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We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling
violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange
metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-
temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be
achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to
the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with
increasing temperature in the high-temperature regime.
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I. INTRODUCTION

The surprising transport behavior of cuprate strange
metal has been the subject of intense scrutiny [1]. The
normal state transport of high-temperature superconductors
is highly anomalous and remains one of the most chal-
lenging topics in modern condensed matter physics. The
drawbacks of the conventional methods is that, based on the
perturbation theory, it is hard to deal with strongly coupled
many-body problems. The ubiquitous T-linear resistivity,
the strong T2 dependence of the Hall angle ϑH, the
temperature scaling of magnetoresistance, and thermo-
power are some of the striking anomalies that have puzzled
the physics community over the past three decades.
For decades, researchers have expended theoretical

efforts on determining the relationship between the anoma-
lous transport scaling and the quantum criticality [2–7].
Recently, the gauge-gravity duality, as a nonperturbative
tool, was suggested to study the Hall angle and dc conduc-
tivity in strongly interacting critical theories [8–12]. Analytic
expressions were obtained for thermo-electric conductivity
tensorswith amagnetic field anddisorder [13–17], and itwas
determined that theHall anglegenerically displays a different
temperature dependence of resistivity [8]. This is in agree-
ment with the two-relaxation-times model suggested by
Anderson et al. [18,19]. Intensive studies have been con-
ducted for obtaining numerical and analytical expressions for
the transport properties of holographic theories with the

translational invariance broken [20–35]. In [36,37], a scaling
hypothesis was proposed to explain the unusual scaling laws
for the thermopower, magnetoresistivity, and Hall Lorenz
ratio. Unfortunately, this hypothesis failed in reproducing the
temperature dependence of thermodynamic quantities such
as specific heat and entropy density of cuprates. An alter-
native scaling approach was later proposed for constructing
viable phenomenologies of the cuprate strange metal in
[38,39]. A more convincing comparison with experimental
phenomenologies is still lacking.
In this study, we employ a new black hole solution in the

IR regime as a toy gravitational dual model and develop a
new computational tool to study the transport coefficients
of the normal state of high-temperature superconductors.
The radial flow for electric conductivity is derived from the
holographic Wilsonian renormalization group equation.
The dc conductivity can be read off from the regularity
condition at the event horizon. As a toy model toward
comparisons with real experimental data, we show that
some aspects of the temperature dependence of transport
and thermodynamic quantities observed in the experiments
can be reproduced in this model. The heat conductivity and
Hall Lorenz ratio are proportional to the temperature in the
high-temperature regime. The Nernst signal increases as the
temperature decreases. Linear temperature resistivity can
be obtained at large temperatures, and the Fermi-liquid-like
T2 resistivity is recovered in the low-temperature regime
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with weak momentum relaxation. A key observation is that
the transport quantities are governed by the same quantum
critical dynamics as those for the thermodynamic quan-
tities. For example, entropy density and specific heat are
proportional to temperature, which is similar to the pro-
portionality between resistivity and thermal conductivity
under the high-temperature limit. In addition to evaluating
the temperature dependence of transport, we compute the
Lorenz number and Hall Lorenz ratio at zero temperature.

II. DYONIC BLACK HOLE SOLUTION WITH
A HYPERSCALING VIOLATING FACTOR

In this section, we present the details about how to derive
a dyonic black hole solution with a dynamic exponent and
hyperscaling violating factor in the presence of a magnetic
field in four-dimensional bulk spacetime. We consider the
Einstein-Maxwell-dilaton-axion model with two Uð1Þ
gauge fields. One gauge field coupled with the dilaton
field is required to generate a Lifshitz-like vacuum, while
the other has a charged black hole. For further investigation
of the transport properties, we also add linear axions to
generate proper momentum relaxation. Therefore, we
consider the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − 1

4

X2
i¼1

eλiϕðFiÞ2

−
1

2
eηϕ

X2
i¼1

ð∂χiÞ2 þ
X2
i¼1

Vieγiϕ
�
; ð1Þ

where λi, η; γi; Vi are undetermined constant parameters
and ZiðϕÞ ¼ eλiϕ, YðϕÞ ¼ eηϕ, and V ¼ Vieγiϕ.
The equations of motion read

Rμ
ν −

1

2

X2
i¼1

eλiϕðFiÞμρðFiÞνρ −
1

2
eηϕ

X2
i¼1

∂μχi∂νχi

−
1

2
∂μϕ∂νϕþ 1

2
δμν

�
1

4

X2
i¼1

eλiϕðFiÞ2 þ
X2
i¼1

Vieγiϕ
�

¼ 0;

ð2Þ

∂μð
ffiffiffiffiffiffi
−g

p
eλiϕðFiÞμνÞ ¼ 0; ð3Þ

∂μð
ffiffiffiffiffiffi
−g

p
eηϕgμν∂νχiÞ ¼ 0; ð4Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ −

1

4

X2
i¼1

λieλiϕðFiÞ2

−
1

2
ηeηϕ

X2
i¼1

ð∂χiÞ2 þ
X2
i¼1

Viγieγiϕ ¼ 0: ð5Þ

At the same time, we assume the following ansatz for the
metric, gauge fields, and axions:

ds2 ¼ r−θ
�
−r2zfðrÞdt2 þ dr2

r2fðrÞ þ r2dx2 þ r2dy2
�
;

A1 ¼ a1ðrÞdt; A2 ¼ a2ðrÞdtþ Bxdy;

χ1 ¼ βx; χ2 ¼ βy;

where z and θ are dynamical and hyperscaling violation
exponents, respectively [40–42]. The first gauge field A1 is
an auxiliary gauge field, leading to a Lifshitz-like vacuum.
The second gauge field is the physical one which provides
the finite chemical potential, and B is the magnetic field.
From the equations of motion for gauge fields,

∂rð
ffiffiffiffiffiffi
−g

p
eλiϕðFiÞrνÞ ¼ 0; ð6Þ

we obtain the expression for the charge density,

qi ¼ Jti ¼
ffiffiffiffiffiffi
−g

p
eλiϕðFiÞtr ¼ r−zþ3e

1
2
λiϕa0i; ð7Þ

where qi are integral constants. According to the holo-
graphic principle, q2 is interpreted as the charge of the
black hole, while q1 is the “charge” associated with the
auxiliary Uð1Þ gauge field. The charge q1 should be
vanishing in the case z ¼ 1.
Next, subtracting the rr component from the tt compo-

nent of the Einstein equation (2),

−
1

2
ðθ − 2Þðθ − 2zþ 2Þrθf þ 1

2
rθþ2ðϕ0Þ2f ¼ 0; ð8Þ

one can solve the dilaton field,

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ − 2Þðθ − 2zþ 2Þ

p
ln r ¼ ν ln r: ð9Þ

The expressions (7) and (9) change the xx component in the
Einstein equation (2) to

1

2
ðθ − 2Þr2θ−z−1ðr−θþzþ2fÞ0 − 1

4

X
i

r−λiνþ2θ−4ðqiÞ2

−
1

4
rλ2νþ2θ−4B2 −

1

2
rηνþθ−2ν2 þ 1

2

X
i

Virγiν ¼ 0: ð10Þ

Solving (10), we obtain the function f in terms of some
undetermined parameters,

f ¼
X
i

ðqiÞ2r−λiνþθ−4

2ðθ− 2Þð−λiνþ z− 2Þ þ
B2rλ2νþθ−4

2ðθ− 2Þðλ2νþ z− 2Þ

þ β2rην−2

ðθ− 2Þðην− θþ zÞ−
X
i

Virγiν−θ

ðθ− 2Þðγiν− 2θþ zþ 2Þ
−mrθ−z−2; ð11Þ

where m is an integral constant related to the mass of the
black hole. The condition that the metric is asymptotic
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to the Lifshitz geometry fixes the parameter γ1 as
follows:

γ1 ¼
θ

ν
: ð12Þ

For the determination of the remaining parameters, we
need to use the equation of motion of the dilaton field in
which the expressions (7) and (9) are plugged into

νr2θ−z−1ðr−θþzþ2fÞ0 þ 1

2

X
i

λir−λiνþ2θ−4ðqiÞ2

−
1

2
λ2rλ2νþ2θ−4B2 − ηrηνþθ−2ν2

þ
X
i

Viγirγiν ¼ 0: ð13Þ

Combining (10) with (13) by eliminating the function f,
one can obtain the following relation

1

2

X
i

½νþ λiðθ − 2Þ�r−λiνþ2θ−4ðqiÞ2

þ 1

2
½ν − λ2ðθ − 2Þ�rλ2νþ2θ−4B2

þ ½ν − ηðθ − 2Þ�rηνþθ−2β2

þ
X
i

Vi½γiðθ − 2Þ − ν�rγiν ¼ 0: ð14Þ

Since q2 and β could be arbitrary-valued constants, their
coefficients should be zero, and we can determine the
values of λ2 and η. Although B is also arbitrary, its
coefficient no longer has an undetermined parameter after
λ2 is determined, so we let the coefficients and the
exponentials of the terms which contain B and V2 be
equivalent, respectively. Meanwhile, the q1 terms should
cancel with the V1 term. In the end, we have

λ2 ¼
ν

2 − θ
; η ¼ −λ2 ¼

ν

θ − 2
; λ1 ¼

θ − 4

ν
;

γ2 ¼
θ þ 2z − 6

ν
; q21 ¼

2V1ðz − 1Þ
z − θ þ 1

;

V2 ¼
B2ð2z − θ − 2Þ

4ðz − 2Þ : ð15Þ

Since we are considering the effective low-temperature
physics of the total geometry, it is not surprising that V2

depends on the magnetic fields. The magnetic field is fixed
in the IR, and only when 2z − θ ¼ 2, does this term vanish.
For example, when z ¼ 1 and θ ¼ 0, V2 disappears. For
simplicity, we introduce the transformation

q22 → 2ðθ − 2Þðθ − zÞq22; β2 → ðθ − 2Þðz − 2Þβ2:
ð16Þ

Then, we can plug all parameters (12) and (15) into the
expression (11) and obtain the blackening factor

f ¼ 1 −mrθ−z−2 þ q22r
2θ−2z−2

þ B2r2z−6

4ðz − 2Þð3z − θ − 4Þ − β2rθ−2z:

The constant term is set to 1, as long as we demand

V1 ¼ ðz − θ þ 1Þðz − θ þ 2Þ: ð17Þ
One may notice that as ðz − θÞ → 0, fðrÞ appears to

diverge. A well-defined solution can be achieved in an
alternative form:

fðrÞ ¼ 1 −
m

r2þz−θ −
q22 ln r

2ð2 − θÞrdþz−θ −
β2

r2z−θ

þ B2r2z−6

4ðz − 2Þð3z − θ − 4Þ ; ð18Þ

¼ 1 −
m
r2

−
q22 ln r

2ð2 − zÞr2 −
β2

r2z−θ

þ B2r2z−6

4ðz − 2Þð3z − θ − 4Þ ;

F2rt ¼ q2r−1; ð19Þ
where m and q2 are finite physical parameters without
divergence as ðz − θÞ → 0. A careful examination of (18)
and (19) reveals that they satisfy the corresponding Einstein
equation and Maxwell equation. The Hawking temperature
at the event horizon r ¼ rH is given by

T ¼ rzH
2π

�
1 −

q22
4ð2 − zÞr2H

−
β2ð2þ θ − 2zÞ

2r2z−θH

þ B2r3z−7H

4ðz − 2Þð3z − θ − 4Þ
�
: ð20Þ

As z → 1 and θ → 1, the first auxiliary gauge field then
vanishes, and the metric of the black hole solution can be
recast as

ds2 ¼ −gttdt2 þ grrdr2 þ gxxðdx2 þ dy2Þ

¼ r−θ
�
−r2fðrÞdt2 þ dr2

r2fðrÞ þ r2ðdx2 þ dy2Þ
�
;

fðrÞ ¼ 1 −
m
r2

−
q22 ln r
2r2

−
β2

r
þ B2

8r4
;

A ¼ q2 ln rdtþ
B
2
ðxdy − ydxÞ;

eϕ ¼ r; χi ¼ βδiaxa;

VðϕÞ ¼ 2rþ B2r−3=8;

ZðϕÞ ¼ r−1; YðϕÞ ¼ r; ð21Þ
where θ, m, q, and B are the parameters related to the
hyperscaling violation factor, mass, charge, and magnetic
field, respectively. Equation (21) is the main metric ansatz
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used in this paper. Note that the magnetic field B appears in
the potential VðϕÞ because we only consider the IR
geometry here so that the magnetic field is fixed in the
action.One critical observation is that in the absence of β and
B terms, the blacken function fðrÞ and the scalar potentialAt
are the same as those of the (2þ 1)-dimensional charged
BTZ black brane [43–45]. The electrostatic potential of the
black hole diverges asymptotically as ln r. But the presence
of divergent boundary terms is an artifact of the renormal-
ization procedure, and the divergence can be removed [46].
The boundary is located at r → þ∞. The nondegenerate
horizon is located at r ¼ rH, where fðrHÞ ¼ 0 and its
associated Hawking temperature is given by

T ¼ rH
2π

�
1 −

q22
4r2H

−
β2

2rH
−

B2

8r4H

�
: ð22Þ

The black hole solution is not an asymptotic AdS solution;
therefore, it can, in principle, be interpreted as an IR
geometry embedded in the AdS space. When rH ≫ β2,
r2H ≫ q22 and r4H ≫ B2, we recover the well-known rela-
tivistic scaling T ∼ rH. This corresponds to a large temper-
ature regime, although the temperature satisfying these
ranges can be decreased by tuning β, q2, and B. The
entropy density and the specific heat of this black hole are
given by s ¼ 4πrH and

cq2;β;B ¼ T

�∂s
∂T

�
q2;β;B

¼ 4π2
�
1þ β2 þ 4πTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4q22 þ ðβ2 þ 4πTÞ2
p �

:

These are proportional to the temperature in the large-
temperature regime. Experiments on optimally doped
YBa2CuO7−δ provide the electronic specific heat c ∼ T
from critical to room temperatures [47]. As shown in the
following, this Fermi-liquid scaling is not in conflict with
that of the anomalous transport.
The electric charge density is q2 ≡ −Jt ¼

− ffiffiffiffiffiffi−gp
ZðϕÞ∂rAt. At zero temperature, that is, when

T ¼ 0, the solution near the horizon develops an AdS2 ×
R2 geometry. The near-horizon geometry reads ds2 ∼
u−2ð−dt2þdu2Þþ r2Hðdx2þdy2Þ, where u¼ r2H=ðr− rHÞ.
The Hawking temperature shows that even in the absence
of the Uð1Þ gauge field, the black hole could still be
extremal with a near-horizon geometry of AdS2. This
implies that at low temperatures, the theory flows to an
infrared fixed point in the presence of linear axion fields.
However, a near-extremal dyonic black hole is unstable to
forming neutral scalar hair. From the holographic dic-
tionary point of view, we expect there is a domain wall
solution interpolating between AdS4 in the UV and dyonic
AdS2 × R2 solutions in the IR. In [48], dyonic black holes
at finite temperature approaching AdS4 in the UV were
constructed. If the scalar field is above the BF bound for
AdS4 but below the Breitenlohner-Freedman bound for
AdS2, the black hole becomes unstable near extremality.

For big enough magnetism, the black hole approaches
hyperscaling violating behavior in the IR as T → 0 [48].

III. HOLOGRAPHIC TRANSPORT COEFFICIENTS

The transport coefficients are computed in the hologra-
phy by studying perturbations of the background solution.
We developed the holographic Wilsonian approach pre-
viously given in [49–53] and computed the dc conductivity
by applying linear sources to the boundary fields. As far as
we know, the Wilsonian renormalization group approach
has not been utilized to describe the radial flow for
transport coefficients in the presence of momentum dis-
sipation. For computing the transport coefficients, the
consistent perturbation ansatz reads

δAxi ¼
Z

∞

−∞

dω
2π

e−iωtaiðω; rÞ; ð23Þ

δgtxi ¼
Z

∞

−∞

dω
2π

e−iωtgxxhtxiðω; rÞ; ð24Þ

δχi ¼
Z

∞

−∞

dω
2π

e−iωtχiðω; rÞ; ð25Þ

where i runs over (1,2), and x1 ¼ x and x2 ¼ y. We notice
that in the computation of conductivity, we also need to
perturb the potential, but the B2 term does not contribute to
the equations of motion as we can see δAxi is only a
function of r and t. Since the spatial SOð2Þ is unbroken, it
is convenient to organize the fields as

az ¼
ðax − iayÞ

2
; htz ¼

ðhtx − ihtyÞ
2

;

χz ¼
ðχx − iχyÞ

2
:

We can define a matrix eσ from

⟦
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt=grr

p
Za0zg2xx=

ffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
h0tzffiffiffiffiffiffiffiffiffiffiffiffiffi

gtt=grr
p

Zgxxχ0z
⟧ ¼ ~σ⟦

iωaz
iωhtz
iωχz

⟧;
where the special notation ⟦…⟧ is what we introduced just

for convenience, for example,

⟦
az
htz
χz

⟧≡
0
BBB@

az að2Þz að3Þz

htz hð2Þtz hð3Þtz

χz χð2Þz χð3Þz

1
CCCA; ð26Þ

where aðiÞz , hðiÞtz , and χðiÞz are linearly independent source
vectors, introduced to guarantee the source term is
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invertible. The RG flow equation of ~σ can be obtained by
taking the derivative of ~σ (see Appendix B for details) [54]:

~σ0 ¼ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
grr=gtt

p
iω

0
B@

−ω2 ωB 0

−ωB gxxYβ2 þ B2 iωgxxYβ2

0 iωgxxYðϕÞβ2 −ω2gxx

1
CA

− iω
ffiffiffiffiffiffi
grr
gtt

r
~σ

0
B@

1=Z 0 0

0 gtt=g2xx 0

0 0 1
gxxZ

1
CA ~σ

þ

0
B@

0
ffiffiffiffiffiffiffiffi
grrgtt

p
gxx

0

q2
Z

grr
gtt

gtt=g2xx 0

0 0 1
gxxZ

1
CA ~σ:

The advantage of the holographic Wilsonian approach is
that it reduces the computation of conductivity from
second-order ordinary differential equations to first-order
nonlinear ordinary differential equations. The regularity
condition at the event horizon gives the boundary condition

~σ0 ¼

0
BB@

Z − ZB
ω 0

BZ−iq2
ω σ22 − iβgxxY

ω

− iβgxxY
ω 0 gxxY

1
CCA:

From the definition of the matrix ~σ, we obtain the boundary
condition at the event horizon,ffiffiffiffiffiffi

gtt
grr

r
a0z → iωaz − iBhtzjr¼rH : ð27Þ

Finally, we obtain the expressions for htx and hty at the
event horizon,

htx ¼ −iω
axgxxq2β2Y þ ayBðq22 þ B2Z2 þ gxxZβ2YÞ

ðB2Z þ gxxβ2YÞ2 þ B2q22

− iω
BgxxYχy þ ðB2gxxYZ þ g2xxYβ2Þχx

ðB2Z þ gxxβ2YÞ2 þ B2q22

����
r¼rH

;

hty ¼ iω
axBðq22 þ B2Z2 þ gxxZβ2YÞ − aygxxq2β2Y

ðB2Z þ gxxβ2YÞ2 þ B2q22

þ iω
BgxxYχx − ðB2gxxYZ þ g2xxYβ2Þχy

ðB2Z þ gxxβ2YÞ2 þ B2q22

����
r¼rH

:

The radially conserved currents can be deduced from the
Maxwell equation,

Jx ¼ iωZax − q2htx − ZBhty;

Jy ¼ iωZay − q2hty þ ZBhtx: ð28Þ

An important step in the evaluation of thermoelectric and
heat conductivity tensors involves the determination of

physical quantities that are independent of the radial
coordinate. The conductivity tensor can be evaluated using
σij ¼ ∂Ji=∂Ej with Ej ¼ −iωaj. The electrical conduc-
tivity tensor reads

σxx ¼ σyy ¼
β2r2HðB2 þ q22r

2
H þ β2r3HÞ

B4 þ β4r6H þ B2r2Hðq22 þ 2β2rHÞ
; ð29Þ

σxy ¼ −σyx ¼
Bq2ðB2 þ q22r

2
H þ 2β2r3HÞ

B4 þ β4r6H þ B2r2Hðq22 þ 2β2rHÞ
: ð30Þ

Notably, in the absence of the external magnetic field, the
dc electric conductivity along the x direction is separated
into two terms,

σxx ∼
1

2πT
þ q22
4π2β2T2

: ð31Þ

The corresponding resistivity in the small β limit can be
written as

ρxx ≃ 4β2π2T2

q22 þ 2β2πT
¼

~T2

~T þ Δ
; ð32Þ

where we defined ~T ¼ 2πT and Δ ¼ q22=β
2. For ~T ≫ Δ,

the corresponding resistivity is dominated by the linear-T
behavior, whereas in the low-temperature regime, ~T ≪ Δ,
the system supports Landau’s Fermi-liquid T2 law. On the
other hand, in the strong external magnetic field limit (i.e.,
B ≫ q2; β) and in the small-temperature limit, the electric
resistivity can be approximated as

ρxx ¼
β2r2H½B2q22 þ r2Hðq22 þ β2rHÞ�

B2 þ r2Hðq22 þ β2rHÞ2
∼
β2

q22
r2H

∼ 0.35B
β2

q22
þ 1.86T

ffiffiffiffi
B

p β2

q22
þ 2.46T2

β2

q22
þOðT3Þ:

ð33Þ

Since the quadratic temperature dependence of inverse Hall
angles has been observed in multiple cuprates in the
underdoped to overdoped regions [1], the calculation of
the Hall angle in holography is also an interesting topic. The
Hall angle cotϑH ≡ σxx=σxy, in this model, is found to be

cotϑH ∼
β2r2H
Bq2

∼ T2: ð34Þ

Thus, we give an explicit model realizing the anomalous
scaling of the Hall angle proposed in Ref. [8]. That is to say,
the Hall relaxation rate is different from the transport
scattering rate of the linear-in-temperature resistivity.
Below, we also calculate other transport coefficients such
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as thermo-electric conductivities, thermal conductivity, and
Lorenz constants.
The conserved heat currents Qi are defined by intro-

ducing a two-form associated with the Killing vector field
equation K ¼ ∂t, as follows [14,15]:

Qi ¼
ffiffiffiffiffiffi
gtt
grr

r �
−
g0tt
gtt

giiδhti þ g0iiδhti þ giiδh0tx

�
− AtJi

þMðrÞϵijEj þ 2MQðrÞϵijζj; ð35Þ

where

MðrÞ ¼
Z

r

rH

dxgxxZðϕÞB; ð36Þ

and

MQðrÞ ¼
Z

r

rH

dr0gxxZðϕÞBAtðr0Þ: ð37Þ

Note thatMðrÞ andMQðrÞ correspond to the magnetization
density of the boundary theory as r → ∞. The aforemen-
tioned ansatz corresponds to the application of an external
electric field Ei along the xi direction and the temperature
gradient ð∇TÞi ¼ ζiT to the boundary theory. As the heat
currentsQi are radially conserved, we can evaluate them at
the event horizon,

Qx ¼ −
ffiffiffiffiffiffi
gtt
grr

r
g0tt
gtt

gxxδhtx

����
r¼rH

;

Qy ¼ −
ffiffiffiffiffiffi
gtt
grr

r
g0tt
gtt

gxxδhty

����
r¼rH

: ð38Þ

The electrothermal conductivity can be evaluated at the
event horizon as

αxx ¼ αyy ¼
∂Qx

T∂Ex
¼ 4πq2β2r5H

B2q22r
2
H þ ðB2 þ β2r3HÞ2

;

αxy ¼ −αyx ¼
∂Qy

T∂Ex
¼ 4πBrHðq22r2H þ B2 þ r3Hβ

2Þ
B2q22r

2
H þ ðB2 þ β2r3HÞ2

: ð39Þ

Finally, we can extract the heat conductivity tensor as

κ̄xx ¼ κ̄yy ¼
16π2Tr3HðB2 þ β2r3HÞ

B2q22r
2
H þ ðB2 þ β2r3HÞ2

; ð40Þ

κ̄xy ¼ −κ̄yx ¼
16π2TBq2r4H

B2q22r
2
H þ ðB2 þ β2r3HÞ2

: ð41Þ

Theusual thermal conductivity that ismore readilymeasurable
experimentally is defined by introducing the thermal conduc-
tivity at zero electric current, κxx ¼ κ̄xx − αxxᾱxxT=σxx,

κxx ¼
16π2r3HT

B2 þ r2Hðq22 þ β2rHÞ
: ð42Þ

In the large-temperature regime, the heat conductivity κxx ∼ T,
which is same as the specific heat.
Next, we evaluate the Hall Lorenz ratio as follows:

L̄H ≡ κ̄xy
Tσxy

¼ 16π2r4H
B2 þ q22r

2
H þ β2r3H

: ð43Þ

At high temperature, the Hall Lorenz ratio behaves as
L̄H ∼ T. This temperature dependence can be compared
with the experimental results in [55]. At zero temperature,
with a vanishing magnetic field, the Hall Lorenz ratio

becomes L̄H ¼ 4π2 þ 4π2β2ffiffiffiffiffiffiffiffiffiffiffi
4q2

2
þβ4

p .

Since the Nernst signal in cuprates has significantly
different behaviors compared with conventional metals, we
examine the Nernst signal holographically

eN ≡ ðσ−1 · αÞxy
¼ 4πBr3Hβ

2

B2q22 þ r2Hðq22 þ rHβ2Þ2

∼
4π

β2T
þO

�
1

T2

�
; ð44Þ

where σ and α denote the electric and thermoelectric
conductivity matrices, respectively. Figure 1 shows that
the Nernst signal increases as temperature decreases at the
high-temperature limit. Moreover, as shown in Fig. 2, the
obtained Nernst signal demonstrates a bell-shaped depend-
ence on the magnetic field. The blue line is almost straight,
whereas the green and red lines yield hill profiles. Our
system shows the transition from typical metal (blue line) to
the cuprate state (green, purple, and red), as the disorder β
decreases in the Nernst signal perspective. Comparisons
can be made between the results obtained here and
experimental data presented in [56–58]. For example, the

T

eN

5 10 15 20

1.4

1.6

1.8

2.0

FIG. 1. Nernst signal as a function of temperature with q2 ¼ 3,
β ¼ 1=2, and B ¼ 5.
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“hill” profile shown in Figs. 1 and 2 is similar to those in
Figs. 5, 6, 9, and 12 in [56]. But the scaling behavior of the
Nernst signal is not clear from the existing literature.
Moreover, we are able to consider the thermoelectric

power (Seebeck coefficient)

S≡ αxx
σxx

¼ 4πq2r3H
B2 þ r2Hðq22 þ β2rHÞ

: ð45Þ

Under the weak magnetic field and charge limit, S behaves
as a constant. But in the small disorder limit, keeping q2
and B fixed, we have S ∼ T as rH becomes large. The
experimental result obtained at optimal doping suggested
the relation S ∼ a − bT, where a, b are constants [1].
However, there is no consensus on the temperature scaling
of the thermoelectric power from the experimental data
[59], even though some data appear to show a negative
slope.
The Lorenz constant L, which is related to the

Wiedemann-Franz law, is a key signature of a Fermi liquid.
In general, if L=L0 ¼ 1 (L0 ¼ π2=3 × k2B=e

2) at zero
temperature, Landau’s Fermi-liquid description is satisfied.
In [60], L=L0 ≫ 1 has been used to diagnose strong
deviations from the quasiparticle picture in graphene. On
the other hand, L=L0 < 1 at zero temperature also indicates
the breakdown of the Fermi-liquid theory [61–63].
At zero temperature and under a vanishing magnetic

field, the Lorenz ratio is given by

L ¼ κxx
Tσxx

����
T;B→0

¼ 4π2
β4

4q22 þ β4
þ 4π2β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4q22 þ β4
p : ð46Þ

Therefore, at B ¼ 0, the Lorenz number becomes 8π2 only
when the disorder becomes stronger (i.e., β4=q22 → ∞). As
β4=q22 → 0, the Lorenz number approaches zero, and
deviations from the Fermi-liquid behavior can be observed.
A Lorenz ratio at zero temperature is comparable with the
Hall Lorenz ratio given in (43),

L̄ ¼ κ̄xx
Tσxx

����
T;B→0

¼ 4π2 þ 4π2β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q22 þ β4

p : ð47Þ

The Hall Lorenz ratio L̄H at zero temperature under the
weak magnetic field with finite q2 and β limits exactly
equals L̄ obtained in this study. In the large-temperature
regime, the Lorenz ratios L̄ and L presented here are also
proportional to the temperature, same as L̄H.

IV. DISCUSSIONS AND CONCLUSIONS

In summary, we started from the general Einstein-
Maxwell-axion-dilaton theory, an effective low-temperature
theory, in four-dimensional spacetime and obtained a dyonic
black hole solution with a nonzero hyperscaling violating
factor. The temperature dependence of thermodynamic
quantities such as entropy density and specific heat were
obtained in the small β, q2, and B limit. Since the metric
represents the low-temperature part of the geometry and can
be connected to a UV AdS4 geometry, the thermodynamic
quantities expanded in the high-temperature partmake sense
in the calculations.
We then computed the transport coefficients in this

holographic model. Linear-temperature-dependence resis-
tivity and quadratic-temperature-dependence inverse Hall
angle were achieved. Temperature scaling of the Hall
Lorenz ratio and Nernst signal are also calculated in this
model. The dc transport quantities obtained here are
governed by the same quantum critical dynamics as those
for the thermodynamic quantities of the black hole. These
results can be compared to that of cuprate strange metals. It
seems that, by exploring a new black hole solution with
dynamical exponent z ¼ 1 and hyperscaling violation
exponent θ ¼ 1, one can reproduce different temperature
scalings of the anomalous transport observed in experi-
ments. However, the results were obtained by introducing
an extra scale related to β2 and to the scaling dimension of
the operator breaking translations. More precisely, a par-
ticular combination of β2, q2, B, and T leads to (33), as do
the heat conductivity, the Hall Lorenz ratio, and the Nernst
signal. Therefore, the results cannot be directly compared
to [36,38]. In the future, it would be interesting to compute
numerical optical conductivities and the onset of super-
conductivity in this holographic model.
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APPENDIX: NEW ANALYTIC METHOD ON
TRANSPORT COEFFICIENTS

It was proved in [51] that several approaches to RG flow
of transport coefficients are equivalent: These approaches
include the sliding membrane paradigm [49], Wilsonian
fluid/gravity [53], and holographic Wilsonian RG [50]. The
essential idea of the holographic Wilsonian renormalization
group approach is to integrate out the bulk field from
the boundary up to some intermediate radial distance. The
radial direction in the bulk marks the energy scale of the
boundary theory, and the radial flow in the bulk geometry
can be interpreted as the renormalization group flow of the
boundary theory.
The equations of motion of the linear perturbation are

given by

�
g2xxffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p h0tz

�0
− q2a0z − β2gxxY

ffiffiffiffiffiffi
grr
gtt

r
htz

− iωgxxY
ffiffiffiffiffiffi
grr
gtt

r
χz þ ωBZ

ffiffiffiffiffiffi
grr
gtt

r
az − B2Z

ffiffiffiffiffiffi
grr
gtt

r
htz ¼ 0;� ffiffiffiffiffiffi

gtt
grr

r
Za0z

�0
− q2h0tz þ ω2Z

ffiffiffiffiffiffi
grr
gtt

r
az − ωBZ

ffiffiffiffiffiffi
grr
gtt

r
htz ¼ 0;� ffiffiffiffiffiffi

gtt
grr

r
gxxYχ0z

�0
þ ω2Ygxx

ffiffiffiffiffiffi
grr
gtt

r
χz − iωβ2Ygxx

ffiffiffiffiffiffi
grr
gtt

r
htz ¼ 0;

ωg2xxffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p h0tz − B
ffiffiffiffiffiffi
gtt
grr

r
a0z þ iβgxxY

ffiffiffiffiffiffi
gtt
grr

r
a0z þ Bq2htz

− ωq2az ¼ 0: ðA1Þ

In order to deduce the RG flow equation of the transport,
we define a matrix ~σ by assuming

⟦
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt=grr

p
Za0z

g2xx=
ffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
h0tzffiffiffiffiffiffiffiffiffiffiffiffiffi

gtt=grr
p

Zgxxχ0z
⟧ ¼ ~σ⟦

iωaz
iωhtz
iωχz

⟧;
where we have introduced the notation

⟦
az
htz
χz

⟧≡
0
BB@

az að2Þz að3Þz

htz hð2Þtz hð3Þtz

χz χð2Þz χð3Þz

1
CCA; ðA2Þ

with aðiÞz , hðiÞtz , and χðiÞz linearly independent source vectors
obeying the same equation as (A2). These auxiliary vectors
are only introduced to make the source term a square

matrix. So the notation ⟦…⟧ is invertible in the following

derivation, while the column matrix on the left-hand side
should also be understood in the same sense. Taking the
derivative of ~σ and using the EoM repetitiously, we obtain

~σ0 ¼ ⟦
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt=grr

p
Za0z

g2xx=
ffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
h0tzffiffiffiffiffiffiffiffiffiffiffiffiffi

gtt=grr
p

Zgxxχ0z
⟧⟦

iωaz
iωhtz
iωχz

⟧
−1

− iω ~σ⟦
a0z
h0tz
χ0z

⟧⟦
iωaz
iωhtz
iωχz

⟧
−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
grr=gtt

p
iω

0
B@

−ω2Z ωBZ 0

−ωBZ gxxYβ2 þ B2Z iωgxxYβ2

0 iωgxxYβ2 −ω2gxxY

1
CA

− iω
ffiffiffiffiffiffi
grr
gtt

r
~σ

0
BB@

1
Z 0 0

0 gtt
g2xx

0

0 0 1
gxxZ

1
CCA ~σ

þ

0
BB@

0
ffiffiffiffiffiffiffiffi
grrgtt

p
gxx

0

q2
Z

ffiffiffiffi
grr
gtt

q
0 0

0 0 0

1
CCA ~σ:

The prime denotes the derivative with respect to r. At the
event horizon, gtt=grr → 0 and gttσ0=grr → 0, the regularity
condition then requires

~σ0 ¼

0
B@

Z − ZB
ω 0

BZ−iq2
ω σ22 − iβgxxY

ω

− iβgxxY
ω 0 gxxY

1
CA: ðA3Þ

Note that σ22 can be determined by the constraint
equation (A2), which can be written as0

B@
0 0 0

−iB iω −β
0 0 0

1
CA ~σ ¼

0
B@

0 0 0

q2 −Bq2=ω 0

0 0 0

1
CA:

The above equation leads to

−iB ~σ11 þ iω ~σ21 − β ~σ31 ¼ q2; ðA4Þ

−iB ~σ12 þ iω ~σ22 − β ~σ32 ¼ −
Bq2
ω

; ðA5Þ

−iB ~σ13 þ iω ~σ23 − β ~σ33 ¼ 0: ðA6Þ

From (A5), we obtain
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~σ22 ¼
iBq2
ω2

−
ZB2 þ gxxYβ2

ω2
: ðA7Þ

Equations (A4) and (A6) are evidently satisfied by com-
ponents of ~σ0 given in (A3). Therefore, from the definition
of ~σ, we have the regularity condition at the event horizon,ffiffiffiffiffiffi

gtt
grr

r
a0z → iωaz − iBhtzjr¼rH : ðA8Þ

Together with the regularity condition for htz from the first
equation of (A2), we arrive at

ðβ2gxxY þ B2Z − iBq2Þhtzjr¼rH

¼ ðωBZ − iωq2Þazjr¼rH − iωgxxYχzjr¼rH :

Keeping in mind that htz ¼ ðhtx − ihtyÞ=2 and
χz ¼ ðχx − iχyÞ=2, we easily obtain

htx ¼ −iω
axgxxq2β2Y þ ayBðq22 þ B2Z2 þ gxxZβ2YÞ

ðB2Z þ gxxβ2YÞ2 þ B2q22

−
BgxxYχy þ ðB2gxxYZ þ g2xxYβ2Þχx

ðB2Z þ gxxβ2YÞ2 þ B2q22

����
r¼rH

;

hty ¼ iω
axBðq22 þ B2Z2 þ gxxZβ2YÞ − aygxxq2β2Y

ðB2Z þ gxxβ2YÞ2 þ B2q22

þ BgxxYχx − ðB2gxxYZ þ g2xxYβ2Þχy
ðB2Z þ gxxβ2YÞ2 þ B2q22

����
r¼rH

:

One can simply drop the χi terms in the expressions for htx
and hty since these terms do not contribute to the transport
coefficients as shown below. The radially conserved cur-
rents can be deduced from the Maxwell equation,

Jx ¼ iωZax − q2htx − ZBhty;

Jy ¼ iωZay − q2hty þ ZBhtx: ðA9Þ

The dc electric conductivity can be calculated via σij ¼ ∂Ji∂Ej
,

where Ej ¼ −iωaj. The electrical conductivity tensor then
reads

σxx ¼ σyy ¼
β2r2HðB2 þ q22r

2
H þ β2r3HÞ

B4 þ β4r6H þ B2r2Hðq22 þ 2β2rHÞ
;

σxy ¼ −σyx ¼
Bq2ðB2 þ q22r

2
H þ 2β2r3HÞ

B4 þ β4r6H þ B2r2Hðq22 þ 2β2rHÞ
:

The radially conserved heat currents are given by

Qx ¼ −
ffiffiffiffiffiffi
gtt
grr

r
g0tt
gtt

gxxδhtxjr¼rH ;

Qy ¼ −
ffiffiffiffiffiffi
gtt
grr

r
g0tt
gtt

gxxδhtyjr¼rH : ðA10Þ

Thus, we can evaluate the electrothermal conductivity
matrix as

αxx ¼ αyy ¼
∂Qx

T∂Ex
¼ 4πq2β2r5H

B2q22r
2
H þ ðB2 þ β2r3HÞ2

;

αxy ¼ −αyx ¼
∂Qy

T∂Ex
¼ 4πBrHðq22r2H þ B2 þ r3Hβ

2Þ
B2q22r

2
H þ ðB2 þ β2r3HÞ2

:

ðA11Þ

In general, we have the relation

�
Ji
Qi

�
¼

�
σij αijT

ᾱijT κ̄ijT

��
Ej

−ð∇jTÞ=T
�
: ðA12Þ

After obtaining the expressions for σij, αij, and ᾱij, the
thermal conductivity can be read off from (A12).
Considering the conditions Qx ¼ 0;∇yT ¼ 0, and
Ey ¼ 0, the thermal conductivity matrix component κ̄xx
is given by

κ̄xx ¼
Tα2xx

σxx − σ0xx
; ðA13Þ

where σ0xx ¼ σxxðq2 ¼ 0Þ denotes the quantum critical
conductivity. Similarly, the case Qx ¼ 0;∇xT ¼ 0, and
Ey ¼ 0 gives

κ̄xy ¼
Tαxxαxy
σxx

: ðA14Þ

Therefore, we finally obtain

κ̄xx ¼
16π2Tr3HðB2 þ β2r3HÞ

B2q22r
2
H þ ðB2 þ β2r3HÞ2

; ðA15Þ

κ̄xy ¼
16π2TBq2r4H

B2q22r
2
H þ ðB2 þ β2r3HÞ2

: ðA16Þ

These results are consistent with the results obtained
in [13,14].
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