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The choice of statistics for a quantum particle is almost always a discrete one: either bosonic or
fermionic. Anyons are the exceptional case for which the statistics can take a range of intermediate values.
Holography provides an opportunity to address the question of how the behavior of interacting anyons
depends on the choice of statistics. In this paper, we analyze the spectrum of a strongly coupled, gapless
fluid of anyons described holographically by the D3-D7’ model with alternative boundary conditions. We
investigate how these alternative boundary conditions impact the instability of the gapless homogeneous
phase toward the formation of spatial order. In addition, we also show that for a particular, limiting choice
of the alternative boundary conditions, this holographic system can be interpreted as describing strongly
coupled (2þ 1)-dimensional QED. In this case, the instability leads to a spontaneous, spatially modulated
magnetic field.
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I. INTRODUCTION

To those of us living in a higher number of dimensions,
the physics of two spatial dimensions can be unusual and
surprising. Quantum particles, in addition to being bosons
or fermions, can also be anyons. Rather than being
restricted to integer or half-integer spins, anyons can have
any spin in between. Exchanging two identical anyons
shifts the wave function by a phase which is not just zero or
π but can take any value from zero to 2π. Rather than just a
theoretical curiosity, anyons are found as quasiparticles in
fractional quantum Hall states [1] and have even been
observed experimentally [2]. Furthermore, a gas of anyons
forms a unconventional superfluid [3–6], which led to a
brief role as a possible explanation for high Tc super-
conductivity [7].
However, 40 years after their discovery, anyons remain

quite poorly understood [8]. Even in such a basic system as
the noninteracting anyon gas, many basic questions remain
unanswered. For example, what is the ground state for more
than two anyons? Does an anyon gas ever Bose condense?
Is there a virial expansion to describe the low-density
equation of state? What is the low-energy effective hydro-
dynamic description of an anyon gas at high density and
low temperature?
Gauge/gravity duality is well positioned to answer

many of these open questions. Some intractable quantum
many-body problems can be rendered nearly trivial in the

holographic dual description. For instance, finite density
fermion systems can be analyzed holographically without
any trace of the fermion sign problem, which severely
impedes numerical lattice computations. Anyon fluids may
prove to be another such powerful application of holography.
Fractional statistics can be obtained in a (2þ 1)-

dimensional conformal field theory (CFT) with a conserved
Uð1Þ by an SLð2;ZÞmappingwhichmixes theUð1Þ current
and the background vector field [9,10]. This procedure is
easily implemented holographically by considering alter-
native quantization of the bulk gauge field [11–13]. As usual,
a semiclassical gravity dual describes a strongly coupled
anyon fluid. This seems to indicate that for anyons, perhaps,
it is in the strong-coupling rather than in the weak-coupling
limit where the physics is simplest. In fact, recently the last
two of the above questions have been partially addressed
in Ref. [13].
Alternative quantization can instead be interpreted as a

way to include dynamical gauge fields in the boundary
theory. Rather than changing the statistics of the particles,
the transformation can be viewed as changing which
combination of the gauge field and charged currents is
held fixed and which combination is allowed to fluctuate.
Holographic anyons have been recently studied in a

variety of probe brane contexts [11,12,14–19]. A particu-
larly interesting example is the D3-D7’ system, originally
constructed as a model for the fractional quantum Hall
effect [20], which was generalized in Ref. [11] to describe a
system of anyons. The gapped quantum Hall state can be
transformed by an appropriate SLð2;ZÞ mapping into an
anyonic superfluid, the properties and instabilities of which
were described in Ref. [14].
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In this paper, we focus on another feature of the D3-D7’
model: the spatially modulated instability. In many physical
systems, the ground state at finite charge density features
spontaneously broken spatial symmetries. Often, the insta-
bility of the homogeneous state is enhanced for large
charge and is suppressed by a magnetic field.
The gapless phase of the D3-D7’ model is a typical

example; at sufficiently high density, the homogeneous
state is unstable to fluctuations at nonzero momentum
[21,22]. The end point of this instability is a striped spin,
charge, and current density wave, with a spatial modulation
closely matching the wavelength of the unstable modes
[23]. At zero magnetic field, the phase transition between
homogeneous and striped states is second order. When a
magnetic field is applied, this transition becomes first order,
and the critical charge density increases.
Here, we examine the behavior of this modulated

instability under an SLð2;ZÞ transformation mapping the
fluid of fermions into one composed of anyons. Recently, it
was argued that a uniform fluid of free anyons at low
density is unstable to becoming inhomogeneous [24]. We
show here that this strongly coupled anyonic fluid has an
instability toward a striped phase and that the SLð2;ZÞ
transformation has a notable effect both on where in
parameter space the instability occurs and on the nature
of the modulated ground state. Compared with the original
fermion fluid, the wavelength of the unstable fluctuation is
longer. Furthermore, the instability for the anyons is
typically driven by the hydrodynamical diffusion mode.
A particularly interesting case is the S transformation of

the original CFT. Rather than interpreting this mapping as
altering the statistics of the particles, one can instead view it
as changing the background gauge field into a dynamical
one. The resulting theory is essentially (2þ 1)-dimensional
strongly coupled QED with a large number of flavors. At
weak coupling, (2þ 1)-dimensionalQEDat nonzerodensity
is thought to undergo spontaneous magnetization [25–28].
In the strongly coupled case, there is an instability above a
critical density to form a spontaneously modulated magnetic
field. We are able to numerically solve for this nonlinear,
striped ground state, in a calculation similar to Ref. [23].
We organize the discussion in this paper as follows. We

first review in Sec. II the construction of the D3-D7’ system,
the alternative boundary conditions which yield an anyonic
fluid, and the setup of the fluctuation analysis. Then, in
Sec. III, we study the quasinormal mode spectrum, in
particular the onset of the modulated instability. We focus
in Sec. IV on the S transformation of the original system,
interpreting it as the holographic dual of strongly coupled,
(2þ 1)-dimensional QED. Finally, we discuss the results,
remaining open questions, and outlook for the future in Sec.V.

II. D3-D7’ SYSTEM

We begin by reviewing the D3-D7’ system and its
generalization to describe a strongly coupled anyon fluid.

The original model was constructed by embedding a probe
D7-brane in a D3-brane background such that the inter-
section is a (2þ 1)-dimensional defect which breaks super-
symmetry and of which the low-energy excitations are
purely fermionic. This model has a well-studied phenom-
enology, with both a Minkowski embedding, yielding a
gapped, quantum Hall phase, and a black hole embedding,
dual to a gapless, conducting phase [20–23,29–31]. Other
closely related models include Refs. [32–39].
By considering alternative quantization for the

D7-brane gauge field, the fermions become anyons. The
anyonization of the Minkowski embedding was explored in
Refs. [11,14]; this case does not suffer from a modulated
instability and, for a specific choice of statistics, describes
an anyonic superfluid. In this paper, we will instead focus
on the instability of the anyonized black hole embedding.

A. Background

The near-horizon background of a stack of Nc nonex-
tremal D3-branes is

L−2ds210 ¼ r2ð−hðrÞdt2 þ dx2 þ dy2 þ dz2Þ

þ r−2
�
dr2

hðrÞ þ r2dΩ2
5

�
ð1Þ

F5 ¼ 4L4ðr3dt ∧ dx ∧ dy ∧ dz ∧ drþ dΩ5Þ; ð2Þ

where hðrÞ ¼ 1 − r4T=r
4 and L2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πgsNc
p

α0. For con-
venience, we work in dimensionless coordinates, e.g.,
r ¼ rphys=L. This background is dual to N ¼ 4 super
Yang-Mills theory at a temperature T ¼ rT=ðπLÞ.
We parametrize the internal 5-sphere as an S2 × S2

fibered over an interval,

dΩ2
5 ¼ dψ2 þ cos2 ψðdθ2 þ sin2 θdϕ2Þ

þ sin2 ψðdα2 þ sin2 αdβ2Þ; ð3Þ

where ψ ∈ ½0; π=2�, θ; α ∈ ½0; π�, and ϕ; β ∈ ½0; 2π�. As ψ
varies, the sizes of the two S2’s change. At ψ ¼ 0, one of
the S2’s shrinks to zero size, and at ψ ¼ π=2, the other S2

shrinks. The S2 × S2 at ψ ¼ π=4 is the “equator” of the S5.

B. D7-brane probe

The probe D7-brane extends in the t, x, y, and r
directions and wraps the two 2-spheres; it represents a
(2þ 1)-dimensional defect in the (3þ 1)-dimensional
spacetime directions. We initially consider a homogeneous
embedding, depending only on r and characterized by two
functions, ψðrÞ and zðrÞ. We also include a homogeneous
nonzero charge density and background magnetic field
by turning on the following D7-brane world volume gauge
fields:
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Fxy ¼
L2

2πα0
b ð4Þ

Frt ¼
L2

2πα0
at0: ð5Þ

The physical magnetic field is given by B ¼ 1
2πα0 b.

This embedding completely breaks supersymmetry and
is unstable to the D7-brane slipping off the S5. We cure this
instability by turning on f1 and f2 units of magnetic flux
through the two 2-spheres:

Fθϕ ¼ L2

2πα0
f1
2
sin θ ð6Þ

Fαβ ¼
L2

2πα0
f2
2
sin α: ð7Þ

For f1 and f2 within a certain range, this tachyonic mode
can be lifted above the Breitenlohner-Freedman (BF)
bound [20].
For this spatially homogeneous ansatz, the D7-brane

action has a Dirac-Born-Infeld (DBI) term given by

SDBI ¼ −T7

Z
d8xe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þ 2πα0FμνÞ

q

¼ −N
Z

drr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4cos4ψ þ f21Þð4sin4ψ þ f22Þ

q

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ r4hz02 þ r2hψ 02 − a0t2Þ

�
1þ b2

r4

�s
; ð8Þ

and a Chern-Simons (CS) term given by

SCS ¼ −
ð2πα0Þ2T7

2

Z
P½C4� ∧ F ∧ F

¼ −N f1f2

Z
drr4z0ðrÞ þ 2N

Z
drcðrÞba0tðrÞ; ð9Þ

where N ≡ 4π2L5T7V3, the volume of the (2þ 1)-
dimensional defect is V3, and

cðrÞ ¼ ψðrÞ − 1

4
sin ð4ψðrÞÞ − ψ∞ þ 1

4
sinð4ψ∞Þ: ð10Þ

Note that cðrÞ, and therefore ψðrÞ, plays the role of an
axion. The equations of motion derived from this action,
first derived in Ref. [20], are given in Appendix A.
The asymptotic behavior of the fields is given by

ψðrÞ ∼ ψ∞ þmrΔþ − cψrΔ− ð11Þ

zðrÞ∼z0þ
f1f2
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf21þ4cos4ψ∞Þðf22þ4sin4ψ∞Þ−f21f

2
2

p
ð12Þ

atðrÞ ∼ μ −
d
r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf21 þ 4 cos4 ψ∞Þðf22 þ 4 sin4 ψ∞Þ − f21f

2
2

p ;

ð13Þ

where the boundary value ψ∞ and the exponents Δ� are
fixed by the fluxes f1 and f2:

ðf21 þ 4 cos4 ψ∞Þ sin2 ψ∞ ¼ ðf22 þ 4 sin4 ψ∞Þ cos2 ψ∞

ð14Þ

Δ� ¼ −
3

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16

f21 þ 16 cos6 ψ∞ − 12 cos4 ψ∞

f21 þ 4 cos6 ψ∞

s
:

ð15Þ

The parameters m and cψ correspond to the “mass” and
“condensate” of the fundamental fermions, respectively,
and μ and d correspond to the chemical potential and
charge density, respectively. The physical charge density,
defined by the variation of the on-shell action with respect
to the boundary value of At, is given by D ¼ 2πα0N

LV3
d.

In this paper, we are concerned exclusively with black
hole embeddings, for which the D7-brane probe reaches the
horizon at r ¼ rT and which correspond to a gapless state.
And, for simplicity, we focus only on massless m ¼ 0
embeddings. These embeddings are trivial, in the sense that
ψ is constant, if either d or b is zero.
The properties of this phase, including the anomalous

Hall conductivity and spontaneous magnetization, have
been extensively studied [20,21]. In particular, at high
density and low temperature and magnetic field, the
homogeneous black hole embedding suffers from an
instability at nonzero momentum [21,22], which results
in a spatially modulated ground state [23].
In the following sections, when we present specific

numerical results in figures, we choose the specific fluxes
f1 ¼ f2 ¼ 1ffiffi

2
p , such that Δþ ¼ −1 and Δ− ¼ −2 and thus

ψ∞ ¼ π
4
. We will keep the formulas in their general form,

however.

C. Anyonization

Given any (2þ 1)-dimensional CFT with a conserved
U(1) current Jμ, there are two natural transformations
mapping it into another CFT: adding a Chern-Simons term
for an external vector Bμ coupled to Jμ and turning that
external vector into a dynamical field [9,10]. Combining
these operations generates an SLð2;RÞ which acts via

J�μ ¼ asJμ þ bsBμ

B�
μ ¼ csJμ þ dsBμ: ð16Þ
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Charge quantization restricts the transformations to
SLð2;ZÞ.
The action of this SLð2;ZÞ transformation can be

understood in two ways. One interpretation is that the
mapping yields a new theory with current J�μ and magnetic
field B�

μ. The particles carrying this current have anyon
statistics, with a statistical angle1

θ ¼ π

�
1 −

cs
ds

�
: ð17Þ

An alternative view of the new theory is as a description
of the original particles and fields but with different
dynamics. The original theory describes the behavior of
the current Jμ in presence of a nondynamical background
field Bμ. In the transformed theory, the dynamical variable
is the combination asJμ þ bsBμ, with csJμ þ dsBμ held
fixed.
In general, holding fixed a linear combination of the

current and the field might seem somewhat strange.
However, for the S-transformed theory, where as ¼ ds ¼ 0,
cs ¼ −bs ¼ 1,

J�μ ¼ −Bμ

B�
μ ¼ Jμ; ð18Þ

the roles of the dynamical current and background field are
exchanged.2 The new theory describes a dynamical Uð1Þ
gauge field coupled to a fixed charged current. Although
this gauge field is dynamical, i.e., integrated in the path
integral, it does not have a Maxwell term in the action.
As we will explain in Sec. IV, this S-transformed theory is
then a good approximation of (2þ 1)-dimensional QED,
either at very large coupling or with a very large number of
fermionic flavors.
Holographically, the background field B is dual to the

boundary value of the bulk gauge field Aμ,

Bμ ¼
1

2π
ϵμρν∂ρAνj∂ ; ð19Þ

while Jμ is given by the variation of the on-shell bulk action
with respect to the boundary value of Aμ,

Jμ ¼
δS
δAμ

����∂ ; ð20Þ

which, by the equations of motion, is proportional to the
radial derivative ∂rAμ.
In the bulk, the SLð2;ZÞ transformation acts on the

asymptotic boundary conditions for Aμ. In the original
CFT, the external field Bμ, and therefore the boundary value
of Aμ, is held fixed. After the transformation (16), fixing the
new external field B�

μ translates in the bulk to fixing a linear
combination of Aμ and ∂rAμ at the boundary:

0 ¼ δB�
2π

¼ −csδDþ ds
δB
2π

: ð21Þ

This mixed boundary condition on Aμ corresponds to
alternative quantization of the bulk field.
The bulk equations of motion are unaffected by the

transformation (16), and bulk solutions therefore remain
solutions under SLð2;ZÞ, even though their holographic
interpretation is altered. However, as explained in the
following subsection, changing the boundary conditions
does significantly affect the spectrum of fluctuations around
these bulk solutions. For example, the Minkowski embed-
ding holographically dual to a gapped quantum Hall state in
the standard quantization can be transformed by an appro-
priate SLð2;ZÞ mapping into a gapless superfluid [11].

D. Fluctuations

In this section, we set up the fluctuation analysis of
the homogeneous anyon fluid described by the black hole
embedding of the D3-D7’ system. We pay particular
attention to how the anyon statistics change the boundary
conditions for bulk excitations and thereby impact the
stability of the homogeneous fluid.
We have the freedom to scale out one parameter of the

model, and for this, we choose the temperature. We
introduce a new compact radial variable:

u ¼ rT
r
: ð22Þ

The boundary is located at u ¼ 0, and the horizon is at
u ¼ 1. To scale out the dependence on rT , we introduce
notation with hats as follows:

x̂μ ¼ rTxμ; ẑ ¼ rTz; âμ ¼
aμ
rT

: ð23Þ

The rescaled density and magnetic field are then

d̂ ¼ d
r2T

; b̂ ¼ b
r2T

: ð24Þ

We consider excitations of the D7-brane gauge field âμ
and embedding scalars ψ and ẑ that are constant on the
internal S5. Rotational invariance of the homogeneous state
allows us to align the direction of the fluctuations with the x

1It has been argued that the statistical angle θ should be
quantized [40]. However, Ref. [41] has also suggested this
argument may not hold for gapless anyons.

2Note that for the S-transformed theory, the flux attachment
picture of an anyon current breaks down; ds ¼ 0 implies an
infinite amount of attached flux and, via Eq. (17), an infinite
statistical angle.
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axis. Working in radial gauge âu ¼ 0, the fluctuations take
the form

δψ ¼ δ ~ψðuÞe−iωtþikx ð25Þ

δẑμ ¼ δ~zμðuÞe−iωtþikx ð26Þ

δâμ ¼ δ ~aμðuÞe−iωtþikx: ð27Þ

The frequency and momentum can also be rescaled by the
horizon radius:

ω̂ ¼ ω

rT
; k̂μ ¼

kμ
rT

: ð28Þ

It is useful to work in terms of the gauge-invariant
combination:

δ~ex ¼ ω̂δ ~ax þ k̂δ ~at: ð29Þ

We now expand the D7-brane action (8) and (9) to
second order in the fluctuations and derive the linearized
equations of motion for δ ~ψ, δ~z, δ~ex, and δ ~ay. In addition,
the equation of motion coming from the variation of δâu
provides a constraint enforcing the gauge condition âu ¼ 0.
This rather lengthy coupled system of equations can be
found in Appendix B. All the fluctuations δ ~ψ , δ~z, δ~ex,
and δ ~ay are in general coupled.
As explained above, the SLð2;ZÞ operation which

transforms the statistics also mixes the background field
and conserved current. This corresponds to changing the
boundary conditions obeyed by the holographic dual fields.
Initially, the background field B is fixed, which translates to
Dirichlet boundary conditions for the bulk gauge field
δaμj∂ ¼ 0. After applying an SLð2;ZÞ transformation,
csδJμ þ dsδBμ ¼ 0 instead. From the variation of the
action (8), the conserved current is given by

Jμ¼
2πα0N
LV3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf21þ4cos4ψ∞Þðf22þ4sin4ψ∞Þ−f21f

2
2

q
∂uâμ:

ð30Þ

Instead of using the SLð2;ZÞ parameters cs and ds, as in
Eq. (21), it is convenient to parametrize the general
alternative boundary condition in the following way,

−nδFμu þ
1

2
ϵμνρδFνρ ¼ 0; ð31Þ

where n is given by

n ¼ cs
ds

Nc

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf21 þ 4 cos4 ψ∞Þðf22 þ 4 sin4 ψ∞Þ − f21f

2
2

q
:

ð32Þ

The parameter n controls the degree to which the anyons
differ from fermions; n ¼ 0 gives the original Dirichlet
boundary condition, yielding a fluid of fermions. Note that
for order 1 cs=ds, the parameter n is order Nc, and the
statistical angle (17) is then θ ¼ π −Oð1=NcÞ. Also, note
that the parameter n does not completely specify the
SLð2;ZÞ transformation. In general, an SLð2;ZÞ trans-
formation which changes n also affects the charge and
magnetic field. However, the anyonic charge density d̂� and
magnetic field b̂� after the transformation will depend on
the values of as, bs, cs and ds in Eq. (16).
Using the boundary limit u → 0 of the gauge constraint

coming from the δâu equation of motion (B11),

k̂δ∂u ~ax þ ω̂δ∂u ~at ¼ 0; ð33Þ
the boundary condition (31) can be written as

in

ω̂2 − k̂2
δ∂u ~ex þ δ ~ay ¼ 0 ð34Þ

−inδ∂u ~ay þ δ~ex ¼ 0: ð35Þ
Our goal is to find the spectrum of quasinormal modes

(QNM) as a function of n. These correspond to values of
ðω̂; k̂Þ for which there are normalizable solutions of the
coupled fluctuation equations of motion (B5), (B7), (B8),
(B9), (B10) with the boundary conditions (34) and (35). We
search for such solutions numerically, using the techniques
described in Refs. [21,22] and pioneered in Refs. [42,43].

III. ANYONIC STRIPES

Let us first review the QNM spectrum for the fermionic
system, with the original boundary conditions n ¼ 0 and
zero magnetic field b̂ ¼ 0, studied in Ref. [21]. A repre-
sentative example is shown in Fig. 1. At long wavelength

FIG. 1. The quasinormal spectrum for fixed d̂ ¼ 4, b̂ ¼ 0, and
n ¼ 0. Solid curves show Imω̂, and dotted curves give Reω̂. The
hydrodynamical mode is shown in blue, the next-lowest imagi-
nary longitudinal mode is red, the lowest imaginary transverse
mode is black, and the complex holographic zero sound mode is
brown.
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k̂ → 0, the lowest QNM is a longitudinal hydrodynamical
mode associated with charge conservation,

ω̂ ¼ −iD̂k̂2 þ � � � ; ð36Þ

where D̂ is the rescaled diffusion constant. The next-
longest-lived QNMs are a pair of purely imaginary modes,
one longitudinal and one transverse, which have the same
frequency at k̂ ¼ 0 due to the restoration of rotational
invariance there.
As k̂ is increased, the hydrodynamical mode eventually

merges with this purely imaginary longitudinal mode.
These combine into two complex modes which are iden-
tified as the holographic zero sound modes, propagating in
opposite directions. This transition represents the crossover
from the hydrodynamic to the collisionless regime.
The longest-lived transverse mode, the only purely

imaginary mode in the collisionless regime, is responsible
for the spatially modulated instability. As k̂ is increased,
Imω̂ initially increases also, reaching a local maximum at
some nonzero momentum. At a critical density, d̂cr ≈ 5.5,
this maximum enters the upper half of the complex
ω-plane, signaling that fluctuations with k̂cr ≈ 2.8 have
become unstable. At this point, there is a second-order
phase transition to a striped phase with spatially modulated
charge and spin densities as well as a modulated transverse

current [23]. Just above the critical point, the spatial
frequency of these stripes k̂0 ¼ k̂cr and then gradually
increases with increasing d̂.
Now, we investigate how changing the statistics impacts

the QNM spectrum. As we do this, the anyon charge
density d̂� and background magnetic field b̂� are given by
Eq. (16) in terms of the original charge density d̂; magnetic
field b̂; and the parameters as, bs, cs, and ds of the SLð2;ZÞ
transformation. However, the boundary conditions of the
bulk gauge field, and therefore the QNM spectrum, depend
only on n, which is proportional to cs=ds. For this reason, it
is much more convenient to label the solutions and the
QNM spectra by n, d̂, and b̂. Note that varying n for fixed d̂
and b̂ changes not only the anyon statistics but also, in
general, d̂� and b̂�.3

We begin by analyzing the effect of increasing n,
keeping b̂ ¼ 0; see Fig. 2. For fixed d̂, as we increase n
from zero, longitudinal and transverse modes mix; at very
small k̂, instead of two imaginary modes, the next-longest-
lived QNMs are combined into two complex modes.

FIG. 2. The quasinormal spectrum for fixed d̂ ¼ 4 and b̂ ¼ 0 and varying n: (upper left) n ¼ 0.01, (upper right) n ¼ 0.1, (lower left)
n ¼ 0.5, and (lower right) n ¼ 2. Solid curves show Imω̂, and dotted curves give Reω̂. The hydrodynamical mode is shown in blue, the
next-lowest imaginary longitudinal mode is red, the lowest imaginary transverse mode is black, and the complex holographic zero sound
mode is brown.

3For a given n, one could attempt to choose the SLð2;ZÞ
parameters such that d̂� ¼ d̂ and b̂� ¼ b̂, but because as, bs, cs,
and ds ∈ Z, this is, in general, not possible.
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For sufficiently small n, at some nonzero k̂, they split into
two purely imaginary modes. Then, as in the n ¼ 0 case,
the longitudinal mode combines with the hydrodynamical
mode at larger k̂ to form the holographic zero sound, and
the transverse mode is the lowest purely imaginary mode at
large k̂.
However, as n is increased further, the mixing is

stronger, and the longitudinal and transverse modes never
split into purely imaginary modes again. The holographic
zero sound then extends to k̂ ¼ 0, but with a mass gap.
In this case, the hydrodynamical mode, without another
imaginary mode with which to merge, continues to large k̂,
and there is no crossover to a collisionless regime.
The choice of statistics also impacts the nature of the

modulated instability, both the critical d̂ at which it occurs
as well as the mode responsible. Figure 2 shows that, for
d̂ ¼ 4, the imaginary frequency of the hydrodynamical
mode increases with n. At n ≈ 2, the mode crosses the Imω̂
axis and becomes unstable.
This process can also be illustrated by varying d̂ for a

fixed choice of n. As we increase d̂, the spectrum evolves in
a similar way as above; see Fig. 3. For d̂ ¼ 0 and n > 0, the
spectrum is qualitatively similar to that of n ¼ 0 and d̂ > 0.
The hydrodynamical mode and the next-lowest, purely

imaginary longitudinal mode merge at some nonzero k̂ to
form a complex holographic zero sound. As d̂ is increased,
the mixing at small k̂ between the nonhydrodynamic
longitudinal mode and the lowest transverse modes gets
stronger, resulting in a massive holographic zero sound.
At this point, the hydrodynamic mode then no longer

merges with another mode and persists to large k̂, with an
imaginary frequency which increases with d̂. Eventually,
at a critical d̂cr, Imω̂ becomes positive for modes with
momentum k̂cr, and the homogeneous phase becomes
unstable.
For n≳ 0.1, the unstable mode is continuously con-

nected to the hydrodynamic charge diffusion mode. The
instability is then an example of uphill diffusion, where the
charges spontaneously separate into positive and negative
charge regions.
Computing the onset of the instability as a function of n,

we see that both d̂cr and k̂cr depend on the statistics; both
decrease with increasing n. This behavior is illustrated in
Fig. 4. The decrease in d̂cr implies that increasing n
enhances the instability.
Of particular note is that k̂cr is zero above some finite

value of n. What is the physical meaning of k̂cr going to
zero? Let us prepare the system with small enough d̂ such

FIG. 3. The quasinormal mode spectrum for n ¼ 2 and b̂ ¼ 0 and varying d̂: (upper left) d̂ ¼ 0 (upper right) d̂ ¼ 0.4, (lower left)
d̂ ¼ 0.6, and (lower right) d̂ ¼ 4. As in Fig. 2 above, solid curves show Imω̂, and dotted curves give Reω̂. The hydrodynamical mode is
again shown in blue, the next-lowest imaginary longitudinal mode is red, the lowest imaginary transverse mode is black, and the
complex holographic zero sound mode is brown. Another complex mode is shown in orange.
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that we are in the homogeneous phase. If d̂ is then increased
to d̂cr, a phase transition to a modulated phase is expected
with stripes of width ∼ 2π

k̂cr
. As k̂cr → 0, the stripes grow in

size, implying that, for large enough n, the modulated
phase is just a separation of space into two halves.
However, to properly determine the nature of the

modulated ground state, we need to go beyond the
fluctuation analysis and solve for the nonlinear inhomo-
geneous solution. This has to be done for general n in the
same way the striped ground state was computed previ-
ously for n ¼ 0 in Ref. [23]. The presence of an instability
at nonzero k̂ implies a phase transition to a spatially
modulated phase, and for n ¼ 0, the expected striped
ground state was indeed realized. To compute the dynami-
cally preferred wavelength of the stripes, the free energy
must be minimized over different values of k̂. However,
computing the free energy for general n is quite subtle.
Implementing alternative boundary conditions on the bulk
gauge field induces several terms into the action which
need to be properly taken into account when computing the
free energy [13].
Without currently having access to the ground state at

generic n, we do not know for certain whether the
instability with k̂cr ¼ 0 really leads to a phase separation
or to a spatial modulation with finite wavelength. Features
of the unstable mode imply similar features of the ground
state to which the instability leads, but the implication is by
no means guaranteed.
One exception is n ¼ ∞, for which we can readily

compute the free energy and explicitly solve for the
modulated ground state, which we will discuss further in
Sec. IV below. As we will show, the preferred ground state
for d̂ > d̂cr is actually spatially modulated with a finite
wavelength. For n ¼ ∞, we find that the phase transition is
continuous, as was found for n ¼ 0 in Ref. [23]. In both
cases, as the transition is approached from the striped

phase, d̂ − d̂cr → 0þ, the amplitude of the modulation also
goes to zero. For n ¼ ∞, the frequency of the spatial
modulation also continuously goes to zero at the critical
point, while for n ¼ 0, it stays nonzero. The behavior of
k̂cr in Fig. 4 strongly suggests a transition between these
two types of critical behavior around n ≈ 1.6.
We have so far kept b̂ ¼ 0; now, we turn it back on.

The QNM spectrum with the standard quantization n ¼ 0
in the presence of a magnetic field was thoroughly studied
in Ref. [22], and two notable effects were found: a nonzero
b̂ mixes the modes and, at large enough b̂, leads to a
massive holographic zero sound. This behavior is very
similar to the mixing caused by changing the statistics n,
seen in Fig. 2. However, unlike the anyon statistics, b̂
suppresses the modulated instability; the critical d̂cr
increases with b̂. In addition, it was shown in Ref. [23]
that at nonzero b̂, the phase transition to the modulated
phase becomes first order.
Investigating the impact of increasing b̂ with n ≠ 0, we

find that anyon statistics do not notably alter these effects. b̂
still enhances mode mixing and mitigates the modulated
instability. For example, Fig. 4 illustrates that increasing b̂
increases both d̂cr and also k̂cr, although the qualitative
behavior is unchanged. In particular, k̂cr still vanishes
above a certain n.
We have seen that the SLð2;ZÞ-transformed theory with

anyon statistics has a striped instability for ranges of d̂ and
b̂ which are different from that for the original statistics.
However, as discussed in Sec. II C, there is an alternate
view of the SLð2;ZÞ transformation in which the particle
statistics remains the same but the dynamics of the fields
change. In the example of the S-transformed theory n ¼ ∞,
the charge current becomes fixed, and the background
gauge field becomes dynamical; this theory is interpreted as
strongly coupled (2þ 1)-dimensional QED. We focus now
on this particularly interesting case.

FIG. 4. (Left) The critical d̂cr as a function of n and (right) the critical momentum k̂cr vs n. For both figures, the lower, dashed red curve
shows b̂ ¼ 0, while the upper, solid blue curve is b̂ ¼ 1. The curves are fit to the numerically computed black data points.
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IV. 2 + 1 QED

After applying an SLð2;ZÞ transformation to the original
CFT, one can interpret the resulting theory as a new CFT
with a conserved current carried by anyons. The QNM
spectrum we have computed corresponds to the poles of
the two-point functions of this anyonic current. For the
S-transformed theory, corresponding to n → ∞, there is
another simple way of looking at things. The new theory
is the original theory now coupled to a Uð1Þ vector field
which is integrated in the path integral but has no
Maxwell term.4

We can then interpret our model at n → ∞ as describing
QED, either for a large Nf or at large coupling. Of course,
in addition to the Uð1Þ gauge field, the electrons have
SUðNÞ interactions as well. Let us see what we can learn
about this theory from our computations.
If, in the initial theory, we start with a charge density d̂

and magnetic field b̂ ¼ 0, then after the S transformation,
we will have a theory where the fermions are coupled to
a dynamical gauge field with a fixed charge density d̂.
The QNMs computed in Sec. III now correspond to the
poles of the two-point correlation functions of the Uð1Þ
field strength.
As discussed in Sec. III, for large n, the instability

appears in the hydrodynamic diffusion mode. From the
point of view of the gauge theory, the instability occurs in
the two-point function of the physical photon field

hFxyFxyi ð37Þ

and therefore drives the theory toward a state of alternating
stripes of positive and negative magnetic field. Note that
the total magnetic field in all space is a conserved quantity
in 2þ 1 dimensions and so remains zero. As before, the
nonlinear couplings cause other quantities to become
modulated as well. In this case, the striped ground state
also features a modulated transverse electric field Ey.
As was seen in Fig. 4, the d̂cr at which the instability

occurs goes down with increasing n. This remains the case
as b̂ is increased above zero. In Fig. 5, we show d̂cr as a
function of b̂ for both n ¼ 0 and n ¼ ∞. As before, b̂ acts
to suppress the instability, and for a given d̂cr, there is a b̂
above which the homogeneous phase is stable.
The fluctuation analysis of Sec. III showed that k̂cr

vanishes above a certain n, as shown in Fig. 4. This
suggests that the true ground state would feature a phase
separation rather than a spatial modulation. However, this is
not the case, as we can show by explicitly constructing the
nonlinear modulated states, computing the free energy, and
analyzing the phase diagram.

As discussed above, to compute the phase diagram for
general n as we did for n ¼ 0 in Ref. [23] requires careful
consideration of several boundary terms induced by the
SLð2;ZÞ mapping [13]. While this is straightforward in
principle, scanning through the whole parameter space is a
daunting task requiring significant computational resour-
ces. In this paper, we are content to focus on the case of
n ¼ ∞, which corresponds simply to imposing Neumann
boundary conditions on the bulk gauge field. In this case, d̂
is held fixed, and it is as if we are just working in the
canonical ensemble.
The standard quantization, n ¼ 0, corresponds to the

grand canonical ensemble, with the chemical potential
μ̂ ¼ â0j∂ kept fixed. By the standard holographic dictionary,
the grand canonical potential is just given by the Euclidean
on-shell action with appropriate counterterms, Ω½μ̂� ¼
SEon-shell. For n ¼ ∞, the boundary conditions instead fix
d̂ ∝ ∂râ0j∂ [see Eq. (13)]. The free energy is given by the
Legendre transform of the grand canonical potential:

F½d̂� ¼ SEon-shell þ d̂ μ̂ : ð38Þ
To study the phase transition, we numerically solved

the equations of motion for the modulated ground state,
employing the techniques of Ref. [23] but using the
alternative boundary conditions. To determine the dynami-
cally preferred spatial frequency k̂0 of the modulated
state, we varied the fixed spatial periodicity L̂ in order
to minimize the free energy density F=L̂. We then com-
puted the free energy density difference ΔF=L̂ between the
modulated state and the homogeneous state.
The results for b̂ ¼ 0 are shown in Fig. 6. The left-hand

plot shows that, at small d̂, ΔF=L̂ > 0, meaning the
homogeneous phase is preferred. As d̂ is increased, there
is a transition at d̂ ¼ d̂0 ≈ 2.5 to the modulated phase,
as predicted by the perturbation analysis. The free energy
density difference ΔF=L̂ smoothly approaches zero as

FIG. 5. The critical d̂cr as a function of b̂, for n ¼ 0 (solid, blue
curve) and n ¼ ∞ (dashed, red curve). The curves are numerical
fits to the black data points.

4One can generalize this to situations where the vector field has
a Chern-Simons term.
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ðd̂ − d̂0Þ2, as shown in the left-hand plot, implying a
continuous phase transition.
From the right-hand plot, we see that for d̂well above d̂0,

the true ground state has a nonzero k̂0, indicating stripes of
finite wavelength. However, as d̂ → d̂0, k̂0 trends toward
zero. Extrapolating the best-fit curve, we estimate k̂0 → 0 at
d̂ ≈ 2.8 which is not quite equal to d̂0 ≈ 2.5, but within
numerical error. It is numerically challenging to resolve the
small k̂ behavior, corresponding to large spatial periodicity
L̂. Very large values of L̂ are not well sampled by a finite
number of grid points. It is natural to conjecture that k̂0 → 0

exactly at d̂0, which is certainly consistent with our results,
given their numerical accuracy. However, to verify this with
a high degree of confidence will require more extensive
numerical computations.

V. DISCUSSION AND OUTLOOK

Anyons have the unique property that their statistics are
tunable. In this paper, we used holographic duality to study
the effects of varying the statistics in a fluid of strongly
interacting anyons, and we saw that varying the statistics
parameter n led to changes in the QNM spectrum and,
in certain cases, in the qualitative characteristics of the
ground state.
The effect of nonzero n is in some ways similar to

turning on a magnetic field, inducing a mixing of modes
at small k and leading eventually to a massive zero sound.
This is perhaps not surprising since turning on n can be
interpreted as turning on a statistical magnetic field.
However, increasing n enhances, rather than suppresses,
the modulated instability. We also observed that the
wavelength of the unstable mode grows with n, and for
large enough n, the instability is no longer due to the
transverse mode but to the hydrodynamical longitudinal
mode.

The SLð2;ZÞ transformation is typically understood as
changing the particle statistics and mixing the charge
current and background field of the boundary theory.
However, as we saw, this procedure can be interpreted in
an entirely different way; rather than acting on the particle
statistics, the SLð2;ZÞ transformation can be understood
as altering the dynamics of the field theory.
This viewpoint is most applicable for the S-transformed

theory, where n ¼ ∞, in which the boundary gauge field
becomes dynamical and the theory can be interpreted
as strongly coupled, (2þ 1)-dimensional QED. In this
case, the instability is driven by fluctuations of the
magnetic field and leads to a striped ground state in
which the magnetic field is spatially modulated. We
found that the phase transition at zero total magnetic
field is still continuous but involves both the amplitude
and the spatial frequency of the modulation vanishing at
the critical point.
We conclude with several interesting open topics for

future investigation. We found the conditions under which
the homogeneous phase becomes unstable and, for general
n, inferred the presence of a nearby phase transition.
However, we expect that, at least in certain regions of
parameter space, the true ground state is neither homo-
geneous nor striped but rather a checkerboard, with
continuous translation symmetry broken in both directions,
as was found in Refs. [44,45]. For a first step toward
inferring the existence of such a phase, one could attempt to
study fluctuations of the striped states, looking for further
symmetry-breaking instabilities.
For the case of n ¼ ∞, we showed in Sec. IV that

the correct free energy was found by adding a boundary
term corresponding to a Legendre transformation. In
general, an n-dependent boundary term must be added
[13], and the resulting free energy for the ground state
can be obtained. We leave this generalization for
future work.

FIG. 6. (Left) The difference in free energy density ΔF between the homogeneous state and the modulated state plotted against d̂ for
b̂ ¼ 0. The best-fit curve is ΔF=L̂ ¼ −0.6ðd̂ − d̂0Þ2, indicating a continuous phase transition at d̂0 ≈ 2.5. (Right) The spatial frequency
k̂0 of the modulated ground state plotted vs d̂ in the S-transformed n ¼ ∞ case. The best-fit curve is k̂0 ¼ 0.7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − d0 − 0.4

p
.
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Electrical conductivity is an important observable that
provides a useful window on the behavior of the anyonic
fluid. The dc conductivity of original, homogeneous
D3-D7’ model with n ¼ 0, was computed in Ref. [20]
by the Karch-O’Bannon method, and the dc and ac
conductivities of both the homogeneous phase and the
striped phase were computed in Ref. [46]. The conductivity
for general n could be computed by the straightforward
boundary condition modification described in Sec. II D.
This result would be expected to match the general formula
conjectured in Ref. [13], which follows from requiring the
corresponding Green’s functions to transform covariantly
under SLð2;ZÞ.
In this paper, we have focused on the gapless, conducting

phase given by the black hole embeddings of the D3-D7’
model. The Minkowski embeddings were the subject of
two earlier papers [11,14], which found that for a particular
choice of n, the gapped quantum Hall state was transformed
into an anyonic superfluid. It would be interesting to
understand how the system transitions from the metallic
phase studied here to the superfluid.5

Finally, one long-standing question in holography is how
to directly observe the statistics of the strongly interacting
particles of the boundary theory. In a perturbative descrip-
tion, single-particle operators can be used to probe the
properties of the underlying particles. The holographic
description, instead, is in terms of collective excitations,

like energy and charge currents, and a quasiparticle
description is lacking. Of course, this is not at all surprising,
given that particles with tractable holographic duals are
strongly interacting.
In a top-down holographic model, one can infer the

particle statistics from the weakly coupled, flat-space
brane intersection description. In the D3-D7’ model, for
example, the lowest excitations of the open 3-7 strings
are fundamental fermions, which become the particles of
the boundary field theory in the decoupling, near-horizon
limit. But, the question of how the bulk observables encode
the statistics of the boundary particles remains.
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APPENDIX A: BACKGROUND EQUATIONS OF MOTION

In this Appendix, we reproduce the equations of motion for the D7-brane embedding scalars ψðrÞ and zðrÞ and radial
world volume gauge field atðrÞ, which were originally derived in Ref. [20].
The action has no explicit dependence on z, so the equation of motion for zðrÞ can be integrated once to give

z0 ¼
cz
r4 − f1f2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hr2ψ 02

~d2 þ r4
h ðhð1þ b2

r4Þðf21 þ 4 cos4 ψÞðf22 þ 4 sin4 ψÞ − ðczr4 − f1f2Þ2Þ

s
; ðA1Þ

where cz is a constant of integration fixed by regularity at the IR boundary. For black hole embeddings, cz ¼ f1f2r4T .
The equation of motion for atðrÞ can also be integrated once to give

a0t ¼ ~d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hr2ψ 02

~d2 þ r4
h ðhð1þ b2

r4Þðf21 þ 4 cos4 ψÞðf22 þ 4 sin4 ψÞ − ðczr4 − f1f2Þ2Þ

s
; ðA2Þ

where ~dðrÞ≡ d − 2bcðrÞ is the radial electric displacement, the constant of integration d is the boundary charge density,
and the function cðrÞ is defined in Eq. (10).

5The choice of internal fluxes made here, f1 ¼ f2 ¼ 1ffiffi
2

p , does not admit Minkowski embeddings. In order to study the transition from
black hole to Minkowski embedding, either f1 or f2 would have to be set to zero.
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Finally, the equation of motion for ψðrÞ is

∂r

�
r2gðrÞ

�
1þ b2

r4

�
ψ 0ðrÞ

�
¼ −16b cos2 ψ sin2 ψa0t þ

8hr4

gðrÞ cosψ sinψ ½ðf21 þ 4 cos4 ψÞ sin2 ψ − ðf22 þ 4 sin4 ψÞ cos2 ψ �;

ðA3Þ
where the function gðrÞ is given by

g ¼ h

ð1þ b2

r4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~d2 þ r4

h ðhð1þ b2

r4Þðf21 þ 4 cos4 ψÞðf22 þ 4 sin4 ψÞ − ðczr4 − f1f2Þ2Þ
1þ hr2ψ 02

s
: ðA4Þ

APPENDIX B: FLUCTUATION EQUATIONS OF MOTION

This Appendix contains the equations of motion for the fluctuation fields δ ~ψ , δ~z, and δ ~aμ. Despite being rather long, these
equations are straightforward to obtain and were previously worked out in Ref. [22].
First, let us define the functions

ĝ≡ h

1þ b̂2u4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~̂d
2
u4 þ ð1þ b̂2u4ÞG − hf21f

2
2

1þ hu2ψ 02

s
ðB1Þ

G≡ ðf21 þ 4 cos4 ψÞðf22 þ 4 sin4 ψÞ ðB2Þ

A≡ 1þ hu2ψ 02 þ hu−4z̄02 − ā020; ðB3Þ

where ~̂d≡ d̂ − 2cðuÞb̂ and the prime denotes differentiation with respect to u. However, for the background fields z and a0,
we have also defined ā00 ≡ ∂ra0 ¼ − u2

rT
∂ua0 and z̄0 ≡ ∂rz ¼ −u2rT∂uz. We also define

Ĥ ≡ ĝu2

Ah
ð1þ b̂2u4Þð1þ hu−4z̄02 þ hu2ψ 02Þδâ0t −

�
4b̂sin2ð2ψÞ þ ĝ

2h
ā00ð1þ b̂2u4Þ∂ψ logG

�
δ ~ψ

þ ĝu2

A
ð1þ b̂2u4Þā00ψ 0δ ~ψ 0 −

ĝ
Au2

ð1þ b̂2u4Þā00z̄0δ~z0: ðB4Þ

The δ ~ψ equation of motion reads�
−

h
2ĝu4

�
∂2
ψG −

1

2G
ð∂ψGÞ2

�
þ 8b̂ā00 sinð4ψÞ þ

u2

2
∂uðĝψ 0ð1þ b̂2u4Þ∂ψ logGÞ

�
δ ~ψ

¼ −u2∂u

�
ĝ
A
ð1þ b̂2u4Þð1þ hu−4z̄02 − ā020Þδ ~ψ 0

�

þ ĝu2

h2
ð−ð1þ b̂2u4Þð1þ hu−4z̄02Þω̂2 þ ð1þ hu−4z̄02 − ā020Þhk̂2Þδ ~ψ

−
ĝ
2u2

ð1þ b̂2u4Þ∂ψ logGz̄0δ~z0 þ
ĝ
h
z̄0ψ 0ð−ð1þ b̂2u4Þω̂2 þ hk̂2Þδ~z

− u2∂u

�
ĝh
Au2

ð1þ b̂2u4Þz̄0ψ 0δẑ0
�
þ
�
4b̂sin2ð2ψÞ þ ĝ

2h
ā00ð1þ b̂2u4Þ∂ψ logG

�
u2δ ~a00

þ u2∂u

�
ĝu2

A
ā00ψ

0ð1þ b̂2u4Þδ ~a00
�
−
ĝu4

h
ā00ψ

0k̂δ~ex

− ik̂

�
4ā00sin

2ð2ψÞ þ hb̂

2ĝð1þ b̂2u4Þ ∂ψG − b̂u2∂uðgu4ψ 0Þ
�
δ ~ay: ðB5Þ
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The δ~z equation of motion reads

0 ¼ ĝ
h
z̄0ψ 0ð−ð1þ b̂2u4Þω̂2 þ hk̂2Þδ ~ψ ðB6Þ

− u2∂u

�
ĝh
Au2

ð1þ b̂2u4Þz̄0ψ 0δ ~ψ 0 −
ĝ
2u4

∂ψ logGz̄0δ ~ψ
�
− u2∂u

�
ð1þ b̂2u4Þ 1þ hu2ψ 02 − ā020

Au2
ĝδẑ0

�

þ ĝ
h2

ð−ð1þ b̂2u4Þð1þ hu2ψ 02Þω̂2 þ ð1þ hu2ψ 02 − ā020Þhk̂2Þδ~zþ
ĝ
h
ā00z̄

0k̂δ~ex − u2∂u

�
ĝ

Au2
ð1þ b̂2u4Þā00z̄0δ ~a00

�

− ik̂ b̂ u2δ ~ay∂uðĝz̄0Þ: ðB7Þ

The δ ~a0 equation of motion reads

0 ¼ u2H −
ĝ
h
u4ā00ψ

0k̂2δ ~ψ þ ĝ
h
ā00z̄

0k̂2δ~z − k̂
ĝ
h2

u4ð1þ hu−4z̄02 þ hu2ψ 02Þδ~ex − ik̂δ ~ayu2∂u

�
2cðuÞ − b̂ ĝ

h
u4ā00

�
: ðB8Þ

The δ ~ax equation of motion reads

0 ¼ −
ĝ
h
u4ψ 0ā00k̂ ω̂ δ ~ψ þ k̂ ω̂

ĝ
h
ā00z̄

0δ~z − ω̂
ĝ
h2

u4ð1þ hu−4z̄02 þ hu2ψ 02Þδ~ex

− iω̂δ ~ayu2∂u

�
2cðuÞ − b̂ ĝ

h
u4ā00

�
þ u2

ω̂
∂uðĝu2ð−δ~e0x þ k̂δ ~a0tÞÞ: ðB9Þ

The δ ~ay equation of motion reads

0 ¼ ik̂ b̂ δ ~ψu2∂uðĝu4ψ 0Þ þ 4ik̂ā00 sin
2ð2ψÞδ ~ψ þ ik̂

hb̂∂ψG

2ĝð1þ b̂2u4Þ δ ~ψ

þ ik̂ b̂ δ~zu2∂uðĝz̄0Þ þ iδ~exu2∂u

�
2cðuÞ − b̂ ĝ

h
u4ā00

�
− u2∂uðĝu2δ ~a0yÞ

−
ĝ
h2

u4ð1þ hu−4z̄02 þ hu2ψ 02Þω̂2δ ~ay þ
ĝ
h
u4Ak̂2δ ~ay: ðB10Þ

And finally, the constraint coming from the δau equation of motion, which maintains the gauge condition au ¼ 0, reads

−ω̂H þ k̂
ω̂
u2ĝð−δ~e0x þ k̂δ ~a00Þ ¼ 0: ðB11Þ
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