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Circularly polarized photons have the Berry curvature in the semiclassical regime. Based on the kinetic
equation for such chiral photons, we derive the (non)equilibrium expression of the photon current in the
direction of the vorticity. We briefly discuss the relevance of this “photonic chiral vortical effect” in pulsars
and rotating massive stars and its possible realization in semiconductors.
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I. INTRODUCTION

Recently, the effect of the Berry curvature for photons
has attracted great interest in optics and photonics. This
effect, originating from the helical nature of circularly
polarized photons, leads to remarkable topological trans-
port phenomena. One canonical example of such phenom-
ena is the quantum spin Hall effect of light [1,2], which had
also previously been known as the “optical Magnus
effect” [3].
In this paper, we develop a kinetic framework for right-

and left-handed circularly polarized photons, similar to the
one for spin-1=2 chiral fermions (known as the chiral
kinetic theory) [4–7]. Based on the kinetic equation, we
derive a new type of topological transport phenomenon of
photons in a rotation—the photonic chiral vortical effect
(CVE). This is the photon current along the direction of the
vorticity. A similar CVE is known to appear in chiral matter
that includes chiral fermions [8–11] and has been inten-
sively studied due to its possible relevance to quark matter
in heavy ion collisions [9,10] and neutrino matter in
supernovae [12]. We argue that the photonic CVE provides
a hitherto neglected contribution to the photon emission
from pulsars and rotating massive stars. We also discuss a
possible realization of this effect with a nonzero chemical
potential in semiconductors. We emphasize that our work
enlarges the chiral transport phenomena so far limited to
(nearly) massless chiral fermions to a drastically wider area
of physical systems involving massless photons.

II. QUANTUM MECHANICS FOR PHOTONS

A. Wave equation

We first briefly recapitulate the wave equation for
photons (see, e.g., Ref. [13] for a review). To keep quantum
mechanical and relativistic nature apparent, we will write
explicitly ℏ and c in this section.
The wave function of photons must satisfy the following

requirements:
(a) It is linear, such that it can be superposed to have

interference effects.
(b) The coefficients are constants unrelated to the specific

motion of photons: ℏ and/or c.

(c) It satisfies the relation ω ¼ ck, with ω the frequency
and k≡ jkj the wave number.

The first two conditions account for the wave nature of
photons similar to the Schrödinger equation for electrons,
and the third condition ensures the dispersion relation of
massless photons or electromagnetic waves.
Before proceeding further, let us recall the basic proper-

ties of the two polarizations of photons (which we denote as
e1 and e2) propagating in the direction specified by the
wave vector k:

e1 · e2 ¼ 0; k · e1 ¼ k · e2 ¼ 0; ð1Þ

k × e1 ¼ ke2; k × e2 ¼ −ke1; ð2Þ

or equivalently,

ke� ¼ �ik × e�; ð3Þ

k · e� ¼ 0; ð4Þ

where we defined e≡ e1 � ie2.
Now we take the wave functions of right- and left-

handed photons, ψ�ðt; xÞ, to be proportional to the com-
plex polarizations e�. (Note that ψ� are three-component
wave functions.) Recalling the properties (3) and (4), it
turns out that the following equations satisfy all the
requirements for the wave equation above:

i∂tψ� ¼ �c∇ × ψ�; ð5Þ

∇ · ψ� ¼ 0; ð6Þ

for right- and left-handed photons, respectively.
Equation (5) can be rewritten in the form of the
Schrödinger-type equation as

iℏ∂tψ� ¼ �c

�
S ·

ℏ
i
∇
�
ψ�; ð7Þ

where ðSiÞjk ¼ −iϵijk with the indices i, j, k running
over 1,2,3.
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The corresponding Hamiltonian of chiral photons is thus
given by

H ¼ �cS · p; ð8Þ

where p is the momentum. Note that 3 × 3matrix Si (i ¼ 1,
2, 3) satisfies the commutation relations, ½Si; Sj� ¼ iϵijkSk.
This should be contrasted with the Hamiltonian of chiral
fermions, H ¼ �cσ · p, where σi is the 2 × 2 Pauli matrix
that satisfies the commutation relations, ½σi; σj� ¼ 2iϵijkσk.
In the medium where Lorentz symmetry is explicitly

broken, the Hamiltonian (8) is modified to

H ¼ �vS · p; ð9Þ

where v ¼ 1=
ffiffiffiffiffi
ϵμ

p
is the velocity in medium with ϵ and μ

being permittivity and permeability, respectively.

B. Path integral formulation

In the following, we use the natural units ℏ ¼ c ¼ 1 for
simplicity. In order to derive the semiclassical theory for
chiral photons with Berry curvature effects, we consider the
path integral formulation for the Hamiltonian (8). Let us
start with the path integral for right-handed photons ψþ,

Z ¼
Z

DxDpPeiI; I ¼
Z

dtðp · _x − S · pÞ; ð10Þ

where P denotes the path-ordered product of the matrices
expð−iS · pΔtÞ over the path in the phase space. The
following argument can be similarly applied for left-handed
photons ψ− as well.
The eigenvalues of the 3 × 3 matrix S · p are found to be

�jpj and 0. One can diagonalize this matrix using a unitary
matrix Vp, such that

V†
pS · pVp ¼

0
B@

jpj 0 0

0 −jpj 0

0 0 0

1
CA≡ jpjλ3; ð11Þ

where λ3 ¼ diagð1;−1; 0Þ is one of the SUð3Þ generators.
The eigenstate of the eigenvalue −jpj has negative energy
and should be regarded as unphysical for photons. This is to
be contrasted with the case of chiral fermions, where
negative energy states, corresponding to antiparticles, are
possible. The eigenstate of the eigenvalue 0 is given by
p̂≡ p=jpj (multiplied by any nonzero proportionality con-
stant) and is longitudinal with respect to p. Due to the
additional constraint (6), this state is forbidden to appear
and is unphysical as well; hence, ψþ has only one physical
eigenstate with the eigenvalue jpj, corresponding to the
positive helicity state h ¼ þ1.
Following Ref. [5], one can rewrite the path integral (10)

by inserting 1 ¼ VpV
†
p between the exponential factors, so

that the matrix in the exponential factor is diagonalized at
each point of the trajectory as follows:

� � � expð−iS · p2ΔtÞ expð−iS · p1ΔtÞ � � �
¼ � � �Vp2V

†
p2 expð−iS · p2ΔtÞVp2V

†
p2

× Vp1V
†
p1 expð−iS · p1ΔtÞVp1V

†
p1 � � �

¼ � � �Vp2 expð−ijp2jλ3ΔtÞV†
p2

× Vp1 expð−ijp1jλ3ΔtÞV†
p1 � � � : ð12Þ

Taking Δp≡ p2 − p1 to be sufficiently small, the factor
V†
p2Vp1 between the two exponential factors in Eq. (12) can

be expressed as

V†
p2Vp1 ≈ expð−iâp · ΔpÞ ¼ expð−iâp · _pΔtÞ; ð13Þ

where âp ≡ iV†
p∇pVp.

We now take the semiclassical limit where off-diagonal
components of âp are negligible. (We will discuss the
validity of this approximation later.) Focusing on the
positive energy state, we arrive at the semiclassical action
for right-handed photons,

I ¼
Z

dtðp · _x − ap · _p − ϵpÞ; ð14Þ

where ϵp ¼ jpj is the energy dispersion (in the vacuum) and
ap ≡ ½âp�11 is the gauge field in momentum space, called
the Berry connection. The corresponding field strength,
called the Berry curvature, is defined as Ωp ≡ ∇p × ap.
Similarly, one can obtain the semiclassical action for left-
handed photons (or negative helicity state h ¼ −1) by
repeating the similar argument for ψ−.
From the definition of ap above, one finds that

Ωp ¼ � p̂
jpj2 ; ð15Þ

for right- and left-handed photons with h ¼ �1, respec-
tively. This is the fictitious magnetic field of the magnetic
monopole (in momentum space) with the monopole charge,

k ¼ 1

4π

Z
Ωp · dS ¼ �1; ð16Þ

where the area integral is taken over the surface of the
sphere with radius jpj. Note that the Berry curvature of
chiral photons in Eq. (15) is twice larger than that of chiral
fermions in Refs. [4–6].
Let us discuss the applicability of the semiclassical

description for photons above. For the off-diagonal com-
ponents of âp · _p to be negligible to obtain Eq. (14) from
Eq. (13), they must be much smaller than the energy gap
2jpj between the two eigenstates with the eigenvalues�jpj.
As jâpj ∼ 1=jpj, this condition amounts to
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j_pj ≪ jpj2; ð17Þ

meaning that p must be sufficiently away from the level
crossing point p ¼ 0.

C. Semiclassical equations of motion

Let us look into the consequences of the Berry curvature
corrections for chiral photons. From the action (14), one
obtains the equation of motion for _x,

_x ¼ p̂þ _p ×Ωp: ð18Þ

The second term on the right-hand side of Eq. (18) is the
“Lorentz force” in momentum space, originally known as
the optical Magnus effect [3]. This term has been found to
induce the spin Hall effect of light [1,2]: the trajectory of
the circularly polarized photon is shifted perpendicularly to
the direction of _p. For example, in an inhomogeneous
medium with coordinate-dependent permittivity ϵðxÞ, the
equation of motion is _p ¼ −ð∇vÞjpj, where v ¼ 1=

ffiffiffi
ϵ

p
. In

this case, the shift of the trajectory is perpendicular to the
direction of ∇ϵ [1–3].

III. PHOTONIC CHIRAL VORTICAL EFFECT

As we will discuss from now on, the Berry curvature
correction of photons also leads to a new type of topo-
logical transport phenomenon—the photonic CVE.
Let us consider the response of a system with right- or

left-handed photons to a global rotation or a local vorticity
ω ¼ 1

2
∇ × v, where v is the local fluid velocity.1 For this

purpose, let us go to the comoving frame rotating with
angular velocity ω with respect to the laboratory frame,
similarly to Ref. [5]. In this frame, photons experience the
noninertial Coriolis force to the linear order in ω. We will
be interested in sufficiently small jωj so that the centrifugal
force of order Oðω2Þ is negligible. Then the equation of
motion for _p is given by

_p ¼ 2jpj_x × ωþOðω2Þ; ð19Þ

where we assumed a homogeneous medium for simplicity.
The right-hand side of Eq. (19) can be understood as a
relativistic generalization of the Coriolis force 2m_x × ω for
a nonrelativistic particle with massm. Substituting Eq. (19)
into Eq. (18), we have

ffiffiffiffi
G

p
_x ¼ p̂þ 2ωjpjðp̂ ·ΩpÞ; ð20Þ

where G ¼ ð1þ 2jpjω ·ΩpÞ2 is the determinant of the
6 × 6 matrix of the coefficients in Eqs. (18) and (19) for _x
and _p.
Using the distribution function of right- or left-handed

photons in the phase space, np, the photon current density is
given by

j ¼
Z

d3p
ð2πÞ3

ffiffiffiffi
G

p
_xnp; ð21Þ

where we took into account the fact that the invariant
phase space measure becomes

ffiffiffiffi
G

p
d3xd3p=ð2πÞ3 instead of

d3xd3p=ð2πÞ3 due to the modification in Eq. (20). This
modification is similar to that of chiral fermions in a
magnetic field [4–6] (see also Refs. [15,16]).
From the Berry-curvature corrections in Eq. (20), one

finds the photon current proportional to the vorticity,

jCVE ¼ 2ω
Z

d3p
ð2πÞ3 jpjðp̂ ·ΩpÞnp: ð22Þ

This is the nonequilibrium expression of the photonic CVE.
Note that, although the expression itself seems the same as
the CVE for chiral fermions in Ref. [5], this is indeed
different from the latter: the Berry curvature Ωp in Eq. (15)
is twice larger than the one in Ref. [5] and np is the bosonic
distribution function unlike the fermionic one in Ref. [5].
These differences can be clearly seen in the thermal

equilibrium state where np takes the Bose-Einstein
distribution characterized by temperature T and chemical
potential μ,2

np ¼
1

eβðϵp−μÞ − 1
; ð23Þ

with β≡ 1=T. In this case, the photonic CVE becomes

j�CVE ¼ �ω
Z

∞

0

dp
π2

p

eβðp−μÞ − 1
¼ � 1

π2
Fð2;−βμÞT2ω;

ð24Þ

for right- and left-handed photons, respectively, where
p≡ jpj and

Fðs; αÞ≡ 1

ΓðsÞ
Z

∞

0

xs−1

exþα − 1
dx ¼

X∞
n¼1

e−nα

ns
ð25Þ

1In the case of a system in a global rotation ω, the size of the
system of interest is to be understood as satisfying r < 1=jωj.
Otherwise, the velocity of the boundary exceeds the speed of
light, leading to unphysical results [8] (see also Ref. [14]).

2Usually the chemical potential of photons is vanishing, μ ¼ 0,
because the number of photons can vary without any constraint.
However, this is not always true when photons are in chemical
equilibrium with the excitations of matter with a nonzero
chemical potential; e.g., chemical equilibrium between photons
and electron-hole pairs in a light-emitting diode can lead to a
photon medium with μ ≠ 0 [17]; see also Sec. IV. Here we
consider the most generic case with nonzero T and μ.
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is the Bose-Einstein integral with ΓðsÞ the gamma function.
Apparently, the transport coefficient in Eq. (22) is different
from that for chiral fermions in Ref. [5]. This is one of the
main results in this paper.
In particular, when μ ¼ 0, the expression of the photonic

CVE is further simplified by using Fð2; 0Þ ¼ π2=6 as

j�CVE ¼ �T2

6
ω: ð26Þ

Incidentally, the transport coefficient in this case is the
same as that for chiral matter with a single chiral fermion.
This is a consequence of two modifications compared with
chiral fermions, which cancel with each other: one is the
fact that the helicity of photons, h ¼ �1, is twice larger
than the helicity of chiral fermions, h ¼ �1=2 (and so is the
Berry curvature), and the other is that the contribution of
antiparticles is absent for photons.
Notice that the coefficients of the photonic CVE have the

opposite signs for thermalized right- and left-handed
photons. Hence, in a system with both right- and left-
handed photons in a rotation, they tend to move in the
opposite direction. The corresponding axial current at finite
T and μ is expressed as

jA ≡ jþ − j− ¼ 2

π2
Fð2;−βμÞT2ω: ð27Þ

As a result, right- and left-handed photons are separated
along the rotation. This is the photonic chiral separation
effect.
One might think that the argument leading to Eq. (24)

above would not be completely justified because the
integration over momentum space in Eq. (24) includes
the singular point p ¼ 0, where the semiclassical descrip-
tion for photons breaks down. In fact, the condition (17),
together with the equations of motion (18) and (19),
requires that jωj ≪ jpj. However, one can show that the
contribution around the singular point with the region
jpj ≤ Δ (with Δ satisfying jωj ≪ Δ ≪ T) to the integral
in Eq. (24) is vanishingly small; when μ ≠ 0, we have

Z
Δ

0

dp
π2

p

eβðp−μÞ − 1
∼ Δ2 ≪ T2; ð28Þ

and when μ ¼ 0,
Z

Δ

0

dp
π2

p
eβp − 1

∼ TΔ ≪ T2; ð29Þ

where we used eβp ≃ 1þ βp for p ≪ T. Hence, the
support of the integrand in Eq. (24) comes from the region
p > Δ, where the semiclassical treatment is valid.

IV. DISCUSSIONS

In this paper, we developed a kinetic description for
right- and left-handed circularly polarized photons. Using

the kinetic equation, we derived the expression of the (non)
equilibrium photon number current along the direction of a
vorticity. The nonequilibrium and equilibrium photonic
chiral vortical effects are given by Eqs. (22) and (24),
respectively.
Among others, the photonic CVE may provide a novel

contribution to the photon emission from pulsars and
rotating massive stars.3 This effect is remarkable in that
photons emitted along the rotational axis of a star have a
dependence on the circular polarizations: only right-handed
photons are emitted from one of the poles while only left-
handed ones from the other. As the photonic CVE becomes
larger as the temperature and angular velocity increase [see
Eq. (26)], we expect this effect to be most significant in the
accretion-powered millisecond pulsars. A more detailed
analysis in this direction will be reported elsewhere. One
can extend the conventional framework of radiation hydro-
dynamics for matter-photon coupled astrophysical systems
to include this effect by using the chiral kinetic theory for
photons considered in this paper [19].
The photonic CVE with a nonzero chemical potential

may also be realized in table-top experiments. In fact,
thermalized photon media with finite temperature and
chemical potential can be produced in semiconductors
(e.g., light-emitting diodes) in an external electric field
due to the chemical reactions of electrons and holes with
photons [17].4 Then, such a system in a rotation should
exhibit the photonic chiral separation effect: right- and left-
handed circularly polarized photons are separated along the
rotation.
As the CVE appears not only for the spin-1=2 chiral

fermions, but also for spin-1 chiral photons as we argued in
this paper, one expects the same is also the case for higher-
spin massless chiral particles (such as chiral gravitons). It
would also be interesting to study possible new collective
modes induced by the photonic CVE (see Refs. [20–25] for
the case of chiral fermions). Finally, one may be able to
derive the chiral kinetic theory for photons from the
microscopic quantum field theory in a way similar to the
one for chiral fermions [6,26–28].
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3We note that an attempt to associate the usual fermionic CVE
with astrophysical jets was made in Ref. [18].

4This situation is somewhat similar to left-handed neutrinos at
the core of supernovae; even weakly interacting neutrinos can be
thermalized and have nonzero chemical potential due to the weak
equilibrium with nucleons and electrons in dense nuclear matter,
where the CVE for neutrinos is relevant to the evolution of core-
collapse supernovae [12].
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Note added.—Recently, we learned that A. Avkhadiev
and A. V. Sadofyev [29] and V. A. Zyuzin [30] have
independently studied the chiral vortical effect for bosons
by different approaches. We note, however, that our
derivation and results, based on the kinetic theory with

Berry-curvature corrections, are more generic than those of
Refs. [29,30] in that the former is applicable to the
nonequilibrium state (and equilibrium state with finite T
and μ), while the latter is limited to the equilibrium state
without μ.

[1] K. Y. Bliokh and Y. P. Bliokh, Phys. Lett. A 333, 181
(2004).

[2] M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett.
93, 083901 (2004).

[3] V. S. Liberman and B. Y. Zel’dovich, Phys. Rev. A 46, 5199
(1992).

[4] D. T. Son and N. Yamamoto, Phys. Rev. Lett. 109, 181602
(2012).

[5] M. A. Stephanov and Y. Yin, Phys. Rev. Lett. 109, 162001
(2012).

[6] D. T. Son and N. Yamamoto, Phys. Rev. D 87, 085016
(2013).

[7] J.-W. Chen, S. Pu, Q. Wang, and X.-N. Wang, Phys. Rev.
Lett. 110, 262301 (2013).

[8] A. Vilenkin, Phys. Rev. D 20, 1807 (1979); 21, 2260 (1980).
[9] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A797, 67

(2007).
[10] D. T. Son and P. Surówka, Phys. Rev. Lett. 103, 191601

(2009).
[11] K. Landsteiner, E. Megias, and F. Pena-Benitez, Phys. Rev.

Lett. 107, 021601 (2011); Lect. Notes Phys. 871, 433
(2013).

[12] N. Yamamoto, Phys. Rev. D 93, 065017 (2016); 93, 125016
(2016); Eur. Phys. J. Web Conf. 137, 09013 (2017).

[13] I. Bialynicki-Birula, Prog. Opt. 36, 245 (1996).
[14] P. C. W. Davies, T. Dray, and C. A. Manogue, Phys. Rev. D

53, 4382 (1996).

[15] D. Xiao, J. Shi, and Q. Niu, Phys. Rev. Lett. 95, 137204
(2005).

[16] C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, and P.
Stichel, Mod. Phys. Lett. B 20, 373 (2006).

[17] P. Würfel, J. Phys. C 15, 3967 (1982).
[18] A. Flachi and K. Fukushima, arXiv:1702.04753.
[19] N. Yamamoto (to be published).
[20] Y. Jiang, X. G. Huang, and J. Liao, Phys. Rev. D 92, 071501

(2015).
[21] N. Yamamoto, Phys. Rev. Lett. 115, 141601 (2015).
[22] M. N. Chernodub, J. High Energy Phys. 01 (2016) 100.
[23] N. Abbasi, A. Davody, K. Hejazi, and Z. Rezaei, Phys. Lett.

B 762, 23 (2016).
[24] T. Kalaydzhyan and E. Murchikova, Nucl. Phys. B919, 173

(2017).
[25] N. Abbasi, D. Allahbakhshi, A. Davody, and S. F. Taghavi,

arXiv:1612.08614.
[26] C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 90,

076007 (2014).
[27] Y. Hidaka, S. Pu, and D. L. Yang, Phys. Rev. D 95, 091901

(2017).
[28] N. Mueller and R. Venugopalan, arXiv:1701.03331; Phys.

Rev. D 96, 016023 (2017).
[29] A. Avkhadiev and A. V. Sadofyev, Phys. Rev. D 96, 045015

(2017).
[30] V. A. Zyuzin, arXiv:1610.08048 [Phys. Rev. A (to be

published)].

PHOTONIC CHIRAL VORTICAL EFFECT PHYSICAL REVIEW D 96, 051902(R) (2017)

051902-5

RAPID COMMUNICATIONS

https://doi.org/10.1016/j.physleta.2004.10.035
https://doi.org/10.1016/j.physleta.2004.10.035
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevA.46.5199
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevD.87.085016
https://doi.org/10.1103/PhysRevD.87.085016
https://doi.org/10.1103/PhysRevLett.110.262301
https://doi.org/10.1103/PhysRevLett.110.262301
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1016/j.nuclphysa.2007.10.001
https://doi.org/10.1016/j.nuclphysa.2007.10.001
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1007/978-3-642-37305-3
https://doi.org/10.1007/978-3-642-37305-3
https://doi.org/10.1103/PhysRevD.93.065017
https://doi.org/10.1103/PhysRevD.93.125016
https://doi.org/10.1103/PhysRevD.93.125016
https://doi.org/10.1051/epjconf/201713709013
https://doi.org/10.1016/S0079-6638(08)70316-0
https://doi.org/10.1103/PhysRevD.53.4382
https://doi.org/10.1103/PhysRevD.53.4382
https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1103/PhysRevLett.95.137204
https://doi.org/10.1142/S0217984906010573
https://doi.org/10.1088/0022-3719/15/18/012
http://arXiv.org/abs/1702.04753
https://doi.org/10.1103/PhysRevD.92.071501
https://doi.org/10.1103/PhysRevD.92.071501
https://doi.org/10.1103/PhysRevLett.115.141601
https://doi.org/10.1007/JHEP01(2016)100
https://doi.org/10.1016/j.physletb.2016.09.002
https://doi.org/10.1016/j.physletb.2016.09.002
https://doi.org/10.1016/j.nuclphysb.2017.03.019
https://doi.org/10.1016/j.nuclphysb.2017.03.019
http://arXiv.org/abs/1612.08614
https://doi.org/10.1103/PhysRevD.90.076007
https://doi.org/10.1103/PhysRevD.90.076007
https://doi.org/10.1103/PhysRevD.95.091901
https://doi.org/10.1103/PhysRevD.95.091901
http://arXiv.org/abs/1701.03331
https://doi.org/10.1103/PhysRevD.96.016023
https://doi.org/10.1103/PhysRevD.96.016023
https://doi.org/10.1103/PhysRevD.96.045015
https://doi.org/10.1103/PhysRevD.96.045015
http://arXiv.org/abs/1610.08048
http://arXiv.org/abs/1610.08048

