0ðWZ; rÞ, ULS
0 ðN; rÞ, ULS

0 ðWZ; rÞ, and
ULS

τ ðN; rÞ, are fitted by a single Gaussian function, G0ðrÞ
or G−2ðrÞ, but with different ranges that are indicated by the
superscript, while the others,Uc

0ðN; rÞ,Uc
τðN; rÞ, andUlðrÞ,

are fitted with the different forms. We consider that the
reason behind this is that the former originates from a simple
physical mechanism while the latter from a complex one.
From now on, we make discussions for each compo-

nent below.
(i) Figure 4

For the s-wave channel, as shown in the upper left
panel, we find that there is an attractive pocket
whose depth is around 100 MeV in the middle range
and a repulsive core at a short distances in the energy
independent potential, uc0ðN; rÞ. Contrary, the en-
ergy dependent components, vc0ðN; rÞ, behave rather
monotonically with an attraction as proportional to
1=r2. Turning to the p-wave potential as shown in
the lower panel, an energy independent component
is attractive as it is proportional to 1=r2, while the
energy dependent one behaves similarly to the s-
wave energy independent component, but with a
shorter range. We can also see that the energy
independent and dependent components behave in
a quite different manner between the s- and p-wave
channels. This is because of the nonlocal contribu-
tions of them. To see that, we first separate the
potentials, uc0ðN; rÞ and vc0ðN; rÞ, into the local and
nonlocal contributions for the two channels,

uc0ðN; rÞ ¼ uc0ðN; local; rÞ þ uc0ðN; non; rÞ ð25Þ

vc0ðN; rÞ ¼ vc0ðN; local; rÞ þ vc0ðN; non; rÞ; ð26Þ
where the arguments local and non stand for the
local and nonlocal contributions, respectively. Then,

TABLE II. Various components of the K̄N potential and the
corresponding fitted functions. The functions uðrÞ and vðrÞ are
for energy independent and dependent components with upper
and lower indices as explained in the text. The fitted functions
GnðrÞ are also defined in the text, Eqs. (21), (22), and (23).

Superscripts, (1) and (2) of Gð·Þ
n ðrÞ, indicate that the fitting

parameters are different for the functions.

Isospin Fitting function

Central independent uc0ðN; rÞ þ vc0ðN; rÞΔE

G−2ðrÞ þG0ðrÞ þG2ðrÞ
uc0ðWZ; rÞ þ vc0ðWZ; rÞΔE

Gð1Þ
0 ðrÞ þ Gð2Þ

0 ðrÞ
dependent ucτ ðN; rÞ þ vcτ ðN; rÞΔE

G0ðrÞ þ G2ðrÞ
LS independent uLS0 ðN; rÞ þ vLS0 ðN; rÞΔE

Gð1Þ
0 ðrÞ þ Gð2Þ

0 ðrÞ
uLS0 ðWZ; rÞ þ vLS0 ðWZ; rÞΔE

Gð1Þ
0 ðrÞ þ Gð2Þ

0 ðrÞ
dependent uLSτ ðN; rÞ þ vLSτ ðN; rÞΔE

Gð1Þ
−2 ðrÞ þ Gð2Þ

−2 ðrÞ
Centrifugal force ulðrÞ þ vlðrÞΔE

½Gð1Þ
0 ðrÞ þGð2Þ

0 ðrÞ þ 1�=2mKr2
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we have numerically calculated the nonlocal con-
tributions for the s and p waves and shown the
results in Fig. 11, where the s-wave components are
plotted by a solid line and the p-wave one by a
dashed line. We can see that the nonlocal contribu-
tions are quite different between them.
Because the local potential strongly depends on the

state as shown in Fig. 11, we need to derive the local
potentials for the state by state in order to obtain more
accurate ones. Therefore, for more practical uses, we

decompose uc0ðN; rÞ and vc0ðN; rÞ into the local and
nonlocal components and then fit the local compo-
nents and the coefficients of the derivative operators.
Details of this fitting are done in Appendix C.

(ii) Figure 5
We can see that the energy independent and depen-
dent components behave in a similar way but their
strengths are very much different. To see this, the
contribution is expanded with respect to ΔE ¼
ε=2mK as in Eq. (20),

FIG. 4. Comparisons between the numerically obtained and the Gaussian-fitted potentials for uc0ðN; rÞ (left) and vc0ðN; rÞ (right) for
the s-wave (upper panels) and p-wave (lower panels) components.

FIG. 5. Comparisons between the numerically obtained and the Gaussian-fitted potentials for uc0ðWZ; rÞ (left) and vc0ðWZ; rÞ (right).
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FIG. 6. Comparisons between the numerically obtained and the Gaussian-fitted potentials for ucτðN; rÞ (left) and vcτ ðN; rÞ (right).
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FIG. 7. Comparisons between the numerically obtained and the Gaussian-fitted potentials for uLS0 ðN; rÞ (left) and vLS0 ðN; rÞ (right).
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FIG. 9. Comparisons between the numerically obtained and the Gaussian-fitted potentials for uLSτ ðN; rÞ (left) and vLSτ ðN; rÞ (right).
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Uc
0ðWZ; rÞ ¼ 1

mK þ E
3

π2F2
π

sin2F
r2

F0
�
E −

s2

Λ

�

∝
1

mK þ E

�
E −

s2

Λ

�

≃
�
1

2
−

1

2mK

s2

Λ

�
þ
�
1

2
þ 1

2mK

s2

Λ

�
ΔE;

ð27Þ

where the explicit expressions of Uc
0ðWZ; rÞ are

shown in Eq. (A9). In Eq. (27), Λ is a moment of
inertia of the SU(2) hedgehog soliton, and we define
s ¼ sin ðFðrÞ=2Þ. In our definition for uc0ðWZ; rÞ
and vc0ðWZ; rÞ, the first and second terms in Eq. (27)
correspond to uc0ðWZ; rÞ and vc0ðWZ; rÞ, respec-
tively. Therefore, we obtain the following relations:

uc0ðWZ; rÞ ∝ 1

2
−

1

2mK

s2

Λ
ð28Þ

and

vc0ðWZ; rÞ ∝ 1

2
þ 1

2mK

s2

Λ
: ð29Þ

From these equations, we find that the difference
of the energy independent and dependent terms
of the Wess-Zumino term is proportional to s2=Λ.

This explains the difference in the strengths shown
in Fig. 5.

(iii) Figures 6 and 7
In these figures, it is shown that the energy inde-
pendent and dependent components become exactly
the same. This should have been expected from the
analytic form of the potential as shown in Eqs. (A10)
and (A11), from which we can read explicitly,

uðrÞ ¼ vðrÞ: ð30Þ

(iv) Figures 8, 9, and 10
We can see that the strengths of the potentials are the
same for each component but the sign is different
between the energy independent and dependent
components. We can easily verify it from their
explicit forms shown in Appendix A.

Finally, we show the total potentials, which are numeri-
cally obtained and fitted by the Gaussian forms in Fig. 12.
For the s-wave potential, we can see a repulsion at the
short distances, which comes from the isospin independent
central term of the normal Skyrme Lagrangian, Uc

0ðN; rÞ,
as shown in Fig. 4. In the middle range, we find an
attractive pocket, which may generate the bound state.
From Figs. 4–6, this attractive pocket is dominantly made
by the attraction of the Wess-Zumino term.
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FIG. 10. Comparisons between the numerically obtained and the Gaussian-fitted potentials for ulðrÞ (left) and vlðrÞ (right).
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From Fig. 12, we see that the behaviors of the potentials
for the s wave (1=2−) and p wave (3=2þ) are different; an
attractive pocket vanishes for the p wave. This is due to the
strong repulsion of the LS and centrifugal components
from the normal term.
So far we have seen that the fitting of the potential works

well, particularly for the local terms,while that for thenonlocal
terms is not always the case as Fig. 11 shows. The nonlocal
terms induce also energy dependence. To see this point, we
check how the phase shifts are reproduced by the fitted
potential as functions of thekinetic energy. InFig. 13,wehave
compared the phase shifts calculated by the numerically
obtained and fitted potentials. In the low energy region
ðε≲ 50 MeVÞ, where we consider that our approach works
well, the two phase shifts agree well. Contrary, as the kinetic
energy is getting larger, the difference of the phase shifts
becomes larger, which is due to the nonlocal contributions.
Therefore, our fitted potential can be used for practical
calculations for low energy (anti)kaon and nucleon systems.

C. Scaling rules

So far, we have performed the potential fitting for the
parameter set A. In this subsection, we consider it for the
sets B and C by using the scaling property of the Skyrmion.
In this way, various properties of the interaction will be
better understood. First, we briefly review the scaling rule
in the Skyrme model and then show the scaling rules for the

fitting parameters. Finally, we compare the numerically
obtained potential and fitted one from the parameter set A
by the scaling rules.
The Skyrme model of a massless pion has one dimen-

sionful parameter, Fπ , and one coupling constant, e. These
are scaled out by introducing the standard unit, where
length is expressed by

y ¼ eFπr: ð31Þ
By using this, soliton profiles for various Fπ and e are
related by a simple scale transformation to each other.
In Fig. 14, we show the soliton profiles as functions of the
physical radial distance r for the three parameter sets A, B,
and C, which are obtained from the standard profile
function with the scaling rule Eq. (31). From Fig. 14,
we find that the profile function for the set C is most
extended among the three parameter sets; soliton size is
inversely proportional to eFπ .
Having established the scaling rule for the soliton profile,

let us investigate possible scaling rules for the antikaon
nucleon potential. First, let us look at the relations among
the parameter sets A, B, and C, and then we will discuss
general cases.
As expected from a dimensional argument, it is shown

that the range parameters for the parameter sets A and B,
for instance, are related by
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RB ¼ αA

αB
RA ð32Þ

for all components of the potential. Here, we have defined
α as α ¼ eFπ , and the superscripts A and B correspond
to the parameter sets A and B, respectively; namely, we take
as follows: αA¼4.67×205MeV and αB ¼ 4.82×186MeV.
Contrary, interaction strengths obey differently for differ-

ent components.
(i) For the components which do not include G−2 as a

fitting function, Uc
0ðWZ; rÞ, Uc

τðN; rÞ, ULS
0 ðN; rÞ,

ULS
0 ðWZ; rÞ, and UlðrÞ, the strength parameters are

scaled by the following rules:

CB
i ¼ CA

i ; ði ¼ −2; 0; 2Þ: ð33Þ
(ii) For the others [Uc

0ðN; rÞ and ULS
τ ðN; rÞ], they obey

the different rule as follows:

CB
i ¼

�
αB

αA

�
2

CA
i ; ði ¼ −2; 0; 2Þ: ð34Þ

In Fig. 15, we have shown the potentials for the same
channel as in Fig. 12 for the parameter set B. The s-wave
potentials are calculated at the binding energy of the
corresponding parameter set, namely, ε ¼ −32.2 MeV.
The p-wave potential is calculated at the common scattering

energy ε ¼ 27 MeV. From Figs. 15, we find that the
potentials for the parameter set A is scaled into the set B
with the scaling rules Eqs. (32)—(34) in a good manner.
In Appendix D, we show the results for the set C.
Finally, we consider general parameter sets. To do that,

let us first observe that the potential contains terms with
different 1=Nc behaviors; the one originates from the
soliton profile (leading order term) and the one from the
rotation (higher order term). The former is factored out by
1 in the standard unit, while the latter by e3Fπ ∼ 1=Nc,
which is inversely proportional to the moment of inertia.
Because of this, the scaling rules for different parameter
sets of Fπ and e differ for these two terms of different
1=Nc orders. For the case of the set A, B, and C, because
the parameters are chosen to preserve the value of e3Fπ

unchanged, we have obtained a simple scaling rule as
dictated by Eqs. (32)—(34). In general, this is no longer
the case, and we have to consider the scaling rules for the
leading and higher order terms, separately. To see how the
simple scaling rule holds in general, we introduce a new
parameter set D, which is taken as Fπ ¼ 186 MeV and
e ¼ 5.85. In this parameter set, we set the pion decay
constant at the experimental value, while the Skyrme
parameter at the ρππ-coupling constant, gρππ , determined
from the KSRF relation [35,36],
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FIG. 15. Total potentials for the K̄NðJP ¼ 1=2−; I ¼ 0Þ channel from the bound state (left) and the K̄NðJP ¼ 3=2þ; I ¼ 0Þ
channel from a scattering state (right) for the parameter set B, which are derived from the potentials for the set A by the scaling rules
Eqs. (32)—(34). The scattering energies are −32.2 and 27 MeV for s and p waves, respectively.
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m2
ρ ¼

g2ρππF2
π

2
; ð35Þ

where mρ ¼ 770 MeV, which is the mass of the ρ meson.
We show the potential calculated by the set D and those
expected by the scalings Eqs. (32)—(34) in Fig. 16. The
binding energy of the K̄N bound state is 21.0 MeV for
the set D, and the scattering energy is for 27 MeV for the
p wave. There is some deviation between the two, which
is not, however, very large. To conclude this subsection,
the potential obeys a simple scaling rule as long as the
moment of inertia is unchanged.

V. SUMMARY

In this paper, we have discussed the (anti)kaon-nucleon
scattering states and the (anti)kaon-nucleon potentials by a
modified bound state approach in the Skyrme model, which
is more suited to the study of the physical kaon and nucleon
[6]. In our approach, the potential contains terms of
different orders of 1=Nc due to the change of the order
of the projection and variation. This violates the 1=Nc
expansion series, but it is reasonable for physical systems
of a weakly interacting (anti)kaon and nucleon, which may
generate molecular like states.
First, we have investigated the phase shifts for the (anti)

kaon-nucleon scattering with the lower partial waves of the
(anti)kaon. The obtained phase shifts indicate that the
potential is attractive for the K̄N channel and repulsive
for the KN one. Then, we have evaluated the scattering
length for the K̄N scattering state but it turns out to be
larger than the experimental results and other theoretical
calculations [29–33].
Second, to make further discussions for the potential, we

have classified the K̄N potential into the seven components
according to their natures with and without an energy
dependence. Then, we have fitted them by the Gaussian
type functions. As a result, we have found that all the
components can be fitted by the Gaussian type functions.
Actually, we have verified that the binding energies of the
K̄N bound state and the phase shifts derived from the fitted
potential and those from the numerically obtained original
ones agree well.
While fitting the potential, we have also investigated the

scaling rules associated with the soliton profile function,
when changing the model parameters Fπ and e. We have
found that various components of the potential contain
terms of a different order of 1=Nc, which obey different
scaling rules, separately. However, by keeping the moment
of inertia in the higher order terms unchanged when Fπ and
e are varied, these separate scaling rules reduce to a simple
rule for each component.
For further studies, it would be necessary to take into

account the finite mass effect of the pion due to explicitly
chiral symmetry breaking and the difference in Fπ and FK
due to SU(3) flavor symmetry breaking. Furthermore, the
coupling of K̄N and πΣ is important. It was investigated

in the Callan-Klebanov bound state approach [37].
However, the antikaon is not a physical one in their work.
Improvements by considering these issues should be
performed for more quantitative discussions of (anti)
kaon-nucleon systems including Λð1405Þ.
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APPENDIX A: THE EQUATION OF MOTION
AND INTERACTIONS

In this appendix, we show the explicit expressions of
various terms in the equation of motion Eq. (14),

−
1

r2
d
dr

�
r2hðrÞ dk

α
l ðrÞ
dr

�
− E2fðrÞkαl ðrÞ

þ ðm2
K þ VðrÞÞkαl ðrÞ ¼ 0; ðA1Þ

where

hðrÞ ¼ 1þ 1

ðeFπÞ2
2

r2
sin2 F; ðA2Þ

fðrÞ ¼ 1þ 1

ðeFπÞ2
�
2

r2
sin2 F þ F02

�
; ðA3Þ

VðrÞ ¼ Vc
0ðrÞ þ Vc

τðrÞIKN þ VLS
0 ðrÞJKN þ VLS

τ ðrÞJKNIKN:
ðA4Þ

In Eq. (A4), we define IKN and JKN as follows:

IKN ¼ IK · IN; JKN ¼ LK · JN; ðA5Þ
where the nucleon spin and isospin operators, JN and IN ,
are given by [38]

JN ¼ iΛtr½τ _A†ðtÞAðtÞ�; IN ¼ iΛtr½τ _AðtÞA†ðtÞ�: ðA6Þ
In Eq. (A6), _AðtÞ is the time derivative of an isospin

rotation matrix, AðtÞ, τ are the 2 × 2 Pauli matrices, and Λ
is the soliton moment of inertia given by [22],

Λ ¼ 2π

3
F2
π

Z
drr2sin2F

�
1þ 4

ðeFπÞ2
�
F02 þ sin2F

r2

��
:

ðA7Þ
The isospin and angular momentum operators of the kaon,
IK and LK, are given by

IK ¼ τ
2
; LK ¼ r × pK; ðA8Þ

where pK is the momentum of the kaon.
Finally, the explicit forms of each term in the interaction,

VðrÞ, are given by the following equations:
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Vc
0ðrÞ ¼ −

1

4

�
2
sin2F
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þ ðF0Þ2
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s4

r2
þ
�
1þ 1

ðeFπÞ2
�
F02 þ sin2F

r2

��
lðlþ 1Þ
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−

1
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�
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sin2F
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�
sin2F
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�

− 2
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6

r2
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s4sin2F
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þ d
dr

fs2 sinFF0g
�
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sin2F
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�
E −
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Λ

�
; ðA9Þ

Vc
τðrÞ ¼

8E
3Λ

s2
�
1þ 1

ðeFπÞ2
�
F02 þ 4

r2
sin2F

��

þ 4

ðeFπÞ2
1

r2
d
dr

�
r2
�
EF0 sinF

Λ

��
; ðA10Þ

VLS
0 ðrÞ ¼ 1

ðeFπÞ2
2E sin2 F

Λr2
� 3

F2
ππ

2

sin2 F
Λr2

F0; ðA11Þ

and

VLS
τ ðrÞ ¼ −

�
1þ 1

ðeFπÞ2
�
F02 þ 4

sin2F
r2

��
16s2

3r2

−
1

ðeFπÞ2
8

r2

�
d
dr

ðsinFF0Þ
�
; ðA12Þ

where

s ¼ sin ðFðrÞ=2Þ; ðA13Þ
and

F0 ¼ dFðrÞ=dr: ðA14Þ
The last terms of Eq. (A9) and Eq. (A11) are derived from
the Wess-Zumino term, which is attractive for the K̄N
potential and repulsive for the KN potential.

APPENDIX B: FITTING PARAMETERS

In this appendix, we show the fitting parameters dis-
cussed in Sec. IV B.

TABLE IV. Fitting parameters for uc0ðWZ; rÞ and vcτðWZ; rÞ.

Gð1Þ
0 ðrÞ Gð2Þ

0 ðrÞ
Range [fm] 0.264 0.378
uc0ðWZ; rÞ [MeV] −677 −1207
vc0ðWZ; rÞ [MeV] −3449 −985

TABLE VII. Fitting parameters for uLS0 ðWZ; rÞ and vLS0 ðWZ; rÞ.

Gð1Þ
0 ðrÞ Gð2Þ

0 ðrÞ
Range [fm] 0.228 0.353

uLS0 ðWZ; rÞ [MeV] −574 −728

vLS0 ðWZ; rÞ [MeV] 574 728

TABLE V. Fitting parameters for ucτðN; rÞ and vcτ ðN; rÞ.
G0ðrÞ G2ðrÞ

Range [fm] 0.248 0.491
ucτðN; rÞ [MeV] 401 291
vcτðN; rÞ [MeV] 401 291

TABLE VIII. Fitting parameters for uLSτ ðN; rÞ and vLSτ ðN; rÞ.

Gð1Þ
−2 ðrÞ Gð2Þ

−2 ðrÞ
Range [fm] 0.245 0.566

uLSτ ðN; rÞ [MeV] −7930 −1465
vLSτ ðN; rÞ [MeV] 7930 1465

TABLE VI. Fitting parameters for uLS0 ðN; rÞ and vLS0 ðN; rÞ.

Gð1Þ
0 ðrÞ Gð2Þ

0 ðrÞ
Range [fm] 0.281 0.452

uLS0 ðN; rÞ [MeV] 127 78

vLS0 ðN; rÞ [MeV] 125 78

TABLE III. Fitting parameters for uc0ðN; rÞ and vc0ðN; rÞ for the
s wave (top) and p wave (bottom).

G−2ðrÞ G0ðrÞ G2ðrÞ
Range [fm] 0.165 0.254 0.368
uc0ðN; rÞ [MeV] 3320 2903 −579
vc0ðN; rÞ [MeV] −2244 −6343 −499

G−2ðrÞ G0ðrÞ G2ðrÞ
Range [fm] 0.298 0.292 0.300
uc0ðN; rÞ [MeV] −3161 2185 −504
vc0ðN; rÞ [MeV] 2965 −3249 −1995
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APPENDIX C: FURTHER DISCUSSIONS
FOR ~Uc

0ðN;rÞ
Here, we make a further classification for the isospin

independent central components from the normal term,
~Uc
0ðN; rÞ, which contains nonlocal contributions. As we

mentioned in Sec. IV B, we first decompose ~Uc
0ðN; rÞ into

local and nonlocal components as Eqs. (C1), (C2), and (C3).

~Uc
0ðrÞ≃ ~Uc

0ðrÞ þ
∂ ~Uc

0ðrÞ
∂ε ΔE

≡ uc0ðrÞ þ vc0ðrÞΔE;ΔE ≡ ε=2mK; ðC1Þ

uc0ðN; rÞ ¼ uc0ðN; local; rÞ þ uc0ðN; non; rÞ; ðC2Þ

and

vc0ðN; rÞ ¼ vc0ðN; local; rÞ þ vc0ðN; non; rÞ; ðC3Þ

where the arguments local and non stand for the local
and nonlocal contributions, respectively. The nonlocal
contributions originate from the first- and second-order
derivatives in Eq. (17). Furthermore, we decompose the
nonlocal components into two parts according to the order
of the derivatives as follows:

uc0ðN; non; rÞ ¼ x1ðrÞ
ðkαl Þ0ðrÞ
kαl ðrÞ

þ x2ðrÞ
ðkαl Þ00ðrÞ
kαl ðrÞ

ðC4Þ

and

vc0ðN; non; rÞ ¼ y1ðrÞ
ðkαl Þ0ðrÞ
kαl ðrÞ

þ y2ðrÞ
ðkαl Þ00ðrÞ
kαl ðrÞ

; ðC5Þ

where the prime symbols mean the derivative with respect
to the radial distance r, that is

ðkαl Þ0ðrÞ ¼
dkαl ðrÞ
dr

; ðkαl Þ00ðrÞ ¼
d2kαl ðrÞ
dr2

: ðC6Þ

Next, we fit all the local components, uc0ðN; local; rÞ
and vc0ðN; local; rÞ, and the coefficients, xiðrÞ and
yiðrÞ; ði ¼ 1; 2Þ in Eqs. (C4) and (C5), with several
Gaussian type functions shown in Eqs. (C7)—(C10),

G−2ðrÞ ¼ C−2
1

r2=R−2
2
exp

�
−

r2

R−2
2

�
ðC7Þ

G−1ðrÞ ¼ C−1
1

r=R−1
exp

�
−

r2

R−1
2

�
ðC8Þ

G0ðrÞ ¼ C0 exp
�
−

r2

R0
2

�
ðC9Þ

G1ðrÞ ¼ C1

r
R1

exp

�
−

r2

R1
2

�
ðC10Þ

as summarized in Table X. The resulting fitted parameters
are summarized in Tables XI–XIII, and we compare
numerically obtained and Gaussian-fitted potentials in
Figs. 17–19.

TABLE IX. Fitting parameters for the centrifugal force.

Gð1Þ
0 ðrÞ Gð2Þ

0 ðrÞ
Range [fm] 0.404 0.700
ulðrÞ [MeV2 · fm2] 66226 6074
vlðrÞ [MeV2 · fm2] −66228 −6074

TABLE X. Various components of ~Uc
0ðr; NÞ and the corre-

sponding fitted functions. The functions uc0ðN; local; rÞ and
vc0ðN; local; rÞ are for energy independent and dependent local
components of ~Uc

0ðN; rÞ. xiðrÞ and yiðrÞði ¼ 1; 2Þ are coeffi-
cients of ith derivatives for energy independent and dependent
local components of ~Uc

0ðN; rÞ. The fitted functionsGnðrÞ are also
defined in Eqs. (C7)—(C10). Superscripts, (1) and (2) of Gð·Þ

0 ðrÞ,
indicate that fitting parameters are different for the functions.

uc0ðN; local; rÞ;
vc0ðN; local; rÞ G−2ðrÞ þG0ðrÞ
x1ðrÞ; y1ðrÞ G−1ðrÞ þG1ðrÞ
x2ðrÞ; y2ðrÞ Gð1Þ

0 ðrÞ þGð2Þ
0 ðrÞ

TABLE XI. Fitting parameters for uc0ðN; local; rÞ and
vc0ðN; local; rÞ.

G−2ðrÞ G0ðrÞ
Range [fm] 0.205 0.629

uc0ðN; local; rÞ [MeV] 5730 85.8

vc0ðN; local; rÞ [MeV] −5570 317

TABLE XII. Fitting parameters for x1ðrÞ and y1ðrÞ.
G−1ðrÞ G1ðrÞ

Range [fm] 0.235 0.431
x1ðrÞ [1] −3.40 0.516
y1ðrÞ [1] 3.40 −0.516

TABLE XIII. Fitting parameters for x2ðrÞ and y2ðrÞ.

Gð1Þ
0 ðrÞ Gð2Þ

0 ðrÞ
Range [fm] 0.281 0.453
x2ðrÞ [1=MeV] −1.25 × 10−3 −7.76 × 10−4

y2ðrÞ [1=MeV] 1.25 × 10−3 7.76 × 10−4
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APPENDIX D: SCALING RULE FOR THE SET C

Following the discussions of the scaling rules in
Sec. IV C, in this appendix, we scale the potential from
the parameter set A to the set C with the scaling rules
Eqs. (32)—(34). In Fig. 20, we show the numerically
obtained and Gaussian-fitted potentials for the set C.

As we mentioned in Sec. IV C, the s-wave potential
(JP ¼ 1=2−; I ¼ 0) is calculated by using the bound state
solution (ε ¼ −81.3 MeV) and the p-wave potential
(JP ¼ 3=2þ; I ¼ 0) by a scattering state (ε ¼ 27 MeV).
From Fig. 20, we can conclude that the scaling rules work
well for the parameter sets A and C.
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FIG. 17. Comparisons between the numerically obtained and the Gaussian-fitted potentials for the local components of uc0ðN; local; rÞ
(left) and vc0ðN; local; rÞ (right).
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FIG. 20. Total potentials for the K̄NðJP ¼ 1=2−; I ¼ 0Þ channel from the bound state (left) and the K̄NðJP ¼ 3=2þ; I ¼ 0Þ
channel from a scattering state (right) for the parameter set C, which are derived from the potentials for the set A by the scaling rules
Eqs. (32)—(34). The scattering energies are −81.3 and 27 MeV for s and p waves, respectively.
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