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We consider the noncommutative deformation of the finite-temperature holographic QCD (Sakai-
Sugimoto) model in external electric and magnetic field and evaluate the effect of the non-
commutativity on the properties of the conductor-insulator phase transition associated with a baryon
number current. Although the noncommutative deformation of the gauge theory does not change the
phase structure with respect to the baryon number current, the transition temperature 7., the transition
electric field e., and magnetic field b, in the conductor-insulator phase transition depend on the
noncommutativity parameter . Namely, the noncommutativity of space coordinates have an influence
on the shape of the phase diagram for the conductor-insulator phase transition. On the other hand, the
allowed range of the noncommutativity parameter can be restricted by the reality condition of the

constants of motion.
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I. INTRODUCTION

Noncommutative gauge theories (gauge theories on
noncommutative Moyal space) can be realized as low-
energy theories of D branes with the Neveu-Schwarz—
Neveu-Schwarz (NS-NS) B (two-form) field [1-7]. The
noncommutativity of space coordinates brings nontrivial
properties on the gauge field theory at the quantum level.
A remarkable phenomenon is the so-called UV/IR
mixing [8], where the UV and IR degrees of freedom
of the theory are mixed in a complicated nontrivial way.
Although the noncommutative gauge theories have been
studied extensively, it is hard to investigate them in the
perturbative approach. Little is currently known of the
nonperturbative properties of noncommutative gauge
theories.

The noncommutative Yang-Mills theories have gravity
duals of which the near-horizon region describes the
noncommutative Yang-Mills theories in the limit of large
N, and large coupling [9-11]. Based on the generalized
gauge/gravity (or AdS/CFT) duality, we can explore the
nonperturbative aspects of the noncommutative gauge
theories. For instance, the noncommutativity of space
coordinates modifies the Wilson loop behavior [12-14]
and glueball mass spectra [15]. The gravity duals of
noncommutative gauge theories with matter in the funda-
mental representation have also been constructed by adding
probe flavor branes [16]. Employing the gravity dual
description of noncommutative gauge theories with flavor
degrees of freedom, we have been able to find that the
noncommutativity is also reflected in the flavor dynamics.
For instance, the mass spectrum of mesons can be modified
by the [16].
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Fundamental properties of QCD at low energies are
confinement and chiral symmetry breaking. The Sakai-
Sugimoto model (a holographic QCD model with the
D4-D8-D8-brane system) has been known to capture these
properties of QCD at low energies [17,18]. The holographic
QCD models can be modified to introduce finite temper-
ature. The phase of chiral symmetry breaking and restora-
tion can be interpreted as configurations of probe branes in
this model [19-21]. The effect of the noncommutativity on
the chiral phase transition has been examined by the
noncommutative deformation of the holographic QCD
model at finite temperature. The phase diagrams for the
chiral phase transition can be deformed by the noncom-
mutativity of space coordinates [22].

It has been shown that the large N, QCD at finite
temperature has a conductor and insulator phase associated
with a baryon number current within a framework of the
finite-temperature Sakai-Sugimoto model in the external
electric and magnetic field [23,24], a la Karch-O’Bannon
[25]. This conductor-insulator phase transition is closely
related to the chiral phase transition in the finite-temperature
Sakai-Sugimoto model. This fact suggests the possibility
that the phase diagrams for the conductor-insulator phase
transition associated with a baryon number current can also
be deformed by the noncommutativity of space coordinates.

We construct the noncommutative deformation of the
finite-temperature holographic QCD (Sakai-Sugimoto)
model in the external electric and magnetic field and
evaluate the effect of the noncommutativity on the proper-
ties of the conductor-insulator phase transition associated
with a baryon number current. As will be seen later, the
baryon number current, the conductivity, and the phase
diagrams for the conductor-insulator phase transition can
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be deformed by the noncommutativity of space coordi-
nates.' The Wess-Zumino term in the effective action of the
probe branes plays the role of the noncommutative defor-
mation on the properties of the conductor-insulator phase
transition.

This paper is organized as follows. In Sec. II, we
introduce the holographic QCD (Sakai-Sugimoto) model
at finite temperature and discuss the features of the phase
transition. Then, we construct the noncommutative defor-
mation of this model. In Sec. III, we investigate the
response of the baryon number current to the external
electric field and evaluate the noncommutative deformation
of the baryon number current, the conductivity, and the
phase diagrams for the conductor-insulator phase transi-
tion. In Sec. IV, we investigate the response to the external
magnetic field and evaluate the noncommutative deforma-
tion of the phase diagrams. Section V is devoted to
conclusions and discussions.

II. NONCOMMUTATIVE DEFORMATION OF
THE HOLOGRAPHIC QCD MODEL AT
FINITE TEMPERATURE

In this section, we consider a noncommutative deforma-
tion of the holographic QCD (Sakai-Sugimoto) model at
finite temperature based on the prescription of Ref. [16].
The holographic QCD model is a gravity dual for a 4 + 1-
dimensional QCD with U(N;); x U(N)r global chiral
symmetry of which the symmetry is spontaneously broken
[17,18]. This model is a D4-D8-D8-brane system consist-
ing of S' compactified N, D4 branes and N ; D8-D8 branes
pairs transverse to the S'. The near-horizon limit of the
set of the N, D4 branes solution compactified on S' takes
the form,

ds® = <RMD4> @+ (@) + (@) + (@)

+ fr(u)de®) + <Rum> 3/2 <fib(i)

U3
fi(u) :1_%»
u

+ udeZ) ,

R]3:)4 = ”gSNCl%" (21)

where ug is a parameter; u is the radial direction bounded
from below by u > ug; 7 is the compactified direction
of the D4-brane world volume which is transverse to the
D8-D8 branes; and g, and [, are the string coupling and the
string length, respectively. The dilaton ¢ and the field
strength F, of the RR 3-form C5 are given by

'"The noncommutative deformation on the conductivity asso-
ciated with a baryon number current has been examined by
Ref. [26]. The response of the properties of the conductor-
insulator phase transition associated with a baryon number
current to the NS-NS field has been examined by Ref. [27].
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FIG. 1. The D8-D§ branes configurations at low temperature.
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(2.2)

where V, = 877/3 is the volume of unit S* and ¢, is the
corresponding volume form. To avoid a conical singularity
at u = uy, the 7 direction should have a period of

4z (R 12 2
ot = i <—D4> =27R = il )
3 \ug Myk

(2.3)
where R is the radius of S' and Mgy is the Kaluza-Klein mass.
The parameter uy is related to the Kaluza-Klein mass My
via the relation (2.3). The five-dimensional gauge coupling
is expressed in terms of g, and [, as g3\y=(27)?g,l,. The
gravity description is valid for strong coupling 4 > R, where
as usual A = g3,(N, denotes the ’t Hooft coupling.

Next, we consider the probe D8 branes and anti-D8-branes
(D8-branes) which span the coordinates 7, x'(i = 1,2,3),Q,.
They are treated as probes in the D4-brane background. The
flavor degrees of freedom are introduced by strings stretching
between the D4 branes and D8 (D8) branes. The D8 branes
and D8 branes are connected at # = u, as shown in Fig. 1.
The connected configuration of the D8-D8 branes indicates
that the U(N); x U(Ny) global chiral symmetry is broken
to a diagonal subgroup U(N,). We refer to the connected
configuration in the low temperature as the low-temper-
ature phase.

The holographic QCD model at finite temperature has
been proposed in Refs. [19-21]. To introduce a finite
temperature 7 in the model, we consider the Euclidean
gravitational solution, which asymptotically equals (2.1) but
with the compactification of the Euclidean time direction 7.
In this solution, the periodicity of t is arbitrary and equals
p = 1/T. Another solution with the same asymptotic is
given by interchanging the role of ¢z and 7 directions,

ds? = (R—) R )i+ (dx)? + (de2)?
RD4 3/2 du2
e () ()
Byo= sV fr) = 1=, 24)
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FIG. 2. The D8-D8 branes configurations at high temperature.

where u7 is a parameter. The period of the compactified time
direction is set to

= () 1

a6 - (2.5)

to avoid a singularity at u = uy. The parameter uy is related
to the temperature 7. The metric (2.1) with the compacti-
fication of Euclidean time f; is dominant in the low
temperature 7 < 1/2zR, while the metric (2.4) is dominant
in the high temperature 7 > 1/2zR. The transition between
the metric (2.1) and the metric (2.4) occurs at a temperature
of T, = 1/2zR = 0.159/R. This transition is first order and
corresponds to the confinement-deconfinement phase tran-
sition in the dual gauge theory side.

In the deconfinement background, there are two kinds of
configurations of D8 branes and D8 branes as shown in
Fig.2. Oneis the connected configuration and the other is the
disconnected configuration in which the D8 branes and D8
branes hang vertically from infinity down to the horizon.
The disconnected configuration of the D8-DS8 branes indi-
cates that the U(N;), x U(Ny), global chiral symmetry is
restored in the dual gauge theory side. The transition
between connected-disconnected configuration (chiral
phase transition in the dual gauge theory side) is also first
order. We refer to the disconnected configuration and the
connected configuration in the deconfinement background
as parallel embedding of D8 branes and D8 branes in the
high-temperature phase and U-shaped embedding of D8
branes and D8 branes in the intermediate-temperature phase,
respectively. The intermediate-temperature phase is realized
when the confinement-deconfinement phase transition and
the chiral phase transition do not occur simultaneously.

As mentioned above, the classical configuration of D8
branes and D8 branes exhibits the flavor physics in the dual
gauge theory side. The configuration can be analyzed by
the solution of the equation of motion for the D8 branes.
Substituting the determinant of the induced metric in the
deconfining background and the dilaton into the Dirac-
Born-Infeld (DBI) action, we obtain the effective action for
the D8 branes,

SP8 = 2NfT8/d9xe‘¢\/det(gMN)

2N TgV R}
= ﬁ/ d4xduu4\/fT(u)T’(u)2 +-B4
Iy u

(2.6)

where T is the tension of the D8 brane and the prime of =
denotes differentiation with respect to u. The constant of
motion associated with z, denoted by p, has the form

(2.7)

where we assumed that there is a point u that satisfies the
condition lim,_,, 7'(«) — co. The solution to the equation
of motion for z(u) is found to be

() = R, [ubfr(u) _ ~12
=y M3fT(“)Lng(uo) l] - 28

by using (2.7). This solution corresponds to the U-shaped
embedding of D8 branes and D8 branes. There is another
solution to the equation of motion for z(«) in the deconfine-
ment background. This solution is simply given by 7/ (1) =
0 [z(u) is a constant] and corresponds to the parallel
embedding of D8 branes and D8 branes.

The asymptotic D8 branes and D8 branes distances can
be obtained by integrating (2.8) with respect to u:

Lz/dsz/oodur’(u).

The asymptotic distance L, and the temperature 7, at
the chiral symmetry phase transition can be related as
L,T,=0.154. For LT < 0.154, the U-shaped embedding
dominates, and chiral symmetry is broken. On the other
hand, for LT > 0.154, the parallel embedding dominates,
and chiral symmetry is restored. When T, is higher than 7'y,
namely, small L/R(< 0.97), the dual gauge theory is
deconfined but with a broken chiral symmetry [19].

The constant of motion p remains a finite value that is
given by (2.7) in the U-shaped embedding with a broken
chiral symmetry and vanishes in the parallel embedding
with a restored chiral symmetry. In this sense, we can
regard p as an order parameter for the chiral transition in
the deconfined phase. This first-order phase transition
behavior can be analyzed from the dependence of the
asymptotic distance L on p [23].

The holographic dual description of the noncommutative
gauge theories was introduced in Refs. [9-11]. In

(2.9)
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accordance with the formulation of Refs. [9-11], we
attempt to construct the gravity dual of the noncommutative
QCD of which the chiral symmetry is spontaneously
broken by deforming the holographic QCD model. Let
us consider the D4-branes solution compactified on a
circle in the 7 direction. T dualizing it along x* produces
D3 branes delocalized along x3. After rotating the D3
branes along the (x*, x*) plane, we T dualize back on x°.
This procedure yields the solution with B,5 fields along the
x% and x* directions. The solution in the low temperature
takes the form

ds? = <”) () + (@) + R{(d2) 4 (d)?)
D4

e ()2

+ u2d§23>,
(2.10)

where h(u) = 1+9+3u3 and € denotes the noncommutativity

parameter with the dimension of [length]~!. This solution
with 0 #0 is dual to a gauge theory in which the
coordinates x> and x*> do not commute. It is obvious that
this solution reduces to the solution (2.1) with the
Euclidean signature at 6 = 0. In the deconfined phase,
the solution (2.4) changes to

ds? = (R—) () (g + (d')?

+ h{(dx?)* + (dx*)*} + dr?)

)" (e ant)
+— + u2dQ2 ).
( u fr(u) *
The solution has the same form as the one in the confined
phase (2.10), but with the roles of the 7z and ¢y directions
exchanged.

The effective action of probe DS§ branes is given by the
DBI action with the Wess-Zumino (WZ) term,

(2.11)

D8 _ (D8 D8

Sg%l = Tg / dgxe_‘/’Tr\/det(gMN —+ BMN —+ ZH(Z/FMN),

Sy, = Hs [) G e(B+2alF), (2.12)

5P = SBh: -+ 58
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where pg is the D8-brane charge. The dilaton field ¢ and

the antisymmetric tensor field B = Byydxdx" have the
following form:

, , u \3/2
e =glh(u)|—) . (2.13)
Rp4
G2 h(u) (M =2,N=3)
By (u) = { Ros . (214)
0 (others)

We notice that the dependence of the DBI action on the
noncommutativity parameter 6 is canceled by the dilaton and
the antisymmetric tensor field. The cancellation of the
noncommutativity parameter dependence in the DBI action
also takes place in the effective action of the probe D7 brane
[16]. Adding the WZ term to the DBI action, we find the
dependence on the noncommutativity parameter in the
effective action of the D8 branes. Hereafter, the parameter
Rp, is fixed to unity, Rp, = (7g,N.)"/31,=1, for simplicity.

III. ELECTRIC FIELD

We investigate the response of the noncommutative
deformation of holographic QCD at finite temperature to
an external electric field E, by turning on an appropriate
background value for the Abelian gauge field component of
the unbroken U(N ), gauge field in the eight-brane world
volume.

We make an ansatz,
2nd A (tg, u) = —iety + ay(u),

2rd Ay =, (3.1)

where y and e are constants.

A. Deconfinement phase

We first consider the deconfining background, which
dominates at high temperature T > 1/2zR. The induced
metric on the probe D8 brane is

ds® = w(fr(u)dig + (dx')* + h(u){(dx*)? + (dx*)*})
[ (@ @) 4+ w2 fr () die + w9,

(3.2)

where the temperature 7 is related to the parameter u; as

ur = (1622 /9)T?. The DBI action with the WZ term takes
the form

_N / & xdu {u“\/ (fT(u)T’<u)2 +%) (1 +

2

) ALNGOE g riina ). (3)

u3fT Lt3
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where N = ﬁ and the prime of a; denotes differ-

entiation with respect to u. The baryon number current j,
associated with the field a; is expressed as

ufr(u)ay(u)
\/(fT(”)T/(“)Z"F%)(l+M3;:(u)>+fT(M)E;/]<M))2
— 3ub*?udh(u).

Jer =

(3.4)

The DBI action with the WZ term can be written in terms of
the baryon number current as

PHYSICAL REVIEW D 96, 046018 (2017)

Ds _ i gt ] | 3HO (W) fer
—./\//d xduu {1 ZF )

(Fr()? (2 + ) (fr(0) - £)
(Fr(u) L)

. (3.5)

where j,7 = jr + 3u60>2u? h(u). Consider first a U-shaped
embedding with a vanishing current j,; = 0. The corre-
sponding action is given by

u 1 e’
= J\//d4xdufT(u) \/<fT(u)T/(u)2 + ;) <fT(u) - ;) (fr(u) — 9?3 uh(u)?). (3.6)
The equation of motion for z(u) is
4 ) | U100 =20 =90ty | .

du

(fr() (@ (W)* + )

7'(u) satisfies the condition in the U-shaped embedding configuration: 7/ — oo for u — u. In the limit u — u,, we have the

constant of the motion associated with z(u) as

4 e’
pr="H <1 - ui fr(ug)

The solution of the equation of motion for z(u) is

7(u) =

The reality conditions of the constant in (3.8) restricts the parameters e and € as

)r0) = 952Pugh(un). (33)
_1)2
1 ub(1 - usz )(fr(u) = 9p*P uh(u)?) _ (3.9)
Fr(u) |uf(1— m) (fr(uo) — 9P ugh(ug)?) ' '
e* <ud —uj, 0 <K, & >K,.,
(9ﬂ2 - 2u%fT(u0)) + 3:“ 9ﬂ2 - 4”(2)fT<u0) ] (310)

K=

2”8fT(”0>

In the U-shaped embedding, the corresponding (on-shell) action is obtained by substituting (3.9) into (3.6):

SDSN/d4xdu (

M \/ (7100 = 5 )l - 9P utu) x [ 1 - i

) o) = 926 uh(ug)?)y ™12
- 9*Puh(u)?) '
(3.11)

ub(1 = ) (fr(u)

In the parallel embedding with z/(x) = 0, the action becomes

Sﬁg ZN/d4xdu

-

3/"93/2h(u).;eT }

5 (3.12)
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P1

FIG. 3. [Illustration of the Maxwell equal area construction.

The numerator of the fraction in the square root fr(u) —
e?/u? is negative for u® < u3 + €2, which is always in the
range of interaction. The only way to ensure a real action
in this case is for the denominator in the same square root
to become negative at the same u. This requires a non-
vanishing current that is given by

36> (13 + %)

i =e(ud + )3 - T~ 7
Jer ( T ) ]+93(u%+ez)

(3.13)

This current depends on the noncommutativity parameter 6.
The parallel embedding therefore describes a chiral-
symmetric conducting phase in the gauge theory, and the
conductivity is given by

. :(27ra’)2/\/'j£

¢ V4 e
2 ~n3/2 ~
VNI s OTAE2) ]
27x {1+60°(1+2%)}

where ¢ = e/u3T/2, 0 = ur0, and ji = p/uy are dimension-
less parameters. The conductivity depends on the non-
commutativity parameter and becomes the ordinary one in
the limit of & — 0 [23].

If the parallel embedding corresponds to the state of
thermodynamic equilibrium, we can determine which of
the two possible configurations is preferred by comparing

Parallel embedding

— 6=0.00

0.10} O
—— 6=0.46

! —— 6=0.49

005 U embedding —— 6=0.50

|

0.10 0.15 0.20

0.00 <60 <0.50

0.05

PHYSICAL REVIEW D 96, 046018 (2017)

the electric free energies of the two configurations [19].
However, the parallel embedding corresponds to the con-
ducting phase, which is not in thermodynamic equilibrium.
There is a steady-state current of quarks and antiquarks.
Although the dissipated energy could be negligible, the
kinetic energy of the current carriers should be taken into
consideration.

To determine the transition temperature and transition
electric field strength, we employ the Maxwell equal area
construction method in the L—p diagram. The dependence
of p; on L can be determined numerically from (3.8)
and (3.9) [with (2.9)] in the U-embedding configuration.
The phase transition occurs when two regions enclosed by
the L—p curve and the horizontal L line (and L axis) are
equal as shown by Fig. 3. We can determine the transition
temperature 7', and the transition electric field strength e,
by seeking for various of 7" and e to satisfy the Maxwell
equal area law and then construct the phase diagram in
the (7, e) plane with fixed L and 6. The phase diagram at
nonzero temperature, background electric field, and non-
commutativity parameter in the deconfining phase is shown
in Fig. 4. At zero electric field and zero noncommutativity
parameter, the transition temperature reduces to the one of
chiral symmetry breaking restoration [19].

The global behavior of the phase diagrams has not
significantly changed even at finite noncommutativity
parameter @; that is, the transition temperature 7. decreases
as the transition electric field strength e, increases even at
finite noncommutativity parameter 6. Although 7', at e. =0
is hardly changed, e, at T, = 0 increases with an increase
in @ in the range of 0 < 0 < 0.50. Both 7. at e, = 0 and e,
at T. =0 decrease with decreasing 6 in the range of
17.7 < 6. As 0 approaches infinity, both 7, and e, turn
back to them at the zero noncommutativity parameter.
The reality condition is not satisfied in the range of 0.50 <
0 < 17.7.

B. Confinement phase

We next consider the confining background, which
dominates at low temperature 7 < 1/2zR. The induced
metric on the probe D8 brane is

0.15 Parallel embedding

— 6=0.00

6=17.7
— 6=18.0
— 6=20.0

U embedding — 6=30.0

0.02 0.04 006 008 0.10 0.12
17.7<6

FIG. 4. Phase diagram at finite temperature and electric field in the deconfining background (L = 1, y = 1).
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1.0
0.9
0.8
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05F
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Dependence of the asymptotic D8-D8 distance L on p,.

45 = WAy + (dx' )+ R {(d)? + (@) + [ () (7 (@) + w2 f ()1 + ' 2d03. (3.15)
The total effective action for the D8 branes is given by
SP% = SBR1 + SWz
1 2 / 2
= N/ d*xdu | u* k)t (u)? +—5——)(1- 6—3 + M — 3u03?udh(u)d) (u)
wfg(u) u u
3u632h(u)j (fr ()7 () + i) (1 = %)
= /\// dxduu*d 1 -2 2(u)]e,( jf , (3.16)
u (1 /e[()
M2
where j,x = j.x + 310> 2uPh(u) with e < up, P <K, 0 >K,.,
— ud (u) (99 = 2uf) £ 3u/Op” — 4.
Jok = e o Ky = (3.20)
V)7 @) + ) (1 - 2) + 8 26

- 3u0*?uPh(u). (3.17)
The solution of the equation of motion for 7(u) in the

U embedding (with the vanishing j.x) is given by

1
”3/2f1<(”)
. [ uSfre(u)(1 = 5)(1 = 9p*Puh(u)’) lr/z
uf x (ug)(1 = z—g)(l — 9@ ugh(ug)?) ,

o (u) =

(3.18)

and the constant of motion for z(u) is

P2 = ”o\/ & (uo) (1 —Z_Z) (1 = 9@ uph(up)?*).  (3.19)

0

In the same way as in the deconfinement phase, the reality
conditions of the constant in (3.19) restrict the parameters e
and 6,

The asymptotic D8-D8 distance L can be evaluate by
using (3.18). The dependence of L on p, evaluated
numerically from (3.18) and (3.19) is shown by Fig. 5.
At no electric field, the only possible embedding in the
confined phase is the U embedding, and L becomes a
decreasing monotonic function of p,. However, the behav-
ior of L on p, can be modified under some external electric
field. For ¢ > u3, the asymptotic behavior of L becomes
the same as in the deconfined phase. There is a threshold

ethr(>u ¥ ) that modifies the behavior of L on p,, and the

U embedding exists for e < eg,. For e < ey,, the corre-
sponding (on-shell) action is given by

SP8 =N / d*xdu (1 =942 uh(u)?)

¢—“

”ng(uo)(l——)(1_9’u293uh(u )z) -1/2
1-— o .
[ ub fie(u)(1-5)(1 9,,293uh())]

(3.21)
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u
Ty

FIG. 6. The V embedding in the confining background.

The modification of the behavior of L suggests the
existence of another kind of D8-D8 embedding in the
confining background. The D8 brane and DS brane are
adjusted in parallel and are connected at u = ug in this
embedding. We refer to this embedding as V-shaped
embedding [23] (see Fig. 6).

In the V embedding, 7 satisfies 7/(u) =0 except at
u = ug, and its action is given by

5/2 3/2 o
Seg_N/d4xdu - {1—3”9 h(u)JeT}

V fx(u) u

The reality condition for this action SL® in € > u3 implies
the existence of the nonvanishing current in the following
form:

3/193/262
1463
The Vembedding is therefore a conductor with conductivity

(22d )*N jox  NyN.A { 23 3ud?e
= ——— e —

K="y, e T 48s

Jex =€ (3.23)

T 9362]. (3.24)
The conductivity also depends on the noncommutativity
parameter as in the deconfinement phase and becomes the
ordinary one in the limit of 8 — 0 [23].

In the deconfinement phase, the current is produced
due to the movement of quarks and antiquarks, namely,
fundamental strings. In the confinement phase, the only
charged objects are baryons. The current in the confinement

ug
1.0¢

081
— 6=0.00

6=0.46
—— 6=0.49
— 6=0.50

U embedding
0.6

041

02+t V embedding

02 04 06 08
0.00 <6 <0.50
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phase can be regarded due to the movement of baryons and
antibaryons, namely, D4 branes (and D4 branes) wrapped
on the S*. It is thought that this stability of the cups
singularity is provided by the balance of the forces caused
by the D8 brane and the D4 branes pulling against
each other. In accordance with this interpretation, we can
evaluate the phase diagram in the (ug, e) plane in the same
way as the deconfining phase. The phase diagram in the
(ug, e) plane with fixed the D8-D8-brane distance and € in
the confining phase is shown in Fig. 7.

The global behavior of the phase diagrams has also not
significantly changed even at finite noncommutativity
parameter @ in this situation; that is, the transition value
of ug(=ug.) increases as the transition electric field
strength e, increases. Whereas e, at 7. = 0 with finite 6
is bigger than that with & = 0 in the range of 0 < 6 < 0.50,
e. at T, = 0 with finite € is smaller than that with 9 = 0
in the range of 17.7 < 6. There is a tendency that e, is
modified by 6 as ug. becomes smaller. We note that, even
at finite noncommutativity parameter, e, in the limit
ug. — 0 is the same as that in the deconfinement phase
in the limit 7 — 0 [23]. As 6 approaches infinity, e. at
T.=0 turns back to them at zero noncommutativity
parameter. The reality condition is not satisfied in the
range of 0.50 < # < 17.7 as in the deconfinement phase.

IV. MAGNETIC FIELD

We next investigate the response of the noncommutative
deformation of the holographic QCD model at nonzero
temperature to an external magnetic field B. We make an
ansatz,

2rd Ay =, 2rd Ay (x5, u) = —bxy + ay(u), (4.1)

where p and b are constants. As was seen in the previous
section, the noncommutativity also has the effect of varying
the transition magnetic field strength b..

A. Deconfinement phase

Consider again the deconfining background, which
dominates at high temperature 7 > 27+R. The total action
is given by
ug
107

0.8[

— 6=0.00

6=17.7
—— 6=18.0
— 6=20.0

U embedding
0.6

041

0.2f V embedding

0.2 04 0.6 0.8
17.7 <40

FIG. 7. Phase diagram at finite parameter ugx and the electric field in the confining background (L =1, u = 1).
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5 — B + SBY
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u

N / dxdu [m\/ (fr(u)? <u)2 +i3> (1 +z_§> +JW_ 3u0P 2 (u)a (1)

o 4 4 _ 3,“93/2}1(“)}1#
—./\//d xduu {1 ZF )

where j,r = jur + 3u6>2uPh(u) with

= ufr(u)d(u)
Jbr = 2 Fr(u)(d), (u))?
V) @2 & (1 + 8 + 0
- 3u0*?uPh(u).

(4.3)

The solution of the equation of motion and the constant of
motion for 7(u) in the U embedding (with the vanishing
Jpr) are given, respectively, by

() — 1
") u?/? fr(u)
[ 8(1 —l—Z—i)(fT(u) — 9P uh(u)?) _ 172
u(1 +§_§)(fr(”0) — 9P ugh(uo)?) ’
(4.4)
and

ps= \/ 1) (1 25 1 0) = 920 ).

0
(4.5)

Although the reality conditions of the constant p; in (4.5)
have no restriction for the parameter b, it has same
restriction as (3.10) for the parameter 6.

In the U embedding, the corresponding (on-shell) action
without j,r is given by

b

— 6=0.00

6=0.30
—— 6=0.40
— 6=0.50

Parallel
embedding

4r U embedding

0.00 005 0.10 0.15 020 025 0.30T

0.00 <6 <0.50

FIG. 8.

Th (4.)
u” fr(u)

5/2

vV fr(u)

. \/ (1+"—) (1 ()~ 926 uh(u)?)

(14 ) (Fr (o) =926 uh (g )
(14 2 ()~ 926 uh ()

SBS—N/d“xdu

-1/2

(4.6)

In the parallel embedding with 7/(u) =0, the action
becomes

SDS N/d“xdu 3/493/2h(“)jbr}

{0 -2

(4.7)

We can determine the transition temperature 7', and the
transition magnetic field strength . by the Maxwell equal
area law and construct the phase diagram in the (b, T') plane
with fixed L and 6. The phase diagram at nonzero
temperature, background magnetic field, and noncommu-
tativity parameter in the deconfining phase is shown in
Fig. 8.

The global behavior of the phase diagram has also not
significantly changed even at finite noncommutativity

b

— 6=0.00

6=17.7
—— 6=18.0
— 6=20.0
— 6=30.0

Parallel
embedding

4r U embedding

0 . — . . T
0.00 0.05 010 015 020 025 030

17.7<6

Phase diagram at finite temperature and magnetic field in the deconfining background (L =1, u = 1).
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parameter 6; that is, the transition temperature 7', increases
as the transition magnetic field strength b increases even at
finite noncommutativity parameter 6. Although 7', hardly
changes at b, = 0, it significantly changes in the large-b,
regime in the range of 0 < € < 0.50. In contrast, although
T. significantly changes at b, = 0, it hardly changes in
the large-b. regime in the range of 17.7 < 6. There is a
tendency for T, to decrease as € increases in the range of
0 <60 <0.50 and T to increase as @ increases in the range
of 17.7 < 0. However, T, at b, = 0 with 8 = 0.40 becomes
smaller than that at b, = 0 with & = 0.50. As 0 approaches
infinity, both 7, and b, turn back to them at zero non-
commutativity parameter. The reality condition is not
satisfied in the range of 0.50 < 8 < 17.7.

B. Confinement phase

We next consider the confining background. In the
U embedding, the solutions of the equation of motion
for 7(u) and the constant of motion for z(u) are given,
respectively, by

, 1
)
. [ W fio () (1+5)(1 = 9@ un(u)?) 177
g f x (up)(1 "‘b—;)(l — 920 ugh(ug)?)

(4.8)

and

2
= ug\/ x(uo) (1 —l—%) (1 = 9P ugh(uy)?).  (4.9)

0

The solution 7’ () and the constant of motion p,4 are same
as in (3.18) and in (3.19) with the substitution of —e? for b2,
respectively. Because of the difference in sign, the asymp-
totic D8-D8 distance L is a decreasing monotonic function
of p4 for all values of b. It can be concluded that the
only possible embedding in the confined phase is the
U embedding. The on-shell action in the U embedding is
given by

SggzN/d4xdu 1—9/4293uh(u) )

J_
Ui (o) (1 +%><1 — 90 uh(uo)*)
uf () (1435 (1 =G uh (u)?)

~1/2

(4.10)

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have constructed a noncommutative
deformation of the holographic QCD (Sakai-Sugimoto)

PHYSICAL REVIEW D 96, 046018 (2017)

model at finite temperature in accordance with a prescrip-
tion of Refs. [9-11,16] and have examined the response
to external electric and magnetic fields regarding baryon
number currents by this model. The noncommutative
deformation of the gauge theory does not change the
phase structure with respect to the baryon number current.
There is also the conductor phase in addition to the
insulator phase even in the noncommutative deformation
of the confinement background at finite electric field [23].
However, the transition temperature 7., the transition
electric field e., and magnetic field b, in the conductor-
insulator phase transition depend on the noncommutativity
parameter 6. Namely, the noncommutativity of space
coordinates has an influence on the shape of the phase
diagram for the conductor-insulator phase transition. It is
known that the noncommutativity of space coordinates also
has an influence on the shape of the phase diagram for the
chiral symmetry breaking-chiral symmetry restoration
within the framework of the noncommutative deformation
of the holographic QCD model at finite temperature [22].
It can be regarded as an example that the noncommutativity
of space coordinates reflects physical quantities [15,28].

The phase diagrams have shown that the transition
temperature T, the transition electric field e,., and mag-
netic field b, shift to the commutative ones in the zero
noncommutativity parameter limit. On the contrary, the
phase diagrams have shown that T, e,., and b,. also shift to
the commutative ones in the infinite noncommutativity
parameter limit. It can be easily seen that the nonvanishing
currents j,r and j,x and the conductivities o7 and og
reduce to the commutative ones in both the zero and infinite
noncommutativity parameter limits. These properties are
suggestive of a kind of Morita duality between irreducible
modules over the noncommutative torus [6,16]. On the
other hand, the allowed range of the noncommutativity
parameter can be restricted by the reality condition of the
constants of motion. It might be remarkable that the
noncommutativity parameter is restricted by the physical
conditions.

In the holographic QCD model, a chemical potential for
baryon number corresponds to a nonzero asymptotic value
of the electrostatic potential on the D8 branes [29-35].
In our model, a constant baryon chemical potential has
been naively introduced. The dependence of T, e, and b,
on the baryon chemical potential should be considered in
detailed procedures.

An alternative gravity dual of the confinement-
deconfinement phase transition in the Sakai-Sugimoto
model has been proposed in Refs. [36-38].
Reference [36] has argued that the gravity dual of the
deconfinement transition is a Gregory-Laflamme transi-
tion into the T-dual type IIB supergravity, where the black
D4-brane geometry is replaced by an localized D3-brane
geometry. It would be interesting to study the properties
of the baryon number current in this model.
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The UV/IR mixing is well known as distinctive features
of noncommutative field theories. The phenomenon of
the UV/IR mixing appears to be the qualitative difference
between ordinary and noncommutative field theory. The
difference in the properties of the baryon number current
between ordinary and noncommutative QCD might be
related to the UV/IR mixing. We hope to discuss this
subject in the future.
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