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We provide a formalism to calculate the cubic interaction vertices of the stable string bit model, in which
string bits have s spin degrees of freedom but no space to move. With the vertices, we obtain a formula
for one-loop self-energy, i.e., theOð1=N2Þ correction to the energy spectrum. A rough analysis shows that,
when the bit numberM is large, the ground state one-loop self-energy ΔEG scale asM5−s=4 for even s and
M4−s=4 for odd s. Particularly, in s ¼ 24, we have ΔEG ∼ 1=M, which resembles the Poincaré invariant
relation of 1þ 1 dimension P− ∼ 1=Pþ. We calculate analytically the one-loop correction for the ground
energies with M ¼ 3 and s ¼ 1, 2. We then numerically confirm that the largeM behavior holds for s ≤ 4

cases.
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I. INTRODUCTION

In the string bit model [1], a string is a chain comprised
of pointlike entities called string bits. While the chain is
discretized, it behaves like a continuous string when the bit
number M is large enough.
The string bit model is an implementation of ’t Hooft’s

idea of holography [2–4]. In Lorentz invariant theory,
spacetime can be described by light cone coordinates
with transverse dimensions x ¼ ðx2;…; xD−1Þ and the
� dimensions x� ¼ ðx0 � x1Þ= ffiffiffi

2
p

. In the string bit model,
the x− coordinate of string bits is missing, and hence the
Lorentz invariance is not present a priori. String bits enjoy
the dynamic of Galilean symmetry, under which the
þ-component momentum Pþ ¼ ðP0 þ P1Þ= ffiffiffi

2
p

is identi-
fied asmM, wherem is the mass of one string bit. WhenM
is large enough and Pþ is fixed, Pþ can be considered as a
continuous variable, and its conjugate x− can be interpreted
as the missing coordinate. The Lorentz invariance can be
therefore regained, and string theory emerges.
With ’t Hooft’s large N limit [5,6], the type II-B

superstring was formulated in Ref. [7] as a string bit
model. In the model, a superstring-bit creation operator,
which was an adjoint representation of UðNÞ color group,
has up to s spin indices and moves in transverse space.
A more drastic form of holography was studied in recent
papers [8–11], where string bits have no transverse coor-
dinate and hence no space to move. However, new
compactified bosonic coordinates can be generated from
spin degrees of freedom of string bits. If suitable dynamics
is chosen, these spin degrees of freedom are converted to
one-dimensional spin waves, which then act as compacti-
fied bosonic coordinates. The 1=N perturbation of the latter

model was studied in Ref. [11], where the cubic interaction
vertices and their application to the calculation of the one-
loop self-energy were discussed.
Following the main idea of Ref. [11], we continue the

work in the following way:
(i) A more detailed study of the cubic interaction

vertices is performed. We present a systematic
way to build conjugates of energy eigenfunctions,
determine the sign factors of the vertices, and (anti)
symmetrize the vertices, which are denoted as Vqpr

and Wrpq and shown as Fig. 1, over the indices p
and q. We then show that the interaction vertices can
be calculated by finding the vacuum expectation
values of ladder operators. These are necessary for
the use of interaction vertices in our calculation of
observables.

(ii) The calculation of the one-loop self-energy is
improved, and its large M behavior for the ground
states is analyzed. We assemble the ingredients
necessary to calculate the one-loop self-energy.
The one-loop self-energies of ground states, ΔEG,
are studied, and their large M behavior is analyzed.
We calculate ΔEG analytically for theM ¼ 3, s ¼ 1
and M ¼ 3, s ¼ 2 cases. A qualitative analysis
shows that ΔEG scales as M5−s=4 for even s and
M4−s=4 for odd s. The scaling behavior is consistent
with Lorentz invariance in 1þ 1 dimensions when
s ¼ 24, the critical Grassmann dimension, and the
protostring model [11] emerges.

(iii) ΔEG is determined numerically for higher M and s.
We confirm the large M behavior of ΔEG for s ≤ 4.
We also verify that ΔEG increases exponentially
with respect to s whenM is fixed. We generalize the
Hamiltonian of the model by adding Oð1=NÞ terms
sξΔH and numerically show that, for the s ¼ 2 case,*gchen@ufl.edu
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the Hamiltonian is bounded from below with respect
to M only when ξ ≥ 1. Our analysis suggests that
this is true for all the even s cases. The result shows
that the sξΔH generalization is necessary for build-
ing a physical string bit model.

The rest of this paper is organized as follows. In Sec. II,
we review some results of stable string bit models obtained
by Ref. [11]. Specifically, we introduce the Hamiltonian of
the model, solve for the energy spectrum of the model at
N ¼ ∞, and summarize the three chains overlap calcu-
lation. In Sec. III, we provide a systematic approach to
build conjugate eigenfunctions, which will be used in the
calculation of the 1=N expansion. In Sec. IV, the cubic
interaction vertices are studied by 1=N perturbation. In
Sec. V, we use the cubic interaction vertices to calculate
one-loop self-energies. Numerical results for the one-loop
self-energy are analyzed in Sec. VI. The main text is closed
with a conclusion section. Finally, several Appendixes are
included for technical details.

II. STABLE STRING BIT MODEL

The purpose of this section is to review some results of
stable string bit models obtained in Ref. [11] and introduce
useful notations. These results are necessary for setting
up the 1=N expansion of the model. Meanwhile, some
modifications specific to this paper are incorporated. To be
clear, the modifications are as follows. In Sec. II A, we add
an Oð1=NÞ term ξΔH to the Hamiltonian of the model. In
Sec. II B, the diagonalization of the Hamiltonian at N ¼ ∞
is done via different intermediate variables.

A. Hamiltonian

The superstring-bit creation operator is

ðϕ̄a1���anÞβα; ai¼1;…;s; n¼0;…;s; α;β¼1;…;N:

ð2:1Þ

where ai are totally antisymmetric spin indices and α, β are
color indices of UðNÞ. ϕ̄ is bosonic when n is even and
fermionic when n is odd. In Fock space, a closed string is
represented by a color singlet trace operator acting on the
vacuum state, that is of the form Trϕ̄ � � � ϕ̄j0i. The number

of ϕ̄ in the trace operator is the eigenvalue of the bit number
operator M ¼ P

n
1
n!Trϕ̄a1���anϕa1���an.

The Hamiltonian H to be studied in this paper reads

H ¼
X5
i¼1

Hi þ sξΔH; ð2:2Þ

where expressions ofHi andΔH are given in Eqs. (A3) and
(A6). The His make a Oð1Þ contribution to H, while ΔH
makes onlyOð1=NÞ contribution and hence does not affect
the large N limit. We note that H is a generalization of the
s ¼ 1 Hamiltonian in Refs. [8,10]. The Hi parts have been
proposed in Refs. [9,11]; ΔH is the new term added by this
paper, and its derivation is given in Appendix A 1.
Let us now consider the action ofH on trace states space,

which is defined as follows. We introduce s Grassmann
coordinates θa, a ¼ 1;…; s and then define a superbit
creation operator

ψðθÞ ¼
Xs

k¼0

1

k!
ϕ̄c1���ckθ

c1 � � � θck

and a single trace operator

Tðθ1;…; θkÞ ¼ Trψðθ1Þψðθ2Þ � � �ψðθkÞ;

where θi are s-component Grassmann variables. The trace
states space, i.e., color singlet subspace of Fock space, is
then spanned by states like

Tðθ1;…; θKÞTðη1;…; ηLÞ � � � j0i;

where j0i is the vacuum state. The action of each Hi and
ΔH on trace states is given in Appendix A. To summarize
the results, let us define

h̄kl ¼ 2

�
s − 2θak

d
dθak

�
þ 2θak

d
dθal

þ 2θal
d
dθak

− 2iθakθ
a
l

− 2i
d
dθak

d
dθal

þ 2sξ − 2sδk;l; ð2:3Þ

h̄ ¼
XM
k¼1

ðh̄k;kþ1 − 2sξÞ: ð2:4Þ

Then, the actions ofH on single and double trace states can
be written as.1

FIG. 1. The vertex Vqpr is the amplitude of splitting a large
string r into two small strings p and q, while the vertex Wrpq is
the amplitude of joining p and q into r.

1The actions of each Hi on single and double trace states are
shown in Appendix A.
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HTðθ1;…; θMÞj0i

¼ h̄Tðθ1 � � � θMÞj0i þ
1

N

XM
k¼1

X
l≠kþ1

h̄klTðθl � � � θkÞ

× Tðθkþ1 � � � θl−1Þj0i ð2:5Þ

HTðθ1 � � � θKÞTðη1 � � � ηLÞj0i
¼ ðh̄θ þ h̄ηÞTðθ1 � � � θKÞTðη1 � � � ηLÞ

þ 1

N

XK
k¼1

XL
l¼1

h̄klTðθkþ1 � � � θkηl � � � ηl−1Þj0i

þ 1

N

XK
k¼1

XL
l¼1

h̄lkTðθk � � � θk−1ηlþ1 � � � ηlÞj0i

þ 1

N
fission terms: ð2:6Þ

Note that in Eqs. (2.6), the −2sδkl term of h̄kl should be
zero even if k ¼ l, as they label different variables.
While h̄kl acts on the trace states, to solve for energy

eigenstates, it is helpful to convert h̄kl to an equivalent form
acting on the wave function of an energy eigenstate at
N ¼ ∞. The wave function ψ r is defined as follows. It
follows from Eq. (2.5) that, at N ¼ ∞, H evolves single
trace states to single trace states. Therefore, we can express
a single trace energy state as

Trj0i ¼
Z

dsθ1 � � � dsθMTðθ1;…; θMÞψ rðθ1;…; θMÞj0i;

ð2:7Þ

where ψ r is the wave function. Since Tðθ1;…; θMÞ is
invariant under the cyclic permutation θi → θiþ1, we can
constrain ψ r by

ψ rðθ1;…; θMÞ ¼ ð−ÞsðM−1Þψ rðθ2;…; θM; θ1Þ ð2:8Þ

without loss of generality. The sign factor follows from the
fact that the measure dsθ1 � � � dsθM is changed by a factor
ð−ÞsðM−1Þ under the cyclic transformation θi → θiþ1. Now,
the action of h̄kl on Trj0i is

h̄klTrj0i ¼
Z

dθh̄klTðθÞψ rðθÞj0i

¼
Z

dθTðθÞhklψ rðθÞj0i; ð2:9Þ

where we have performed an integration by parts in the last
step and

hkl ¼ −2
�
s − 2θak

d
dθak

�
− 2θak

d
dθal

− 2θal
d
dθak

− 2iθakθ
a
l − 2i

d
dθak

d
dθal

þ 2sξþ 2sδk;l: ð2:10Þ

Note that, in the derivation of hkl, the k ¼ l case needs
special treatment. Likewise, the action of h̄ on TðθÞ is
equivalent to the action on ψ rðθÞ by

h ¼
XM
k¼1

ðhk;kþ1 − 2sξÞ: ð2:11Þ

B. Diagonalizing Hamiltonian at N =∞
Now, let us solve for the energy spectrum of the model at

N ¼ ∞. A single trace energy eigenstate is determined by
an eigenfunction ψ r satisfying the equation

hψ rðθ1;…; θMÞ ¼ Erψ rðθ1;…; θMÞ: ð2:12Þ

To solve the eigenvalue problem Eq. (2.12), we need to find
the lowering and raising eigenoperators of h. This has been
done by Ref. [11]. Here, we repeat the procedure with
different sets of intermediate variables.
From (2.10), we see that each term of h contains only

variables or derivatives of the same θa. It implies the
variables can be separated, and we only need to solve the
equation of one variable. We therefore drop the spin index a
in the following calculation.
We introduce Fourier transforms [8,10]

αn ¼
1ffiffiffiffiffi
M

p
XM
k¼1

θke−2πikn=M;

βn ¼
1ffiffiffiffiffi
M

p
XM
k¼1

d
dθk

e−2πikn=M; ð2:13aÞ

θk ¼
1ffiffiffiffiffi
M

p
XM−1

n¼0

αne2πikn=M;

d
dθk

¼ 1ffiffiffiffiffi
M

p
XM−1

n¼0

βne2πikn=M;

n ¼ 0;…M − 1; k ¼ 1;…M; ð2:13bÞ

which satisfy

fαn; βmg ¼ δmþn;M þ δm;0δn;0: ð2:14Þ

In Ref. [11], instead of θk and d
dθk

, the diagonalization

was done via the Grassmann variables Sk ¼ θk þ d
dθk

,
~Sk ¼ iðθk þ d

dθk
Þ, and their Fourier transforms. Such differ-

ent choices should not affect the eigenoperators and the
energy spectrum.
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The Hermiticity of the Hamiltonian implies that θ†k ¼ d
dθk

,
d
dθk

† ¼ θk, from which it follows that

α†n ¼ βM−n; β†n ¼ αM−n;

fαn; α†mg ¼ fβn; β†mg ¼ δm;n; 0 ≤ n;m ≤ M − 1:

We now express h in terms of αn and βn as

h ¼ 2
XM−1

n¼1

�
ðαnαM−n þ βnβM−nÞ sin

2nπ
M

þ 2

�
1 − cos

2nπ
M

�
ðαnβM−n þ αM−nβnÞ

�
− 2M

ð2:15Þ

and seek for eigenoperators of h,

Fk ¼ rkαk þ βk; ½h; Fk� ¼ ϵkFk; ð2:16Þ

where rk and ϵk are constants. Substituting (2.15) into
(2.16) yields

ϵ�k ¼ �8 sin
kπ
M

; r�k ¼ tan
kπ
M

� sec
kπ
M

:

We then normalize the coefficients of Fk to obtain the
lowering and raising operators for k ≥ 1,

Fk¼ skαkþckβk; F̄k¼ckαk−skβk; k¼1;…;M−1;

ð2:17aÞ

where ck ¼ cos ðπ
4
− kπ

2MÞ and sk ¼ sin ðπ
4
− kπ

2MÞ. It follows
from (2.17a) that

F†
k ¼ F̄M−k ¼ ckαM−k þ skβM−k; 1 ≤ k ≤ M − 1;

ð2:17bÞ

The zero modes need special treatment:

F0 ¼ FM ¼ eiπ=4β0; F†
0 ¼ F̄0 ¼ F̄M ¼ e−iπ=4α0:

ð2:17cÞ

The phase factors are chosen so that the expression of hkl
in terms of eigenoperators will have a simple form; see
Eq. (4.11). A direct calculation shows that the eigenoper-
ators satisfy the following anticommutation relations:

fFk;Flg¼fF†
k;F

†
l g¼0; fFk;F

†
l g¼δkl; 0≤k;l≤M−1:

ð2:18Þ

To obtain the energy spectrum, we need to find the
ground energy EG and the ground eigenfunction ψG, which

is annihilated by all the lowering operators. Since the zero
mode does not change energy eigenvalues, there are
degeneracies in ground state. To eliminate the ambiguity,
we require the ground eigenfunction to be annihilated
by the zero mode F0 as well. The ground eigenfunction
can be [10]

ψ s¼1
G ¼

Y⌊ðM−1Þ=2⌋

k¼1

ðck − skαM−kαkÞ; ð2:19Þ

where ⌊ðM − 1Þ=2⌋ indicates the integral part of
ðM − 1Þ=2. To verify Fmψ

s¼1
G ¼ 0, one only needs to

check that

Fkðck − skαM−kαkÞ ¼ FM−kðck − skαM−kαkÞ ¼ 0;

1 ≤ k ≤ M − 1; ð2:20Þ

½Fk; cl − slαM−lαl� ¼ 0; k ≠ l; k ≠ M − l: ð2:21Þ

Acting h on the ground eigenfunction, we obtain the
ground energy

Es¼1
G ¼−4

XM−1

k¼1

sin
kπ
M

¼−4cot
π

2M
¼−

8M
π

þ 2π

3M
þOðM−3Þ:

ð2:22Þ

We can now build general eigenfunctions for arbitrary s
case. The ground eigenfunction and energy are

ψG ¼ ψ ð1Þ
G ψ ð2Þ

G � � �ψ ðsÞ
G ; EG ¼ −4s cot

π

2M
; ð2:23Þ

where each ψ ðaÞ
G has the form of (2.19). A general energy

eigenfunction ψ r and its corresponding energy can be
written as

ψ r ¼
�
Fð1Þ
r1;1F

ð1Þ
r1;2 � � �Fð2Þ

r2;1F
ð2Þ
r2;2 � � �FðsÞ

rs;1F
ðsÞ
rs;2 � � �

�†

ψG ≡ F†
frgψG; ð2:24aÞ

Er ¼ −4s cot
π

2M
þ 8

X
a;i

sin
ra;kπ
M

; ð2:24bÞ

where we have defined Ffrg as a string of eigenoperators
and we choose 0 ≤ ra;1 < ra;2 < � � � ≤ M − 1 as a con-
vention. To build a physical state, the modes ra;i (2.24a)
need to satisfy the cyclic constraint (2.8). Under the
cyclic permutation θak → θakþ1, F

a†
k transforms as Fa†

k →

e−2ikπ=MFa†
k . It then follows from Eq. (2.8) that the modes

must satisfy
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X
a;k

ra;k ¼
	
nM for even sðM − 1Þ
ðnþ 1

2
ÞM for odd sðM − 1Þ ;

n ¼ 0; 1; 2;… ð2:25Þ

Since the zero modes do not change the energy, the ground
energy eigenstate has at least 2s degeneracies. This is the
consequence of H commuting with supersymmetry oper-
atorsQa, as defined in Eq. (A8). The constraint (2.25) has a
profound impact on the energy spectrum of the model.
When s is even, all the ground states are allowed by (2.25)
and are hence physical. But when s is odd, the ground state
is allowed only when M is odd. It then follows that the
lowest single trace state for even M is the one correspond-
ing to Fa†

M=2ψG.

C. Three chains overlap

We have constructed the energy eigenfunctions for
N ¼ ∞. To obtain the 1=N expansion results, we also
need to calculate the overlap among three chains: one large
chain of M bits and two small chains of K bits and L ¼
M − K bits. The calculation can be done by establishing the
relation among the eigenoperators of large chain and two
small chains. Here, we recap the results of Ref. [11].

Let us only consider the s ¼ 1 case. let FðKÞ
m and FðLÞ

n be
lowering operators of L-bit andK-bit chains. Define a set of
operators

f0 ¼ FðLÞ
0

ffiffiffiffiffi
L
M

r
þ FðKÞ

0

ffiffiffiffiffi
K
M

r
; ð2:26aÞ

fn ¼ FðLÞ
l ; 1 ≤ n ≤ L − 1; ð2:26bÞ

fnþL ¼ FðKÞ
k ; 1 ≤ n ≤ K − 1; ð2:26cÞ

fM−1 ¼ e−iπ=4
�
FðLÞ
0

ffiffiffiffiffi
K
M

r
− FðKÞ

0

ffiffiffiffiffi
L
M

r �
; ð2:26dÞ

which satisfy the anticommutation relationship ffn; fmg ¼
ff†n; f†mg ¼ 0 and ffn; f†mg ¼ δnm. Note that f0 equals F0

of the large chain [11]. We then express the large chain
operators in terms of f and f† as

Fm ¼
XM−1

n¼0

ðfnCmn þ f†nSmnÞ; 0 ≤ m ≤ M − 1: ð2:27Þ

The anticommutation relation among Fm and F†
m requires

CST þ SCT ¼ 0; CC† þ SS† ¼ I: ð2:28Þ

The matrix elements of C and S are given by

C0n ¼ Cn0 ¼ δ0;n; S0;n ¼ Sn;0 ¼ 0; 0 ≤ n < M

and [11]

Cmn ¼ −
1ffiffiffiffiffiffiffiffi
ML

p 1 − e−2πimL=M

1 − e−2πiðn=L−m=MÞ cos
�
nπ
2L

−
mπ

2M

�
;

1 ≤ n < L ð2:29aÞ

Cm;Lþn−1 ¼
1ffiffiffiffiffiffiffiffi
MK

p 1 − e−2πimL=M

1 − e−2πiðn=K−m=MÞ cos
�
nπ
2K

−
mπ

2M

�
;

1 ≤ n < K ð2:29bÞ

Cm;M−1 ¼ −
1ffiffiffiffiffiffiffi
LK

p 1 − e−2πimL=M

1 − e2iπm=M cos

�
mπ

2M
−
π

4

�
; ð2:29cÞ

Smn ¼ −
1ffiffiffiffiffiffiffiffi
ML

p 1 − e−2πimL=M

1 − e2πiðn=Lþm=MÞ cos
�
nπ
2L

þ mπ

2M

�
;

1 ≤ n < L ð2:29dÞ

Sm;Lþn−1 ¼
1ffiffiffiffiffiffiffiffi
MK

p 1 − e−2πimL=M

1 − e2πiðn=Kþm=MÞ cos
�
nπ
2K

þ mπ

2M

�
;

1 ≤ n < K ð2:29eÞ

Sm;M−1 ¼ −
1ffiffiffiffiffiffiffi
LK

p 1 − e−2πimL=M

1 − e2πim=M cos

�
mπ

2M
þ π

4

�
; ð2:29fÞ

where 1 ≤ m ≤ M − 1 in Eqs. (2.29). WhenM is large, the
determinate of C can be approximated as [11]

detCC† ∼
0.9290

ðKLMÞ1=6
�
L
M

�ðM=K−L=MÞ=3−2=3

×

�
K
M

�ðM=L−K=MÞ=3−2=3
: ð2:30Þ

We then express the ground eigenfunction of the large
chain as

ψ ðMÞ
G ¼ exp

�
1

2

X
kl

f†kDklf
†
l

�
ψ ðKÞ
G ψ ðLÞ

G ½det ðI þDD†Þ�−1=4;

ð2:31Þ

where ψ ðKÞ
G and ψ ðLÞ

G are ground eigenfunction for two
small chains. The constraints FmψG ¼ 0 imply

CmnDnl þ Sml ¼ 0: ð2:32Þ

From the above construction, it is clear that the first rows
and columns of the matricesC, S, andD are trivial. One can
therefore write them as C ¼ ð 1 Þ ⊕ C0, S ¼ ð 0 Þ ⊕ S0, and
D ¼ ð 0 Þ ⊕ D0 where C0, S0, and D0 are nontrivial matrices
of dimension ðM − 1Þ × ðM − 1Þ.
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With (2.28) and (2.32), we can simplify (2.31):

det ðI þDD†Þ ¼ det ½CðI þDD†ÞC†�
det ½CC†�

¼ det ½CC† þ SS†�
det ðCC†Þ ¼ j detCj−2;

ψ ðMÞ
G ¼ j detCj1=2 exp

�
1

2

X
kl

f†kDklf
†
l

�
ψ ðKÞ
G ψ ðLÞ

G :

ð2:33Þ

III. CONJUGATE EIGENFUNCTION

We have built energy eigenfunctions of the model at
N ¼ ∞ in Sec. II B. To calculate 1=N expansion results, we
also need to find functions that conjugate to the energy
eigenfunctions. For convenience, we call these functions
conjugate eigenfunctions. In this section, we will construct
conjugate eigenfunctions systematically.
A conjugate eigenfunction ψ̄r is a function of θi that

satisfies the normalization condition [11]

Z
dsθ1 � � � dsθMψ̄ rðθ1;…; θMÞψ sðθ1;…; θMÞ ¼ δrs ð3:1Þ

and the completeness relation

X
r

ψ rðθ1;…; θMÞψ̄ rðη1;…; ηMÞ ¼ ~δðθ − ηÞ; ð3:2Þ

where the delta function ~δðθ − ηÞ is understood to be
symmetrized under cyclic constraint like (2.8).2 We stress
that, once there is a complete set of ψ̄ r and ψ r fulfilling the
normalization condition, the completeness relation is sat-
isfied automatically.
To construct ψ̄ r explicitly, it is convenient to define

operators ~F�
k as conjugate to Fk under integration by parts,

Z
dMθψðθÞ½FkχðθÞ� ¼

Z
dMθ½ ~F�

k ψðθÞ�χðθÞ; ð3:3Þ

where the þ superscript is chosen if ψðθÞ is Grassmann
even and − is chosen otherwise. It then follows from
Eqs. (2.17) that

~F�
0 ¼∓eiπ=4β0; ~F�

k ¼�ðskαk−ckβkÞ; 1≤k≤M−1;

ð3:4Þ

~F†�
0 ¼ �e−iπ=4α0;

~F†�
k ¼ �ðckαM−k − skβM−kÞ; 1 ≤ k ≤ M − 1: ð3:5Þ

In the remainder of this paper, we may suppress the
superscript � if there is no danger of ambiguity.
In the s ¼ 1 case, we claim that the conjugate to the

ground eigenfunction ψ s¼1
G is

ψ̄ s¼1
G ¼ ð−iÞ⌊M=2⌋α0

Y⌊M=2⌋

i¼1

ð−si þ ciαM−iαiÞ for odd M

ð3:6aÞ

ψ̄ s¼1
G ¼ ð−iÞM=2þ1

Y⌊ðM−1Þ=2⌋

i¼1

ð−si þ ciαM−iαiÞα0αM=2

for even M: ð3:6bÞ

In Appendix B, we verify that ψ̄ s¼1
G satisfies the normali-

zation condition (3.1). The function conjugate to the
general eigenfunction (2.24a) can be built by acting on

ψ̄G with a string of ~FðaÞ
k as

ψ̄ r ¼ ~Fð1Þ
r1;1

~Fð1Þ
r1;2 � � � ~Fð2Þ

r2;1
~Fð2Þ
r2;2 � � � ~FðsÞ

rs;1
~FðsÞ
rs;2 � � � ψ̄G ≡ ~Ffrgψ̄G;

ð3:7aÞ

ψ̄G ¼ ð−Þsðs−1ÞMðM−1Þ=4ψ ðsÞ
G ψ ðs−1Þ

G � � �ψ ð1Þ
G ; ð3:7bÞ

where all the ~F s pick ~Fþ if ψ̄G is Grassmann even and ~F−

otherwise. The normalization condition (3.1) can be easily
verified,

Z
dMθψ̄ rψ r ¼

Z
dMθ ~Ffrgψ̄GF

†
frgψG

¼
Z

dMθψ̄GFfrgF
†
frgψG

¼
Z

dMθψ̄GψG ¼ 1;

where we used (3.3) in the second equality and (2.18) in the
third equality. In the last equality, the sign factor of ψ̄G cancels

TABLE I. Gradings of functions and operators.

Tr ψ r ψ̄r ψG ψ̄G Ffrg

gr gr − sM gr 0 sM gr − sM

2To be specific, it means that

Z
dMθfðθ1;…; θMÞ~δðθ − ηÞ

¼ 1

M

XM−1

k¼0

ð−ÞksðM−1Þfðηkþ1;…; ηkþMÞ:
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the sign introduced by the rearrangement of themeasure from

dsθ1 � � � dsθM to ðQM
i¼1 dθ

ð1Þ
i Þ � � � ðQM

i¼1 dθ
ðsÞ
i Þ.

By analogy with (2.31), for the s ¼ 1 case, the overlap of
conjugate eigenfunctions among the large chain and two
small chains is given by

ψ̄ ðMÞ
G ¼ j detCj1=2 exp

�
1

2

X
ij

~fiD
†
ij
~fj

�
ψ̄ ðKÞ
G ψ̄ ðLÞ

G ; ð3:8Þ

where ~f picks ~fþ ifM is even and ~f− ifM is odd and all the
notations follow the ones of Sec. II C.
Let us conclude this section by discussing the grading of

energy eigenstates and eigenfunctions. We define

gr ≡ gðTrÞ ¼ grading of Tr:

Now, we can write the trace operator TðθÞ as a linear
combination of ψ̄ r. Let TðθÞ ¼

P
tXtψ̄ tðθÞ, where Xt is

independent of θ; then,

Tr ¼
Z

dsθ1 � � � dsθMTðθÞψ rðθÞ

¼
X
t

ð−ÞsMgðXtÞXt

Z
dsθ1 � � �dsθMψ̄ tðθÞψ rðθÞ

¼ ð−ÞsMgðXrÞXr;

where the sign factor comes from the commutation of the
measure and Xt. It implies that Xr differs from Tr only by a
sign factor. So, we have gðXrÞ ¼ gðTrÞ and

TðθÞ ¼
X
r

ð−ÞsMgrTrψ̄ rðθÞ: ð3:9Þ

Finally, from Eqs. (3.9), (3.1), and (2.23), we obtain the
gradings (modulo 2) of functions and operators as Table I.
These results will be used in the next section.

IV. CUBIC INTERACTION VERTICES

Let Tpj0i, Tqj0i, and Trj0i be energy eigenstates of
strings with K, L, and M ¼ K þ L bits, respectively; then,
the interaction vertices Vqpr and Wrpq are defined as [11]

HTrj0i ¼ ErTrj0i þ
1

N

XM−1

K¼1

X
p;q

TpTqj0iVqpr; ð4:1aÞ

HTpTqj0i ¼ ðEp þ EqÞTpTqj0i þ
1

N

X
r

Trj0iWrpq þ � � � :

ð4:1bÞ

The vertex Vqpr represents the amplitude of breaking one
large string into two small strings, and the vertex Wrpq

represents the amplitude of joining two small strings into

one large string. Without loss of generality, we can (anti)
symmetrize the vertices over indices p and q as

Vpqr ¼ ð−ÞgpgqVqpr; Wrqp ¼ ð−ÞgpgqWrpq: ð4:2Þ

In this section, we shall find that

Vqpr ¼ Mj detCjs=2
Ys
a¼1

D
Fa
fqpg; F

a†
frg

E
V
; ð4:3aÞ

Wrpq ¼ KLj detCjs=2
Ys
a¼1

D
Fa
fqpg; F

a†
frg

E†

W
: ð4:3bÞ

Several notations are used in (4.3) for convenience.
Fa
fqpg ≡ Fa

fqgF
a
fpg, and the superscript a indicates that only

operators of spin index a are involved. The brackets
h·; ·iV;W stand for vacuum expectation values of operators

hFa
fqpg;F

a†
frgiV;W≡



Fa
fqpgh

a
ðV;WÞF

a†
frgexp

�
1

2
fa†k Dklf

a†
l

��
;

ð4:4aÞ

haV ≡ 1

2
ðhaK;1 þ haM;Kþ1Þ; haW ¼ haK;Kþ1 þ haM;1;

ð4:4bÞ

where the matrix D and operators fk are defined as (2.32)
and (2.26) and hkl is given by (2.10). The vacuum of (4.4a)
is the state annihilated by all lowering operators of L-bit

and K-bit systems, i.e., FðKÞ
i j0i ¼ FðLÞ

i j0i ¼ 0. In the
following, we first mark remarks on the interaction vertices
in Sec. IVA and then give all the technical details of the
derivation of (4.3) in Sec. IV B.

A. Remarks on vertices

The form of vertices in (4.3) can be interpreted as
follows. The prefactor M of Vqpr shows that, when a large
chain splits into two small chains of K and L bits, there
are M ways to choose the break points, and each way
contributes equally to Vqpr. Likewise, the prefactor KL of
Wrpq shows that, when two small chains join into a large
chain, there are K × L ways to choose the joint points, and
each way contributes equally to Wrpq. The operator haV ¼
1
2
ðhaK;1 þ haM;Kþ1Þ reflects the fact that, to break one M-bit

string into K-bit and L-bit strings, one needs to connect bit
1 to bit K and bit (K þ 1) to bit M. Similarly, the operator
hW ¼ haK;Kþ1 þ haM;1 reflects the fact that, to join back the
above two small strings into one, one needs to connect bit
K to bit (K þ 1) and bitM to bit 1. The difference of factor
2 between haV and haW is because that, when joining two
strings, one can inverse the labels of the first small string as
1þ i ↔ K − i to obtain a different large string.
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B. Derivation of Vqpr and Wrpq

Now, let us derive the formula (4.3). Acting the Hamiltonian to the zeroth order energy eigenstate Trj0i and using (2.7)
and (2.5), we have

HTrj0i ¼ ErTrj0i þ
1

N

Z
dθ

XM
i¼1

XMþi

j¼iþ2

h̄ijTðθj � � � θiÞTðθiþ1 � � � θj−1Þj0iψ rðθ1;…; θMÞ

¼ ErTrj0i þ
1

N

XM
i¼1

XM−1

K¼1

Z
dθh̄i;iþKþ1TðθiþKþ1 � � � θiÞTðθiþ1 � � � θiþKÞj0iψ r

¼ ErTrj0i þ
1

N

XM
i¼1

XM−1

K¼1

Z
dθ

X
p;q

ð−ÞsðKgpþLgqÞh̄i;iþKþ1Tqψ̄qTpψ̄pj0iψ r; ð4:5Þ

where in the second equality we renamed the indices as j → iþ K þ 1 and in the last equality we used (3.9). Comparing
(4.5) with (4.1a), we arrive at

~Vqpr ¼ ð−ÞsðKgqþLgpÞ
XM
i¼1

Z
dθh̄i;iþKþ1ψ̄qðθiþKþ1 � � � θiÞψ̄pðθiþ1 � � � θiþKÞψ r: ð4:6Þ

The vertex is decorated with a tilde because we have not yet applied the constraint (4.2) to it. Note that the sign factor is
changed due to the reorder of Tp and Tq.
The action of H on the double trace produces both fusion and fission terms:

HTpTqj0i ¼ ðEp þ EqÞTpTqj0i þ
1

N

X
r

Tr

Z
dθdη

X
k;l

ð−ÞsLðgp−sKÞh̄klψ̄ rðθkþ1 � � � θkηl � � � ηl−1ÞψpðθÞψqðηÞj0i

þ 1

N

X
r

Tr

Z
dθdη

X
k;l

ð−ÞsLðgp−sKÞh̄lkψ̄ rðθk � � � θk−1ηlþ1 � � � ηlÞψpðθÞψqðηÞj0i þ
1

N
fission terms:

Comparing the above with (4.1b), we have ~Wrpq ¼ Wð1Þ
rpq þWð2Þ

rpq, where

Wð1Þ
rpq ¼ ð−ÞsLðgp−sKÞ

Z
dθdη

X
k;l

h̄klψ̄ rðθkþ1 � � � θkηl � � � ηl−1Þψpðθ1 � � � θKÞψqðη1 � � � ηLÞ;

Wð2Þ
rpq ¼ ð−ÞsLðgp−sKÞ

Z
dθdη

X
k;l

h̄lkψ̄ rðθk � � � θk−1ηlþ1 � � � ηlÞψpðθ1 � � � θKÞψqðη1 � � � ηLÞ:

Note that so far the derivation of V and W follows the one of Ref. [11] except that we changed the notation slightly and
determined the sign factors of the vertices, which are overlooked by Ref. [11] in Eqs. (21) and (27).

Now, let us simplify ~V and ~W. We denote the integral with index i in (4.6) as ~VðiÞ
qpr. It can be shown as follows that all the

M integrals ~VðiÞ
qpr are the same. For the integral with index i, we can rename all integration variables as θj → θjþ1 and then

use the cyclic constraint (2.8) to bring ψ r and the measure to their original form. The value of the integral is invariant under

both changes, but ~VðiÞ
qpr is changed to ~Vðiþ1Þ

qpr . It implies that ~VðiÞ
qpr is independent of i, and we can choose i ¼ M for every

integral to give

~Vqpr ¼ ð−ÞsðKgqþLgpÞM
Z

dθψ̄qðθKþ1 � � � θMÞψ̄pðθ1 � � � θKÞhM;Kþ1ψ rðθ1;…; θMÞ:

To find the vertex satisfying the constraint (4.2), we let Vqpr ¼ 1
2
ð ~Vqpr þ ð−Þgpgq ~VpqrÞ, where ~Vpqr can be obtained by

exchanging p ↔ q, K ↔ L:
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ð−Þgpgq ~Vpqr ¼ ð−ÞgpgqþsðKgqþLgpÞM
Z

dθψ̄pðθLþ1 � � � θMÞψ̄qðθ1 � � � θLÞhM;Lþ1ψ r

¼ ð−ÞgpgqþsðKgqþLgpÞM
Z

dθψ̄pðθ1 � � � θKÞψ̄qðθKþ1 � � � θMÞhK;1ψ r

¼ ð−ÞsðKgqþLgpÞM
Z

dθψ̄qðθKþ1 � � � θMÞψ̄pðθ1 � � � θKÞhK;1ψ r:

We therefore have

Vqpr ¼ ð−ÞsðKgqþLgpÞM
Z

dθψ̄qðθKþ1 � � � θMÞψ̄pðθ1 � � � θKÞhVψ rðθ1;…; θMÞ; ð4:7Þ

where hV is given by (4.4b).
We perform a similar calculation for the ~W vertex. All the integrals ofWð1Þ andWð2Þ are independent of the indices k and

l. So, we can simply replace the sums over k and l with the factor K × L. We then rename η1,…; ηL to θKþ1;…; θM and fix
the indices as k ¼ K; l ¼ K þ 1 for Wð1Þ and k ¼ 1, l ¼ M for Wð2Þ to give

~Wrpq ¼ ð−ÞsLðgp−sKÞKL
Z

dθψ̄ rðθ1 � � � θMÞðhK;Kþ1 þ hM;1Þψpðθ1 � � � θKÞψqðθKþ1 � � � θMÞ: ð4:8Þ

Exchanging p ↔ q and K ↔ L, we have

~Wrqp ¼ ð−ÞsKðgq−sLÞKL
Z

dθψ̄ rðθ1 � � � θMÞðhL;Lþ1 þ hM;1Þψqðθ1 � � � θLÞψpðθLþ1 � � � θMÞ: ð4:9Þ

Renaming the integral variables as fθ1;…; θLg → fθKþ1;…; θMg, fθLþ1;…; θMg → fθ1;…; θKg, under which hL;Lþ1 þ
hM;1 becomes hM;1 þ hK;Kþ1, and then applying the property that ψ̄ rðθ1 � � � θMÞ is invariant under the cyclic permutation
θk → θkþ1,

3 we obtain that ~Wrqp ¼ ð−Þgpgq ~Wrpq, which implies that Wrpq ¼ ð ~Wrpq þ ð−Þgpgq ~WrqpÞ ¼ ~Wrpq.
Let us now get rid of the integral in the expression of V. For simplicity, we consider the s ¼ 1 case. We use (2.24a) and

(3.7a) to write ψ r ¼ F†
frgψ

ðMÞ
G , ψ̄ r ¼ ~Ffrgψ̄

ðMÞ
G and similarly for states p and q. We then use (2.33) to express ψ ðMÞ

G in terms

of ψ ðLÞ
G and ψ ðKÞ

G . By a little algebra, we arrive at

Vs¼1
qpr ¼ ð−ÞLðgp−KÞMj detCj1=2

Z
dθψ̄ ðLÞ

G ψ̄ ðKÞ
G FfqpghVF

†
frg exp

�
1

2

X
kl

f†kDklf
†
l

�
ψ ðKÞ
G ψ ðLÞ

G : ð4:10Þ

The ground eigenfunctions ψ ðLÞ
G and ψ ðKÞ

G are annihilated by any lowering eigenoperators of the small chains. Their

conjugates ψ̄ ðLÞ
G and ψ̄ ðKÞ

G can be annihilated by any raising eigenoperators of the small chains, as Eq. (B3) shows. Therefore,
the rhs of (4.10) can be interpreted as a vacuum expectation value of the operator FfqgFfpghVF

†
frg exp ð12

P
klf

†
kDklf

†
l Þ.

We therefore have

Vs¼1
qpr ¼ ð−ÞLðgp−KÞMj detCj1=2



FfqpghVF

†
frg exp

�
1

2

X
kl

f†kDklf
†
l

��
;

where the vacuum is understood to be the state annihilated by all FðKÞ
i and FðLÞ

i . We perform a similar calculation forWrpq

and find

3One can show that ψ̄ rðθ1 � � � θMÞ is invariant under the cyclic permutation θk → θkþ1 as follows. From Eq. (3.6a) and (3.6b), we see
that ψ̄ s¼1

G → ð−ÞM−1ψ̄s¼1
G as θk → θkþ1. It then follows that ψ̄G transforms as ψ̄G → ð−ÞsðM−1Þψ̄G. From the cyclic constraint (2.25), we

see that ~Ffrg transforms in the same way as ψ̄G. Therefore, ψ̄r ¼ ~Ffrgψ̄G is invariant.
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Ws¼1
rpq ¼ ð−ÞLðgp−KÞKLj detCj12



exp

�
1

2
fkD

†
klfl

�
FfrghWF

†
fpgF

†
fqg

�

¼ ð−ÞLðgp−KÞKLj detCj12


FfqpghWF

†
frg exp

�
1

2
f†kDklf

†
l

��†
:

Note that Vs¼1
qpr andWs¼1

rpq have the same sign factor ð−ÞLðgp−KÞ. We shall see that physical observables, like one-loop self-
energies, only depend on products like WrpqVqpr. It implies that the sign factors are unphysical and can be dropped in the
calculation of physical observables. So, for arbitrary s, up to a common unphysical sign factor, we can express V andW as
products of vacuum expectation values over spin index a. We therefore obtain the formula (4.3).
To calculate the vacuum expectation values, we need to express hV and hW in terms of eigenoperators. From Eqs. (C4),

(C3), and (C5), we have

hðV;WÞ ¼
2

M

XM−1

n;m¼0

�
AðV;WÞ†
nm F†

nF
†
m þ AðV;WÞ

nm FnFm þ 2AðV;WÞ
−n;m F†

nFm

�
þ 2

M
μðV;WÞ; ð4:11Þ

where

AðVÞ
nm ¼ 1

2

�
1 − exp

�
2πi

Kn
M

���
1 − exp

�
2πi

Km
M

��
sin

m − n
2M

π

þ 1

2

�
exp

�
2πi

Kn
M

�
þ exp

�
2πi

Km
M

���
1þ exp

�
πi

mþ n
M

��
sin

m − n
2M

π ð4:12aÞ

μV ¼ − cot
π

2M
þ 1

2

�
cot

2K − 1

2M
π − cot

2K þ 1

2M
π

�
þMξ; ð4:12bÞ

AðWÞ
nm ¼

�
1þ exp

�
πi

nþm
M

���
1þ exp

�
2πiK

mþ n
M

��
sin

m − n
2M

π; ð4:12cÞ

μW ¼ −4 cot
π

2M
þ 2Mξ: ð4:12dÞ

V. ONE-LOOP SELF-ENERGY

One application of the interaction vertices is to calculate
the one-loop self-energy, i.e., the Oð1=N2Þ correction to
energy spectrum. In this section, we will first express the
one-loop self-energy in terms of cubic interaction vertices
[11]. We then apply the results of previous sections and
obtain a formula for analytic and numerical computation.
For a finite N energy eigenstate, we use the ansatz

jEi ¼ Trj0i þ TpTqj0iCpq þ � � � ; ð5:1Þ

where the coefficients Cpq ¼ ð−ÞgpgqCqp are c-numbers of
order 1=N. Imposing the eigenvalue equation ðH−EÞjEi¼0
and using perturbation theory, we obtain [11]

Cpq ¼
1

Er − Ep − Eq

1

N
Vqpr þOðN−2Þ; ð5:2Þ

ΔEr ¼
1

N2

XM−1

K¼1

X
p;q

Wrpq
1

Er − Ep − Eq
Vqpr; ð5:3Þ

where ΔEr is the leading order correction to Er, i.e.,
E ¼ Er þ ΔEr þOð1=N3Þ. We stress that the vertices in
(5.3) should be the ones satisfying the constraint (4.2);
otherwise, it would lead to an incorrect ΔEr.
We now apply the formulas of V and W to (5.3). Let us

first consider the s ¼ 1 case. The zero modes require
special treatment. Substitute (4.3a) and (4.3b) into (5.3),
and write the sum over zero modes explicitly,

ΔEs¼1
r ¼ 1

N2

XM−1

K¼1

X
p;q

0 KLMj detCj
Er − Ep − Eq

×
X

λ;κ¼0;1

D
FfqpgFλ

0;KF
κ
0;L; F

†
frg

E�
W

×
D
FfqpgFλ

0;KF
κ
0;L; F

†
frg

E
V
;

where we wrote FðKÞ
0 as F0;K for convenience and

P
p;q

0

indicates the sum over states without zero modes. We can

replace FðKÞ
0 and FðLÞ

0 with f0 and fM−1 given the following
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reasoning. The sum over λ and κ produces four terms. For

the term with λ ¼ κ ¼ 1, we find FðKÞ
0 FðLÞ

0 ¼ eiπ=4f0fM−1
by Eqs. (2.26a) and (2.26d). The phase is irrelevant.
The λ ¼ 1, κ ¼ 0, and λ ¼ 0, κ ¼ 1 terms are quadratic

forms of FðKÞ
0 and FðLÞ

0 . One can easily verify that

FðKÞ�
0 FðKÞ

0 þ FðLÞ�
0 FðLÞ

0 ¼ f�0f0 þ f�M−1fM−1. So, the sum

over FðKÞ
0 and FðLÞ

0 can be replaced by the one over f0 and
fM−1. We then have

ΔEs¼1
r ¼ 1

N2

XM−1

K¼1

X
p;q

0 KLMj detCj
Er − Ep − Eq

×
X
λi¼0;1

D
Ffqpgf

λ0
0 f

λM−1
M−1; F

†
frg

E�
W

×
D
Ffqpgf

λ0
0 f

λM−1
M−1; F

†
frg

E
V
:

For arbitrary s, j detCj is replaced by j detCjs, and each
term inside the summation becomes a product over a. So,
we have

ΔEr ¼
1

N2

XM−1

K¼1

X
p;q

0 KLMj detCjs
Er − Ep − Eq

×
X

λi;j¼0;1

Ys
a¼1

D
Fa
fqpgf

λa;0
0;a f

λa;M−1
M−1;a; F

a†
frg

E�
W

×
D
Fa
fqpgf

λa;0
0;a f

λa;M−1
M−1;a; F

a†
frg

E
V
:

Note that the sum over λi;j can be performed for each a
independently. So, we can move the sum over λi;j inside the
product over a to give

ΔEr ¼
1

N2

XM−1

K¼1

X
p;q

0 KLMj detCjs
Er − Ep − Eq

Ys
a¼1

×
�X4

i¼1

hFa
fqpgZ

a
i ; F

a†
frgi�WhFa

fqpgZ
a
i ; F

a†
frgiV

�
;

ð5:4Þ

where Za ¼ ð1; fa0; faM−1; f
a
0f

a
M−1Þ.

A. Ground energy correction

In principle, we can now calculate one-loop self-energy
for any single trace energy state with Eq. (5.4). But in
general, the calculation is tedious. Let us consider the
simplest case that ψ r is the ground state, i.e., Ffrg ¼ 1. For
convenience, we denote hO; 1iV;W as hOiV;W . We only
consider the s ¼ 1 case here, since s > 1 cases are simply
products of the s ¼ 1 case.
We need to calculate the vacuum expectation value

h� � � h exp ð1
2
f†kDklf

†
l Þi. In terms of eigenoperators, hkl

contains quadratic terms of the form A†
nmF

†
mF

†
n,

A−n;mF
†
mFn, and AnmFnFm and a constant term μ, as

Eq. (4.11) shows. Since Fm exp ð1
2
f†kDklf

†
l Þψ ðKÞ

G ψ ðLÞ
G ¼

Fmψ
ðMÞ
G ¼ 0, only the F†F† and the constant terms make

a nonzero contribution:



� � � h exp

�
1

2
f†kDklf

†
l

��

¼ 2

M



� � � ðA†

nmF
†
nF

†
m þ μÞ exp

�
1

2
f†kDklf

†
l

��
:

To calculate the result of A†
nmF

†
nF

†
m term, we need to

express Fm in terms of a linear combination of fk and f
†
k, as

(2.27) shows, and commute fk through the exponential.
This is done in Appendix D. Using Eq. (D1), we have

hFfqpgZiiV;W ¼ 2

M

�
μ0V;W þ BðV;WÞ

mn
∂

∂Dmn

�

×



FfqpgZi exp

�
1

2
f†kDklf

†
l

��
; ð5:5Þ

where

μ0V;W ¼ μV;W − TrðS�C−1A†
V;WÞ;

BV;W ¼ C−1A†
V;WðC−1ÞT

with μV;W and AV;W defined in (4.12). Finally, the vacuum
expectation values on the rhs of (5.5) can be calculated
using



fi1fi2 � � � fi2n−1fi2n exp

�
1

2
f†kDklf

†
l

��

¼ ð−Þn
X

P∈S2n
0ð−ÞPDiPð1ÞiPð2ÞDiPð3ÞiPð4Þ � � �DiPð2n−1ÞiPð2nÞ ;

where S2n is the set of all permutations of 2n integers, ð−ÞP
is the signature of permutation P, and

P0
indicates the sum

over permutations satisfying

Pð1Þ < Pð2Þ; Pð3Þ < Pð4Þ;…; Pð2n − 1Þ < Pð2nÞ;
Pð1Þ < Pð3Þ < Pð5Þ < � � � < Pð2n − 1Þ:

Combining the above together, we can calculate the
one-loop self-energy of the ground state. As the complete
formula is very complicated, we do not bother writing it
here. In Appendix E, we show examples of using for-
mula (5.4) to calculate the one-loop self-energies of the
M ¼ 3, s ¼ 1 and M ¼ 3, s ¼ 2 cases. For M ¼ 3, s ¼ 1,
we have
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ΔEG ¼ 1

N2

�
−3

�
3

ffiffiffi
3

p
− 5

�
ξ2 þ 2

�
12 − 7

ffiffiffi
3

p �
ξ

−
3

2

�
3

ffiffiffi
3

p
− 5

��
;

and for M ¼ 3, s ¼ 2, we have

ΔEG ¼ 1

N2

�
−66

ffiffiffi
3

p
ξ4 þ 360ξ3 − 230

ffiffiffi
3

p
ξ2

þ 180ξ −
33

ffiffiffi
3

p

2

�
:

In general, ΔEG is a polynomial of ξ of degree 2s.

B. Large M behavior

We conclude this section by considering the large M
behavior of ΔEG

4 The vacuum expectation values in (5.4)
only depends on the ratio K=M and therefore can be
considered as Oð1Þ. So, when M is large,

ΔEG ∼
1

N2

XM−1

K¼1

X
p;q

0 KLMj detCjs
EG − Ep − Eq

: ð5:6Þ

In (5.6), the factor KLM scales as M3, j detCj scales as
M−s=4 by Eq. (2.30), and the sum over K gives another
factor of M. These three parts produce a factor scale
as M4−s=4.
We then consider the large M behavior of

1=ðEG − Ep − EqÞ. When s is even, both p and q can
be ground states, and hence 1=ðEG − Ep − EqÞ ∼OðMÞ by
Eq. (2.22). When s is odd,M has to be odd in order to have
the physicalM-bit ground state, and one of the small strings
must have an even bit number. It implies that the ground

state of one small chain is forbidden by the cyclic constraint
(2.25). Therefore, 1=ðEG − Ep − EqÞ ∼Oð1Þ for odd s.
Combining the above together, we have

ΔEG ∼
	
M5−s=4 for even s

M4−s=4 for odd s
: ð5:7Þ

In analogy with the standard string theory, we can infer from
Eq. (5.7) the critical Grassmann dimension of the model,
where Lorentz invariance in 1þ 1 dimensions is regained.
In the light cone coordinates, Pþ is identified as mM, and
P− is identified as E. So, the Poincaré invariant dispersion
relation P− ∼ 1=Pþ implies E ∼ 1=M. Therefore, the
Lorentz invariance requires s ¼ 24. The model in the special
s ¼ 24 case is called the protostring model [11].

VI. NUMERICAL RESULTS

We have derived a formula for the one-loop correction
to the ground energy. As Appendix E shows, however,
the calculation is tedious even for the simplest case. We
therefore turn to numerical computation.5 As the complex-
ity of the calculation grows dramatically, the highest M for
which we performed numerical computation is 27 for s ¼ 1
and 16 for s ¼ 2 and continues decreasing as s increases.
Since only the ground energy is considered, we will simply
write the ground energy as E and its correction as ΔE and
also suppress the 1=N2 factor.
We first compare the perturbation results with the exact

numerical results, which are obtained by the method of
Ref. [10]. Figure 2 plots the change of ground energy with
respect to the 1=N for M ¼ 3 and 5 in the s ¼ 1 case.
The solid lines are exact numerical results, and the dashed
lines are Oð1=N2Þ perturbation results. We see that the
two types of results match very well for N large enough.
One interesting observation is that, when N is small, the

FIG. 2. Ground energy as a function of 1=N for the s ¼ 1, ξ ¼ 0 and s ¼ 1.ξ ¼ 1 cases. The solid lines plot the exact numerical results
by the method of Ref. [10]. The dashed lines plot the 1=N2 order perturbation results.

4The large M discussion is mainly based on comments by
Charles Thorn.

5The source code for the numerical computation can be found
in Ref. [12].
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perturbation results of M ¼ 3 are lower than the exact
results, while the perturbation results of M ¼ 5 are above
the exact results. It implies that the Oð1=N4Þ correction is
positive for M ¼ 3 and negative for M ¼ 5.
We then verify the large M behavior of ΔE. Instead of

plotting ΔE with respect to M, we study its “inner
structure,” that is the contribution of each K to ΔE, denoted
by ΔEi and defined as

ΔE ¼
XM−1

K¼1

ΔEi; i ¼ K
M

:

Since the power of M in the large M behavior of ΔEi is 1
lower than that of ΔE, we introduce the normalized ΔEi to
remove the M dependence:

ΔÊi ¼
	
ΔEiM−4þs=4 for even s

ΔEiM−3þs=4 for odd s
:

We expect that, for fixed s and ξ, ΔÊi only depends on the
ratio K=M.
The plots of ΔÊi as a function of i ¼ K=M are shown in

Fig. 3, where ξ ¼ 0 for all four plots. When s is odd, only
odd values of M are allowed, and each M has two curves,
one for odd K points and the other one for even K points,
for a reason that will be clear shortly. For s ¼ 2, 3, 4 cases,

the curves of differentM values are very close to each other,
so the asymptotic behavior is evident. For the s ¼ 1 case,
the gaps between consecutive curves become smaller as M
increases, which is consistent with the expected asymptotic
behavior. It is therefore fair to conclude that the large M
behavior is confirmed.
The fact that there are two curves for each M in odd s

cases can be understood as follows. Let us consider the
s ¼ 1 case and take examples of K ¼ 1 and K ¼ 2, where
the former has a much lower contribution to ΔE than the
latter according to the plots. Assuming that M is large
enough, we have the other small chains with bit number
L ≫ K. Since M is odd, L is even for K ¼ 1 and odd for
K ¼ 2. The lowest energies of these two cases, which are
equal to −4 cot π

2L − 4 cos π
2K þ 8 according to (2.24b) and

the cyclic constraint (2.25), differ only by Oð1Þ. Now, we
compare these two cases in the low energy regime, in which
the gap between energy levels and the lowest energies are at
most of order 1=M. Consider the numbers of states in the
low energy regime. Because of the cyclic constraint, only
chains with an even bit number have excited states with
energy gaps of order 1=M above the lowest energy. For
K ¼ 1, the number of states in the low energy regime
roughly equals PðL=2Þ, the partition number of L=2; for
K ¼ 2, it equals Pð2=2Þ ¼ 1. It implies that the low energy
regime of K ¼ 1 is much denser than the one of K ¼ 2.
Therefore, for large enough M, the K ¼ 1 case has much

FIG. 3. ΔÊi as a function of i ¼ K=M. For odd s cases, the curves above the horizontal axis are for oddK points, and the curves below
are for even K points.
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lower average energy than the K ¼ 2 case. This reasoning
holds when K is small. Hence, small odd K cases have a
lower contribution to ΔE than small even K.
We next consider the effect of the ξ parameter. Figure 4

shows the plots of ΔÊi with respect to i ¼ K=M for s ¼ 2
with different values of ξ. From the plots, the ξ ¼ 0.5
and ξ ¼ 1.5 cases show a smooth asymptotic behavior as
the cases in Fig. 3. But when ξ is close to 1, curves are not
smooth and intersect each other. When ξ < 1, the curve
moves downward as M increases, which implies that ΔE
decreases as M increases. So, ΔE is not bounded from
below, and the system is not stable. In contrast, when
ξ > 1, the curve moves upward as M increases, which

implies a stable system. This is related to a special feature
of the ξ ¼ 1 case. Recall that the Hamiltonian has an H1

part shown as (A3a). This part produces a term like
−sTrϕ̄12���sϕ̄12���sϕ12���sϕ12���s. When s is even, ϕ12���s is a
scalar, and this term behaves like a scalar potential with a
negative coefficient, which leads to a dangerous insta-
bility. But when ξ ¼ 1, this term is canceled exactly by
sξΔH. That being said, for even s, ξ ¼ 1 is the minimal
value for the potential to be bounded from below. To
build a physical string bit model for even s, we should
require ξ ≥ 1.
We next study the dependence of ΔÊ ¼ P

iΔÊi on s.
Figure 5 plots the change of ln jΔÊj with respect to s for

FIG. 4. ΔÊi as a function of i ¼ K=M for the cases of s ¼ 2.

FIG. 5. ln jΔÊj as a function of s for M ¼ 6 and M ¼ 5 cases. Note that for M ¼ 6 the ξ ¼ 0 (blue) and ξ ¼ 2 (red) curves almost
coincide.
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chains of M ¼ 5 and M ¼ 6. For M ¼ 5, we sampled s
from 1 to 10; forM ¼ 6, only even s points are sampled as
its ground states only survive in even s cases. For each M,
we choose ξ ¼ 0, 1, 2, 3. For M ¼ 6, all the curves almost
rise linearly. Of all four curves, ξ ¼ 3 is the steepest one,
and ξ ¼ 1 is the flattest one. ξ ¼ 0 and ξ ¼ 2 almost
coincide with each other. For the M ¼ 5 case, the overall
trends of the curves are the same asM ¼ 6 except for slight
oscillations between even and odd s points. For ξ ¼ 0, 1,
the oscillation is relatively noticeable, and for ξ ¼ 3, it is
negligible. Actually, if only even s points of M ¼ 5 are
sampled, the plots are almost the same as M ¼ 6. The
exponential dependence ofΔÊ on s stems from the fact that
each ground state has 2s degeneracies. The fact that ξ ¼ 1
has a lower slope than others is also related to the fact that
ξ ¼ 1 is the boundary for ΔE to be bounded from below.

VII. CONCLUSION

We have presented a formalism to calculate the cubic
interaction vertices for the stable string bit model. With the
vertices, we calculated the one-loop self-energies of the
model in both analytical and numerical ways.
From the largeM behavior of one-loop self-energies, we

found that the Lorentz invariance requires the critical
dimension of the model to be s ¼ 24, which then leads
to the protostring model. One interesting interpretation of
s ¼ 24 is as follows [13]. Out of the 24 dimensions, 16 of
them are paired to form 8 compactified bosonic dimen-
sions, and the rest 8 remain as a fermionic dimension. Thus,
it has the same degrees of freedom as the superstring model.
The large M behavior of ΔEG is determined by the ground
states contribution of the small chains. Notwithstanding
that the number of excited states grows exponentially with
respect to M [10], the excited states contributions are
canceled out due to the fermionic nature of string bits.
These results support the idea of formulating string theory
by string bit models.
The future research of this work can be done in several

ways. One can improve the numerical computation to study
higher M or s cases. One can also apply the formalism to
other calculations, e.g., four strings interaction, or to study
higher-loop corrections and find the Feynman rules of
the model.
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APPENDIX A: HAMILTONIAN AND ITS
ACTION ON COLOR SINGLETS

The (anti)communication relations among string-bit
creation and annihilation operators is

h
ðϕa1���anÞβα; ðϕ̄b1���bmÞδγ

i
�

≡ ðϕa1���anÞβαðϕ̄b1���bmÞδγ − ð−1Þmnðϕ̄b1���bmÞδγðϕa1���anÞβα
¼ δmnδ

δ
αδ

β
γ

X
P

ð−1ÞPδa1bP1 � � � δanbPn ; ðA1Þ

where the sum runs over all permutations of 1; 2;…; n.
The Hamiltonian of the model consists of Oð1Þ terms

and Oð1=NÞ terms. The Oð1Þ terms are the generalization
of the Hamiltonian of the s ¼ 1 string bit model [8,10]

Hs¼1 ¼ 2

N
Tr½ðā2 − ib̄2Þa2 − ðb̄2 − iā2Þb2 þ ðā b̄þb̄ āÞba

þ ðā b̄−b̄ āÞab�; ðA2Þ

where ā ¼ ϕ̄ and b̄ ¼ ϕ̄1. Hs¼1 produces the Green-
Schwarz Hamiltonian [14,15] at N ¼ ∞.
Hs¼1 is generalized to

P
5
i¼1Hi, where [9,11]

H1 ¼
2

N

Xs

n¼0

Xs
k¼0

s − 2n
n!k!

Trϕ̄a1���anϕ̄b1���bkϕb1���bkϕa1���an ;

ðA3aÞ

H2 ¼
2

N

Xs−1
n¼0

Xs−1
k¼0

ð−1Þk
n!k!

Trϕ̄a1���an ϕ̄bb1���bkϕb1���bkϕba1���an ;

ðA3bÞ

H3 ¼
2

N

Xs−1
n¼0

Xs−1
k¼0

ð−1Þk
n!k!

Trϕ̄ba1���an ϕ̄b1���bkϕbb1���bkϕa1���an ;

ðA3cÞ

H4 ¼
2i
N

Xs−1
n¼0

Xs−1
k¼0

ð−1Þk
n!k!

Trϕ̄a1���anϕ̄b1���bkϕbb1���bkϕba1���an ;

ðA3dÞ

H5 ¼ −
2i
N

Xs−1
n¼0

Xs−1
k¼0

ð−1Þk
n!k!

Trϕ̄ba1���anϕ̄bb1���bkϕb1���bkϕa1���an :

ðA3eÞ

One can check that for s ¼ 1 Eq. (A3) is reduced to
Eq. (A2) if one identifies ϕ̄ as ā and ϕ̄1 as b̄.
We now add Oð1=NÞ terms to the Hamiltonian. As

Refs. [8,10] show, the N ¼ ∞ behavior is not affected by
the Oð1=NÞ terms

ΔHs¼1 ¼ 2

N
Tr
h
ā b̄ baþ b̄ ā abþ ā2a2 þ b̄2b2 − ~Ms¼1

i
;

ðA4Þ
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~Ms¼1 ¼ Trðāaþ b̄bÞ − 1

N
ðTrāTraþ Trb̄TrbÞ: ðA5Þ

By analogy with Hs¼1, ΔHs¼1 can be generalized to the
arbitrary s case as

ΔH¼ 2

N

�Xs
n¼0

Xs

k¼0

1

n!k!
Trϕ̄b1���bkϕ̄a1���anϕa1���anϕb1���bk − ~M

�
;

ðA6aÞ

~M ¼
Xs
n¼0

1

n!
Trϕ̄a1���anϕa1���an −

1

N

Xs
n¼0

1

n!
Trϕ̄a1���anTrϕa1���an :

ðA6bÞ

Combining the two parts together, we have the complete
form of the Hamiltonian for arbitrary s,

H ¼
X5
i¼1

Hi þ sξΔH; ðA7Þ

where ξ is a real constant.
H commutes with the supersymmetry operators

Qa ¼
Xs−1
n¼0

ð−1Þn
n!

Tr
h
eiπ=4ϕ̄a1���anϕaa1���an

þ e−iπ=4ϕ̄aa1���anϕa1���an
i
; ðA8Þ

fQa;Qbg ¼ 2Mδab; ðA9Þ

which will guarantee equal numbers of bosonic and
fermionic eigenstates at each energy level.
Using the commutation relations (A1), we obtain the

action of Hi on single trace states [11]

H1Tðθ1;…;θMÞj0i ¼ 2
XM
k¼1

�
s− 2θak

d
dθak

�
Tðθ1;…;θMÞj0i þ

2

N

XM
k¼1

�
s− 2θak

d
dθak

� X
l≠k;kþ1

Tðθ1;…;θkÞTðθkþ1;…;θl−1Þj0i;

H2Tðθ1;…;θMÞj0i ¼ 2
XM
k¼1

θak
d

dθakþ1

Tðθ1;…;θMÞj0i þ
2

N

XM
k¼1

X
l≠k;kþ1

θak
d
dθal

Tðθ1;…;θkÞTðθkþ1;…;θl−1Þj0i;

H3Tðθ1;…;θMÞj0i ¼ 2
XM
k¼1

θakþ1

d
dθak

Tðθ1;…;θMÞj0i þ
2

N

XM
k¼1

X
l≠k;kþ1

θal
d
dθak

Tðθ1;…;θkÞTðθkþ1;…;θl−1Þj0i;

H4Tðθ1;…;θMÞj0i ¼ −2i
XM
k¼1

θakθ
a
kþ1Tðθ1;…;θMÞj0i−

2i
N

XM
k¼1

X
l≠k;kþ1

θakθ
a
l Tðθ1;…;θkÞTðθkþ1;…;θl−1Þj0i;

H5Tðθ1;…;θMÞj0i ¼ −2i
XM
k¼1

d
dθak

d
dθakþ1

Tðθ1;…;θMÞj0i−
2i
N

XM
k¼1

X
l≠k;kþ1

d
dθak

d
dθal

Tðθ1;…;θkÞTðθkþ1;…;θl−1Þj0i:

Similarly, the action of ΔH on a single trace state is

ΔHTðθ1;…; θMÞj0i ¼
2

N

XM
i¼1

XM
j≠iþ1

Tðθj;…θiÞTðθiþ1;…θj−1Þj0i:

The actions of Hi on double traces are [11]

H1Tðθ1 � � � θKÞTðη1 � � � ηLÞj0iFussion ¼
2

N

XK
k¼1

XL
l¼1

�
s − 2θak

d
dθak

�
Tðθkþ1 � � � θkηl � � � ηl−1Þj0i

þ 2

N

XK
k¼1

XL
l¼1

�
s − 2ηal

d
dηal

�
Tðθk � � � θk−1ηlþ1 � � � ηlÞj0i;

H2Tðθ1 � � � θKÞTðη1 � � � ηLÞj0iFussion ¼
2

N

XK
k¼1

XL
l¼1

θak
d
dηl

Tðθkþ1 � � � θkηl � � � ηl−1Þj0i

þ 2

N

XK
k¼1

XL
l¼1

ηal
d
dθak

Tðθk � � � θk−1ηlþ1 � � � ηlÞj0i:
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Similarly, the action of ΔH on the double trace states is

ΔHTðθ1 � � � θKÞTðη1 � � � ηLÞj0iFussion

¼ 2

N

XK
k¼1

XL
l¼1

Tðθkþ1 � � � θkηl � � � ηl−1Þj0i

þ 2

N

XK
k¼1

XL
l¼1

Tðθk � � � θk−1ηlþ1 � � � ηlÞj0i:

1. Derivation of ΔH
It is not obvious how to generalize ΔHs¼1 to arbitrary s

cases. We actually obtain the generalization from the
relation

TrG2 ¼ NðΔH −H0Þ;

which has been proven in Appendix E of Ref. [10] for
s ¼ 1. Here, the color operator G is defined as [7]

Gβ
α ¼

Xs
n¼0

1

n!
ðϕ̄a1���anϕa1���an − ∶ϕa1���anϕ̄a1���an∶Þβα;

and both ΔH and H0 are supersymmetric and of Oð1=NÞ.
The notation ∶ϕa1���anϕ̄a1���an∶ indicates the normal ordering
of ϕa1���an ϕ̄a1���an . In s ¼ 1, we have [10]

H0s¼1 ¼ 2

N
Trðā∶aā∶aþ b̄∶bā∶a − ā∶bb̄∶aÞ:

One can verify that the action of Gβ
α on any color singlet

vanishes: Gβ
αjany color singleti ¼ 0. We therefore have

ðΔH −H0Þ ¼ 0 in the color singlet space.
To find ΔH, we expand TrG2 and match its terms with

H0s¼1 and ΔHs¼1. By direct calculation, we have

TrG2 ¼
Xs
n¼0

Xs

k¼0

1

n!k!
Trϕ̄a1���anϕa1���an ϕ̄b1���bkϕb1���bk þ

Xs

n¼0

Xs

k¼0

1

n!k!
Tr∶ϕa1���anϕ̄a1���an∶∶ϕb1���ak ϕ̄b1���bk∶

−
Xs

n¼0

Xs
k¼0

1

n!k!
Trϕ̄a1���anϕa1���an∶ϕb1���bk ϕ̄b1���bk∶ −

Xs

n¼0

Xs
k¼0

1

n!k!
Tr∶ϕa1���an ϕ̄a1���an∶ϕ̄b1���bkϕb1���bk :

We calculate each term on the rhs of TrG2 and obtain

first term ¼ N
Xs

n¼0

Xs
k¼0

1

n!
Trϕ̄a1���anϕa1���an þ

Xs
n¼0

Xs

k¼0

ð−1Þnk
n!k!

Trϕ̄a1���an∶ϕa1���an ϕ̄b1���bk∶ϕb1���bk ;

second term ¼ N
Xs

n¼0

1

n!
Trϕ̄a1���anϕa1���an þ

Xs

n¼0

Xs
k¼0

1

n!k!
Trϕ̄a1���an∶ϕb1���bk ϕ̄b1���bk∶ϕa1���an ;

third term ¼ −
Xs
n¼0

1

n!
Trϕ̄a1���anTrϕa1���an −

Xs

n¼0

Xs

k¼0

1

n!k!
Trϕ̄b1���bk ϕ̄a1���anϕa1���anϕb1���bk ;

fourth term ¼ −
Xs
n¼0

1

n!
Trϕ̄a1���anTrϕa1���an −

Xs

n¼0

Xs

k¼0

1

n!k!
Trϕ̄a1���an ϕ̄b1���bkϕb1���bkϕa1���an : ðA10Þ

Combining the above together, we have

TrG2 ¼
Xs
n¼0

Xs

k¼0

ð−1Þnk
n!k!

Trϕ̄a1���an∶ϕa1���anϕ̄b1���bk∶ϕb1���bk þ
Xs

n¼0

Xs
k¼0

1

n!k!
Trϕ̄a1���an∶ϕb1���bk ϕ̄b1���bk∶ϕa1���an

−
Xs

n¼0

Xs
k¼0

2

n!k!
Trϕ̄b1���bk ϕ̄a1���anϕa1���anϕb1���bk þ N

Xs

n¼0

2

n!
Trϕ̄a1���anϕa1���an −

Xs
n¼0

2

n!
Trϕ̄a1���anTrϕa1���an :

Comparing the terms of TrG2 with H0s¼1 and ΔHs¼1, we can identify

H0 ¼ 1

N

Xs

n¼0

Xs
k¼0

1

n!k!
ðTrϕ̄a1���an∶ϕb1���bk ϕ̄b1���bk∶ϕa1���an þ ð−ÞnkTrϕ̄a1���an∶ϕa1���an ϕ̄b1���bk∶ϕb1���bkÞ

and ΔH as (A6). One can verify that both H0 and ΔH commute with the supersymmetry operators Qa (A8).
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APPENDIX B: VERIFYING THE NORMALIZATION CONDITION FOR ψ̄G

In this Appendix, we show that the conjugate eigenfunction of s ¼ 1, defined as Eq. (3.6), satisfies the normalization
condition (3.1). We first show that

R
dMθψ̄GψG ¼ 1. For odd M,

Z
dMθψ̄GψG ¼ ð−iÞ⌊M=2⌋

Z
dMθα0

Y⌊M=2⌋

i¼1

ð−si þ ciαM−iαiÞðci − siαM−iαiÞ

¼ ð−iÞ⌊M=2⌋

Z
dMθα0

Y⌊M=2⌋

i¼1

ðs2i þ c2i ÞαM−iαi

¼ ð−iÞ⌊M=2⌋

Z
dMθ

YM
i¼1

αM−i

¼ 1;

where in the last step we used6

Z
dMθ

YM
i¼1

αM−i ≡
Z

dMθαM−1αM−2 � � � α0 ¼ i⌊ðM−1Þ=2⌋: ðB1Þ

Similarly, we can show
R
dMθψ̄GψG ¼ 1 for even M.

To show
R
dMθψ̄Gψ r ¼ 0 for r ≠ G, it suffices to show that

R
dMθψ̄GF

†
kψ

0 vanishes for all 0 ≤ k ≤ M − 1 and any
eigenfunction ψ 0. If k ¼ 0, it clearly vanishes because both F†

0 and ψ̄G contain the Grassmann odd operator α0. If
0 < k < M=2,

Z
dMθψ̄GF

†
kψ

0 ¼
Z

dMθð ~F†�
k ψ̄GÞψ 0: ðB2Þ

The rhs of (B2) vanishes because of

~F†�
k ψ̄G ¼ 0; ðB3Þ

which can be verified by checking that

~F†�
k ð−sk þ ckαM−kαkÞ ¼ ~F†�

M−kð−sk þ ckαM−kαkÞ ¼ 0; ½ ~F†�
k ;−sl þ clαM−lαl� ¼ 0; k ≠ l; k ≠ M − l:

Similarly, we can show that ~F†�
k ψ̄G ¼ 0 for M=2 ≤ k ≤ M − 1. Therefore, the normalization condition

R
dMθψ̄Gψ r ¼ δGr

is proved.

APPENDIX C: CALCULATION OF hkl

In this Appendix, we will find the expression of hakl in terms of lowering and raising operators. The hakl in the language of
θk is

hkl ¼ −2
�
1 − 2θk

d
dθk

�
− 2θk

d
dθl

− 2θl
d
dθk

− 2iθkθl − 2i
d
dθk

d
dθl

þ 2ξþ 2δk;l:

We now temporarily drop the last two constant terms and will add them back in the end of the calculation.

6We do not prove the formula (B1) here. But we have verified it by the Mathematica program.
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Using (2.13b), we express θk and d
dθk

in terms of αn and βn:

θk
d
dθk

¼ 1

M

XM−1

n;m¼0

αnβm exp

�
2πik

mþ n
M

�

θk
d
dθl

þ θl
d
dθk

¼ 1

M

XM−1

n;m¼0

ðαnβm þ αmβnÞ
�
exp

�
2πi

knþ lm
M

��

θkθl ¼
1

M

XM−1

n;m¼0

αnαm exp

�
2πi

knþ lm
M

�

d
dθk

d
dθl

¼ 1

M

XM−1

n;m¼0

βnβm exp

�
2πi

knþ lm
M

�
:

Substituting the above into hkl and rearranging, we obtain

hkl ¼ hð1Þkl þ hð0Þkl ;

where hð0Þkl are the terms with zero modes and hð1Þkl are the terms without,

hð1Þkl ¼ −2þ 4

M

XM−1

n;m¼1

αnβm exp

�
2πik

mþ n
M

�
−

2

M

XM−1

n;m¼1

ðαnβm þ αmβn þ iαnαm þ iβnβmÞ exp
�
2πi

knþ lm
M

�
;

hð0Þkl ¼ 2

M

XM−1

n¼1

ðαnβ0 þ α0βn − iαnα0 − iβnβ0Þ
�
exp

�
2πi

kn
M

�
− exp

�
2πi

ln
M

��
:

Let us first consider hð1Þkl . We express nonzero modes αm and βm in terms of raising and lowering operators. Using

αk ¼ ckF
†
M−k þ skFk; βk ¼ −skF

†
M−k þ ckFk; k ¼ 1;…;M − 1;

we have

αnαm ¼ cncmF
†
M−nF

†
M−m þ snsmFnFm þ cnsmF

†
M−nFm − cmsnF

†
M−mFn þ cnsnδmþn;M; ðC1aÞ

αnβm ¼ −cnsmF
†
M−nF

†
M−m þ cmsnFnFm þ cncmF

†
M−nFm þ snsmF

†
M−mFn þ s2nδmþn;M; ðC1bÞ

βnβm ¼ snsmF
†
M−nF

†
M−m þ cncmFnFm − cmsnF

†
M−nFm þ cnsmF

†
M−mFn þ cnsnδmþn;M: ðC1cÞ

We then apply Eqs. (C1) to hð1Þkl , collect like terms, and antisymmetrize F†F† and FF terms to give

hð1Þkl ¼ 2

M

XM−1

n;m¼1

ðA†
nmF

†
nF

†
m þ AnmFnFm þ 2A−n;mF

†
nFmÞ −

2

M
cot

π

2M
þ 2

M
cot

2ðk − lÞ þ 1

2M
π; ðC2Þ

where

Anm ¼ exp
�
2πik

mþ n
M

�
sin

m − n
2M

π þ i
2

�
exp

�
2πi

kmþ ln
M

�
exp

�
πi

m − n
2M

�
−m ↔ n

�
: ðC3Þ
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Similarly, applying

αnβ0 ¼ exp

�
−
iπ
4

�
cnF

†
M−nF0 þ snFnF0 α0βn ¼ exp

�
iπ
4

�
ðsnF†

M−nF
†
0 þ cnF

†
0FnÞ

αnα0 ¼ exp

�
iπ
4

�
ðcnF†

M−nF
†
0 − snF

†
0FnÞ βnβ0 ¼ exp

�
−
iπ
4

�
ð−snF†

M−nF0 þ cnFnF0Þ

to hð0Þkl yields

hð0Þkl ¼ 2

M

XM−1

n¼1

ðαnβ0 þ α0βn − iαnα0 − iβnβ0Þ
�
exp

�
2πi

kn
M

�
− exp

�
2πi

ln
M

��
¼ 2

M

XM−1

n¼1

X†
nðF†

0F
†
n − F†

nF0Þ þ H:c:;

where

Xn ¼ i

�
exp

�
2πi

ln
M

�
− exp

�
2πi

kn
M

��
exp

�
−
inπ
2M

�
:

Now from Eq. (C3), we see that

An0 ¼ − exp

�
2πi

kn
M

�
sin

nπ
2M

þ i
2

�
exp

�
2πi

ln
M

�
exp

�
−
nπi
2M

�
− exp

�
2πi

kn
M

�
exp

�
nπi
2M

��

¼ −
i
2
exp

�
2πi

kn
M

�
exp

�
−
inπ
2M

�
þ i
2
exp

�
2πi

ln
M

�
exp

�
−
inπ
2M

�

¼ 1

2
Xn:

Hence, to add hð0Þkl terms to hð1Þkl , we can simply change the m, n index of (C2) to start from 0. Finally, adding back the
constant terms, we have

hkl ¼
2

M

XM−1

n;m¼0

ðA†
nmF

†
nF

†
m þ AnmFnFm þ 2A−n;mF

†
nFmÞ þ

2

M
μ; ðC4Þ

where Amn is given by (C3) and

μ ¼ − cot
π

2M
þ cot

2ðk − lÞ þ 1

2M
π þMξ: ðC5Þ

APPENDIX D: CALCULATION OF h� � � ĀnmF
†
nF

†
m exp ð12 f †kDklf

†
l Þi

In this Appendix, we will derive the formula



� � � ĀnmF

†
nF

†
m exp

�
1

2
f†kDklf

†
l

��
¼ −

2

M

�
TrðS�C−1ĀÞ þ Bmn

∂
∂Dmn

�

� � � exp

�
1

2
f†kDklf

†
l

��
; ðD1Þ

where Ā≡ A† and B ¼ C−1ĀðC−1ÞT , and the relations among F†
n, fk, and f†k are given by

Fm ¼
XM−1

n¼0

ðfnCmn þ f†nSmnÞ; 0 ≤ m ≤ M − 1; ðD2Þ

with CmnDnl þ Sml ¼ 0.
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Let X ¼ 1
2
f†kDklf

†
l , jGi ¼ expðXÞj0i; then,

F†
nĀnmF

†
mjGi ¼ expðXÞ

�
ĀnmF

†
nF

†
m − ½X; ĀnmF

†
nF

†
m� þ 1

2
½X; ½X; ĀnmF

†
nF

†
m�� þ � � �

�
j0i: ðD3Þ

Now, let us calculate each term in the parentheses of the rhs of Eq. (D3). For the first term,

ĀnmF
†
nF

†
mj0i ¼

�
Ānmf

†
i f

†
jC

�
niC

�
mj þ ĀnmfiS�nif

†
jC

�
mj

�
j0i

¼
�
Ānmf

†
i f

†
jC

�
niC

�
mj þ ĀnmS�niC

�
mj

n
fi; f

†
j

o�
j0i

¼
h
f†i
�
C†ĀC�

�
ij
f†j þ Tr

�
ĀC�S†

�i
j0i: ðD4aÞ

For the second term of the rhs of Eq. (D3), we first find
�
1

2
f†kDklf

†
l ; F

†
m

�
¼ 1

2
Dkl

h
f†kf

†
l ; F

†
m

i
¼ 1

2
Dkl

�
f†k
n
f†l ; F

†
m

o
−
n
f†k; F

†
m

o
f†l
�
¼ 1

2
Dkl

�
f†kδlnS

�
mn − δknS�mnf

†
l

�
¼ −S�mlDlkf

†
k;

where in the second step we used the identity ½AB;C� ¼ AfB;Cg − fA;CgB and in the last step we used the property that
Dkl is antisymmetric. We then have

�
1

2
f†kDklf

†
l ; F

†
nĀnmF

†
m

�
¼ F†

nĀnm

�
1

2
f†kDklf

†
l ; F

†
m

�
þ
�
1

2
f†kDklf

†
l ; F

†
n

�
ĀnmF

†
m

¼ −F†
nĀnmS�mlDlkf

†
k − S�nlDlkf

†
kĀnmF

†
m

¼ ĀnmS�mlDlk

�
f†kF

†
n −

n
F†
n; f

†
k

o�
− S�nlDlkf

†
kĀnmF

†
m

¼ ĀnmS�mlDlk

�
f†kF

†
n − S�nk

�
− S�nlDlkf

†
kĀnmF

†
m

¼ ĀnmS�mlDlkf
†
kF

†
n − S�nlDlkf

†
kĀnmF

†
m − ĀnmS�mlDlkS�nk

¼ f†kDklðS†ÞlmĀmnF
†
n þ f†kDklðS†ÞlnĀnmF

†
m − ĀnmS�mlDlkðS†Þkn

¼ 2f†kðDS†ĀÞkmF†
m − TrðĀS�DS†Þ:

It then follows that

½X;F†
nĀnmF

†
m�j0i ¼ ½2f†kðDS†ĀC�Þklf†l − TrðĀS�DS†Þ�j0i: ðD4bÞ

For the third term rhs of Eq. (D3),

ðD4cÞ

It follows that the higher order commutations all vanish. Substituting Eqs. (D4) into Eq. (D3), we have
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F†
nĀnmF

†
mjGi ¼ ½f†kðC†ĀC�Þklf†l þ TrðĀC�S†Þ�jGi − ½2f†kðDS†ĀC�Þklf†l − TrðĀS�DS†Þ�jGi − f†kðDS†ĀS�DÞklf†l jGi

¼ Tr½ĀðC� þ S�DÞS†�jGi þ f†kðC†ĀC� − 2DS†ĀC� −DS†ĀS�DÞklf†l jGi
¼ Tr½ĀðC� þ S�DÞS†�jGi þ f†kðC†ĀC� −DS†ĀC� þ C†ĀS�D −DS†ĀS�DÞklf†l jGi
¼ Tr½ĀðC� þ S�DÞS†�jGi þ f†k½C†ĀðC� þ S�DÞ −DS†ĀðS�Dþ C�Þ�klf†l jGi
¼ Tr½ĀðC� þ S�DÞS†�jGi þ f†k½ðC� þ S�DÞTĀðC� þ S�DÞ�klf†l jGi;

where in the third equality we antisymmetrized the 2DS†ĀC� term to be DS†ĀC� − ðDS†ĀC�ÞT and then used the fact that
Ā and D are antisymmetric matrices. Now,

C� þ S�D ¼ C� − C�D�D ¼ C�ðI −D�DÞ ¼ C�ðI þDD†ÞT ¼ C�ðC−1C−1†ÞT ¼ ðC−1ÞT;

where in the second-to-last equality I þDD† ¼ C−1C−1† follows from Eqs. (2.28) and (2.32). We therefore have

F†
nĀnmF

†
mjGi ¼ −TrðS�C−1ĀÞjGi þ f†k½C−1ĀðC−1ÞT �klf†l jGi;

which implies (D1).

APPENDIX E: EXAMPLES OF M = 3

In this Appendix, as a demo of using (5.4) to calculate one-loop self-energy, let us consider the one-loop self-energy for
the ground state of the M ¼ 3, s ¼ 1 and M ¼ 3, s ¼ 2 cases. For M ¼ 3, we only need to calculate the K ¼ 1 case since
the contribution of K ¼ 2 is the same as K ¼ 1.
The C, S, and D matrices are

C ¼ ð 1 Þ ⊕ 1þ ffiffiffi
3

p

4

�
ei

π
6 −ei2π3

e−i
π
6 ei

2π
3

�
; j detCj ¼ 2þ ffiffiffi

3
p

4

S ¼ ð 0 Þ ⊕
ffiffiffi
3

p
− 1

4

�
e−i

π
6 e−i

2π
3

e−i
5π
6 e−i

π
3

�
; D ¼ ð 0 Þ ⊕ ð2 −

ffiffiffi
3

p
Þ
�

0 i

−i 0

�
;

and matrices A, B, and constant μ0 are

AðVÞ ¼

0
BBB@

0 i
ffiffi
3

p
4

ffiffi
3

p
4

−i
ffiffi
3

p
4

0 3
4

−
ffiffi
3

p
4

− 3
4

0

1
CCCA; AðWÞ ¼

0
BBB@

0 i
ffiffi
3

p
2

ffiffi
3

p
2

− i
ffiffi
3

p
2

0 0

−
ffiffi
3

p
2

0 0

1
CCCA

BðVÞ ¼

0
BBBBB@

0 1
2

ffiffi
3
2

q
e3iπ=4

ffiffi
3
2

q �
1 −

ffiffi
3

p
2

�
e3iπ=4

1
2

ffiffi
3
2

q
e−iπ=4 0 3ið2 − ffiffiffi

3
p Þffiffi

3
2

q �
1 −

ffiffi
3

p
2

�
e−iπ=4 −3ið2 − ffiffiffi

3
p Þ 0

1
CCCCCA
;

BðWÞ ¼

0
BBBBB@

0
ffiffi
3
2

q
e3iπ=4

ffiffi
3
2

q
ð2 − ffiffiffi

3
p Þe3iπ=4ffiffi

3
2

q
e−iπ=4 0 0ffiffi

3
2

q
ð2 − ffiffiffi

3
p Þe−iπ=4 0 0

1
CCCCCA
;

μ0ðVÞ ¼ −3þ
ffiffiffi
3

p
þ 3ξ; μ0ðWÞ ¼ −4

ffiffiffi
3

p
þ 6ξ:

The operators fn are
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f0 ¼ F0; f1 ¼ Fð2Þ
1 ; f2 ¼ e−iπ=4

� ffiffiffi
2

3

r
Fð1Þ
0 − Fð2Þ

0

ffiffiffi
1

3

r �
:

For s ¼ 1, the eigenfunctions and their conjugates of 1-bit and 2-bit chains are shown in Table II.
The contribution of K ¼ 1 to the energy correction is

ΔEK¼1
G ¼ 1

N2

KLMj detCj
EG − Eð1Þ

G − Eð2Þ
1

�D
Fð2Þ
1 f0

E�
W

D
Fð2Þ
1 f0

E
V
þ
D
Fð2Þ
1 f2

E�
W

D
Fð2Þ
1 f2

E
V

�
: ðE1Þ

So, we need to calculate hFð2Þ
1 f0iV;W and hFð2Þ

1 f1iV;W :

Likewise,

D
Fð2Þ
1 f0

E
W
¼ 4

M
BðWÞ
01 ¼ 2

ffiffiffi
2

3

r
e3iπ=4;

D
Fð2Þ
1 f2

E
W
¼ −

2

M
μ0ðWÞD12 −

4

M
BðWÞ
12 ¼ −8i

�
1 −

2ffiffiffi
3

p þ ξ −
ffiffiffi
3

p

2
ξ

�
:

Substituting above results and EG ¼ −4
ffiffiffi
3

p
into (E1) yields ΔEK¼1

G ¼ − 3
2
ð3 ffiffiffi

3
p

− 5Þξ2 þ ð12 − 7
ffiffiffi
3

p Þξ − 3
4
ð3 ffiffiffi

3
p

− 5Þ. We
then have

ΔEG ¼ 2ΔEL¼1
G ¼ −3

�
3

ffiffiffi
3

p
− 5

�
ξ2 þ 2

�
12 − 7

ffiffiffi
3

p �
ξ −

3

2

�
3

ffiffiffi
3

p
− 5

�
:

For s ¼ 2, the matrices and constants are the same as the s ¼ 1 case. But as Table III shows, the energy eigenstates of
small chains are different. The energy correction now is given by

ΔEK¼1
G ¼ 1

N2

KLMj detCj2
EG − Eð2Þ

G − 0
ðh1i�Wh1iV þ hf2f0i�Whf2f0iVÞ2

þ 1

N2

KLMj detCj2
EG − Eð2Þ

1 − 0

�D
Fð2Þ
1 f0

E�
W

D
Fð2Þ
1 f0

E
V
þ
D
Fð2Þ
1 f2

E�
W

D
Fð2Þ
1 f2

E
V

�
2
: ðE2Þ

Since we have calculated the hFð2Þ
1 f0iV;W and hFð2Þ

1 f2iV;W in the s ¼ 1 case, we only need to find h1iV;W and hf2f0iV;W .
For K ¼ 1,
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Likewise,

h1iW ¼ 2

M
γ0ðWÞ ¼ −

8ffiffiffi
3

p þ 4ξ; hf2f0iW ¼ 4

M
BðWÞ
02 ¼ 2

ffiffiffi
2

p �
2ffiffiffi
3

p − 1

�
e3iπ=4:

Substituting the above into Eq. (E2), we obtain

ΔEG ¼ 2ΔEK¼1
G ¼ 1

N2

�
−66

ffiffiffi
3

p
ξ4 þ 360ξ3 − 230

ffiffiffi
3

p
ξ2 þ 180ξ −

33
ffiffiffi
3

p

2

�
:

From the results and the formula (5.4), we see that ΔEG is a polynomial of ξ of degree 2s.
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TABLE II. 1-bit and 2-bit energy eigenstates of s ¼ 1 that do not contain zero modes.

M ψ Conjugate Energy Grading of ψ

1 ψ ð1Þ
G ¼ 1 ψ̄ ð1Þ

G ¼ θ1 Eð1Þ
G ¼ 0 Even

2 ψ ð2Þ
1 ¼ Fð2Þ†

1 ψ ð2Þ
G ψ̄ ð2Þ

1 ¼ ~Fð2Þ
1 ψ̄ ð2Þ

G Eð2Þ
1 ¼ 4 Odd

TABLE III. 1-bit and 2-bit energy eigenstates of s ¼ 2 that do not contain zero modes.

M ψ Conjugate Energy Grading of ψ

1 ψ ð1Þ
G ¼ 1 ψ̄ ð1Þ

G ¼ θ1 Eð1Þ
G ¼ 0 Even

2 ψ ð2Þ
G ψ̄ ð2Þ

G Eð2Þ
G ¼ −8 Even

2 ψ ð2Þ
1 ¼ Fð2Þ†

1;a¼1F
ð2Þ†
1;a¼2ψ

ð2Þ
G ψ̄ ð2Þ

1 ¼ ~Fð2Þ
1;a¼2

~Fð2Þ
1;a¼1ψ̄

ð2Þ
G Eð2Þ

1 ¼ 8 Even
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