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Probing vacuum structures deformed by high intense fields is of great interest in general. In the context
of quantum electrodynamics (QED), the vacuum exposed by a linearly polarized high-intensity laser field is
expected to show birefringence. We consider the combination of a 10 PW laser system to pump the vacuum
and 1 GeV photons to probe the birefringent effect. The vacuum birefringence can be measured via the
polarization flip of the probe γ-rays which can also be interpreted as phase retardation of probe photons. We
provide theoretically how to extract phase retardation of GeV probe photons via pairwise topology of the
Bethe-Heitler process in a polarimeter and then evaluate the measurability of the vacuum birefringence via
phase retardation given a concrete polarimeter design with a realistic set of laser parameters and achievable
pulse statistics.
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I. INTRODUCTION

The quantum nature of the vacuum in various extreme
conditions is an intriguing subject to explore. The vacuum
structure can be deformed by the existence of external
fields, such as gravitational fields [1] and electromagnetic
fields [2]. It can also be modified by special boundary
conditions via Casimir effects [3]. Common observables in
these vacuum states are the dispersion relation for probe
photons and polarization dependence [4]. One interesting
question is how much these properties differ between the
present and the early Universe when field densities were
extremely high for certain boundary conditions [5]. These
properties are governed by the virtual quanta contained in
the vacuum immersed in these intense fields, and the
dominant virtual quanta differ depending on the dynamics.
Therefore, the energy scale of the probe photon is an
important factor as well as the external field strength.
Understanding the interactions of probe photons with

external fields requires nontrivial field theoretical treat-
ments in the nonperturbative regime, where summing up
all-order Feynman diagrams is necessary. Among various
types of intense fields, the theoretical predictions in the
simplest QED case naturally become the first candidates to
be thoroughly tested by laboratory experiments. There are a
number of theoretical calculations based on different
schemes applied to constant and time-varying field configu-
rations [6–8]. Furthermore, a claim for the presence of the
magnetic birefringence effect from the optical-polarimetry

measurement of the isolated neutron star has been recently
reported [9] and the relevant arguments are still ongoing
[10,11]. Despite this controversial situation, to date, there
has been no direct laboratorial verification in pristine
initial and final state conditions. The rapid development
of high-intensity laser facilities, such as the Extreme Light
Infrastructure (ELI) [12], leads us to consider testing the
propagation properties in focused pump laser fields. Once
the calculation schemes have been quantitatively tested in
the context of QED, nonperturbative predictions can be
reliably applied to more complicated intense fields: for
instance, those in strongly magnetized compact stars,
such as magnetars [13], and the early stage of quark-
gluon plasma accompanying thermal photons in relativ-
istic heavy-ion collisions [14], where interference between
intense QED and intense quantum chromodynamic fields is
expected [15,16].
The optical phase retardation G between mutually

orthogonal components of linearly polarized probe photons
is given by G ¼ 2πΔnLλ−1, where λ is the wave length of
the probe photon, Δn is the relative refractive index change
between the two orthogonal components induced by the
pump field and L is the length of the birefringent region.
Several experiments have attempted to measure

the magnetic birefringence of the vacuum [17–20]. For
example, the polarization of the vacuumwith laser (PVLAS)
experiment [17] achieved Δn ¼ 4 × 10−23½T−2� × ð2.5½T�Þ2
resulting in G ¼ 1.6 × 10−9 with the total path length
elongated by the use of a Fabry-Perot cavity. This experi-
ment utilizes the advantage of a static magnetic field
to increase the phase shift using the long path length of*khomma@hiroshima‑u.ac.jp
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the interaction region, which compensates for the smallness
of Δn.
In contrast to this approach utilizing a long L, we may

consider combining a high-intensity pump laser and a high-
energy probe to simultaneously increase Δn and phase
retardation with a much shorter λ. Multi-petawatt class
lasers have the capability of enhancing the relative refrac-
tive index change to Δn ∼ 10−11 at ∼1022 W=cm2 [21].
The use of X-ray probes was proposed [22,23], and its
polarimetry technique exists [24].
In this paper, we consider extending the probe energy up

to the GeV regime. The use of γ-ray probes to see the
magnetic birefringent effect has been proposed [25,26].
What we propose here is to combine linearly polarized
γ-ray probes with the focused high-intensity laser field in
order to realize G ∼ 1. Widening the probe energy range
will allow complete measurement of the dispersion relation
and enable accurate comparisons with the QED predictions.
On the other hand, we are required to develop a new
method to extract phase retardation close to unity for the
GeV probe. The aim of this paper is to provide the concrete
method to determine it, based on the pairwise topology of
the Bethe-Heitler process, i.e., via the γ to eþe− conversion
process in a polarimeter.
This paper consists of following sections. In Sec. II, we

propose an experimental setup to probe the laser-induced
vacuum birefringence effect. In Sec. III, we discuss about
the generation of highly linearly polarized probe γ-rays via
nonlinear Compton scattering. In Sec. IV, we evaluate the
amount of phase retardation by the QED effect with a
parametrization of a high-intensity laser pulse. In Sec. V,
we derive theoretical formulas to parametrize the phase
retardation of probe photons based on the pairwise top-
ology of the Bethe-Heitler process in a polarimeter. In
Sec. VI, we further provide a possible polarimeter design
and then evaluate the measurability of phase retardation
with a realistic set of laser parameters and statistics of pump
laser pulses by performing the detector simulation. We
finally conclude the realizability of the measurement and
discuss the prospect in Sec. VII.

II. A CONCEPTUAL DESIGN OF THE
PROPOSED EXPERIMENT

We consider a design of the experiment illustrated in
Fig. 1(a) for the measurement of the laser-induced bire-
fringence effect. Figure 1(b) shows colliding beam geom-
etry with the alignment of the incident electron beam,
the parabola mirrors with pinholes and the polarimeter.
The first mirror focuses a weaker laser pulse at the CP to
generate highly linearly polarized probe γ-rays via Com-
pton scattering with incident monochromatic electron
bunches, and then the second mirror focuses an intense
laser pulse at the IP to pump the vacuum that is synchron-
ized with the weaker laser pulse. The probe γ-rays penetrate
through the pumped domain and the polarization states are

altered by the vacuum birefringence effect. Phase retarda-
tion embedded within the pumped domain is extracted
from the pairwise topology of the Bethe-Heitler process
within the polarimeter at the DP. We introduce a distance l
between the CP and the IP and a distance d between the CP
and the DP for later convenience. We must require that the
probe γ-ray energy is not too high in order to avoid the
tunneling electron-positron pair production in the intense
pump field. We assume 1 GeV probe γ-rays in the
following design. We simultaneously need a high degree
of linear polarization for the probe γ-ray. We note that the
reference polarization plane must be parallel to the direc-
tion of the polarization of the Compton seed laser [x − y
plane in Fig. 1 (a)] and the pump laser must be aligned with
a relative rotation angle of �π=4 from that reference plane.
This configuration produces equal amplitudes for mutually
orthogonal electromagnetic field components of probe
photons and, hence, maximizes the visibility of phase
retardation.
Given a 10 PW-class laser, for instance, what is available

at the ELI project with a typical wavelength of 800 nm, we
can expect the completely synchronized weak Compton
seed and intense pump laser pulses as well as accelerated
unpolarized electrons by exploiting the laser-plasma accel-
eration technique [27,28]. We will assume that 5 GeV
electrons collide with the Compton seed laser pulses head-
on. The assumed electron energy is reasonable given the
successful demonstration of quasimonoenergetic electrons
at 4.2 GeV [29] with laser-plasma acceleration. Of course,

FIG. 1. Conceptual experimental setup to investigate the laser-
induced vacuum birefringence effect. (a) Definitions of coordi-
nates with respect to the linear polarization plane of the Compton
seed laser field and interaction points are provided. (b) Colliding
beam geometry with the alignment of the incident electron beam,
the parabola mirrors with pinholes and a polarimeter. CP, IP, and
DP indicate Compton scattering Point, Interaction Point, and
Detection Point, respectively. A distance l between CP and IP
and a distance d between CP and DP are introduced. The used
electrons are bent in advance of crossing with a pumping laser
pulse at IP.
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we may also use accurate 5 GeV electrons from a conven-
tional accelerator as long as the electron source is synchron-
ized with the 10 PW-class laser. Based on this design, we
discuss the individual elements from the upper stream in
Fig. 1 in the following sections.

III. GENERATION OF LINEARLY
POLARIZED PROBE γ-RAYS

As illustrated in Fig. 1, linearly polarized probe γ-rays
can be obtained by the inverse Compton scattering in the
forward region of incident electrons interacting with
linearly polarized laser pulses in head-on geometry. In
order to efficiently get higher energy photons for a given
electron energy and keep the spot size of generated γ-rays
as small as possible [30], we utilize the multiphoton
absorption in the nonlinear Compton scattering process.
The γ-ray yields are estimated by using the cross sections of
the nonlinear Compton scattering process for the linearly
polarized cases parallel (∥) and perpendicular (⊥) to the
linear polarization plane of the seed Compton laser field
[31]. As follows, the differential cross sections for
n-photon absorption are expressed as a function of u≡
ðk1k2Þ=ðk1p2Þ with, respectively, the initial and final state
photon four-momenta k1 and k2 and the final state electron
four-momentum p2, and of azimuthal angle ϕ, which is
defined as a rotation angle of the linear polarization plane
of k2 with respect to the incident linear polarization plane
of k1:

dσ∥
dudϕ

¼ 2r02
m2

s −m2

1

η2ð1þ uÞ2

×

�
−2A2

0σ þ 4η2
�
1þ u2

4ð1þ uÞ
�
ðA2

1 − A0A2Þ
�
;

ð1Þ

dσ⊥
dudϕ

¼ 2r02
m2

s −m2

1

η2ð1þ uÞ2

×
�
−2A2

0ð1 − σÞ þ η2
u2

1þ u
ðA2

1 − A0A2Þ
�

ð2Þ

with

σ ≡ 1þ ðun − uÞðη2 þ 1Þð1 − cos 2ϕÞ
2u

ð3Þ

where Al (l ¼ 0, 1, 2) are defined as

AlðαLin; βLin; nÞ ¼
1

2π

Z
π

−π
dΦ

× cosðlÞΦ expfiαLin sinΦ
− iβLin sin 2Φ − inΦg ð4Þ

with

αLin ¼ −2
ffiffiffi
2

p
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðun − uÞp
un

ηffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p cosϕ ð5Þ

and

βLin ¼
nu
2un

η2

1þ η2
; ð6Þ

where s≡ ðp1 þ k1Þ2 with the incident electron four-
momentum p1, the electron massm, and r0 ¼ e2=ð4πmÞ ¼
α=m ¼ 2.82 × 10−13 cm with the fine structure con-
stant α ¼ 1=137. These cross sections are characterized
by a nonlinearity parameter η≡ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hAμAμip

=mc2 with
the four-vector potential of the incident photon Aμ accom-
panying a variable un ≡ 2ðk1p1Þn=ðm2ð1þ η2ÞÞ for the
n-photon absorption case.
We summarize a set of reachable beam parameters for

a laser pulse, an electron bunch, and generated γ-ray
probes per laser-electron crossing via nonlinear Compton
scattering in Table I. The laser power and intensity results
in η ¼ 0.62. A similar range of η ¼ 0.4 has been tested
by the stanford linear accelerator center (SLAC) experi-
ment [32] and we expect the cross sections are still valid.
Probe photons at GeV energies are generated within a
small scattering angle ϑ measured from the incident
electron direction and the dominant photon yield are
confined in ϑ < 1=γe rad where γe is the Lorentz factor
of the incident electrons. We consider a narrow band-
width γ-rays within 1.015–1.021 GeV and an emission
angle less than or equal to 1=ð10γeÞ ¼ 1.022 × 10−5 rad.
This energy range corresponds to the case when the
number of absorbed laser photons reaches n ¼ 3. The
limitation of the emission angle is actually necessary to
select highly polarized γ-rays and can be required by
putting a narrow collimator at a distant point in front of
the polarimeter. The number of generated probe photons
Nγ per laser-electron crossing can be numerically evalu-
ated as

Nγ ¼
Z

τL

0

dtL
Z

2π

0

dϕ
Z

1=ð10γeÞ

0

dϑ
dσ∥=⊥
du

du
dϑ

; ð7Þ

where L is laser-electron luminosity per crossing in head-
on collision geometry that is defined as

L ¼ 1

τL

NeNL

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wL

2
x þ we

2
x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wL

2
y þ we

2
y

q : ð8Þ

The partially integrated cross sections are 1.59×
10−20 μm2 and 2.21 × 10−22 μm2 yielding the numbers
of generated γ-rays 64090 and 890 for ∥ and ⊥ cases,
respectively.

PROBING VACUUM BIREFRINGENCE UNDER A HIGH- … PHYSICAL REVIEW D 96, 053002 (2017)

053002-3



IV. EXPECTED PHASE RETARDATION IN THE
CONCEPTUAL DESIGN

In the quantum mechanical view point, phase retardation
may be interpreted as a consequence of polarization flips of
probe photons. The degree of linear polarization of probe
photons can be defined as

Pl ¼
N∥ − N⊥
N∥ þ N⊥

; ð9Þ

where N∥ and N⊥ are, respectively, the numbers of probe
photons with linear polarization states parallel and
perpendicular to the direction of the linear polarization
of the pump laser. The polarization-flip phenomenon in an
intense pump field has been discussed and quantified by
Dinu et al. [33]. In order to parametrize the flipping
probability of probe photons with energy ω for a given
pump laser pulse as summarized in Table I, we impose
following requirements:

(i) bandwidth is small: ðΔω0=ω0Þ2 ≪ 1
(ii) validate pulse approximation: ðs2ω0=ð4Δω0ÞÞ2 ≪ 1
(iii) Heisenberg-Euler limit: 2ωω0=m2 ≪ 1,

where ω0 is the pump photon energy, Δω0 satisfies τ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log 2

p
=Δω0 with the pump pulse duration τ0, and s ¼

λ0=ðπw0Þ corresponds to the beam divergence with the
pump beam waist w0 and the pump laser wavelength λ0.
Under these conditions, suppose probe photons collide
head-on with a focused pump pulse having a Gaussian
profile, as illustrated in Fig. 1, the flipping probability of
probe photons is approximated as

Pf ¼
�
α

15

1

E2
s

E0ω

π2w2
0

�
2

e
−4ψ2

ψ2
0 with ψ0 ¼ tan−1

w0

l
; ð10Þ

where α is the fine structure constant, Es is the Schwinger
critical electric field, w0 is the waist size of the focused
laser, E0 is the energy of the pump laser, ψ is the incident
angle of probe γ-rays with respect to the head-on direction
and l is the distance between the CP and the IP in Fig. 1(b).
The effect of the incident angle distribution of γ-rays or
misalignment with respect to the head-on collisions is
expressed as the exponential reduction of the flipping
probability.
A natural experimental observable is thus the reduction

of the degree of linear polarization from Pl to ð1 − 2PfÞPl.
However, in the case of GeV probe photons, there is no
known polarizer to directly determine N∥ and N⊥ in
experiments. In addition, there could be other sources to
reduce Pl than the pure phase retardation effect embedded
at IP in Fig. 1(b). Dinu et al. [33] also discuss the relation
between the flipping probability and the phase retardation.
If we have a way to directly determine the phase retardation
itself in a polarimeter, we may be able to discriminate the
true birefringent effect from the other sources of reduction
of Pl. In the next section, we will provide the theoretical
basis for this idea. We thus provide here the definition of
phase retardation G in our notation in accordance with the
following section,

G≡ 2δ ∼
2

ffiffiffiffiffiffi
Pf

p
1þ w̄

e2ρ
2 w̄
1þw̄; ð11Þ

where δ is the same definition as in Eq. (36) of Dinu
et al.’s paper [33] as a function of ρ≡ r=w0 with the
transverse position r relative to the beam waist w0 by
introducing the ratio of probe to target beam waists
w̄≡ 2w2=w2

0.
We now consider the case summarized in Table II,

where the generated polarized γ-rays penetrate through
the focal region of the pump laser after traveling a
distance l. Assuming a conservative waist size for the
focal spot of w0 ¼ 2.4 μm, a wavelength of 800 nm, a
pulse energy of 200 J and an intensity of 3.7×
1022 W=cm2, the degree of linear polarization of the
incident γ-rays is expected to change from hPli ¼ 0.97 to

TABLE I. A set of beam parameters for a laser pulse, an
electron bunch, and generated γ-ray probes per laser-electron
crossing via nonlinear Compton scattering.

Laser wavelength λ ¼ 800 nm
Laser pulse energy EL ¼ 2.2 mJ
The number of laser photons NL ≡ EL

hc=λ

Laser pulse duration τL ¼ 33.5 fs
Laser pulse waist wLx ¼ wLy ¼ 1.6 μm
Laser pulse power 66.6 GW
Laser pulse intensity 8.28 W=cm2

Electron energy 5 GeV
Electron bunch waist wex ¼ wey ¼ 1 μm
Electron bunch length 3 μm
# of electrons Ne ¼ 1010

# of absorbed laser photons n ¼ 3
γ-ray energy range in ϑ < 1=ð10γeÞ 1.015–1.021 GeV
# of γ-rays (∥) in ϑ < 1=ð10γeÞ Nγ∥ ¼ 64090

# of γ-rays (⊥) in ϑ < 1=ð10γeÞ Nγ⊥ ¼ 890

TABLE II. A set of parameters for a single pump laser pulse
and linearly polarized 1 GeV probe photons.

Pump laser photon energy ω0 ¼ 1.55 eV
Pump laser pulse energy E0 ¼ 200 J
Pump laser pulse duration τ0 ¼ 30 fs
Pump laser pulse beam diameter 50 cm
Pump laser pulse waist with F#=2.35 w0 ¼ 2.4 μm
Pump laser pulse intensity 3.7 × 1022 W=cm2

Probe γ-ray energy ω ¼ 1 GeV
Distance l 10 cm
Probe γ-ray waist, l tanf1=ð10γeÞg, at IP w ¼ 1.0 μm
Geometrically averaged phase retardation hGi ¼ 0.72
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hð1 − 2PfÞPli ¼ 0.53 after passing through the laser-
induced birefringent vacuum, where h· · ·i represents
the weighted mean of the degree of the polarization
over the angular range from ψ ¼ 0 to ψ ¼ 1=ð10γeÞ and
the flipping probability, Pf, has been calculated with the
given laser parameters and l ¼ 10 cm. Figure 2(a) shows
incident γ-ray yields as a function of the emission angle
with respect to the direction of the incident electron
based on Eqs. (1), (2), (7), and (8). The horizontal axis
ψ� in Fig. 2 is the deduced emission angle, which is
normalized to the inverse of the Lorentz factor for
5 GeV electrons. The components parallel and perpen-
dicular to the polarization direction of the Compton seed
laser are depicted by solid and dotted lines in Fig. 2(a),
respectively. The polarization-flip effect appears as a
reduction of the degree of linear polarization, as shown
in Fig. 2(b). A large polarization-flip effect is visible
in the forward direction, especially for ψ� < 1=10.
Figure 2(c) shows the corresponding phase retardation
G. The average of G within ψ� < 1=10 with w̄ ¼ 0.35
reaches hGi ¼ 0.72 rad.

V. EXTRACTING PHASE RETARDATION
FROM PAIR-WISE TOPOLOGY OF THE

BETHE-HEITLER PROCESS

Determining of the degree of linear polarization of
incident photons via the Bethe-Heitler process is proposed
in Ref. [34,35] and the method has been applied to several
experiments, for example, Refs. [36–38]. The detailed
theoretical basis can also be found in Refs. [39,40].
Because the phase retardation G is close to unity in our
case, we cannot approximate the polarization state of γ-rays
penetrating though the pumped domain as the linearly
polarized state anymore. In this section, we thus derive the
pairwise angular distribution with contemporary notations
using γ-matrices, e.g., found in Ref. [41] in order to
explicitly implement the phase retardation G into polari-
zation vectors of incident photons so that the theoretical
functional form is directly applicable to the concrete
polarimeter proposed in the next section.
The differential cross section dσ is expressed as

dσ ¼
Z jSfij2

T vin
V

V
d3pþ
ð2πÞ3 V

d3p−

ð2πÞ3 ; ð12Þ

where Sfi is the transition amplitude within a time
interval T and a normalized volume V of the conversion
process from an initial photon state i with relative
velocity vin ¼ c to a fixed Coulomb potential of a target
nucleus into an electron and positron pair in the final
state f whose four-momenta are p− and pþ, respectively.
With respect to the static Coulomb potential with a
point charge −Ze, the transition amplitude is described
as [41]

Sfi ¼ Ze32πδðEþ þ E− − ωÞ
ffiffiffiffiffiffiffiffiffiffi
4π

2ωV

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

EþE−V2

s
4π

jqj2

× ūðp−; s−Þ
�
ð−i=ϵÞ i

=p− þ =k −m
ð−iγ0Þ

þ ð−iγ0Þ i
−=pþ þ =k −m

ð−i=ϵÞ
�
vðpþ; sþÞ

≡ −iZe32πδðEþ þ E− − ωÞ
ffiffiffiffiffiffiffiffiffiffi
4π

2ωV

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

EþE−V2

s
4π

jqj2
× ūðp−; s−ÞΓvðpþ; sþÞ; ð13Þ

where electron and positron spinors, u and v, respectively,
with the equal mass m, Dirac matrices γμ with μ ¼ 0 ∼ 3
giving the Feynman slash notation =A≡ γμAμ for an
arbitrary four-dimensional vector A, incident photon four-
momentum k≡ ðω; k⃗Þ with the four-dimensional polariza-
tion vector ϵ, four-momentum transfer q≡ pþ þ p− − k
with pþ ≡ ðEþ; p⃗þÞ and p− ≡ ðE−; p⃗−Þ, and Γ is defined
in Eq. (16). With α ¼ e2=ðℏcÞ≡ e2 and, in general,

]
e

γ [1/*ψ
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ψ
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dN

1

10

210

310

410

Parallel

Perpendicular
(a)

]
e

γ [1/*ψ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l
P

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

without birefringence

with birefringence
(b)

]
e

γ [1/*ψ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [r
ad

]
G

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c)

FIG. 2. (a) Incident γ-ray yields as a function of the emission
angle for orthogonal linear polarization states, respectively. (b) The
degree of linear polarization of γ-rays. The polarization-flip effect
due to the laser-induced birefringence depends on the emission
angle. (c) The corresponding phase retardation G.
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ð2πδ2ðEf −EiÞÞ2 ¼ 2πδð0Þ2πδðEf −EiÞ ¼ 2πTδðEf −EiÞ,
we can express the square of the transition amplitude as

jSfij2 ¼ Z2e6ð2πÞ2δ2ðEþ þ E− − ωÞ

×

�
4π

2ωV

��
m2

EþE−V2

� ð4πÞ2
jqj4 F

¼ Z2α32πTδðEþ þ E− − ωÞ

× ð4πÞ3 1

V3

m2

2ωEþE−

1

jqj4F ð14Þ

with

F ≡ ðūðp−; s−ÞΓvðpþ; sþÞÞðūðp−; s−ÞΓvðpþ; sþÞÞ†
¼ ðūðp−; s−ÞΓvðpþ; sþÞÞðv̄ðpþ; sþÞΓ̄uðp−; s−ÞÞ ð15Þ

where

Γ≡ =ϵ
=p− − =kþm
−2p− · k

γ0 þ γ0
−=pþ þ =kþm
−2pþ · k

=ϵ ð16Þ

and

Γ̄≡ γ0Γ†γ0 ¼ γ0
=p− −=kþm
−2p− · k

=ϵ� þ=ϵ�
−=pþ þ=kþm
−2pþ · k

γ0: ð17Þ

Here we note that � is explicitly displayed only for the
polarization vector part including imaginary components as
we discuss later. Substituting Eq. (14) into Eq. (12) with
vin ¼ c≡ 1, we get

dσ ¼
Z

8Z2α3δðEþ þ E− − ωÞð2πÞ4

×
m2

2ωEþE−

1

jqj4F
d3pþd3p−

ð2πÞ6

¼
Z

4Z2α3m2

ð2πÞ2ωEþE−

1

jqj4 δðEþ þ E− − ωÞd3pþd3p−F

¼
Z

dE−
4Z2α3m2

ð2πÞ2ωEþE−

1

jqj4 δðEþ þ E− − ωÞ

× jp⃗−jE−dΩ−jp⃗þjEþdEþdΩþF

¼ Z2α3

ð2πÞ2
4m2

ωjqj4 jp⃗−jjp⃗þjdEþdΩþdΩ−Θðω − Eþ −mÞF :

ð18Þ

We then define F by summing F over the possible
electron and positron spin states as

F≡ X
s−;sþ

tr

�
=p− þm
2m

Γ
=pþ −m
2m

Γ̄
�

≡ 1

16m2

�
A

ðp− · kÞ2 þ
B

ðp− · kÞðpþ · kÞ þ
C

ðpþ · kÞðp− · kÞ

þ D
ðpþ · kÞ2

�
ð19Þ

with

A≡ tr½ð=p− þmÞ=ϵð=p− − =kþmÞγ0
ð=pþ −mÞγ0ð=p− − =kþmÞ=ϵ��

B≡ tr½ð=p− þmÞ=ϵð=p− − =kþmÞγ0
ð=pþ −mÞ=ϵ�ð=p− − =kþmÞγ0�

C≡ tr½ð=p− þmÞγ0ð−=pþ þ =kþmÞ=ϵ
ð=pþ −mÞγ0ð=p− − =kþmÞ=ϵ��

D≡ tr½ð=p− þmÞγ0ð−=pþ þ =kþmÞ=ϵ
ð=pþ −mÞ=ϵ�ð−=pþ þ =kþmÞγ0�

where we note F has dimension of eV−2.
Let us remind you of the Jones matrix in order to

introduce a general ellipsoidally polarized vector beginning
from a linearly polarized photon in the x-direction. The
Jones matrix in x − y coordinate is defined as [42]

Wðφ; GÞ ¼
�

cosφ sinφ

− sinφ cosφ

�

×

�
e−iG=2 0

0 eiG=2

��
cosφ − sinφ

sinφ cosφ

�
; ð20Þ

where φ denotes a rotation angle of the linear polarization
plane of the pump laser field with respect to the linear
polarization plane of an incident probe γ-ray in our case.
Following Fig. 1(a) indicating φ ¼ −π=4 with respect to
the x-axis, the x − y polarization vector after penetrating
through the pumped domain is expressed as

�
ϵx

ϵy

�
¼ Wð−π=4; GÞ

�
1

0

�
¼

�
cos G

2

i sin G
2

�
: ð21Þ

We then extend this ellipsoidally polarized vector of a
probe γ-ray into a four-dimensional polarization vector as
follows

ϵ≡ cos
G
2
g1 þ i sin

G
2
g2; ð22Þ

with g1 ¼ ð0; 1; 0; 0Þ and g2 ¼ ð0; 0; 1; 0Þ. In this case the
corresponding Feynman slash variables are defined as
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=ϵ ¼ cos
G
2
γ1 þ i sin

G
2
γ2

=ϵ� ¼ cos
G
2
γ1 − i sin

G
2
γ2: ð23Þ

By performing the trace calculation in Eq. (19) with g0 ¼ ð1; 0; 0; 0Þ, F can be expressed with products of four-vectors as
follows:

F ¼ 1

16m2

8

ðk · p−Þ2ðk · pþÞ2
½ðk · pþÞfðk · p−Þ × ððk · pþÞfðcosGþ 1Þðg1 · p−Þ2 − ðcosG − 1Þðg2 · p−Þ2

þ 2ωððg0 · p−Þ þ ðg0 · pþÞÞ − ðk · pþÞg − 2ω2ðp− · pþÞ − 2m2ω2Þ
− ðk · pþÞð2ðg0 · pþÞðω − ðg0 · p−ÞÞ − ðk · pþÞ þ ðp− · pþÞ þm2Þ
× ððcosGþ 1Þðg1 · p−Þ2 − ðcosG − 1Þðg2 · p−Þ2Þ þ 2ωððg0 · p−Þ þ ðg0 · pþÞÞðk · p−Þ2 − ðk · p−Þ3g
þ ðcosGþ 1Þðg1 · pþÞ2ðk · p−Þ2 × f2ðg0 · p−Þððg0 · pþÞ − ωÞ þ ðk · p−Þ þ ðk · pþÞ − ðp− · pþÞ −m2g
þ ðcosG − 1Þðg2 · pþÞ2ðk · p−Þ2 × f2ðg0 · p−Þðω − ðg0 · pþÞÞ − ðk · p−Þ − ðk · pþÞ þ ðp− · pþÞ þm2g
þ 2ðcosGþ 1Þðg1 · p−Þðg1 · pþÞðk · p−Þðk · pþÞ × fðg0 · p−Þðω − 2ðg0 · pþÞÞ þ ωðg0 · pþÞ − ðk · p−Þ
− ðk · pþÞ þ ðp− · pþÞ þm2 − ω2g þ 2ðcosG − 1Þðg2 · p−Þðg2 · pþÞðk · p−Þðk · pþÞ
× fðg0 · p−Þð2ðg0 · pþÞ − ωÞ − ωðg0 · pþÞ þ ðk · p−Þ þ ðk · pþÞ − ðp− · pþÞ −m2 þ ω2g� − 16: ð24Þ

We used FeynmanCalc [43] for the trace calculation. In the
proceeding calculations, we introduce following definitions
of four-momentum with components in Cartesian coordi-
nates and also polar coordinates for pþ and p−:

k≡ ðω; 0; 0;ωÞ
pþ ≡ ðEþ; pþx; pþy; pþzÞ

¼ ðEþ; jp⃗þj sin θþ cosϕþ; jp⃗þj sin θþ sinϕþ;

jp⃗þj cos θþÞ
p− ≡ ðE−; p−x; p−y; p−zÞ

¼ ðE−; jp⃗−j sin θ− cosϕ−; jp⃗−j sin θ− sinϕ−;

jp⃗−j cos θ−Þ
q≡ ðpþ þ p−Þ − k

¼ ð0; pþx þ p−x; pþy þ p−y; pþz þ p−z − ωÞ;
ð25Þ

where energy conservation ω ¼ Eþ þ E− is required for q.
Because the cross section is maximized in the case of
q → 0, we consider only symmetrically emitted eþe− pairs
within the same emission plane with following conditions

E− ¼ Eþ ¼ ω=2

θ− ¼ θþ
ϕ− ¼ ϕþ þ π: ð26Þ

Fortunately, in this symmetric case, the exact analytical
expression for the square of the invariant amplitude can be
quite simplified as follows

Fsym ¼ 1

16m2

16ðω2 − 4m2Þ
ω2

sin2θþðcosG cos 2ϕþ þ 1Þ:
ð27Þ

From Eq. (18) with jp⃗−j ¼ jp⃗þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

4
−m2

q
and dEþ ¼

1
2
dω, dθþ ¼ dθ− and dϕþ ¼ dϕ−, the differential cross

section in terms of positron-relevant variables for the
symmetric case is expressed as

dσsym
dωdϕþdθþ

¼
Z

2π

0

dϕ−δðϕ− − ðϕþ þ πÞÞ
Z

π

0

dθ−δðθ− − θþÞ

×
1

2

Z2α3

ð2πÞ2
4m2

ωjq⃗j4 jp⃗þj sinθþjp⃗−j sinθ−FΘðω=2−mÞ

¼ 1

2

Z2α3

ð2πÞ2
4m2

ωjq⃗symj4
p2þsin2θþFsymΘðω=2−mÞ

¼ Z2ð2αÞ3
ð2πÞ2ω3

�
pþ sinθþ
jq⃗symj

�
4

ðcosGcos2ϕþ þ 1ÞΘðω=2−mÞ;

ð28Þ
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with jq⃗symj4 ≡ f2jp⃗þj cos θþ − ωg4 via the relation jq⃗j2 ¼
−q2 ¼ fðjp⃗þj cos θþ þ jp⃗−j cos θ−Þ − ωg2.
We then express the partially integrated cross section

within an experimental coverage 0 ≤ θþ ≤ Δθ and 0 ≤
ϕ < 2π in a measurement. This quantity gives us the
conversion efficiency into useful symmetric pairs for the
determination of phase retardation G. We thus further
integrate over dϕþ, dθþ and dω, which gives

σsym ∼
4Z2α

π

�
α

m

�
2
Z hωiþΔω

hωi−Δω
dω

Z
Δθ

0

dθþ

×
m2ðω2=4 −m2Þ2sin4θþ

ω3ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4 −m2

p
cos θþ − ωÞ4

Θðω=2 −mÞ

≡ 4Z2α

π
σeHðhωi;Δω;ΔθÞ ð29Þ

with σe ≡ ðα=mÞ2 ¼ ð2.8 × 10−13 cmÞ2 ¼ 0.0784 b.
For hωi ¼ 1 GeV, Δω=hωi ¼ 0.005 and Δθ ¼ 0.01,

Hðhωi;Δω;ΔθÞ¼ 0.239 is obtained. If we choose Z¼79
(a gold converter), the cross section reaches σsym ¼ 1.1 b,
even if we require the special symmetric case of pairwise
topology in experiments.

VI. POLARIMETRY

A. Parametrization for pairwise angular distributions

The degree of linear polarization of the γ-rays is
characterized by the anisotropic angular distribution of
emission planes containing electron-positron pairs with
respect to the polarization plane of the incident γ-rays
[35–40]. At the same time energies of γ-rays above
100 MeV can be reconstructed by the kinematical relations
for the conversion process from a γ-ray into an electron-
positron pair. If offline selections in experiments allow us
to impose the symmetric condition in Eq. (26), we can
parametrize the angular distribution based on the expres-
sion in Eq. (28) by taking other bias factors into account.
One of the biases would be initially caused by the degree of
linear polarization of probe γ-rays, because we have to
accept a finite angular spread of incident γ-rays as indicated
in Fig. 2(a). Even if we limit the angular spread in ψ� < 0.1,
the averaged degree of linear polarization is 97%. In such a
case, by denoting ϕ as the angle of the eþe− emission plane
with respect to the linear polarization plane of the Compton
seed laser for the case G ¼ 0, linearly polarized photons in
∥ and ⊥ directions cause an uncorrelated statistical ensem-
ble of Pcos2ϕ and Qcosð2ðϕþπ=2ÞÞ with the different
statistical weights P¼N∥=ðN∥þN⊥Þ andQ ¼ N⊥=ðN∥ þ
N⊥Þ resulting in Pl cosð2ϕÞ with Pl ¼ P −Q as defined in
Eq. (9). In addition to this known bias, in general,
experimental resolutions would reduce the amplitude of
the modulation. By taking these factors into account, the
angular distribution of emission planes containing individ-
ual eþe− pairs can be parametrized as follows

dNeþe−

dϕ
¼ N0ð1þ APl cosG cosð2ϕ − ϕ0ÞÞ; ð30Þ

where N0 is the number of eþe− pairs in the unpolarized
case and ϕ0 is an offset phase. The analyzing power, A,
refers to the reduction of anisotropy caused by experimen-
tal resolution. The offset phase is introduced to allow the
offset angle of the polarimeter plane (x − z plane in Fig. 3)
with respect to the linear polarization plane of the Compton
seed laser [x − z plane in Fig. 1(a)]. In the proceeding
discussion, we always assume ϕ0 ¼ 0.

B. Polarimeter design

There are two key issues in the design of the γ-ray
polarimeter. The first is how to deal with a large number of
γ-rays confined within a cone angle of 1=ð10γeÞ. In our
estimation summarized in Table I, ∼6.5 × 104 γ-rays at
1 GeV are expected to enter into a detector at a time. For
this purpose, the γ-ray converter must be carefully chosen
in order to adjust the number of e−eþ pairs depending on
the handling capability of the polarimeter. To accurately
spot the 1=ð10γeÞ ∼ 10−5 rad, we need to locate the
converter far from the interaction point. If the converter
is located at d ¼ 10 m in Fig. 1(b), the angular spread
results in the transverse spread of 100 μm on the converter.
This suggests that a conventional silicon pixel type sensor
with a few 10 μm resolution is useful for this type of
polarimetry.
The second issue is how to accurately reconstruct an

emission plane based on the momentum vectors of an e−eþ
pair produced at the conversion point, which has the
greatest effect on the analyzing power in the end. The
original angular correlation of a pair at the conversion point
is the key information needed to correctly reconstruct the
anisotropy in Eq. (30). The original information is, how-
ever, smeared by multiple Coulomb scatterings during

FIG. 3. Configuration of the detection elements for γ-ray
polarimetry and spectroscopy via the Bethe-Heitler process on
a thin converter located at the origin.
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passage through the conversion material. In addition,
multiple Coulomb scatterings inside each pixel sensor also
give rise to a displacement of the measured hits from the
ideal trajectory of a charged particle. This displacement
degrades the track finding and reconstructing capabilities
and reduces the analyzing power. Thus, the thickness of the
detector materials must be controlled to keep the analyzing
power at an acceptable level.
The minimum elements of the detector design are

illustrated in Fig. 3. The detection system simultaneously
performs spectroscopy and polarimetry for a multiple γ-ray
injection. It is composed of a converter at the front followed
by a narrow collimator to guarantee the narrow angular
spread, that is, narrow energy band of the incident probe
γ-rays, a static magnetic field, and three-layers of pixel
sensors. The converter is chosen to suppress the smearing
effect due to multiple Coulomb scatterings but to keep
the pair creation efficiency reasonably high. These two
requirements are in a trade-off relation as a function of
the thickness and the atomic number of the conversion
material. We assume a gold foil with a thickness of 2 μm
resulting in a conversion efficiency of 1.3 × 10−5 based on
the partially integrated cross section of the symmetric
Bethe-Heitler process as discussed in Eq. (29). Given
the parameters in Table I, the expected number of con-
version pairs per shot is 0.84, which is close to unity.

C. Capability to extract phase retardation

The feasibility of extracting phase retardation with the
detector configuration illustrated in Fig. 3 was evaluated
using the Geant4 simulation toolkit[44,45]. In the following
evaluation, for simplicity, we assume a total number of
conversion pairs as 104 with a single pair production per
shot, which is likely achievable in high-intensity laser
facilities such as ELI [12], where 10 PW laser pulses are
available with one shot per minute resulting in nine days in
order to exceed 104 pairs with the expectation value of 0.84
pairs per shot. A static magnetic field of 0.6 T over 12 cm
was assumed just behind the converter, which is enough to
measure the sub-GeV momenta of the charge-separated
electrons and positrons. To provide this field, a permanent
magnet-based dipole would be preferable from the point of
view of the compactness and homogeneity of the field in
order to allow us to arbitrarily rotate the magnet system
together with the set of sensors around the z-axis. The
three-layered position sensors made of silicon pixels are
located downstream of the magnet system with the total
length of the polarimeter of 25 cm from the converter. The
pixel size and the thickness of the pixel sensor were
assumed to be 20 μm and 50 μm, respectively.
As a result of the simulation, we found that the γ-ray

energy can be reconstructed from the measured momenta of
an e−eþ pair with an energy resolution of 7.8% at
ω ¼ 1 GeV. This energy resolution is sufficient to select
a narrow enough energy range to guarantee the high degree

of linear polarization of incident 1.0 GeV γ-rays based on
the offline selection of pairs, because multi-photon absorp-
tion n ¼ 2 and n ¼ 4 cases give energies 0.726–0.730 GeV
and 1.268–1.275 GeV in ψ� < 0.1, respectively, which can
be discriminated from the n ¼ 3 case 1.015–1.021 GeV
with the 7.8% resolution.
Figure 4 shows reconstructed angular distributions of

pair emission planes with respect to the reference plane
(ϕ0 ¼ 0). We assume the creation of a single e−eþ pair per
shot via the conversion process with a total pair statistics of
104 in this simulation.
The open blue and closed red points depict the angular

distributions for G ¼ 0 and 0.72, respectively. The raw
amplitudes of the angular distributions fit with Eq. (30)
are obtained as Að0.72ÞPl cosð0.72Þ ¼ 0.529� 0.013 and
Að0ÞPl cosð0Þ ¼ 0.665� 0.011 where the errors include
statistical errors and also biases from the effect of the finite
sensor segment and the track reconstruction algorithm. The
analyzing power A has a monotonic G dependence, and we
can evaluate them as Að0.72Þ ¼ 0.725 and Að0Þ ¼ 0.686
from the simulation in advance.
The reduction of the raw amplitude in G ¼ 0.72 from

that of the null phase retardation case, 0.136, can reach a
high enough significance level compared to the error size of
the null retardation case, 0.011. Therefore, we can declare
the observation of phase retardation via vacuum birefrin-
gence given the statistics of 104 pairs by this method.
The averaged phase retardation hGi can then be

extracted from hGi ¼ cos−1ðPl cosð0.72Þ=Pl cosð0ÞÞ ¼
0.720� 0.034 with the same statistics after correcting
the analyzing power biases at the different G values. We
note that experiments do not necessarily have to quantify Pl
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FIG. 4. The angular distributions of e−eþ emission planes with
respect the reference plane (ϕ0 ¼ 0). The open blue and closed
red points depict the angular distributions for G ¼ 0 and 0.72,
respectively, with fitting results based on Eq. (30). The total
number of e−eþ pairs was assumed to be 104 with a single pair
production per shot in this simulation. The vertical error bars
show statistical errors in the simulation.

PROBING VACUUM BIREFRINGENCE UNDER A HIGH- … PHYSICAL REVIEW D 96, 053002 (2017)

053002-9



precisely because Pl should be common to G ¼ 0 and
G ¼ 0.72 cases and systematically canceled out. From this
simulation result, we evaluate that the accuracy of the
reconstructed hGi can reach 4.7%.

D. Possible sources of depolarization

We consider several background sources which possibly
change the degree of linear polarization of probe γ-rays
before entering into the gold converter of the polarimeter
with d ¼ 1000 cm in Fig. 1.
The obvious background source would come from the

mixture of two linear polarization states in the nonlinear
Compton scattering process. How to correct the effect of Pl
of probe photons has been already discussed in the previous
subsection.
In addition, there would be a characteristic background

when we simultaneously utilize 1 GeV probe photons
and high-intensity laser fields. In this combination, the
effect of the imaginary part must also be taken into
account, which causes some numbers of pair creations
per shot via the tunneling effect [46]. The pair creation
rate is still actively being investigated in the theoretical
community of strong field QED and subject to scrutinize
by taking more realistic configurations of focused pulsed-
laser fields into account. Even if a number of pairs were
indeed created, the location of the creation is limited in
the focal region of the pump laser and they can be swept
out by a static magnetic field. The creation point is far
from the converter window of the proposed polarimeter
followed by a narrow long collimator. The distance d ¼
1000 cm is long enough to sweep out the pairs with a
half GeV so that they never penetrate through the
collimator of a 100 μm diameter. Therefore, all of the
pairs can be blocked out, and they cannot produce
backgrounds to the birefringence measurement because
synchrotron radiation energies from pairs with a half GeV
in a weak sweeping magnet are well below the pair
creation threshold in the converter. However, depending
on the actual pair creation rate, we would have to accept
some loss of the effective statistics of probe photons. As
this absorption probability is expected to depend on
polarization combinations between linearly polarized
probe photons and linearly polarized pumped laser field
[31], the effective incident numbers of probe photons in
Eq. (9) could deviate from those without the absorption
via the following modification: Pl→Plð1−a−Pl

−1δaÞ=
ð1−a−PlδaÞ with the averaged absorption probability a
and the polarization-dependent absorption probabilities
a� δa for the two combinations of linear polarization
states between the probe photons and the pumped laser
field. In the limit of Pl → 1, even if δa resulting in
dichroism in the pumped domain is large, the situation of
Pl → 1 is almost unchanged. However, in the case of a
small Pl and a large δa, the dichroic effect is subject
to be corrected. In any case, if we remove the

above-mentioned sweeping magnet and the thin converter
in the proposed polarimeter; the same setup can also be
sensitive to pair creations only from the pumped domain.
Therefore, the absorption probabilities are directly meas-
urable in the proposed experiment and usable for the
correction if necessary.
The remaining less obvious contributions are from

possible interactions characterized by individual cross
sections σγA between γ-rays and residual atoms A in the
vacuum system along the distance d. The number of
interacting γ-rays is approximated as Nint ∼ σγAnAd with
number density of residual atoms nA. A typical vacuum
system maintained at ∼10−5 Pa results in nA ∼ 1010 cm−3

compared to nA ∼ 1020 cm−3 in the atmospheric pressure.
The possible interactions between GeV probe photons
and atoms are pair creations, Compton scattering, and
Delbrück scattering [47]. The first two processes even-
tually absorb probe photons or change the probe photon
energy drastically, hence, they cannot be a serious
background for the phase retardation measurement as
long as the narrow energy range and limited conversion
points on the converter of the polarimeter are imposed in
the measurement. The interaction resulting in nonab-
sorbed photons with the same energy as the generated
energy at the Compton scattering vertex is thus limited to
forward Delbrück scattering via γ þ A → γ þ A. The
differential forward Delbrück scattering cross section per
solid angle for high energy photons close to GeV is
expected to be described as dσγA=dΩ ¼ A2ðαZÞ4ðr0Þ2 ∼
A2ðαZÞ40.1 b with the classical electron radius r0 [48].
The scattering amplitude is evaluated as A ∼ 103 at
maximum for 1 GeV [48]. Even for KrðZ ¼ 54Þ,
corresponding highest Z in the air, dσγA=dΩ∼
ð103Þ2ð54=137Þ40.1∼103 b at most. For the assumed d
and nA, we expect Nint∼10−21 ½cm2�1010 ½cm−3�103 ½cm�¼
10−8 per shot, which is negligible with respect to
6.5 × 104 probe photons per shot for the polarization
measurement. Furthermore, by taking the following facts
into account: (i) the proper abundance of Kr as well as
the same effects from the other residual atoms with lower
Z in the air, (ii) no reason to expect that residual atoms
are polarized with respect to the incident polarization
plane of probe photons over the entire length d, and
(iii) very narrow solid angle in front of the polarimeter,
we expect that the depolarization effect by Delbrück
scattering is totally negligible.
The robustness to the background depolarization proc-

esses would be one of advantages to use GeV probe
photons compared to tests with lower frequency probes
where probe photons tend to have larger interaction cross
sections with atoms included in the test systems. We
emphasize, however, that the tests of birefringence with
different probe wavelengths are essentially important in
order to complete the measurement of the dispersion
relation in the vacuum immersed in external fields.
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VII. CONCLUSION AND PROSPECTS

We have considered combining a 10 PW laser system
with 1 GeV linearly polarized probe γ-rays to enhance
the sensitivity to the measurement of the laser-induced
birefringence effect. We have derived formulas to
directly determine phase retardation close to unity from
pairwise topology of the symmetric Bethe-Heitler proc-
ess. We conclude that if 104 pairs are available, it is
possible to observe the vacuum birefringence effect with
the accuracy of 4.7% for hGi ¼ 0.72. This result is
based on a realistic set of laser parameters and poten-
tially realizable statistics for 10 PW systems such as ELI
projects [12].
Given the firm theoretical and experimental footing in

the simplest QED case, the proposed approach with the
compact polarimeter design would open up a new arena of

fundamental physics to explore more dynamical and
complicated vacuum states realized in laboratories, astro-
physical objects, and possibly the early Universe.
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