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We provide a formalism to calculate the cubic interaction vertices of the stable string bit model, in which
string bits have s spin degrees of freedom but no space to move. With the vertices, we obtain a formula
for one-loop self-energy, i.e., the O(1/N?) correction to the energy spectrum. A rough analysis shows that,
when the bit number M is large, the ground state one-loop self-energy AE; scale as M>~*/* for even s and

M*=5/4 for odd s. Particularly, in s = 24, we have AE; ~ 1/M, which resembles the Poincaré invariant
relation of 1 + 1 dimension P~ ~ 1/P*. We calculate analytically the one-loop correction for the ground
energies with M = 3 and s = 1, 2. We then numerically confirm that the large M behavior holds for s < 4

cases.
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I. INTRODUCTION

In the string bit model [1], a string is a chain comprised
of pointlike entities called string bits. While the chain is
discretized, it behaves like a continuous string when the bit
number M is large enough.

The string bit model is an implementation of 't Hooft’s
idea of holography [2—4]. In Lorentz invariant theory,
spacetime can be described by light cone coordinates
with transverse dimensions x = (x?,...,x?~!) and the

+ dimensions x* = (x £ x')/+/2. In the string bit model,
the x~ coordinate of string bits is missing, and hence the
Lorentz invariance is not present a priori. String bits enjoy
the dynamic of Galilean symmetry, under which the
+-component momentum P = (P° + P')/+/2 is identi-
fied as mM, where m is the mass of one string bit. When M
is large enough and P is fixed, P™ can be considered as a
continuous variable, and its conjugate x~ can be interpreted
as the missing coordinate. The Lorentz invariance can be
therefore regained, and string theory emerges.

With ’t Hooft’s large N limit [5,6], the type II-B
superstring was formulated in Ref. [7] as a string bit
model. In the model, a superstring-bit creation operator,
which was an adjoint representation of U(N) color group,
has up to s spin indices and moves in transverse space.
A more drastic form of holography was studied in recent
papers [8—11], where string bits have no transverse coor-
dinate and hence no space to move. However, new
compactified bosonic coordinates can be generated from
spin degrees of freedom of string bits. If suitable dynamics
is chosen, these spin degrees of freedom are converted to
one-dimensional spin waves, which then act as compacti-
fied bosonic coordinates. The 1/N perturbation of the latter
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model was studied in Ref. [11], where the cubic interaction
vertices and their application to the calculation of the one-
loop self-energy were discussed.

Following the main idea of Ref. [11], we continue the

work in the following way:

(i) A more detailed study of the cubic interaction
vertices is performed. We present a systematic
way to build conjugates of energy eigenfunctions,
determine the sign factors of the vertices, and (anti)
symmetrize the vertices, which are denoted as V.
and W,,, and shown as Fig. 1, over the indices p
and ¢. We then show that the interaction vertices can
be calculated by finding the vacuum expectation
values of ladder operators. These are necessary for
the use of interaction vertices in our calculation of
observables.

(i) The calculation of the one-loop self-energy is
improved, and its large M behavior for the ground
states is analyzed. We assemble the ingredients
necessary to calculate the one-loop self-energy.
The one-loop self-energies of ground states, AE,
are studied, and their large M behavior is analyzed.
We calculate AE; analytically forthe M =3, s =1
and M =3, s =2 cases. A qualitative analysis
shows that AE; scales as M>~*/* for even s and
M*=5/* for odd s. The scaling behavior is consistent
with Lorentz invariance in 1 + 1 dimensions when
s = 24, the critical Grassmann dimension, and the
protostring model [11] emerges.

(iii) AE( is determined numerically for higher M and s.
We confirm the large M behavior of AE; for s < 4.
We also verify that AE; increases exponentially
with respect to s when M is fixed. We generalize the
Hamiltonian of the model by adding O(1/N) terms
s¢AH and numerically show that, for the s = 2 case,
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FIG. 1. The vertex V,,, is the amplitude of splitting a large
string r into two small strings p and ¢, while the vertex W
the amplitude of joining p and ¢ into r.

rpg 1

the Hamiltonian is bounded from below with respect
to M only when £ > 1. Our analysis suggests that
this is true for all the even s cases. The result shows
that the séAH generalization is necessary for build-
ing a physical string bit model.
The rest of this paper is organized as follows. In Sec. II,
we review some results of stable string bit models obtained
by Ref. [11]. Specifically, we introduce the Hamiltonian of
the model, solve for the energy spectrum of the model at
N = o0, and summarize the three chains overlap calcu-
lation. In Sec. III, we provide a systematic approach to
build conjugate eigenfunctions, which will be used in the
calculation of the 1/N expansion. In Sec. IV, the cubic
interaction vertices are studied by 1/N perturbation. In
Sec. V, we use the cubic interaction vertices to calculate
one-loop self-energies. Numerical results for the one-loop
self-energy are analyzed in Sec. VI. The main text is closed
with a conclusion section. Finally, several Appendixes are
included for technical details.

II. STABLE STRING BIT MODEL

The purpose of this section is to review some results of
stable string bit models obtained in Ref. [11] and introduce
useful notations. These results are necessary for setting
up the 1/N expansion of the model. Meanwhile, some
modifications specific to this paper are incorporated. To be
clear, the modifications are as follows. In Sec. IT A, we add
an O(1/N) term £AH to the Hamiltonian of the model. In
Sec. II B, the diagonalization of the Hamiltonian at N = oo
is done via different intermediate variables.

A. Hamiltonian

The superstring-bit creation operator is

(s

a;=1,...,s,

(2.1)

where a; are totally antisymmetric spin indices and a,  are
color indices of U(N). ¢ is bosonic when 7 is even and
fermionic when 7 is odd. In Fock space, a closed string is
represented by a color singlet trace operator acting on the
vacuum state, that is of the form Tr¢ - - - ¢|0). The number
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of ¢ in the trace operator is the eigenvalue of the bit number

operator M = >, LTr¢, .o .-
The Hamiltonian H to be studied in this paper reads

5
H =Y H;+séAH, (2.2)

i=1

where expressions of H; and AH are given in Egs. (A3) and
(A6). The H;s make a O(1) contribution to H, while AH
makes only O(1/N) contribution and hence does not affect
the large N limit. We note that H is a generalization of the
s = 1 Hamiltonian in Refs. [8,10]. The H; parts have been
proposed in Refs. [9,11]; AH is the new term added by this
paper, and its derivation is given in Appendix A 1.

Let us now consider the action of H on trace states space,
which is defined as follows. We introduce s Grassmann
coordinates 0%, a =1,...,s and then define a superbit
creation operator

w(0) = — e OO
k=0

and a single trace operator

T(0,.....00) = Try (01)yw(6) - - -y (6r).

where 6, are s-component Grassmann variables. The trace
states space, i.e., color singlet subspace of Fock space, is
then spanned by states like

T<917 ---ng)T("]h --'J/IL) T |0>

where |0) is the vacuum state. The action of each H; and
AH on trace states is given in Appendix A. To summarize
the results, let us define

- d d d ana
hy = 2(s - 20 dH“) + 20 — a0 + 20 — a0 — 21040,
d d
—2i 2sE — 280y . 23
ldHZd9?+ 5§ — 2861 (2.3)
B M
h = Z hk k1 — 288). (2.4)

k=1

Then, the actions of H on single and double trace states can
be written as.'

"The actions of each H; on single and double trace states are
shown in Appendix A.
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HT(8,. ....00,)[0)

= hT(6, - Oy Z > huT(0

=1 £kt
T(Ors1---6,-1)]0) (2.5)

HT(91 e

= (hg +

Ox)T(m -+ -n1)10)
DT (01 0x)T(n1 -

h,)T

K L

zzh (Okr1 -+ Oy - 11-1)[0)
k=1

K

2

= |

L
+ > huT (O Oimigy -+ mp)|0)

k=1 I=1

—fission terms. (2.6)

ZH Z| =

Note that in Egs. (2.6), the =255, term of &, should be
zero even if k = [, as they label different variables.

While /4, acts on the trace states, to solve for energy
eigenstates, it is helpful to convert /1, to an equivalent form
acting on the wave function of an energy eigenstate at
N = oco. The wave function v, is defined as follows. It
follows from Eq. (2.5) that, at N = oo, H evolves single
trace states to single trace states. Therefore, we can express
a single trace energy state as

mm:/m@mm%n@mﬁm%wwm%m»

(2.7)

where y, is the wave function. Since T(0,...,0,) is
invariant under the cyclic permutation 6; — 6,,,, we can
constrain y, by

W01, O) = (M, (0s, 0, 0)  (28)

without loss of generality. The sign factor follows from the
fact that the measure d°6, - - - d°8,, is changed by a factor
(=)*™=1) under the cyclic transformation 8; — 6, ;. Now,
the action of &, on T,|0) is

FuiT,[0) = / 40T T(0)y,(0)[0)

_ / dOT(0) iy, (0)]0). (2.9)

where we have performed an integration by parts in the last
step and

PHYSICAL REVIEW D 96, 046021 (2017)

d d d
hkl = 2<S—29k d9a> 29kﬁ_291 dea

d d
- 21929? - Zld—ezde? + 2S§ + 2S6k,l'

(2.10)

Note that, in the derivation of hy,;, the k = [ case needs
special treatment. Likewise, the action of & on T(0) is
equivalent to the action on y,.(0) by

M
Z i1 = 258). (2.11)

k=1
B. Diagonalizing Hamiltonian at N = oo
Now, let us solve for the energy spectrum of the model at
N = o0. A single trace energy eigenstate is determined by
an eigenfunction v, satisfying the equation

hll/r(gl’ 79M) =F

0y).  (2.12)

rl//r<91 PR
To solve the eigenvalue problem Eq. (2.12), we need to find
the lowering and raising eigenoperators of 4. This has been
done by Ref. [11]. Here, we repeat the procedure with
different sets of intermediate variables.

From (2.10), we see that each term of & contains only
variables or derivatives of the same 6“. It implies the
variables can be separated, and we only need to solve the
equation of one variable. We therefore drop the spin index a
in the following calculation.

We introduce Fourier transforms [8,10]

1 & :
a, = —— eke—kan/M’
1 EKd
- 27 n/M’ 2.13
P \/M,; a5 (2.13a)
1 M-1
gk — aneankn/M
\/M n=0
d 1 .
E — \/M ﬂne2mkn/M
k n=0
n=0,.M—-1, k=1,..M, (2.13b)
which satisfy
{an’ﬁm} = 5m+n.M + 5m,06n,0' (214)

In Ref. [11], instead of &, and dé)’

was done via the Grassmann variables S, =

the diagonalization
d

C gk + dTOk’

Sy =i(0; + d%k)’ and their Fourier transforms. Such differ-

ent choices should not affect the eigenoperators and the
energy spectrum.
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The Hermiticity of the Hamiltonian implies that 0}[ =4

a0,
d%: = 6, from which it follows that

aj’; :ﬂM—nv ﬂjl = Ap—n>

{a.ah} = {Bu P} =8pn.  O<nm<M-—1

We now express % in terms of a, and f3, as

-1
2
h= 22 |:(anaM—n +ﬂnﬂM—n) Sin%

n=1

2
+2 <1 — cos %) (@uBrin + uonfn) | —2M
(2.15)
and seek for eigenoperators of £,

Fi = na + pr, [h, F] = exFr,  (2.16)
where r; and €, are constants. Substituting (2.15) into

(2.16) yields

krm kr
rf = tan— + sec—.

k
eki::t8sinMﬂ, i

We then normalize the coefficients of F) to obtain the
lowering and raising operators for k£ > 1,

Fr=siq+cifr, Fr=cop—sipe, k=1,...M—1,
(2.17a)

where ¢; = cos (§—4%) and s; = sin (¥ —5%). It follows

from (2.17a) that

Fi = Fy_; = cityi + SiPu—ie 1 <k<M-1,
(2.17b)

The zero modes need special treatment:

FOZFMZEi”/4/30, FZ):FO:FMZG_M#‘(I().

(2.17¢)

The phase factors are chosen so that the expression of /iy,

in terms of eigenoperators will have a simple form; see

Eq. (4.11). A direct calculation shows that the eigenoper-
ators satisfy the following anticommutation relations:

{Fi.F}={F,F]}=0, {FF]}=8y 0<kI<M-I.

(2.18)

To obtain the energy spectrum, we need to find the
ground energy E; and the ground eigenfunction y 5, which
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is annihilated by all the lowering operators. Since the zero
mode does not change energy eigenvalues, there are
degeneracies in ground state. To eliminate the ambiguity,
we require the ground eigenfunction to be annihilated
by the zero mode F, as well. The ground eigenfunction
can be [10]

[(M-1)/2]
vi'= I (k= scamaan), (2.19)
k=1
where |[(M —1)/2| indicates the integral part of

(M —1)/2. To verify F,y&' =0, one only needs to
check that

Fi(cx = siapy—o) = Fy_i(cp = spapy—roy) = 0,

1<k<M-1, (2.20)

[Fk,c,—s,aM_,al] :0, k;é l,k?éM—l (221)
Acting h on the ground eigenfunction, we obtain the

ground energy

M-1
kx T 8M 2r
E5:1:_4 1 _:_4 {t————Ft— O M_3 .
p kz:;smM co i ﬂ +3M+ ( )

(2.22)

We can now build general eigenfunctions for arbitrary s
case. The ground eigenfunction and energy are

m, @ ()

Ve =¥eV¥e e (2.23)

V4
E. = —4scot—,
G = TNy

where each z,//(Ga) has the form of (2.19). A general energy
eigenfunction y, and its corresponding energy can be
written as

1 1 2 2 s s il
Yy = (F<V1.)1F£1,)2 o F£2)1F52)2 o .Fg.x.)lFss.)Z )

we =Fwe. (2.24a)

ra’kn'
9

v (2.24b)

E, = -4s cotﬁ + 8; sin

where we have defined Fy,, as a string of eigenoperators
and we choose 0 <r,; <r,, <---<M-—1 as a con-
vention. To build a physical state, the modes r,; (2.24a)
need to satisfy the cyclic constraint (2.8). Under the
cyclic permutation 6 — 6%, F{' transforms as F{' —
e~2kn/M F4T Tt then follows from Eq. (2.8) that the modes

must satisfy
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for evens(M — 1)

E Fax =

nM
i { (n+3HM forodds(M —1)

n=0,1,2,... (2.25)
Since the zero modes do not change the energy, the ground
energy eigenstate has at least 2° degeneracies. This is the
consequence of H commuting with supersymmetry oper-
ators Q“, as defined in Eq. (A8). The constraint (2.25) has a
profound impact on the energy spectrum of the model.
When s is even, all the ground states are allowed by (2.25)
and are hence physical. But when s is odd, the ground state
is allowed only when M is odd. It then follows that the
lowest single trace state for even M is the one correspond-

ing to FM/ZI//G

C. Three chains overlap

We have constructed the energy eigenfunctions for
N = 0. To obtain the 1/N expansion results, we also
need to calculate the overlap among three chains: one large
chain of M bits and two small chains of K bits and L =
M — K bits. The calculation can be done by establishing the
relation among the eigenoperators of large chain and two
small chains. Here, we recap the results of Ref. [11].

Let us only consider the s = 1 case. let F' an) and F S,L) be
lowering operators of L-bit and K-bit chains. Define a set of
operators

fo=Fy \/ +Fy \/ (2.26a)

fo=FY 1<n<L-1, (2.26b)

fon=FY  1<n<k-1, (2.26¢)
. K /L

faoy = e#/* <F8L) e F(()K) M)’ (2.26d)

which satisfy the anticommutation relationship {f,, f,,} =
{fi. iy =0and {f,, fi} = 8, Note that f, equals F,
of the large chain [11]. We then express the large chain
operators in terms of f and f' as

ﬁ

Fo =S (faCon+ fiSp)s OSm<M—1. (227)

3
I
o

The anticommutation relation among F,, and F}, requires

CST+8CT =0, CC +SST=1(228)

The matrix elements of C and § are given by
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COn = CnO = 50,n7 SO,n = Sn,O =0, 0<n<M
and [11]
c - 1 1— —ZﬂimL/M cos nro omr
mn — \/—1 _ e—2/tl n/L—m/M) 2L M)’
l<n<L (2.29)
c 1 | — g~2mimL/M nx mrx
m.Ltn—1 = /MK 1 — —2m (n/K=m/M) cos ﬁ - m ’
l<n<K (2.29b)
1 1= e—Zm'mL/M mr
C = - - ———1, (2.29
N T T <2M 4> (2.29)

1 1= —2m'mL/M ni mr
= 708 {5+ 507

Smn -
\/ L1-

Zm (n/L+m/M 2L 2M )’
1<n<L (2.29d)
1 1— —27n'mL/M nr mn
Sm,L+n—1 \/—l e2ri(n/K+m/M) cos 2K 2Kk T om 2M
1 1

_ e—27rimL/M mr
Sm.M—] - -

. MELTY, (220
VIK 1= mmm % 2M+4> (2.299)

where 1 <m <M —1in Egs. (2.29). When M is large, the
determinate of C can be approximated as [11]

. 92 L\ (M/K-L/M)/3-2/3
detcct ~ 0920 (L
(KLM)'/®
K\ M/L-K/M)/3-2/3
x <M> : (2.30)

We then express the ground eigenfunction of the large
chain as

M 1 t +\ (K) (L _

l//5; ) =exp (5 kaDklfl)l//(G )V/Q[det (I+DD")|71/4,
kl

(2.31)
where w(GK> and 1//(GL ) are ground eigenfunction for two
small chains. The constraints F,,yrg = 0 imply
CmnDnl + Sml =0. (232)
From the above construction, it is clear that the first rows
and columns of the matrices C, S, and D are trivial. One can
therefore write themas C = (1)@ C',S=(0) & ', and

D = (0) & D' where C’, §', and D' are nontrivial matrices
of dimension (M — 1) x (M —1).
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TABLE I. Gradings of functions and operators.
Tr Yy v, "¢} 7fe] F{r}
9r 9r — sM 9r 0 sM 9r— sM
With (2.28) and (2.32), we can simplify (2.31):
. det[C(I + DD")CY
det (1 + ppi) = LU £ DD)CT]
det [CCT}
det [CCT + SST
- M = |detC|2,
det(CC)
1
wg' = |detCl' exp (5 ZleM) Ve ve
kl
(2.33)

III. CONJUGATE EIGENFUNCTION

We have built energy eigenfunctions of the model at
N = oo in Sec. I B. To calculate 1/N expansion results, we
also need to find functions that conjugate to the energy
eigenfunctions. For convenience, we call these functions
conjugate eigenfunctions. In this section, we will construct
conjugate eigenfunctions systematically.

A conjugate eigenfunction , is a function of 6; that
satisfies the normalization condition [11]

/ &0, &0y, (0. ... 0,0y ... 00) = 5, (3.1)
and the completeness relation

S 01 0 ) = 50— 1), (32)

where the delta function 5(@ —#) is understood to be
symmetrized under cyclic constraint like (2.8).7 We stress
that, once there is a complete set of i, and v, fulfilling the
normalization condition, the completeness relation is sat-
isfied automatically.

To construct W, explicitly, it is convenient to define
operators F ki as conjugate to F;, under integration by parts,

>To be specific, it means that

/ dMOf (0, ...,0,,)5(0 —n)
1 4=

== (=50 F st oo tism)-
M=

PHYSICAL REVIEW D 96, 046021 (2017)
/ dMOy(0)[Fx(0)] = / d"O[Fyw(0)x(6),  (3.3)

where the + superscript is chosen if y(6) is Grassmann
even and — is chosen otherwise. It then follows from
Egs. (2.17) that

Fy=Fe™*B,, Ff=x(siax—cifi). 1<k<M—1,
(3.4)

I}(f)i — teinlAg,,

i?-};:t = :l:(ckaM—k - skﬁM—k)’ 1 S k S M - 1 (35)

In the remainder of this paper, we may suppress the
superscript =+ if there is no danger of ambiguity.

In the s = 1 case, we claim that the conjugate to the
ground eigenfunction w ! is

[M/2]
‘/_/i;:l = (—i)LM/zJao H (—S,- + CiaM_,»a,-) for odd M
i=1

(3.6a)

L(M-1)/2]
l/_/sGZI = (—i)M/2+1 H (=si+ ciaM—iai)aOaM/Z
i=1
for even M. (3.6b)
In Appendix B, we verify that ;! satisfies the normali-
zation condition (3.1). The function conjugate to the
general eigenfunction (2.24a) can be built by acting on

W with a string of F ,(f) as

W, = PR ELL - FOFD - FRFLL - = Fiaig,
(3.7a)
W = (=) DM/ Dy 670y D) (3.7b)

where all the F s pick Ftif ¢ is Grassmann even and F-
otherwise. The normalization condition (3.1) can be easily
verified,

/dMGV?rWr - /dMQF{r}l/_/GF.{rr}WG
— T
= /dMel//GF{r}F{r}lpG
- /dMell_/Gl//G = 17

where we used (3.3) in the second equality and (2.18) in the
third equality. In the last equality, the sign factor of yr; cancels
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the sign introduced by the rearrangement of the measure from
0, - d0y o ([1, d6\") - - ([], d6}”).

By analogy with (2.31), for the s = 1 case, the overlap of
conjugate eigenfunctions among the large chain and two
small chains is given by

_ (M
>=|detC|1/2exp(Zfl ) 7

where f picks £ if M is even and f~ if M is odd and all the
notations follow the ones of Sec. II C.

Let us conclude this section by discussing the grading of
energy eigenstates and eigenfunctions. We define

(3.8)

g, = g(T,) = grading of T,.

Now, we can write the trace operator 7(@) as a linear
combination of ,. Let T(0) = >, X,(0), where X, is
independent of 6; then,

— [ @or--a0urOw.(0)

— E sMg

= (—)“Mg( r)X

X, [ @0, 0up 0w, (0

r

where the sign factor comes from the commutation of the
measure and X,. It implies that X, differs from 7', only by a
sign factor. So, we have g(X,) = g(T,) and

7(6) = 3 (=)M5T,15,(6).

r

(3.9)

Finally, from Egs. (3.9), (3.1), and (2.23), we obtain the
gradings (modulo 2) of functions and operators as Table 1.
These results will be used in the next section.

IV. CUBIC INTERACTION VERTICES

Let T,|0), T,[0), and T,|0) be energy eigenstates of
strings with K, L, and M = K + L bits, respectively; then,

the interaction vertices V. and W, are defined as [11]

M
HT,|0) = E,T,|0) + ZZTqu|O)Vq,,,,
K= P9

rrq

(4.1a)

HT,T,0) = (E, + E,) ZT YW, pg + -
(4.1b)
The vertex V. represents the amplitude of breaking one

large string into two small strings, and the vertex W, ,,
represents the amplitude of joining two small strings into
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one large string. Without loss of generality, we can (anti)
symmetrize the vertices over indices p and g as

Vigr = (_)g,,gq Vaprs Wigp = (_)g,,gq Wipg- (4'2)
In this section, we shall find that
— s/2 at
Ve = M| det C| H< @ i) (4.3a)
s at
W,,, = KL| det C|")2 H< oy Pl (430)

Several notations are used in (4.3) for convenience.

{qp} =F {q}F e and the superscript a indicates that only

operators of spin index a are involved. The brackets
(-,+)v.w stand for vacuum expectation values of operators

1o
a at a a at at at
Flapy Findyw= <F{qp}h<v,w>F{r}eXP (5 ¢ Dufi )>
(4.4a)
a 1 a a a a a
hVEE(hK.] + hiy k1) hy = hi ko1 + By
(4.4b)

where the matrix D and operators f; are defined as (2.32)
and (2.26) and hy; is given by (2.10). The vacuum of (4.4a)
is the state annihilated by all lowering operators of L-bit
and K-bit systems, i.e., FEK)|0> = F(L)|O> =0. In the
following, we first mark remarks on the interaction vertices
in Sec. IVA and then give all the technical details of the
derivation of (4.3) in Sec. IV B.

A. Remarks on vertices

The form of vertices in (4.3) can be interpreted as
follows. The prefactor M of V. shows that, when a large
chain splits into two small chains of K and L bits, there
are M ways to choose the break points, and each way
contributes equally to V.. Likewise, the prefactor KL of
W,pq shows that, when two small chains join into a large
chain, there are K x L ways to choose the joint points, and
each way contributes equally to W,,,. The operator h{, =
1(h% | + hY; x.,) reflects the fact that, to break one M-bit
string into K-bit and L-bit strings, one needs to connect bit
1 to bit K and bit (K + 1) to bit M. Similarly, the operator
hw = h% .1 + hjy reflects the fact that, to join back the
above two small strings into one, one needs to connect bit
K to bit (K + 1) and bit M to bit 1. The difference of factor
2 between h{, and h§, is because that, when joining two
strings, one can inverse the labels of the first small string as
1 +i < K —i to obtain a different large string.
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B. Derivation of V. and W,,,

Now, let us derive the formula (4.3). Acting the Hamiltonian to the zeroth order energy eigenstate 7,|0) and using (2.7)
and (2.5), we have

M  M+i
HTJ0) = E1,00) 43 [ 03" > R (0;:+-6)7(6,11-++6,-1)[0)w (61w Ou)
i=1 j=i+2
1 M M-1 B
—ETJ0)+ 5 DY [ @Ol T O 00T (0101, ) O,
i=1 K=1
1 M M-1
:ErTrlo +NZ /dez Kg,,-‘rqu 11+K+1qu/_/qulpp|0>Wr’ (45)
K=1

i=1

where in the second equality we renamed the indices as j — i + K 4 1 and in the last equality we used (3.9). Comparing
(4.5) with (4.1a), we arrive at

qpr = )S (Kgy+Lgp) Z/dg;li,i+1<+1l/7q(9i+l<+1"'9i)1/7p(91+1 91+K)l//r- (4~6)

The vertex is decorated with a tilde because we have not yet applied the constraint (4.2) to it. Note that the sign factor is
changed due to the reorder of 7, and T,.
The action of H on the double trace produces both fusion and fission terms:

HTqu|0> (E +E ZT /dﬁdnz SL (gp=K) hkl‘/_/r(ak+1"'ek"ll"'ﬂl—l)yfp(e)l//q(n)l(»

1 _ L. .
+ NZ:Tr/dgan )= fyr, (O -+ - Oy - m)y (0w, (n)]0) + Nﬁssmn terms.
Comparing the above with (4.1b), we have V~V,pq = W£1p>q + W(rf,)q, where

Wipy = (=) L0=s5) / dedﬂzilkﬂ/_/r(gkﬂ s Oy e (01 Ok )y (o nL).
ol

2 sL(g,—s 7o
W<rp>q =(-) L(g,=sK) / dad’]zhlkl//r<6k Oy )W (01 O )y (my L)
k.l

Note that so far the derivation of V and W follows the one of Ref. [11] except that we changed the notation slightly and
determined the sign factors of the vertices, which are overlooked by Ref. [11] in Egs. (21) and (27).

Now, let us simplify V and W. We denote the integral with index i in (4.6) as \75,",2,. It can be shown as follows that all the
M integrals 17,(;2, are the same. For the integral with index i, we can rename all integration variables as 6; — 6, and then
use the cyclic constraint (2.8) to bring v, and the measure to their original form. The value of the integral is invariant under
both changes, but \7,(;,>,r is changed to f/g,frl). It implies that f/,(;,),r is independent of i, and we can choose i = M for every
integral to give

Vpr = (‘)s(Kg"+Lg”)M/d‘91/7q(9K+1 O )W, (01 Ok )y k1w (01, Op).

To find the vertex satisfying the constraint (4.2), we let V,,, = %(f/qp, + (—)9v9 f/pq,), where qu, can be obtained by
exchanging p <> ¢, K < L:
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(_)gpgq‘?pqr = (—)gP9q+S(Kgq+Lg,,)M/ doy,(Op 1+ Or) Wy (01O ) hyy 1w,
= (_)gpgq+S(Kgq+Lgp)M/ d91/7p(6’1 .. '91<)l/7q(91<+1 ... 9M)h1<,1l//r

= (—)S(KgﬁLg”)M/ A0y Ok 1 Op)W (01 - - - O ) g 1.

We therefore have

Vapr = (‘)S(Kg"“g”)M/d9'/7q(91<+1 O (01 Ox)hyy (0, ... On), (4.7)

where hy is given by (4.4b).

We perform a similar calculation for the W vertex. All the integrals of W(!) and W are independent of the indices k and
[. So, we can simply replace the sums over k and / with the factor K x L. We then rename 7, ..., 5, to 6,1, ..., 6, and fix
the indices as k = K, = K + 1 for W) and k =1, I = M for W® to give

Wiy = (—)SL('(’”_SK)KL/CZGV_/r(@l o Op) (g g+ Py )wp (01 - Ok )w g (Ok iy - - - Onr). (4.8)

Exchanging p <> ¢ and K <> L, we have

Weop = (—)K@a=sLIKL / Ao, (0y - Op) (A pr + P w0y - 00w, (011 - Oy). (4.9)

Renaming the integral variables as {60, ...,0.} = {0k 1, ....0u}, {0011, ....0u} = {61, ...,0k}, under which hy ;| +
.y becomes hy, | + hg g1, and then applying the property that g, (6, - - - 6),) is invariant under the cyclic permutation
0 — 0r.1,° we obtain that W,,, = (=)%%W,,,, which implies that W,,, = (W,,, + (=)%%W,,,) = W, ,,.

Let us now get rid of the integral in the expression of V. For simplicity, we consider the s = 1 case. We use (2.24a) and
(3.7a) towrite yy, = F L}W(GM)’ v, = F {,}y‘/E;M) and similarly for states p and g. We then use (2.33) to express z//(GM) in terms

of I/J(GL ) and 1//(G ), By a little algebra, we arrive at

_(L) - T 1 N 1
Vil — (=)@K M| det C|'/2 / dez//@ng)F{q,,}th}r}exp (i f,LDk,f,‘)ng)wﬁf). (4.10)
kil

The ground eigenfunctions lpg“ ) and l//(GK) are annihilated by any lowering eigenoperators of the small chains. Their

conjugates l/_/g) and l/_/(GK) can be annihilated by any raising eigenoperators of the small chains, as Eq. (B3) shows. Therefore,
the rhs of (4.10) can be interpreted as a vacuum expectation value of the operator F,Fy, hyF B} exp (% > u f}‘;Dk, f})

We therefore have
Vit = ()H0-M]0et O 2 Frgyef | exo 5 kaDsz1)>

where the vacuum is understood to be the state annihilated by all F SK) and F EL). We perform a similar calculation for W
and find

rpq

*One can show that 1//,(91 -0)) is invariant under the cyclic permutation 6, — 6, as follows. From Eq. (3.6a) and (3.6b), we see
that 75! — (=)M~'ws ! as 6, — 0, It then follows that {7 transforms as g — (=)™~ From the cyclic constraint (2.25), we
see that F'y,y transforms in the same way as . Therefore, 7, = F (nW¢ 1s invariant.
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Wf’pt} - (_)L(gp_K)KL| det C|%<exp < kaklfl> F{r}hWF{p} {q}>
= (=)Ho=KIKL| detC|2<F{qp}hWF {7} €XP ( fiDy f,>> .

Note that Vi, Iand W¢ p(} have the same sign factor (—)%(% %), We shall see that physical observables, like one-loop self-

energies, only depend on products like W,V .. It implies that the sign factors are unphysical and can be dropped in the
calculation of physical observables. So, for arbitrary s, up to a common unphysical sign factor, we can express V and W as
products of vacuum expectation values over spin index a. We therefore obtain the formula (4.3).

To calculate the vacuum expectation values, we need to express Ay and Ay in terms of eigenoperators. From Egs. (C4),

(C3), and (C5), we have

S

2 2
heyaw) % (Aﬁ,m FEE AV E B 424V ELE ) ) (4.11)
0

§
I

where

1 K K -
Al = 3 [1 —exp <27ziﬁn>} {1 —exp (Zﬂiﬁmﬂ sin sznﬂ'

1 Kn K -
+ 3 [exp (2751 ﬁ) + exp (Zﬂiﬁmﬂ {1 + exp (ﬂ'i m; n)] sin mZMn r (4.12a)
1 2K -1 2K +1
Uy = _COtW += 3 < T T, 7Z'> + M¢, (4.12b)
A%) = [1 + exp (m’n Lm)} {1 + exp (27”'1{ m]:[— n)] sin%ﬂ, (4.12¢)
=—4 t— 2M 4.12d
Hw cotso + 2M¢E. (4.12d)
|
V. ONE-LOOP SELF-ENERGY where AE, is the leading order correction to E,, i.e.,

E=E,+ AE,+ O(1/N?). We stress that the vertices in
(5.3) should be the ones satisfying the constraint (4.2);
otherwise, it would lead to an incorrect AE,.

We now apply the formulas of V and W to (5.3). Let us
first consider the s =1 case. The zero modes require
special treatment. Substitute (4.3a) and (4.3b) into (5.3),
and write the sum over zero modes explicitly,

One application of the interaction vertices is to calculate
the one-loop self-energy, i.e., the O(1/N?) correction to
energy spectrum. In this section, we will first express the
one-loop self-energy in terms of cubic interaction vertices
[11]. We then apply the results of previous sections and
obtain a formula for analytic and numerical computation.

For a finite N energy eigenstate, we use the ansatz

E) = T,]0) + T,T,|0)Cpy + -, (5.1) N ZZZ KLM|detC|
. N = -E,-E,
where the coefficients C,,, = (=)%%C,, are c-numbers of P4
order 1/N. Imposing the eigenvalue equation (H — E)|E) =0 x Z <F{qp}Fo «F5 1. FL}>*
and using perturbation theory, we obtain [11] Ak=0.1
1 X <F{(1P}F€),KF6.L’F]{Lr}> g
Cpo = mN Vo + ON2),  (5.2) v

(K)

H !
where we wrote Fj;'’ as F g for convenience and ),

E, = Z Z Wpg o EE -F, Vor (5.3)  indicates (tll(l)e sum c()zl)er states without zero modes. We can
=1 pq replace F'y* and F;” with f and f),_; given the following
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reasoning. The sum over 4 and x produces four terms. For

the term with A =k = 1, weﬁndF S e fof vt
by Egs. (2.26a) and (2.26d). The phase is irrelevant.
The A=1, k=0, and 1 =0, x =1 terms are quadratic

forms of Fé’o and Fém.
F(()K)*F(()K) 1 F(()L)*F(()L) = fifo+ fi_1fm-1- So, the sum

over F E)K) and F (()L) can be replaced by the one over f; and
Sa—1- We then have

-~ KLM|detC|
E L= NZZZ E e_E

=1 pyg

X Z <F{qp}fofM75’F r}>

4;=0,1

Ao phyor gt
x <F{q,,}f0°fj4_1,F{,}>V.

One can easily verify that

For arbitrary s, | det C| is replaced by |det C|*, and each
term inside the summation becomes a product over a. So,
we have

, KLM|det C|*
Er NZZZME E,—E,

x Z H< {(H’}fg ﬁdMll“’Fa' >*

Aj=0.1 a=1
a0 phasi-1 at
X< {qp}) 0.a M—l,a’F{r} v

Note that the sum over 4;; can be performed for each a
independently. So, we can move the sum over 4, ; inside the
product over a to give

1 = , KLM|det C|* &
AE. = — - =
’ Nzl;sz -E,—E,1
4

a at a at
(Z FlonZi- Finyl,y <F{qp}ZwF{r}>)

i=1
(5.4)

where Z¢

= (L6 fiar F6F)-

A. Ground energy correction

In principle, we can now calculate one-loop self-energy
for any single trace energy state with Eq. (5.4). But in
general, the calculation is tedious. Let us consider the
simplest case that y, is the ground state, i.e., Fy,) = 1. For
convenience, we denote (O, 1),y as (O)y . We only
consider the s = 1 case here, since s > 1 cases are simply
products of the s = 1 case.

We need to calculate the vacuum expectation value

(--hexp (%fZDklf}». In terms of eigenoperators, hy,

PHYSICAL REVIEW D 96, 046021 (2017)

of the form A, FiF},
and a constant term u, as

contains quadratic terms
A_, FhF, and A,,F,F,
Eq. (4.11) shows. Since F, exp(fiDyfiwiyl) =

F ,,,y/(GM) =0, only the FTF' and the constant terms make

a nonzero contribution:

<' -~ hexp (%leklf1T>>

2 + 1
= < < (A FLFly + p) exp <2fZDk1sz> >

To calculate the result of A}, F,F), term, we need to
express F,, in terms of a linear combination of f; and f ;, as
(2.27) shows, and commute f; through the exponential.
This is done in Appendix D. Using Eq. (D1), we have

2 (), wvw 0
- eri
M (” A oD,

1
X <F{qp}Z,»exp <§fIDk,fj)>, (5.5)

<F{qn}zi>v,w

where

Hyw = Hyv.w — TY(S*C_lAI/,W),
Byw = C_IA;,W(C_I)T

with uy w and Ay y defined in (4.12). Finally, the vacuum
expectation values on the rhs of (5.5) can be calculated
using

1
<fl-1fi2 o fi fi, €Xp (— fiDMﬁ) >

Zpesz,, P)iP(Q) D ip)ip@ D

where S, is the set of all permutations of 27 integers, (—)”

ip(2n-1)ip(2n)’

is the signature of permutation P, and Z/ indicates the sum
over permutations satisfying

P(1) < P(2), P(3) < P(4),...,P2n—1) < P(2n),
P(1) <P(3)<P(5) <---<P(2n-1).

Combining the above together, we can calculate the
one-loop self-energy of the ground state. As the complete
formula is very complicated, we do not bother writing it
here. In Appendix E, we show examples of using for-
mula (5.4) to calculate the one-loop self-energies of the
M=3 s=1and M =3, s =2cases. For M =3, s =1,
we have
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— M=3

— M=5

0.2

£=0

s=1,

0.1

s=1,

FIG.2. Ground energy as a function of 1/N forthe s = 1,£ = 0 and s = 1.£ = 1 cases. The solid lines plot the exact numerical results
by the method of Ref. [10]. The dashed lines plot the 1/N? order perturbation results.

AEg :# {—3(3\/5—5)52 +2(12—7\/§)§
—%(3\5—5)},

and for M = 3, s = 2, we have

1
AEG =3 <—66\/§§4 + 3603 — 2301/3£2
+ 180& — %) .

In general, AE; is a polynomial of & of degree 2s.

B. Large M behavior

We conclude this section by considering the large M
behavior of AEG4 The vacuum expectation values in (5.4)
only depends on the ratio K/M and therefore can be
considered as O(1). So, when M is large,

1 Y= , KLM|det C|*
AEg ~ W; ZM Eo—E,—F,

In (5.6), the factor KLM scales as M3, |det C| scales as
M~/* by Eq. (2.30), and the sum over K gives another
factor of M. These three parts produce a factor scale
as M*-9/4,

We then consider the large M behavior of
1/(Eg —E,—E,). When s is even, both p and g can
be ground states, and hence 1/(Eg — E, — E,) ~ O(M) by
Eq. (2.22). When s is odd, M has to be odd in order to have
the physical M-bit ground state, and one of the small strings
must have an even bit number. It implies that the ground

(5.6)

“The large M discussion is mainly based on comments by
Charles Thorn.

state of one small chain is forbidden by the cyclic constraint
(2.25). Therefore, 1/(Eg — E, — E,) ~ O(1) for odd s.
Combining the above together, we have

AEGN{

In analogy with the standard string theory, we can infer from
Eq. (5.7) the critical Grassmann dimension of the model,
where Lorentz invariance in 1 + 1 dimensions is regained.
In the light cone coordinates, P* is identified as mM, and
P~ is identified as E. So, the Poincaré invariant dispersion
relation P~ ~1/P* implies E~1/M. Therefore, the
Lorentz invariance requires s = 24. The model in the special
s = 24 case is called the protostring model [11].

MS—S/4
M4—s/4

for even s

. 5.7
for odd s (5.7)

VI. NUMERICAL RESULTS

We have derived a formula for the one-loop correction
to the ground energy. As Appendix E shows, however,
the calculation is tedious even for the simplest case. We
therefore turn to numerical computation.5 As the complex-
ity of the calculation grows dramatically, the highest M for
which we performed numerical computation is 27 for s = 1
and 16 for s = 2 and continues decreasing as s increases.
Since only the ground energy is considered, we will simply
write the ground energy as E and its correction as AE and
also suppress the 1/N? factor.

We first compare the perturbation results with the exact
numerical results, which are obtained by the method of
Ref. [10]. Figure 2 plots the change of ground energy with
respect to the 1/N for M =3 and 5 in the s = 1 case.
The solid lines are exact numerical results, and the dashed
lines are O(1/N?) perturbation results. We see that the
two types of results match very well for N large enough.
One interesting observation is that, when N is small, the

>The source code for the numerical computation can be found
in Ref. [12].
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AE;
0.014
0.012F
0.010
0.008 -
0.006
0.004

0.002

s=1,&=0

L L L L L

0.2 0.4 0.6 0.8 1.0

s=3,&=0

FIG. 3.
are for even K points.

perturbation results of M = 3 are lower than the exact
results, while the perturbation results of M = 5 are above
the exact results. It implies that the O(1/N*) correction is
positive for M = 3 and negative for M = 5.

We then verify the large M behavior of AE. Instead of
plotting AE with respect to M, we study its “inner
structure,” that is the contribution of each K to AE, denoted
by AE; and defined as

Since the power of M in the large M behavior of AE; is 1
lower than that of AE, we introduce the normalized AE; to
remove the M dependence:

for even s

. AEiM—4+s/4
AE[ — { .
for odd s

AEiM—3+s/4

We expect that, for fixed s and & AE; only depends on the
ratio K/M.

The plots of AE; as a function of i = K/M are shown in
Fig. 3, where £ = 0 for all four plots. When s is odd, only
odd values of M are allowed, and each M has two curves,
one for odd K points and the other one for even K points,
for a reason that will be clear shortly. For s = 2, 3, 4 cases,

. PHYSICAL REVIEW D 96, 046021 (2017)

' i=KIM
1.0

i=KIM

-100

-150

s=4,&=0

AE ; as a function of i = K/M. For odd s cases, the curves above the horizontal axis are for odd K points, and the curves below

the curves of different M values are very close to each other,
so the asymptotic behavior is evident. For the s = 1 case,
the gaps between consecutive curves become smaller as M
increases, which is consistent with the expected asymptotic
behavior. It is therefore fair to conclude that the large M
behavior is confirmed.

The fact that there are two curves for each M in odd s
cases can be understood as follows. Let us consider the
s = 1 case and take examples of K = 1 and K = 2, where
the former has a much lower contribution to AE than the
latter according to the plots. Assuming that M is large
enough, we have the other small chains with bit number
L > K. Since M is odd, L is even for K = 1 and odd for
K = 2. The lowest energies of these two cases, which are
equal to —4 cot57 — 4 cos 5% + 8 according to (2.24b) and
the cyclic constraint (2.25), differ only by O(1). Now, we
compare these two cases in the low energy regime, in which
the gap between energy levels and the lowest energies are at
most of order 1/M. Consider the numbers of states in the
low energy regime. Because of the cyclic constraint, only
chains with an even bit number have excited states with
energy gaps of order 1/M above the lowest energy. For
K =1, the number of states in the low energy regime
roughly equals P(L/2), the partition number of L/2; for
K =2, itequals P(2/2) = 1. It implies that the low energy
regime of K =1 is much denser than the one of K = 2.
Therefore, for large enough M, the K = 1 case has much
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AE;
0.00 L L i=K/M
1.0 1.2
-0.05}
-0.10F
-0.15F
—— M=9
-0.20F M=12
-0.25} —— M=16
030t
AE;
0.0000 L : . L L . i=K/M
0.2 0.4 0.6 0.8 1.0 1.2
-0.0005 F
-0.0010 F
-0.0015
—— M=9
-0.0020 M=12
-0.0025 —— M=16

-0.0030

s=2,&=1

FIG. 4. AE, as a function of i

lower average energy than the K = 2 case. This reasoning
holds when K is small. Hence, small odd K cases have a
lower contribution to AE than small even K.

We next consider the effect of the & parameter. Figure 4
shows the plots of AE; with respect to i = K/M for s = 2
with different values of £. From the plots, the £ = 0.5
and £ = 1.5 cases show a smooth asymptotic behavior as
the cases in Fig. 3. But when £ is close to 1, curves are not
smooth and intersect each other. When & < 1, the curve
moves downward as M increases, which implies that AE
decreases as M increases. So, AE is not bounded from
below, and the system is not stable. In contrast, when
&> 1, the curve moves upward as M increases, which

InjAE|

30

20

ttord

FIG. 5.
coincide.
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-0.001
-0.002
-0.003
-0.004 —— M=9
—— M=12
—— M=16

-0.005

-0.006

-0.007

-0.01

-0.02

—— M=9
—— M=12
o M=16

-0.03

-0.04

-0.05

s=2,£=1.5
= K /M for the cases of s = 2.

implies a stable system. This is related to a special feature
of the £ = 1 case. Recall that the Hamiltonian has an H,
part shown as (A3a). This part produces a term like
—sTrps...sp1o..sPr2..s012..s- When s is even, ¢p,...; is a
scalar, and this term behaves like a scalar potential with a
negative coefficient, which leads to a dangerous insta-
bility. But when £ = 1, this term is canceled exactly by
sEAH. That being said, for even s, £ = 1 is the minimal
value for the potential to be bounded from below. To
build a physical string bit model for even s, we should
require & > 1.

We next study the dependence of AE = ZiAEi on s.
Figure 5 plots the change of In|AE| with respect to s for

InJAE]

30

20

Pt

In |Af5 | as a function of s for M = 6 and M = 5 cases. Note that for M = 6 the & = 0 (blue) and £ = 2 (red) curves almost
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chains of M =5 and M = 6. For M =5, we sampled s
from 1 to 10; for M = 6, only even s points are sampled as
its ground states only survive in even s cases. For each M,
we choose £ =0, 1, 2, 3. For M = 6, all the curves almost
rise linearly. Of all four curves, £ = 3 is the steepest one,
and £ =1 is the flattest one. £ =0 and & =2 almost
coincide with each other. For the M = 5 case, the overall
trends of the curves are the same as M = 6 except for slight
oscillations between even and odd s points. For £ =0, 1,
the oscillation is relatively noticeable, and for & = 3, it is
negligible. Actually, if only even s points of M =5 are
sampled, the plots are almost the same as M = 6. The
exponential dependence of AE on s stems from the fact that
each ground state has 2* degeneracies. The fact that £ = 1
has a lower slope than others is also related to the fact that
£ =1 is the boundary for AE to be bounded from below.

VII. CONCLUSION

We have presented a formalism to calculate the cubic
interaction vertices for the stable string bit model. With the
vertices, we calculated the one-loop self-energies of the
model in both analytical and numerical ways.

From the large M behavior of one-loop self-energies, we
found that the Lorentz invariance requires the critical
dimension of the model to be s = 24, which then leads
to the protostring model. One interesting interpretation of
s = 24 is as follows [13]. Out of the 24 dimensions, 16 of
them are paired to form 8 compactified bosonic dimen-
sions, and the rest 8 remain as a fermionic dimension. Thus,
it has the same degrees of freedom as the superstring model.
The large M behavior of AE; is determined by the ground
states contribution of the small chains. Notwithstanding
that the number of excited states grows exponentially with
respect to M [10], the excited states contributions are
canceled out due to the fermionic nature of string bits.
These results support the idea of formulating string theory
by string bit models.

The future research of this work can be done in several
ways. One can improve the numerical computation to study
higher M or s cases. One can also apply the formalism to
other calculations, e.g., four strings interaction, or to study
higher-loop corrections and find the Feynman rules of
the model.
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APPENDIX A: HAMILTONIAN AND ITS
ACTION ON COLOR SINGLETS

The (anti)communication relations among string-bit
creation and annihilation operators is

PHYSICAL REVIEW D 96, 046021 (2017)

[(¢a| un) (¢h| ) }
= (¢a1---a,,)a(¢b1---bm)y - (—1)”’”(55171...;]”,)f(lﬁal...an)f,
= 808y (—=1)F 84y, -8 (A1)

anbl‘n ’

where the sum runs over all permutations of 1,2, ...,n
The Hamiltonian of the model consists of O(1) terms

and O(1/N) terms. The O(1) terms are the generalization

of the Hamiltonian of the s = 1 string bit model [8,10]

a*> — ib*)a* — (b* — ia®)b* + (ab +ba)ba
+ (ab—ba)ab), (A2)

where @ =¢ and b =¢,. H*=' produces the Green-
Schwarz Hamiltonian [14,15] at N = 0.
H*=! is generalized to > 3_, H;, where [9,11]

ZZ n'k' Tr¢a1 a¢b1 bk¢b] bk¢a1 “dy

(A3a)
2 s—1 s—1 1
szﬁ ( 'k)' Trd’a, a,,¢bb| bk¢b| bkqﬁbal ay»
=0 k=0 "
(A3b)
2 s—1 s—1 ( 1)
H3 :Nn:o 2 n'k' Tr¢bal an¢b1 bk¢bb1 b1‘¢al Ay
(A3c)
2l s—1 s—1 ( 1
H4:N 'k)' Tr¢al an¢b] b,\¢bb| bk¢ba1 Ay
=0 k=0
(A3d)
2l s—1 s— 1( l)k
= anokz: nlk! Tr¢bal a d)bbl b Poy-b,Daya,
(A3e)

One can check that for s =1 Eq. (A3) is reduced to
Eq. (A2) if one identifies ¢ as @ and ¢, as b.

We now add O(1/N) terms to the Hamiltonian. As
Refs. [8,10] show, the N = oo behavior is not affected by
the O(1/N) terms

2 _ _ i
AR = ST [a bba+baab+ a*a® + b*b? — MS=1} ,
(A4)
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_ . 1 -
M*=' = Tr(aa + bb) — ¥ (TraTra + TrbTrb).  (AS)
By analogy with H*=!, AH*=! can be generalized to the
arbitrary s case as

<ZZ 'k'T¢bl bk¢a] a,,d’a] a,,¢b1 by T
(A6a)

n=0 k=0

~ 1 - 11, -
> T baia, =5 D a0, T a,

n=0 n=0

M

(A6b)
Combining the two parts together, we have the complete

form of the Hamiltonian for arbitrary s,
|
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5
H =Y H;+séAH, (A7)
i—1
where £ is a real constant.
H commutes with the supersymmetry operators
s—1
-1) -
Tr [e’”/“(ﬁal...an(baal...an
n=0
+ e_iﬂ/4q_§aa|~-an¢al~-a,,i| ’ (AS)
{0 Q"} = 2M5,, (A9)

which will guarantee equal numbers of bosonic and
fermionic eigenstates at each energy level.

Using the commutation relations (Al), we obtain the
action of H; on single trace states [11]

p d
7(6,.....0 2Z(s—2egdga> T(6).....0,)]0) + NZ(s—zagd9a> > T ... 00T (01 ... 02)]0),
k=1 I#k,k+1
A d 2 < . d
2T(91,...,9M)|O):2;«9,{%“01, ’9M)|0>+N,;, de—g?T(Ql,...,Qk)T(9k+1,...,9,_1)|0>,
= =1 I#kk+1
4 . d 2 d
H3T(91,...,9M)|o>—2;9k+1d—ng(el, ,eM)|0>+N;I 0 5 T(01. . 0T (01, ..01-1)[0).
= =1 I#kk+1 k
2i g
4T(01,....0,)[0) = —21269k+,T(91,...,9M)|0)—NZ 010478, ....00)T (Ot -...0,1)|0),
=1 k=1 l#k,k+1
d 2iH d d
HsT(0;,....0,)]0) = =2 01.....0,)]0) == O1.....0)T Oy, ....0,_1)|0).
sT (6 w)|0) ’ngadea T(0, m)|0) N;1¢kk+1d9“d9“ (0, )T (Ori1 -1)]0)
Similarly, the action of AH on a single trace state is
2 M M
AHT(01...03)[0) = D > T(0;..0)T (Bs1..0,-1)[0).

The actions of H; on double traces are [11]

2 E & d
HT (01 0)T(n1 -+ 11)]0) pussion = NZZ (S — 26 ﬁ) T (i1 O 1m1-1)[0)
k=1 I=1 k
y R d
+ =3 s =20 = | T(0k -+ Oxcamps -+ - m1)[0),
N = dnj
2E G, d
HyT(01 - 0x)T (1 11)|0) pugsion = NZZQZ?T(HIHH Oy n-1)]0)
= = 4
2E G L d
o> D 0 TOk - Oy - m)[0).
Ni= = do;
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Similarly, the action of AH on the double trace states is

AHT(Q 61() T(’7 ’7L) |0>Fussion
) K L
NZZT Ocrr - O m1-1)[0)
=1 =1
) K L
+NZZT O+ Orinigr -+ -m1)[0).

1. Derivation of AH
It is not obvious how to generalize AH*=! to arbitrary s
cases. We actually obtain the generalization from the
relation

TrG?> = N(AH - H'),

TrG2 ZZ k! d)al a,,¢a1 a¢b1 bA¢h1 bk+zz n'k!

n=0 k=

_ZZ k! ¢a1 a,,¢a1 “a, * ¢b1 bk¢b1 bA

n=0 k=0

We calculate each term on the rhs of TrG2? and obtain

first term = NZZ Tr(/)al a,Paya, T

nOkO

second term = N Z;Tff}sal-.-a,,fﬁal---an +

©“

n=0 k=

third term = — Z Tr¢a] a,,Tr¢d1 “ay Z Z

PHYSICAL REVIEW D 96, 046021 (2017)

which has been proven in Appendix E of Ref. [10] for
s = 1. Here, the color operator G is defined as [7]

Glﬂ}l = Z ((bal -a ¢a1 a, —

nO

d)al -a ¢a1 an:)a’

and both AH and H’ are supersymmetric and of O(1/N).
The notation :gbal,,,ang])al...a” : indicates the normal ordering
of ¢a1---an‘;§a1---an‘ In s = 1, we have [10]

2 _ -
H'=! = NTr(El:aZz:a +b:ba:a—a:bb:a).
One can verify that the action of Gl on any color singlet
vanishes: G§|any color singlet) = 0. We therefore have
(AH — H') = 0 in the color singlet space.

To find AH, we expand TrG? and match its terms with
H"*=" and AH*=!. By direct calculation, we have

¢a1 a,,¢a] an d)bl ak¢b1 bk:
n=0 k=0
Z Z k] Tr:gba]_..a"(,?)al“.an :&bl.“bkgbbl...bk.
n=0 k=0
(=)™

Tr¢a1 ‘a, * ¢a1 a,,d’bl by * ¢b1 by

n!k!

1k d)a, “a, * ¢h1 bk¢h1 by * ¢al ‘o

T¢b1 bk¢a1 an¢a1 a,,¢b] by

n=0 k=

s
fourth term = — z ;Trqﬁal...anTr(pal
n=0"""

Combining the above together, we have

TeG” = ZZ o

n=0 k=

—ZZ

n=0 k=

—ZZ

n=0 k=

Tr¢a1 a,,¢b| bk¢b| bk¢a| “dy (AIO)

¢a1 ‘a, * d)al a,,(bb] by * ¢b1 bk+zz k! r(}al---a,,:d)b]mbkg_bb]---bk:¢a1-~-a,,

n=0 k=
s

2 -
T ¢b1 bk¢a1 a,,¢a1 a,,¢b1 by +NZ Tr¢a1 -a ¢al a, — ZETr¢a1---anTr¢al~--an-

n=0

Comparing the terms of TrG? with H*=! and AH*=', we can identify

Z Z A (Tr$01~~an :¢b1~-~bk§$bl--~bk “Paya, T (_)nkTr(}alu-an :¢a1-~-a,,§$b1-~-bk “Bpyby)

n=0 k=0

and AH as (A6). One can verify that both H' and AH commute with the supersymmetry operators Q¢ (AS8).
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APPENDIX B: VERIFYING THE NORMALIZATION CONDITION FOR
In this Appendix, we show that the conjugate eigenfunction of s = 1, defined as Eq. (3.6), satisfies the normalization

condition (3.1). We first show that [ d6ysws = 1. For odd M,

[2/2]
/dMglf/Gl//G = (—i)LM/zJ/dMgao H (=si + ciap—ia;)(c; = siay—a;)
i=1
[2/2]

— (_i)LM/ZJ /dMHaO H (s7 + c)ay_a;

i=1

— (=) / dMQHaM l

:1’

where in the last step we used®

M
/dMG’HaM_,- = /dMHaM_laM_2~~a0 = jLM-1/2] (B1)
i=1

Similarly, we can show f d" Oy sy = 1 for even M.
To show [ dMOp gy, = 0 for r # G, it suffices to show that J aM QI/IGF y' vanishes for all 0 < k <M — 1 and any

eigenfunction y'. If kK =0, it clearly vanishes because both F (T) and ; contain the Grassmann odd operator «. If
0<k<M/2,

[ @owcriv = [ oo (B2)
The rhs of (B2) vanishes because of
Firpg =0, (B3)
which can be verified by checking that
~ay it o e —
Fk <_Sk + CkaM—kak) = FM—k(_Sk + ckaM_kak) = 0, [Fk , —S8] + ClaM—lal} = O, k 3& l, k ?é M — 1.

Similarly, we can show that | "¢ = 0 for M/2 < k < M — 1. Therefore, the normalization condition [ @@y sy, = 5,
is proved.

APPENDIX C: CALCULATION OF hy,;

In this Appendix, we will find the expression of A, in terms of lowering and raising operators. The A, in the language of
9k is

d d d d d
hy=-2(1-26 —20,——-20,——-2i0,0, —2i ——+2E+ 26
ki ( kd9k> “ 40, ' 40, 10,0 ldékd9,+ &+ 26,

We now temporarily drop the last two constant terms and will add them back in the end of the calculation.

®We do not prove the formula (B1) here. But we have verified it by the Mathematica program.

046021-18



CUBIC INTERACTION VERTICES AND ONE-LOOP SELF- ... PHYSICAL REVIEW D 96, 046021 (2017)

Using (2.13b), we express ¢, and diﬂk in terms of a, and f,,:

d 1= mAn
G’kd—ekzﬁnggoanﬂmexp <2ﬂ'lk M )

d da 1 ¥ kn + 1
e <anﬂm+amﬂn>[exp <2m' s ’”ﬂ

o, 'do, M < M
1 = kn +Im
0.0, = Mn;o a,a,, EXp (27:1 i )
d d 18 kn + Im
T 2xi .
d6, o, Mn;Oﬁ P oXP ( S )

Substituting the above into hkl and rearranging, we obtain
1 0
hkl = hl(cl) + hl(cl>’

where h,(((l)) are the terms with zero modes and h,((]l) are the terms without,

(1) 4 M-l m-+n 2 M-l kn + Im
hkl =-2+ MH;I anﬁm exp (Zﬂlk M ) - MH;I (anﬂm + amﬂn + ianam + iﬂnﬁm) €Xp (27” M )v
PR k !
i = 3 2 (o + aof = i, = if, i) [exp (2m' M) - exp (2m' M”)] .

(1)

Let us first consider /;,”. We express nonzero modes a,, and $3,, in terms of raising and lowering operators. Using

a = ciFly o+ siFi  Pro=—siFly o+ clFe  k=1,..,M~—1,

we have
a,u, = cncmFL_nFL_m + 5,8, F,F,, + cnsmF,TV,_nFm - cmsnF;fV,_an + 800 in (Cla)
WP = =CuSmF s Frrom & CnSuFuF oy + CaCnFyp_nF o + SuSmFyp_nFoy + S350t (C1b)
BB = SuSmF b1 bt + CnCnFnFmy = CmSuFhy o Fon + CoSmF o F o+ CuSubminat- (Clc)

We then apply Egs. (C1) to h,g), collect like terms, and antisymmetrize F'F' and FF terms to give

M-1
h;, =— ApmFnFm + Ay F o F,, +2A_,  F1F,) ——cot— + —cot———, Cc2
kl Mnmzl( + + , ) MCO 2M+MCO M T ( )
where
_ ; k l _
A,y = €Xp (2m‘km; n) sin szn” —l—% [exp (27ri m}; n) exp <m’ szn> —m < n}. (C3)
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Similarly, applying
a,fo = exp -7 chFy_,Fo+ s,F,Fy apf, = exp 7 ($,Fy_nFo+ c,FyF,)
in in
a,qy = exp<4>(anM nF s,,F(T)F,,) Po.Po = exp (— Z) (—snFL_nFo + ¢, F,Fy)
to h,(((l)) yields

5 M- k I 5 M-
—Z afo + aof, — ia,ay — if.fo) [exp (27:1'];) —exp <2m n)] MZX FTFT FEFO) + H.c.,

n=1 n=1

§

where

X — ilexp (201 — exp (20" in
L, = 1|exp mM exp | 2xi i exp )
Now from Eq. (C3), we see that
Aog=—exp|?2 k_n n7z l exp | 2 l_n ex —n—ﬂi —exp |2 k_n ex i
no = —exp { 27i "om T |SFP ’”M P\"om P\ ) P\ am
B i ) kn inmw + ln inm
= 2exp mM exp ~% exp M exp o,

=3 Xn-

Hence, to add h,(g) terms to h,g), we can simply change the m, n index of (C2) to start from 0. Finally, adding back the
constant terms, we have

2 . 2
hy =— A3 Fyy + AynFoFyy +2A_, W FiF,) + — p, C4
kl Mn;()( + nm* nt m + n,m m) +MM ( )
where A,,, is given by (C3) and
k—1 1
u:—cot——i—c tiﬂ'-f—Mf. (C5)

2M 2M

APPENDIX D: CALCULATION OF (- --A,,,FiFy, exp AfiDuf}))

In this Appendix, we will derive the formula
i pFiF Uiy g B o173 0 Lipy g
o Ay FnFp exp Ekaklfz =~ Tr(S*C™'A) +Bm"5D—mn -+ exp Ekaklfl ; (DI1)
where A = A" and B = C"'A(C™")7, and the relations among F, fy, and f}; are given by
M-I
= (fuCon + FiSun)s  0<m<M—1, (D2)

n=0

Wlth CmnDnl + Sml = 0
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Let X =1 fiDyf], |G) = exp(X)|0); then,
_ R _ _ 1 _ .

Now, let us calculate each term in the parentheses of the rhs of Eq. (D3). For the first term,

AunFVFb10) = (Aunf £ C3uC+ Aun 10t 1Ciy ) 10)
- <Anm FifiCHCr + AunSiiChs {ﬁ»f}}) |0)
_ [flT(c*Ac*) £ +Tr<AC* )}|0> (D4a)

For the second term of the rhs of Eq. (D3), we first find
1 1 + 1 + y . t
{zszk,fj,FTn} =5Du [flfI,Fm] =5Du (fi{f,,FTn} {fk’FT }fz) 5 Du (f;ﬁm n aanmnf;> = =S Duf

where in the second step we used the identity [AB, C] = A{B, C} — {A, C}B and in the last step we used the property that
Dy, is antisymmetric. We then have

3ADur] Fidun | = Fidn 51D} Fi] 4 311Dur] | A
—F}AumSE Dyt = S Dy f 1Ay Fon

= ApnS: Dyt ( fiF) - {F;‘;, fi}) — S Dy fiAFh

= AunSi, Do (f};sz - SZk) — S5Dyf 1A Fin

= Ay S5 D f iy = S5 Dy f i A Fon = A S DycSi

= FiDu(S") imAn Fh + F1D1(S") A pmF o = A St Dt (S )
= 2f1(DS'A),,,Fh, — Tr(AS*DS™).

It then follows that
[X. FiA,, F}]|0) = [2f}(DSTAC*),,f] — Tr(AS*DS")]|0). (D4b)

For the third term rhs of Eq. (D3),

0
X, [X, A F{FL] = [X,20f (DSTA),, | - [X, T (48 DST)]

=2f! (Ds14), [ ZfIID’flflv m] (Do)

=-2ff (DSTA5*D),, f}.

It follows that the higher order commutations all vanish. Substituting Egs. (D4) into Eq. (D3), we have
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FLAumFn|G) = [fi{(CTAC")uf] + Tr(ACSN))|G) = [2f{(DSTAC") . f] — Tr(AS*DS")]|G) — f{(DSTAS* D) f]|G)
= Tr[A(C* + §*D)S']|G) + fL(C'AC* — 2DSTAC* — DSTAS*D),f]|G)
= Tr[A(C* + §*D)S'|G) + f1(CTAC* — DSTAC* + CTAS*D — DS'AS*D),,f}|G)
= Tr[A(C* + §*D)S']|G) + fL[CTA(C* + §*D) — DSTA(S*D + C*)],,f1|G)
= Tr[A(C* + §*D)SY]|G) + fi[(C* + S*D)TA(C* + $*D)]f}|G),

where in the third equality we antisymmetrized the 2DSTAC* term to be DSTAC* — (DSTAC*)" and then used the fact that
A and D are antisymmetric matrices. Now,

C* 4+ 8D = C* = C*D*D = C*(I - D*D) = C*(I + DD)T = C*(C-' ") = ()T,
where in the second-to-last equality I + DD = C~'C~!" follows from Egs. (2.28) and (2.32). We therefore have
F1A,Fh|G) = =Tr(8*C7'A)[G) + f1[CTTA(CT)],,£11G),

which implies (D1).

APPENDIX E: EXAMPLES OF M =3

In this Appendix, as a demo of using (5.4) to calculate one-loop self-energy, let us consider the one-loop self-energy for
the ground state of the M = 3, s = 1 and M = 3, s = 2 cases. For M = 3, we only need to calculate the K = 1 case since
the contribution of K = 2 is the same as K = 1.

The C, S, and D matrices are

14+V3 [ efs —eF 243
c=(1)® +/3 ef; ?2” )7 det €| = +/3
4 e % e3 4
3—1 (e % 0 i
s=0e =1 ) hoee-va(t ).
4 e~ e —i 0
and matrices A, B, and constant y’ are
/3 i
0 g 0 o f
V) _ .3 W) _ iv3
AV = | i3 o 3| AW = 3 o 0
. -8 0 0
0 %\éemm \/%(1 _ \/T§> lin/4
BY) = 5\ flemin 0 3i2-v3) |
\/g( ) -in/t _3i(2 = /3) 0
0 \/§e3iﬂ/4 \é@ _ \/3)edinl4
B(W) — \/%e—in/4 0 0
\/§(2 _\BemiTh 0

W) =3 43 43¢, W) = —4/3 + 6¢.

The operators f, are
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. 2 1
fo=Fody=FP pr= e (2R

For s = 1, the eigenfunctions and their conjugates of 1-bit and 2-bit chains are shown in Table II.
The contribution of K = 1 to the energy correction is

_ 1 KLM| det C| ) * 2) (2) * @)
K=1 _
A N g0 (P2 10) (FDAo), + (F 1) (FP2),, ) (E1)

So, we need to calculate <F<12)f0>V’W and <F§2>f1>v’wz

0

2 1 2 1
<F1(2)f0>v = M”/(V)WJr MB’("L/”) <f1f0f;rnfl exp (2f/IDklflT)>

4 1
= MB(()Z) <f1ffl exp (2 2Dklfzf>>

4 v 2 gir
_MB(gl)_\/geg /4,

<F1(2)f2>v = %M/(V) <f1f2 exp (;f;IDklflT>> + %B%L) <f1f2f’l;7,f£, exp <;f;1DszlT>>

2 4 _w , 1
= fﬁu“wpm - MB;) =2 (1 -5t 2 — \/§§> .
Likewise,

2 4 w 2 in 2 2 4 w . 2 \/_3‘
(F210), =370 = 2\/563 e (FOR), = g D = B = ‘8’<1 AT
Substituting above results and E; = —4+/3 into (E1) yields AEX=! = —3(3v/3 = 5)& + (12 - 7V/3)é -2 (3v/3 - 5). We

then have

AEG =28EE" = -3(3V3-5) +2(12—7\/§)§—% (3v3-5).

For s = 2, the matrices and constants are the same as the s = 1 case. But as Table III shows, the energy eigenstates of
small chains are different. The energy correction now is given by

1 KLM|detCP?
N2 r 0
NE,-EY —0

oo (PR (r), + (rR), (1), ) )
[l

AEE=! (Dw(Dy + (fafo)wf2fov)

Since we have calculated the <F§2)f0>v,w and <F§2)f2>v,w in the s = 1 case, we only need to find (1) and (f2fo)y -
For K =1,

0

2 1 2 1
1)y, = Mﬂl(v) <€Xp (2 ;ZDszlT>> + MB%L)<foJL Xpr5 Tk szlT >

2 /(‘7) 2
= — = — — 24 2¢,
luu \/§ f
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TABLE II. 1-bit and 2-bit energy eigenstates of s = 1 that do not contain zero modes.
M v Conjugate Energy Grading of y
1 1/18) =1 l/_/(Gl) — 91 Eg) =0 Even
2 2% (2 _(2) _ m2)-(2 2
2 v = Py P = g B =4 0ud
TABLE III.  1-bit and 2-bit energy eigenstates of s = 2 that do not contain zero modes.
M 178 Conjugate Energy Grading of y
1 Wél) —1 '/7((;1) -6, E<Gl> _ Even
2 ‘I/E;Z) y—/(G2) Eg) - -3 Even
A o B W R Bren
0
2 ) 1 i 2 p(v) i iy ot
(fofo)y = ik fafoex 57 Kk, + MB’”" fofofh [ exp ikaklfl
4 ) 2 3im /4
:MBOQ :\/§ ﬁ—l e”r/,
Likewise,
2 8 4w 2 .
Dy =27 = - —=+4¢, =B =2v2( 1)t
(Dw MV /3 ¢ (fofolw M0 NG

Substituting the above into Eq. (E2), we obtain

AEG =20Ef = o

<—66\/§c§4 + 36088 — 230v/3&2 +

1805—%).

From the results and the formula (5.4), we see that AE; is a polynomial of £ of degree 2s.
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