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We study the thermodynamic phase diagram of three-dimensional slðN;RÞ higher spin black holes.
By analyzing the semiclassical partition function we uncover a rich structure that includes Hawking-Page
transitions to the AdS3 vacuum, first order phase transitions among black hole states, and a second order
critical point. Our analysis is explicit for N ¼ 4 but we extrapolate some of our conclusions to arbitrary N.
In particular, we argue that even N is stable in the ensemble under consideration but odd N is not.
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Soon after black hole entropy [1,2] and radiation [3]
were discovered, Gibbons and Hawking [4] showed that
these properties can be derived directly from the Euclidean
gravitational action. Black holes are now understood as part
of a thermodynamical system with an associated semi-
classical partition function

ZðβÞ ¼
X

M

e−βMþSðMÞ: ð1Þ

For Schwarzschild black holes the entropy takes the famous
value S ¼ Area=ð4GÞ ¼ 4πGM2 [5].
This partition function can be extended to more general

black holes in various dimensions. Of particular interest in
recent years has been a relatively new family of configu-
rations, namely, three-dimensional black holes carrying
higher spin charges [6].
In this paper we study the thermodynamics of higher spin

theories by emphasizing the role of the partition function (1).
We uncover a rich structure with several interesting features:
(i) the existence of Hawking-Page transitions from black
holes to the AdS3 background; (ii) discontinuous phase
transitions among black hole states with different macro-
scopic properties (van derWaals-like); and (iii) a secondorder
transition and a critical point. For related work see [7–10].
We start by reviewing some applications of (1). The

partition function is dominated by the configuration that
minimizes the action

ΓβðMÞ ¼ βM − SðMÞ: ð2Þ

In a more general setup, Γ will depend on additional
charges and chemical potentials. This function, related to
the mean field free energy, encodes the thermodynamic
structure of the gravitational system and will be our main
tool to analyze its phases. Consider Schwarzschild black
holes, for example. A quick look shows that ΓβðMÞ does
not have a minimum at all; the value M ¼ β=ð8πGÞ is a
maximum, revealing the well-known instability of this
system in the canonical ensemble.
The instability of Schwarzschild black holes can be

cured either by putting the system in a box [11] or by
adding a negative cosmological constant [12], the latter
case leading to the celebrated Hawking-Page transition. It is
instructive to understand this phenomenon from the point
of view of the action (2).
In Fig. 1 (left) we plot ΓβðMÞ for 3þ 1 Schwarzschild-

AdS black holes for different values of β [13]. At high

FIG. 1. Hawking-Page transition in 3þ 1 Schwarzschild-AdS
black holes (left) and 2þ 1 BTZ black holes (right). The red dots
represent the AdS4 (M ¼ 0) and AdS3 (M ¼ −1=ð8GÞ) ground
states, respectively. The dashed curve has no local minima but
plays no role in the analysis.
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temperatures (burgundy curve, small β), there is a clear
minimum satisfying

β ¼ ∂SðMÞ
∂M : ð3Þ

As the temperature drops, however, the solution to this
equation ceases to be the global minimum of ΓβðMÞ.
For β > βc, the AdS4 background with M ¼ 0 is the
preferred state. This transition from the black hole domi-
nated phase to the vacuum is called Hawking-Page tran-
sition. Notice that the minimum of ΓβðMÞ is continuous at
β ¼ βc but its derivative is not.
The analysis for three-dimensional BTZ black holes is

similar, except that the AdS vacuum is now a bound state
separated from the black hole continuum by a mass gap.
In Fig. 1 (right) we plot ΓβðMÞ ¼ βðM −MAdSÞ − SðMÞ
for three values of β [14]. For convenience we have shifted
the action such that ΓβðMAdSÞ ¼ 0. We see that a local
minimum satisfying (3) exists for all temperatures but only
for β < βc does this state have less action than AdS3 space.
We now move on to study the phase structure of three-

dimensional higher spin gravity. This theory is topological
in nature and does not have a known description in terms of
metric fields (gμν, gμνρ, etc.). Instead, it must be formulated
as a Chern-Simons theory where the basic variables are
slðN;RÞ (N × N, real, traceless) matrices Aμ. In a radial
gauge, and restricting to static and circularly symmetric
configurations, one is left with two such matrices, At and
Aφ, satisfying

½At; Aφ� ¼ 0: ð4Þ

This is the remnant of the Chern-Simons equations of
motion. We refer the reader to the extensive literature on
this subject for more details.
The gauge invariant information carried by the fields is

characterized by the N − 1 charges

Qn ¼
1

n
TrðAn

φÞ; n ¼ 2;…; N: ð5Þ

The possible values these charges can take depend on the
spatial topology of spacetime. We shall consider two
classes of solutions. First, there is the AdS3 vacuum, for
which the spatial topology is a plane and the cycle φ ∼
φþ 2π is contractible. As a consequence, the eigenvalues
of Aφ are imaginary and quantized, so as to render a smooth
field [15]:

EigenðAAdS
φ Þ ¼ i

2
ðN − 1; N − 3;…; 1 − NÞ: ð6Þ

The corresponding charges can be computed from (5).
Notice that QAdS

n ¼ 0 for odd n. For N ¼ 4, which will be
our main example, we find

QAdS
2 ¼ −

5

2
; QAdS

3 ¼ 0; QAdS
4 ¼ 41

16
: ð7Þ

The time direction is noncompact so the matrix AAdS
t is only

restricted by (4) and not by regularity. This is important.
The residual freedom in AAdS

t is just what is needed in order
to match the chemical potentials of AdS3 to those of black
holes (just like thermal AdS and Schwarzchild-AdS can
both be put at the same temperature).
The second class of solutions we are interested in are

black holes. The spatial topology in this sector is a semi-
infinite cylinder, with the boundary at r ¼ 0 corresponding
to the horizon. This space is homeomorphic to the
punctured disk. Since the cycle φ ∼ φþ 2π is not con-
tractible, Aφ (and therefore Qn) is left unrestricted. We take
the eigenvalues of Aφ to be real for black hole configu-
rations, in consistency with the definition given in [16] in a
supersymmetric context. For N ¼ 4 we parametrize the
eigenvalues as

EigenðAφÞ ¼
1

2
ð2λ1 þ λ2; 2λ1 − λ2;

− 2λ1 þ λ3;−2λ1 − λ3Þ: ð8Þ

It follows that the black hole charges read

Q2 ¼ 2λ21 þ
1

4
λ22 þ

1

4
λ23;

Q3 ¼
1

2
λ1ðλ2 − λ3Þðλ2 þ λ3Þ;

Q4 ¼ λ41 þ
1

32
ðλ42 þ λ43Þ þ

3

4
λ21ðλ22 þ λ23Þ: ð9Þ

In this sector, the matrix At is constrained by regularity to
be [17]

EigenðAtÞ ¼
1

2
ðN − 1; N − 3;…; 1 − NÞ: ð10Þ

This is because the time cycle t ∼ tþ 2π is contractible
in the black hole topology. Finally, black holes have an
entropy given by [18–21]

SðQÞ ¼ TrðAtAφÞ: ð11Þ

For N ¼ 4 this yields

SðλÞ ¼ 1

2
ð8λ1 þ λ2 þ λ3Þ: ð12Þ

We are now ready to display the grand canonical
partition function [22] we aim to calculate:

Zðμ2; μ3;…μnÞ ¼ 1þ
X

fblackholesg
e−kΓμðQÞ; ð13Þ
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where the action is

ΓμðQÞ ¼
XN

n¼2

μnðQn −QAdS
n Þ − SðQÞ: ð14Þ

The first term “1” in (13) corresponds to the AdS3 bound
state, whose contribution has been subtracted in (14) so that
ΓμðQAdSÞ ¼ 0. The AdS charges have fixed values [for
N ¼ 4, see (7)]. The sum is then taken over the spectrum
of black holes, that is, over all charges consistent with real
eigenvalues of Aφ. Also, for convenience we have factored
out the coupling constant “k” (Chern-Simons level).
This parameter is related to the central charge by

k ¼ 2πc
NðN2 − 1Þ ; c ¼ 3l

2G
;

and is a measure of the number of degrees of freedom in
the system. The steepest descent approximation is justified
in the limit k ∼ c → ∞. The real parameters μn are
chemical potentials conjugate to Qn. See [18] for details
on this. The case of pure gravity is recovered for N ¼ 2
after identifying μ2 ¼ β=ð2πlÞ and Q2 ¼ 2GM.
We emphasize that the study of the partition function

(13) represents a well-posed problem in its own right,
independent from its relation to Chern-Simons theories and
higher spin black holes. In fact, this problem has striking
similarities with the mean field description of some con-
densed matter systems such as liquid crystals [23–25].
Notice that, for any N, the charges Q2n are always

semipositive while Q2nþ1 have no definite sign. This
explains why even N can yield a stable partition function
but oddN cannot. Indeed, the action (14) is a polynomial of
degree N in the eigenvalues of Aφ. Since the leading terms
enter as ΓμðλÞ ¼ μNQNðλÞ þ � � �, the conditions N ∈ 2N
and μN > 0 guarantee that ΓμðλÞ is bounded from below.
The sum (13) then converges. It turns out that N ¼ 4 is the
simplest, nontrivial, stable theory; N ¼ 2 exhibits a
Hawking-Page transition but no transitions between black
hole states, and N ¼ 3 is unstable. From now on we
concentrate on N ¼ 4.
In principle, the computation of (13) involves a sum over

the charges Qn. This is inconvenient because the entropy
(12) has a very simple form in terms of the eigenvalues but
not as a function of the charges themselves. Expressing S as
a function of Qn would involve inverting (9). Happily, this
is not necessary. We shall now argue that the sum over
charges can be traded for a sum over eigenvalues, up to
logarithmic corrections that we discard in large k limit.
From (9) we find that the Jacobian for the change of

variables Qn → λi is

����
∂Q
∂λ

���� ¼
1

32
λ2λ3ð4λ1 þ λ2 þ λ3Þð4λ1 − λ2 þ λ3Þ

× ð4λ1 þ λ2 − λ3Þð4λ1 − λ2 − λ3Þ: ð15Þ

We see that j ∂Q∂λ j ¼ 0 happens precisely when two or more
eigenvalues of Aφ coincide. In that case, Aφ is non-
diagonalizable and the solution becomes extremal [16].
Of course, we restrict our attention to solutions bounded by
extremal black holes; the points where the map Qn → λi is
not invertible are never touched. For orientation, recall that
in the spectrum of 2þ 1 black holes, the angular momen-
tum J is bounded by −M < J < M, with J ¼ �M corre-
sponding to extremal solutions. The map Qn → λi fails to
be invertible at the extreme points J ¼ �M. Going back to
the general case, the domain of λi should lie within any of
the “wedges” defined by the planes j ∂Q∂λ j ¼ 0. Different
wedges correspond to different branches of the inverse
map Q → λðQÞ and have different entropy functions SðQÞ.
We will work in the wedge that includes the BTZ black
hole (λ1 ¼ λ2 ¼ λ3 > 0), for which all the factors in (15)
are positive.
So, given a set of values for the chemical potentials μ2,

μ3 and μ4, we want to compute the values of λ1, λ2 and λ3
that minimize the action ΓμðλÞ. This configuration will
dominate the partition function (13). In particular, we
would like to study the continuity of the λi obtained in
this way as one varies μ2, μ3 and μ4.
First, we have checked explicitly, within a wide range of

chemical potentials, that the minimum of ΓμðλÞ is never
achieved by extremal black holes. The minimum either
occurs for the AdS3 ground state, with ΓμðQAdSÞ ¼ 0, or it
lies in the interior of the BTZ wedge [26]. We do not need
to worry about extremal solutions.
Next, we separate the region in the space of chemical

potentials where black hole states dominate from the region
where the AdS ground state is preferred. The interface
between these two regions is defined by the equation

min
fblackholesg

ΓμðQÞ ¼ ΓμðQAdSÞ; ð16Þ

and its graphical representation is shown in Fig. 2. The
interior of the surface corresponds to the AdS dominated
phase. Outside black holes dominate. Crossing this surface
in any direction gives a first order Hawking-Page transition.
Let us now concentrate on the region of black hole

dominance and look for the global minimum satisfying

∂ΓμðλÞ
∂λi ¼ 0: ð17Þ

[Recall that ΓμðλÞ is built from (14) after using (9) to write
the charges in terms of the eigenvalues, together with the
expressions (12) for the entropy and (7) for the background
charges]. These equations can be simplified by setting
μ2 ¼ 5μ and rescaling μ3 → μ3μ

2, μ4 → μ4μ
3 and

λi → λi=μ. The μ dependence then drops out from (17),
reducing the black hole thermodynamics to a two dimen-
sional phase diagram.
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Figure 3 shows the phase diagram for the charge Q2.
Similar results are obtained for the other two charges. One
observes that from the origin stems a critical line across
which the system exhibits a first order phase transition
between two macroscopically different black hole states.
The line ends at a critical point (in red). We now show that
at the critical point a second order phase transition takes
place in which the minima of ΓμðλÞ become degenerate.
For systems with a single order parameter a critical

point occurs when the first, second and third derivatives of
the free energy vanish. The simplest generalization to the
case with multiple order parameters is to demand that the
Hessian matrix has one null eigenvalue, with the rest being
strictly positive. Calling vi the corresponding normalized
eigenvector, we further require that the third derivative of
ΓμðλÞ along vi vanishes. Thus, in addition to (17), the
critical point must satisfy

vj
∂2ΓμðλÞ
∂λi∂λj ¼ 0; vivjvk

∂3ΓμðλÞ
∂λi∂λj∂λk ¼ 0: ð18Þ

To ensure that we still have a minimum, the fourth
derivative along vi should be positive. Following this
approach we find that theN ¼ 4 higher spin theory exhibits
two mirror critical points, the first of which is located at

μ2 ¼ 5μ; λ1 ¼
0.3299

μ
; v1 ¼ −0.2061;

μ3 ¼ 8.7184μ2; λ2 ¼
0.0854

μ
; v2 ¼ 0.0349;

μ4 ¼ 2.9299μ3; λ3 ¼
1.0259

μ
; v3 ¼ −0.9779;

ð19Þ

and corresponds to the one displayed in Fig. 3. The second
point (not shown in Fig. 3) is obtained by exchanging
λ2 ↔ λ3 (Q3 → −Q3) and μ3 → −μ3, which is a symmetry
of the action (14). The values of the charges and the entropy
at the critical points can be computed directly from (9)
and (12). One can check that in the range 1.0886 < μ <
6.3591 the second order phase transition takes place inside
the Hawking-Page surface and is therefore not relevant. The
endpoints of this interval correspond to the intersection of
the critical point with Hawking-Page surface.

FIG. 2. Hawking-Page surface for the slð4;RÞ theory. The
minimum is located at μ2 ¼ 1, μ3 ¼ 0, μ4 ¼ 0. This coincides
with the critical temperature of 2þ 1 BTZ black holes after
identifying μ2 ¼ β=ð2πlÞ.

FIG. 3. Phase diagram of the N ¼ 4 system, with the second
order critical point in red and the first order critical line in black.
The complete diagram is symmetric with respect to the vertical
axis. μ ¼ μ2=5.

FIG. 4. μ3—Q3 diagram with iso—μ4 curves.
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The phase diagram “μ3 − μ4” is qualitatively similar to a
“P-T” diagram for a liquid-gas transition. Therefore, a
Van der Waals-like equation of state is expected to describe
the different phases. Figures 4 and 5 are the analog of
plotting “isotherms” in a “P-V” diagram for a liquid-gas
system. A drastic change in the derivatives ∂μ=∂Q is
observed when crossing the critical line. Thus, we could
identify the different regions as a “liquid” phase, in which
the black holes are highly sensitive to any change in the
charges, and a “gaseous” phase, characterized by consid-
erably smaller values of ∂μ=∂Q.

It is important to notice that the phase transitions
always occur between black hole solutions with Q4 ≠ 0,
as seen explicitly in the “μ4 −Q4” diagram (Fig. 5).
This fact guarantees that the states between which the
system is transitioning have the same asymptotic (UV,
far from the horizon) structure [27]; it is the spin of
the highest spin charge that sets the value of the AdS radius
and the central charge. As argued in [10], the corresponding
asymptotic symmetry algebra for N ¼ 4 is a W-algebra
associated to the (2,1,1) nonprincipal embedding of slð2Þ
in slð4Þ.
To conclude, in this paper we have studied the

thermodynamic phase space properties of slðN;RÞ
higher spin black holes. We have identified the even-
N theories as those having well-defined (finite and
stable) partition functions in the ensemble under con-
sideration. These theories exhibit Hawking-Page transi-
tions, just like any black hole coupled to a cosmological
constant. Moreover, we find first order phase transitions
between different higher spin black holes, as well as a
second order transition and a critical point. According to
the AdS=CFT correspondence, the phenomena observed
in the bulk should have a counterpart at the boundary
CFT. We leave the investigation of this issue for future
work.
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