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We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling
violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange
metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-
temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be
achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to
the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with

increasing temperature in the high-temperature regime.
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I. INTRODUCTION

The surprising transport behavior of cuprate strange
metal has been the subject of intense scrutiny [1]. The
normal state transport of high-temperature superconductors
is highly anomalous and remains one of the most chal-
lenging topics in modern condensed matter physics. The
drawbacks of the conventional methods is that, based on the
perturbation theory, it is hard to deal with strongly coupled
many-body problems. The ubiquitous T-linear resistivity,
the strong T2 dependence of the Hall angle 8, the
temperature scaling of magnetoresistance, and thermo-
power are some of the striking anomalies that have puzzled
the physics community over the past three decades.

For decades, researchers have expended theoretical
efforts on determining the relationship between the anoma-
lous transport scaling and the quantum criticality [2-7].
Recently, the gauge-gravity duality, as a nonperturbative
tool, was suggested to study the Hall angle and dc conduc-
tivity in strongly interacting critical theories [§—12]. Analytic
expressions were obtained for thermo-electric conductivity
tensors with a magnetic field and disorder [13—17], and it was
determined that the Hall angle generically displays a different
temperature dependence of resistivity [8]. This is in agree-
ment with the two-relaxation-times model suggested by
Anderson et al. [18,19]. Intensive studies have been con-
ducted for obtaining numerical and analytical expressions for
the transport properties of holographic theories with the
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translational invariance broken [20-35]. In [36,37], a scaling
hypothesis was proposed to explain the unusual scaling laws
for the thermopower, magnetoresistivity, and Hall Lorenz
ratio. Unfortunately, this hypothesis failed in reproducing the
temperature dependence of thermodynamic quantities such
as specific heat and entropy density of cuprates. An alter-
native scaling approach was later proposed for constructing
viable phenomenologies of the cuprate strange metal in
[38,39]. A more convincing comparison with experimental
phenomenologies is still lacking.

In this study, we employ a new black hole solution in the
IR regime as a toy gravitational dual model and develop a
new computational tool to study the transport coefficients
of the normal state of high-temperature superconductors.
The radial flow for electric conductivity is derived from the
holographic Wilsonian renormalization group equation.
The dc conductivity can be read off from the regularity
condition at the event horizon. As a toy model toward
comparisons with real experimental data, we show that
some aspects of the temperature dependence of transport
and thermodynamic quantities observed in the experiments
can be reproduced in this model. The heat conductivity and
Hall Lorenz ratio are proportional to the temperature in the
high-temperature regime. The Nernst signal increases as the
temperature decreases. Linear temperature resistivity can
be obtained at large temperatures, and the Fermi-liquid-like
T? resistivity is recovered in the low-temperature regime
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with weak momentum relaxation. A key observation is that
the transport quantities are governed by the same quantum
critical dynamics as those for the thermodynamic quan-
tities. For example, entropy density and specific heat are
proportional to temperature, which is similar to the pro-
portionality between resistivity and thermal conductivity
under the high-temperature limit. In addition to evaluating
the temperature dependence of transport, we compute the
Lorenz number and Hall Lorenz ratio at zero temperature.

II. DYONIC BLACK HOLE SOLUTION WITH
A HYPERSCALING VIOLATING FACTOR

In this section, we present the details about how to derive
a dyonic black hole solution with a dynamic exponent and
hyperscaling violating factor in the presence of a magnetic
field in four-dimensional bulk spacetime. We consider the
Einstein-Maxwell-dilaton-axion model with two U(1)
gauge fields. One gauge field coupled with the dilaton
field is required to generate a Lifshitz-like vacuum, while
the other has a charged black hole. For further investigation
of the transport properties, we also add linear axions to
generate proper momentum relaxation. Therefore, we
consider the following action:

S
—%ewi(aﬂh)z +Zviey'¢:|’ (1)
i1 =1

where 4;, 1,7;, V; are undetermined constant parameters
and Z;(¢p) = ", Y(p) = €', and V = Ve"?.
The equations of motion read
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At the same time, we assume the following ansatz for the
metric, gauge fields, and axions:
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ds? = r? (—rzzf(r)dt2 +

A] = al(r)dt,

zf( )+r2dx + r2dy? )

A, = a,(r)dt + Bxdy,
X1 = ﬂxv X2 = ﬂy’

where z and 6 are dynamical and hyperscaling violation
exponents, respectively [40-42]. The first gauge field A; is
an auxiliary gauge field, leading to a Lifshitz-like vacuum.
The second gauge field is the physical one which provides
the finite chemical potential, and B is the magnetic field.
From the equations of motion for gauge fields,

0,(v/=ge? (F;)"") = 0, (6)
we obtain the expression for the charge density,

g = Il = G F) = e, (1)
where ¢; are integral constants. According to the holo-
graphic principle, ¢, is interpreted as the charge of the
black hole, while ¢, is the “charge” associated with the
auxiliary U(1) gauge field. The charge g, should be
vanishing in the case z = 1.

Next, subtracting the rr component from the ## compo-
nent of the Einstein equation (2),

—%(9 ~2)(0 -2z + 2)r9f+%r6+2(¢’)2f =0, (8)

one can solve the dilaton field,

d=+(0-2)(0-2z+2)Inr=vinr. (9)

The expressions (7) and (9) change the xx component in the
Einstein equation (2) to

(9 _ 2) r26—z— ( —6‘+Z+2f

—Aiv+20— 4
r
42

1
_ 5 rm/+9—2y2 + E Zvir}’i” =0. (10)
i

N =

l r/lzy+29—4B2

Solving (10), we obtain the function f in terms of some
undetermined parameters,

2 —/1 v+0-4 B2rﬂ.2u+€—4
r=2 +
2(9 2 llU+Z—2) 2(9—2)(12U+Z —2)
2 =2 V. ptiv 6
D R M T
O-2)iv—0+2z) “~(0-2)(ywv—20+z+2)
mrf=:2, (11)

where m is an integral constant related to the mass of the
black hole. The condition that the metric is asymptotic
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to the Lifshitz geometry fixes the parameter y; as
follows:

0
Y1 ="- (12)
v

For the determination of the remaining parameters, we
need to use the equation of motion of the dilaton field in
which the expressions (7) and (9) are plugged into

Zﬂ r —Aiv+26— 4 ql
_ llzr/lzu+26—432 _ nrr/u+6—2y2
2

+D Vi =0, (13)

26 = l(r—6’+z+2f

Combining (10) with (13) by eliminating the function f,
one can obtain the following relation

3 Sl A= 2 g

+ % [v = Ay(6 — 2))r2v20-4p2
+ [y —n(0 - 2)]rr02p2
+ZV (6 —2) —v]r* = 0. (14)

Since ¢, and S could be arbitrary-valued constants, their
coefficients should be zero, and we can determine the
values of A, and 5. Although B is also arbitrary, its
coefficient no longer has an undetermined parameter after
A, is determined, so we let the coefficients and the
exponentials of the terms which contain B and V, be
equivalent, respectively. Meanwhile, the ¢; terms should
cancel with the V; term. In the end, we have

v v 0—4
ﬂ = — :—/1 = — ﬂ = s
2= 5 g n 2T 9o 1 U
72— v ) ql_ Z_9+1 )
Bz(2z—6—2)
Vy=——— 15
2 4(2_2> ( )

Since we are considering the effective low-temperature
physics of the total geometry, it is not surprising that V,
depends on the magnetic fields. The magnetic field is fixed
in the IR, and only when 2z — @ = 2, does this term vanish.
For example, when z =1 and 6 = 0, V, disappears. For
simplicity, we introduce the transformation

7 —-20-2)(0-2)q. B - (0-2)(z-2)8

(16)

Then, we can plug all parameters (12) and (15) into the
expression (11) and obtain the blackening factor
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The constant term is set to 1, as long as we demand
Vi=(z-0+1)(z-0+2). (17)

One may notice that as (z —6) — 0, f(r) appears to
diverge. A well-defined solution can be achieved in an
alternative form:

2 2
m q Inr ﬂ
f (r ) =1- 24z2-0 : d+z-0 ~ 2z-0
r 22-0)r r
B2r2z—6
+ , 18
4(z-2)(3z—6-4) (18)
B m g Inr p
r?r 22-z)r* &t
B2r2z—6
+ b
4(z-2)(3z—6-4)
F2rt = QZF_17 (19)

where m and g, are finite physical parameters without
divergence as (z — ) — 0. A careful examination of (18)
and (19) reveals that they satisfy the corresponding Einstein
equation and Maxwell equation. The Hawking temperature
at the event horizon r = ry is given by

p2+6-2z)

i 6
T=—(1- — - pr
2z 42 -2)ry 2rg

Bzrif_7
e —2)(3z—9—4)>' (20)

As 7z — 1 and 0 — 1, the first auxiliary gauge field then
vanishes, and the metric of the black hole solution can be
recast as

ds* = _gttdt2 + grrdr2 + gxx<dx2 + dyz)

= r 0\ =rf(r)de* + rf;(z ) + r*(dx* + dy )}
m Inr p* B?
Jir) = _ﬁ_%_ﬁ? 8rt’
A =g, Inrdt+ g (xdy — ydx),
P =1y = P
V(g) = 2r + B2r3/8,
Z(g)=r".  Y(p)=r. (1)

where 6, m, g, and B are the parameters related to the
hyperscaling violation factor, mass, charge, and magnetic
field, respectively. Equation (21) is the main metric ansatz

046015-3



GE, TIAN, WU, and WU

used in this paper. Note that the magnetic field B appears in
the potential V(¢) because we only consider the IR
geometry here so that the magnetic field is fixed in the
action. One critical observation is that in the absence of f and
B terms, the blacken function f(r) and the scalar potential A,
are the same as those of the (2 + 1)-dimensional charged
BTZ black brane [43-45]. The electrostatic potential of the
black hole diverges asymptotically as In r. But the presence
of divergent boundary terms is an artifact of the renormal-
ization procedure, and the divergence can be removed [46].
The boundary is located at » — 4oc0. The nondegenerate
horizon is located at r = ry, where f(ry) =0 and its
associated Hawking temperature is given by

T—r—H<1—q—%—ﬁ—2—B—2). (22)

2 4ry 2y 8rf;

The black hole solution is not an asymptotic AdS solution;
therefore, it can, in principle, be interpreted as an IR
geometry embedded in the AdS space. When ry > 42,
rf > g5 and rf; > B?, we recover the well-known rela-
tivistic scaling T ~ rg. This corresponds to a large temper-
ature regime, although the temperature satisfying these
ranges can be decreased by tuning S, ¢,, and B. The
entropy density and the specific heat of this black hole are
given by s = 4zry and

0 2 4 4nT
Conps = T(—s> — 472 <1 + f T 2).
T ) g, p.8 VAg3 + (B +4nT)

These are proportional to the temperature in the large-
temperature regime. Experiments on optimally doped
YBa,CuO,_s provide the electronic specific heat ¢ ~ T
from critical to room temperatures [47]. As shown in the
following, this Fermi-liquid scaling is not in conflict with
that of the anomalous transport.

The electric charge density is ¢,=-J'=
—/—9Z(¢$)0,A,. At zero temperature, that is, when
T = 0, the solution near the horizon develops an AdS, x
R? geometry. The near-horizon geometry reads ds*~
u=(—di* + du®) + rg(dx* + dy*), where u=r/(r—ry).
The Hawking temperature shows that even in the absence
of the U(1) gauge field, the black hole could still be
extremal with a near-horizon geometry of AdS,. This
implies that at low temperatures, the theory flows to an
infrared fixed point in the presence of linear axion fields.
However, a near-extremal dyonic black hole is unstable to
forming neutral scalar hair. From the holographic dic-
tionary point of view, we expect there is a domain wall
solution interpolating between AdS, in the UV and dyonic
AdS, x R? solutions in the IR. In [48], dyonic black holes
at finite temperature approaching AdS, in the UV were
constructed. If the scalar field is above the BF bound for
AdS, but below the Breitenlohner-Freedman bound for
AdS,, the black hole becomes unstable near extremality.
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For big enough magnetism, the black hole approaches
hyperscaling violating behavior in the IR as 7 — 0 [48].

III. HOLOGRAPHIC TRANSPORT COEFFICIENTS

The transport coefficients are computed in the hologra-
phy by studying perturbations of the background solution.
We developed the holographic Wilsonian approach pre-
viously given in [49-53] and computed the dc conductivity
by applying linear sources to the boundary fields. As far as
we know, the Wilsonian renormalization group approach
has not been utilized to describe the radial flow for
transport coefficients in the presence of momentum dis-
sipation. For computing the transport coefficients, the
consistent perturbation ansatz reads

o .
bA,. :/ 2—we_"‘”a,»(a), r), (23)
—o0 2TC
©dw .
5gtx,- = / Ze_lwtgxxhtx, ((1), r)? (24)
©dw .
oy = / Ze_lwt)(i(w’ r), (25)

where i runs over (1,2), and x; = x and x, = y. We notice
that in the computation of conductivity, we also need to
perturb the potential, but the B> term does not contribute to
the equations of motion as we can see 0A,, is only a
function of r and ¢. Since the spatial SO(2) is unbroken, it
is convenient to organize the fields as

- (ax - iay) o (htx - ihty)
=g =g

o ()(x_i)(y)
r= T

a

We can define a matrix ¢ from

V gtt/grr iwaz

Za/zg)zcx/\/ grrgtth;z =0 iwhtz y

V gtt/grngxx)(/z iw)(z

where the special notation [...]] is what we introduced just

for convenience, for example,

. a, a§2) a?)

he|| = | h. D w2 | (26)
2 3

Az PR S

where aé”, hg), and )(g") are linearly independent source

vectors, introduced to guarantee the source term is
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invertible. The RG flow equation of ¢ can be obtained by
taking the derivative of ¢ (see Appendix B for details) [54]:

—w? wB 0
~ Zy 9rr/ Gut

o =—"| -wB g, Y +B iwg, YR

110
0 ingx Y(¢)ﬁ2 _a)zgxx
1/Z 0 0

- iw\/@(} 0 gu/gc O |G
o 0 0 g.iZ
0 Mmoo

+ | %% g./gi 0 |G
0 0 y:(Z

The advantage of the holographic Wilsonian approach is
that it reduces the computation of conductivity from
second-order ordinary differential equations to first-order
nonlinear ordinary differential equations. The regularity
condition at the event horizon gives the boundary condition

z -z
5o = BZ-iq, _ Py
0= w )

_iPg.Y
> 0 Y

From the definition of the matrix &, we obtain the boundary
condition at the event horizon,

I . .
=d — iwa, — iBh

rr

(27)

lz|r=rH .

Finally, we obtain the expressions for &, and h,, at the
event horizon,

a9 ?Y + ayB(q; + B2Z? + g, ZP°Y)
(B*Z + g.B*Y)* + B*¢3
By Yy, + (B* 9 YZ + go. Y )y«
(BZZ + gxxﬁzy)z + qu% r:rH’
iy BB+ B2 4 g ZBY) = ay90.q28°Y
v (Bzz + gxxﬂ2Y>2 + qu%
ngxY)(x - (BzgxxYZ + g)zchﬂz))(y
(B*Z + g, B*Y)* + B*q3

h, =—iw

h

r=ry

The radially conserved currents can be deduced from the
Maxwell equation,

Jy =iwZa, — gyh — ZBh,y,
Jy =iwZa, — q;h,, + ZBh,. (28)

An important step in the evaluation of thermoelectric and
heat conductivity tensors involves the determination of
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physical quantities that are independent of the radial
coordinate. The conductivity tensor can be evaluated using
0;; = 0J;/OE; with E; = —iwa;. The electrical conduc-
tivity tensor reads

oy Pra(B+ g+ pry) (20)
Y B A+ B (g3 + 28 )

Bq,(B* + ¢3r +26°r3)
6 . = —0 = .
” Y B B+ B + 28 m)

(30)

Notably, in the absence of the external magnetic field, the
dc electric conductivity along the x direction is separated
into two terms,

L, o (31)
O AT T 42T

The corresponding resistivity in the small # limit can be
written as

4ﬂ271'2T2 TZ
Pxx = 2 2 == ’ (32)
E+285T T+A

where we defined T = 22T and A = ¢3/f*. For T > A,
the corresponding resistivity is dominated by the linear-T
behavior, whereas in the low-temperature regime, 7 < A,
the system supports Landau’s Fermi-liquid 72 law. On the
other hand, in the strong external magnetic field limit (i.e.,
B > ¢, ) and in the small-temperature limit, the electric
resistivity can be approximated as

_ PrilB; + rin(g3 + Fru)]
" B* + riy(q3 + Bru)’

2
Nﬂ_2r[2‘l
2

ﬂz ﬂz 2
~0.35B% + 1.86TVB = + 2.46T* = + O(T°).
q93 q3 9

(33)

Since the quadratic temperature dependence of inverse Hall
angles has been observed in multiple cuprates in the
underdoped to overdoped regions [1], the calculation of
the Hall angle in holography is also an interesting topic. The
Hall angle cot 8y = o,,/0,,, in this model, is found to be

2”%{ 2
cotdy ~ Ba. ~ T-. (34)
q2

Thus, we give an explicit model realizing the anomalous
scaling of the Hall angle proposed in Ref. [8]. That is to say,
the Hall relaxation rate is different from the transport
scattering rate of the linear-in-temperature resistivity.
Below, we also calculate other transport coefficients such
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as thermo-electric conductivities, thermal conductivity, and
Lorenz constants.

The conserved heat currents Q' are defined by intro-
ducing a two-form associated with the Killing vector field
equation K = 0,, as follows [14,15]:

Q' = \ /§”<— zlngii5hzi + g;i6h,; + giiéh;x> —-AJ
rr 1t

+ M(r)eyE; + 2Mo (et (35)
where
mir) = [ avgz@)s. (36)
and
My(r) = / dr' g Z($)BA,(F). (37)

Note that M(r) and M ,(r) correspond to the magnetization
density of the boundary theory as r — oo. The aforemen-
tioned ansatz corresponds to the application of an external
electric field E; along the x; direction and the temperature
gradient (VT), = ¢;T to the boundary theory. As the heat
currents Q' are radially conserved, we can evaluate them at
the event horizon,

QO =- &%gxxéhtx

9rr 9t

/
Q=- &@gxxéhty
V Grr 91t

The electrothermal conductivity can be evaluated at the
event horizon as

’

r=ry

(38)

r=ry

0Qr drg,Pry
TOE;,  Bqiriy+ (B> + f°ry)*
09" _ 4zBry(qzry + B> + riyf?)

= —a,. = = . (39
ST S TR, T B+ (B ) )

Oy = Qyy =

Finally, we can extract the heat conductivity tensor as

_167°Tr (B> + pr})
Y B+ (B )

Kxx =

(40)

) 162°TBq,ry;
Ky = —Kyy = )
v = A (B

(41)

The usual thermal conductivity thatis more readily measurable
experimentally is defined by introducing the thermal conduc-
tivity at zero electric current, K, = Ky — @ ¥y T/ 01y
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B 1672, T
B>+ riy(q5 + fPru)

(42)

Kxx

In the large-temperature regime, the heat conductivity k., ~ T,
which is same as the specific heat.
Next, we evaluate the Hall Lorenz ratio as follows:

L= Ry 1672 ‘
Toy B>+ q5ry + fPr

(43)

At high temperature, the Hall Lorenz ratio behaves as
Ly ~T. This temperature dependence can be compared
with the experimental results in [55]. At zero temperature,
with a vanishing magnetic field, the Hall Lorenz ratio

47’

Since the Nernst signal in cuprates has significantly
different behaviors compared with conventional metals, we
examine the Nernst signal holographically

becomes L = 471> +

ey = (6_1 : a)xy

B 47B r%lﬁz
B*q3 + riy(q3 + ruf’)?

4z 1

where ¢ and a denote the electric and thermoelectric
conductivity matrices, respectively. Figure 1 shows that
the Nernst signal increases as temperature decreases at the
high-temperature limit. Moreover, as shown in Fig. 2, the
obtained Nernst signal demonstrates a bell-shaped depend-
ence on the magnetic field. The blue line is almost straight,
whereas the green and red lines yield hill profiles. Our
system shows the transition from typical metal (blue line) to
the cuprate state (green, purple, and red), as the disorder /3
decreases in the Nernst signal perspective. Comparisons
can be made between the results obtained here and
experimental data presented in [56-58]. For example, the

€y

20f

5 10 15 20

FIG. 1. Nernst signal as a function of temperature with g, = 3,
p=1/2,and B=5.
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20
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20 40 60

FIG. 2. Nernst signal as a function of magnetic field B.
The lines from the top to bottom correspond to f/7T =1,
0.84, 0.66, 0.5, 1.5.

“hill” profile shown in Figs. 1 and 2 is similar to those in
Figs. 5, 6,9, and 12 in [56]. But the scaling behavior of the
Nernst signal is not clear from the existing literature.

Moreover, we are able to consider the thermoelectric
power (Seebeck coefficient)

Xy 4”Q2r3H
§=2 o . 45
o B+ ri(a; + Bra) (#2)

Under the weak magnetic field and charge limit, S behaves
as a constant. But in the small disorder limit, keeping ¢,
and B fixed, we have S~ 7T as ry becomes large. The
experimental result obtained at optimal doping suggested
the relation S~ a — bT, where a, b are constants [1].
However, there is no consensus on the temperature scaling
of the thermoelectric power from the experimental data
[59], even though some data appear to show a negative
slope.

The Lorenz constant L, which is related to the
Wiedemann-Franz law, is a key signature of a Fermi liquid.
In general, if L/Ly=1 (Ly=nx*/3xk%/e?) at zero
temperature, Landau’s Fermi-liquid description is satisfied.
In [60], L/LO> 1 has been used to diagnose strong
deviations from the quasiparticle picture in graphene. On
the other hand, L/L, < 1 at zero temperature also indicates
the breakdown of the Fermi-liquid theory [61-63].

At zero temperature and under a vanishing magnetic
field, the Lorenz ratio is given by

4 202
LA
Vg + B

Therefore, at B = 0, the Lorenz number becomes 87> only
when the disorder becomes stronger (i.e., #*/q5 — ). As
p*/q3 — 0, the Lorenz number approaches zero, and
deviations from the Fermi-liquid behavior can be observed.
A Lorenz ratio at zero temperature is comparable with the
Hall Lorenz ratio given in (43),

=4z
Taxx T.B—=0 46]% + :B4

[ = K , B

(46)
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-k 472
L= _ypy TP 4y
To |70 4q5 + p*

The Hall Lorenz ratio Ly at zero temperature under the
weak magnetic field with finite ¢, and f limits exactly
equals L obtained in this study. In the large-temperature
regime, the Lorenz ratios L and L presented here are also
proportional to the temperature, same as L.

IV. DISCUSSIONS AND CONCLUSIONS

In summary, we started from the general Einstein-
Maxwell-axion-dilaton theory, an effective low-temperature
theory, in four-dimensional spacetime and obtained a dyonic
black hole solution with a nonzero hyperscaling violating
factor. The temperature dependence of thermodynamic
quantities such as entropy density and specific heat were
obtained in the small 3, g,, and B limit. Since the metric
represents the low-temperature part of the geometry and can
be connected to a UV AdS, geometry, the thermodynamic
quantities expanded in the high-temperature part make sense
in the calculations.

We then computed the transport coefficients in this
holographic model. Linear-temperature-dependence resis-
tivity and quadratic-temperature-dependence inverse Hall
angle were achieved. Temperature scaling of the Hall
Lorenz ratio and Nernst signal are also calculated in this
model. The dc transport quantities obtained here are
governed by the same quantum critical dynamics as those
for the thermodynamic quantities of the black hole. These
results can be compared to that of cuprate strange metals. It
seems that, by exploring a new black hole solution with
dynamical exponent z =1 and hyperscaling violation
exponent § = 1, one can reproduce different temperature
scalings of the anomalous transport observed in experi-
ments. However, the results were obtained by introducing
an extra scale related to * and to the scaling dimension of
the operator breaking translations. More precisely, a par-
ticular combination of 52, q», B, and T leads to (33), as do
the heat conductivity, the Hall Lorenz ratio, and the Nernst
signal. Therefore, the results cannot be directly compared
to [36,38]. In the future, it would be interesting to compute
numerical optical conductivities and the onset of super-
conductivity in this holographic model.
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APPENDIX: NEW ANALYTIC METHOD ON
TRANSPORT COEFFICIENTS

It was proved in [51] that several approaches to RG flow
of transport coefficients are equivalent: These approaches
include the sliding membrane paradigm [49], Wilsonian
fluid/gravity [53], and holographic Wilsonian RG [50]. The
essential idea of the holographic Wilsonian renormalization
group approach is to integrate out the bulk field from
the boundary up to some intermediate radial distance. The
radial direction in the bulk marks the energy scale of the
boundary theory, and the radial flow in the bulk geometry
can be interpreted as the renormalization group flow of the
boundary theory.

The equations of motion of the linear perturbation are
given by

IR ' lg
XX h/> _qza/_ﬁZQ Y Lh7
<\/ 9rr91t a ‘ - i a
—iwg. Y, |2y, + wBZ, [2a, - B2Z, [Ph,, =0,
it 9n i
!
<1 /&Za;> — gl + a)221 /&aZ — wBZ, /&htz =0,
9rr i i
/9 ! [Grr . Grr
< lgxxyxg) + a)2Ygxx Xz lwﬁngxx -
9rr i it

h;, =0,
2
WGxx i . Iu
h,, — B, |=d. + ifg.Y,|=—a. + Bg,h
Vo = Ngw o T g TR
—wqya, = 0. (A1)

In order to deduce the RG flow equation of the transport,
we define a matrix ¢ by assuming

gtr/grrza/z ia)az
g%x/\/ grrgtth;z =0 iC‘)htZ s
V9l 9 Zgus e

where we have introduced the notation

a. a, a? oY
he|| = he B2 A2 (A2)
ZE PR S

with agi), hﬁ?, and ;(i") linearly independent source vectors

obeying the same equation as (A2). These auxiliary vectors
are only introduced to make the source term a square

PHYSICAL REVIEW D 96, 046015 (2017)

matrix. So the notation [...] is invertible in the following

derivation, while the column matrix on the left-hand side
should also be understood in the same sense. Taking the
derivative of ¢ and using the EoM repetitiously, we obtain

-1

gtl/grrza/z iwa,
o' = g)%x/\/ grrgtth;z ia)htz
V gtt/grngxX)(lz ia))(z
a, ||| iwa, |~
—iw6 || h, ||| ioh,,
Z/z wy,
—-w*Z wBZ 0
Y grr/gtt D 2 . 2
= -wBZ g, Yp"+BZ iwg.,Yp
0 ia)gxxyﬂz _wzgxxY
1
7 0 0
—io 250 % 0 |5
it ) |
0 0 oz
0 \/grrgrr O
gXX‘
+|2 \/g: 0 o]°
0 0 0

The prime denotes the derivative with respect to r. At the
event horizon, g,,/g,, — 0 and g,,6'/g,, — 0, the regularity
condition then requires

4 -8 0
~ BZ—i ifg..Y
[ % 09> —lﬁgT (A3)
i, Y
- l/'(i) 0 gxxY

Note that oy, can be determined by the constraint
equation (A2), which can be written as

0 0 O 0 0 0
—iB iw —-p|lo=|qg —-Bg/o 0
0 0 O 0 0 0

The above equation leads to

—iBoy| + iwoy — fo3 = qa, (Ad)

- . - B
—iBGlz + lwoy)y —ﬂ632 = —ﬂ s (AS)
—iB&n + i(!)&23 —/}&33 =0. (A6)

From (A5), we obtain
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~ quZ 232 + g)chﬁ2
0y — 5 > .
[0 w

(A7)

Equations (A4) and (A6) are evidently satisfied by com-
ponents of 6, given in (A3). Therefore, from the definition
of &, we have the regularity condition at the event horizon,

9u
—a - la)a
grr

Together with the regularity condition for £,, from the first
equation of (A2), we arrive at

iBhtz|r:r (Ag)

(ﬂzgxxY + BZZ -
= (wBZ —

iBQZ)h’tZ |r:rH

ia)gZ)“Z'r:rH - ingxY)(z|r:rH .

Keeping in mind that h, = (h, —ih,)/2 and
X: = (xx — ixy)/2, we easily obtain

axgxxLZZﬁZY + ayB(Q% + BZZZ + gxeﬂQY)
By Yy, + (B9 YZ + gi.YB)x.
(B°Z+ 9. °Y) + Bq5 =y,
B (43 + B2 + 9. ZP*Y) — a,g. Y
’ (B*Z + g,.f*Y)* + B*q3
ngxYZx - (BZQxxYZ + 92 Yﬁz))(y
(BzZ + gxxﬂ2 ) quZ

h, =—iw

r=ry

One can simply drop the y; terms in the expressions for 4,
and h,, since these terms do not contribute to the transport
coefficients as shown below. The radially conserved cur-

rents can be deduced from the Maxwell equation,

J =iwZa, — g h;, — ZBh,y,
Jy =iwZa, — q;h,, + ZBh,,. (A9)
The dc electric conductivity can be calculated via o;; gé ,

where E; = —iwa;. The electrical conductivity tensor then
reads
o PRE R
Y B iy + BRI (a3 20r)
Bq,(B? + q3r + 2p%r3
o g = BBt a2

B+ phri + BPriy(q3 + 267rm)

The radially conserved heat currents are given by
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Q= gﬂ I xxéhtx|r iy
rr Jit

Q= jtt Z;t xx5htv|r i (AIO)
rr Jit

Thus, we can evaluate the electrothermal conductivity
matrix as

X 2 .5
Fox = Ay = 09 ) 247rq2ﬂ2rH 2332°
TOE, B qsriy+ (B> +p°ry)
v =g — 0Q¥  ArnBry(q3ry + B> + rjif?)
o Y OTOE,  Bigiry+ (B + )’
(A11)
In general, we have the relation
()= (o ) Camn)
Qi a;T &;T )\=(V,T)/T

After obtaining the expressions for o;;, @;;, and @;;, the
thermal conductivity can be read off from (A12).
Considering the conditions Q,=0,V,7 =0, and
E, =0, the thermal conductivity matrix component K,
is given by

T 2
Ry = — 2 (A13)
Oxx — Oxx

where 6%, = 6,,(¢, = 0) denotes the quantum critical
conductivity. Similarly, the case Q, =0,V,T =0, and
E, =0 gives

Ta,.a,
Yy = =y (A14)

Gxx

=1
|

Therefore, we finally obtain

1672 Tr (B? + p*r3y)

K= , Al5
S Epgay @y D)
1672TBqg,r}
Ky = 2355 - 2q2rH2 3\2° (Al6)
B*q5riy + (B + B7ryy)

These results are consistent with the results obtained
in [13,14].
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