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In this long overdue second installment, we continue to develop the conformal bootstrap program for
N ¼ 4 superconformal field theories (SCFTs) in four dimensions via an analysis of the correlation function
of four stress-tensor supermultiplets. We review analytic results for this correlator and make contact with
the SCFT/chiral algebra correspondence of Beem et al. [Commun. Math. Phys. 336, 1359 (2015)]. We
demonstrate that the constraints of unitarity and crossing symmetry require the central charge c to be
greater than or equal to 3=4 in any interacting N ¼ 4 SCFT. We apply numerical bootstrap methods to
derive upper bounds on scaling dimensions and operator product expansion coefficients for several low-
lying, unprotected operators as a function of the central charge. We interpret our bounds in the context of
N ¼ 4 super Yang-Mills theories, formulating a series of conjectures regarding the embedding of the
conformal manifold—parametrized by the complexified gauge coupling—into the space of scaling
dimensions and operator product expansion coefficients. Our conjectures assign a distinguished role to
points on the conformal manifold that are self-dual under a subgroup of the S-duality group. This paper
contains a more detailed exposition of a number of results previously reported in Beem et al. [Phys. Rev.
Lett. 111, 071601 (2013)] in addition to new results.
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I. INTRODUCTION

In this paper we elaborate upon our earlier investigations
into the space of N ¼ 4 superconformal field theories
(SCFTs) in four dimensions [1]. Though it is widely
believed that this space comprises only the N ¼ 4 super-
symmetric Yang-Mills (SYM) theories, this remains a
conjecture at present, and there may in principle exist
exoticN ¼ 4 SCFTs without a Lagrangian description. By
adopting the methods of the conformal bootstrap, we can
study N ¼ 4 SCFTs entirely on the basis of their sym-
metries and general consistency requirements without
taking a view on their (non-)Lagrangian nature. For this
reason we consider this to be an attractive framework
within which to address the classification of these theories.
Within the framework of the conformal bootstrap, a

conformal field theory is taken to be characterized by its
algebra of local operators, the structure of which is
determined entirely by the scaling dimensions and spins
of all conformal primary operators along with their operator
product expansion (OPE) coefficients. These conformal
data are subject to additional constraints that follow from
unitarity and from associativity of the operator algebra.

For N ¼ 4 SCFTs, there are additional constraints that
follow from the requirement of superconformal invariance.
In this paper we explore the intersection of these various
constraints both analytically and numerically.
Whenever possible, we restrict our attention to “simple”

theories, which cannot be decomposed as tensor products
of simpler theories. Local simple theories should have a
unique stress tensor, which by N ¼ 4 superconformal
symmetry belongs to a supermultiplet whose bottom
component is a scalar operator of dimension two that
transforms in the 200 representation of the suð4ÞR sym-
metry. Superconformal Ward identities fix the two- and
three-point functions of the stress tensor supermultiplet in
terms of a single real number, the central charge c of the
theory [2–4].1 This is the most basic parameter of an
N ¼ 4 SCFT.
Some general features of N ¼ 4 SCFTs follow directly

from the representation theory of the superconformal
algebra psuð2; 2j4Þ, and these help to frame our inves-
tigation. For example, the stress tensor supermultiplet
necessarily contains an exactly marginal complex scalar
that is an suð4ÞR singlet and is annihilated by all the
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1The existence of a unique superconformally invariant struc-
ture for the stress-tensor three-point function implies that the a
and c Weyl anomaly coefficients are necessarily related and, in
fact, are equal (see, e.g., [5]).
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Poincaré supercharges. Conversely, any such operator must
sit in the stress tensor supermultiplet. Consequently, any
simple N ¼ 4 SCFT is endowed with a conformal mani-
fold of complex dimension one; i.e., each theory is really a
fixed (complex) curve of SCFTs parametrized by an exactly
marginal coupling.2 Additionally, interacting N ¼ 4 theo-
ries cannot have global symmetries beyond suð4ÞR. This is
because in the absence of higher-spin conserved currents
(which should always be absent for interacting theories;
cf. [7]) representation theory dictates that conserved cur-
rents can only appear in the stress tensor multiplet, and
these are precisely the suð4ÞR Noether currents.
The aforementioned properties are readily verified in the

Lagrangian N ¼ 4 theories. The only massless free super-
multiplet with no fields of spin greater than one is the
N ¼ 4 vector multiplet. The vector multiplet contains
gauge fields and so must transform in the adjoint repre-
sentation of a reductive Lie algebra g. For a simple theory, g
must be simple or uð1Þ—in the latter case the theory is free.
The Lagrangian is uniquely fixed by N ¼ 4 supersym-
metry, with the complexified gauge coupling τ ∈ H being
the only free parameter. The central charge is easily
calculated to be cg ¼ dimðgÞ=4. The set of distinct theories
constructed in this way is obtained by modding out the
space of pairs ðg; τÞ by the action of the discrete S-duality
group.3,4

From the abstract conformal field theory (CFT) view-
point, there is an asymmetry between the two parameters c
and τ: while the central charge c is a fundamental
conformal datum, easily read off from the stress-tensor
OPE, the coupling τ is not directly observable. However,
unprotected scaling dimensions and OPE coefficients vary
over the conformal manifold, and one may hope to use one
of these quantities (say the scaling dimension of the
leading-twist unprotected singlet scalar operator) as a proxy
for the coupling in the bootstrap framework.
The bootstrap program for N ¼ 4 SCFTs is facilitated

by the existence of a protected, solvable subsector of the
local operator algebra. This is a special case of the structure

discovered in [11], which exists in any four-dimensional
N ¼ 2 SCFT. For a general N ¼ 2 theory, the protected
subsector is isomorphic to a nonsupersymmetric chiral
algebra, which universally possesses a Virasoro subalgebra
of central charge c2d ¼ −12c descending from the stress
tensor multiplet. In the N ¼ 4 case the chiral algebra is in
fact supersymmetric and always contains a small N ¼ 4
super-Virasoro algebra. A proposal for the description of
the chiral algebras associated with the N ¼ 4 SYM
theories as super W-algebras was put forward in [11].
For g ¼ suð2Þ, the chiral algebra is conjectured to be
precisely the small N ¼ 4 super-Virasoro algebra with
Virasoro central charge c2d ¼ −9. The super W-algebras
associated with SYM theories of higher rank possess
additional generators that are in one-to-one correspondence
with the generators of the one-half Bogomol'nyi–Prasad–
Sommerfield (BPS) chiral ring.
The chiral algebra captures an infinite amount of

protected conformal data of the four-dimensional SCFT.
An important analytic insight that follows from the embed-
ding of the chiral algebra into its four-dimensional parent is
the existence of novel unitarity bounds for four-dimen-
sional central charges [1,11–13]. In the N ¼ 4 case, one
finds that c must be greater than or equal to 3=4 in any
interacting N ¼ 4 SCFT—a result announced in [1] and
discussed in detail below. Indeed, for c < 3=4 the con-
straints of unitarity and crossing symmetry require the
introduction of supermultiplets containing higher-spin
conserved currents. The bound is saturated by the interact-
ing N ¼ 4 SYM theory with minimal central charge,
namely the theory with suð2Þ gauge algebra. The existence
of exotic theories with a smaller central charge is rigorously
ruled out. We hope that similar analytic considerations,
possibly combined with suitable assumptions about the
chiral ring, will show that the allowed central charges
coincide with the discrete set realized in the N ¼ 4 super
Yang-Mills theories. In the present work we take c to be a
continuous parameter. We will mostly be concerned with
the range c ≥ 3=4 of unitarity interacting theories, but we
will find it instructive to also consider positive values
smaller than 3=4 in order to investigate the expected
approach to free-field theory as c → 1=4.
To proceed beyond the protected subsector, we turn to

the numerical bootstrap methods pioneered in [14]. In
recent years the ideas of [14] and their generalizations and
extensions have been used with great success to obtain
constraints on the spectrum and OPE coefficients in a
variety of conformal theories, both with and without
supersymmetry. Most striking are perhaps the accurate
determination of the critical exponents in the three-dimen-
sional Ising CFT [15,16], and in particular the exclusion of
all but a small island in the space of scaling dimensions for
the two relevant operators of the theory [17,18].
In light of these kinds of results, we envision the goal of

the numericalN ¼ 4 bootstrap program as follows. Let T c
denote the space of N ¼ 4 superconformal field theories

2Here we are only describing the situation forN ¼ 4 marginal
operators. There are additional exactly marginal operators that
preserve less than maximal supersymmetry [6], but they will
not play a role in our analysis.

3This classification ignores finer distinctions that arise upon
consideration of extended defects—such as Wilson and ’t Hooft
line operators—and spacetimes with nontrivial topology. For
example, line defects can detect the distinction between different
gauge groups associated with the same gauge algebra; see [8] for
a comprehensive discussion. By considering theories at the level
of their algebra of local operators, we evade these subtleties for
the time being.

4For simply laced gauge algebras the S-duality group is simply
ðPÞSLð2;ZÞ, which acts on τ by fractional linear transformations.
For more general choices of g, the duality group is more
complicated, and S-duality interchanges g with its Langlands
dual Lg. See [9,10] for details.
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with central charge c, and S the infinite-dimensional space
of conformal data that are compatible with unitarity bounds
and Ward identities imposed by N ¼ 4 superconformal
symmetry. There then exists a map ρ∶T c → S defined by
identifying a given theory with its conformal data. The map
ρ is not surjective, because the associativity constraints of
the operator algebra are not satisfied everywhere on S. In
this language, our goal is to delineate the image ρðT cÞ ⊂ S.
For a given allowed value of c, we expect ρðT cÞ to be a
real-two-dimensional submanifold of S, corresponding to
an embedding of the conformal manifold into S. A
construction of this embedding would implicitly supply
a nonperturbative solution of theN ¼ 4 SCFTs, at least for
the low-lying spectrum and OPE coefficients accessible by
the numerical bootstrap.
This program is in its early stages. The present paper is

devoted to the analysis of constraints imposed on ρðT cÞ by
consistency of a single correlation function, the four-point
functions of stress tensor multiplets. In fact, since four-
point functions of half-BPS operators have a unique
structure in superspace [4,19], there is no loss of generality
in restricting our attention to the four-point function of the
superconformal primary operator in this multiplet—namely
the 200 operator. This is a much simpler object with which
to work. We derive upper bounds on scaling dimensions
and OPE coefficients of several low-lying unprotected
operators in the theory, as a function of the central charge
c.5 Our bounds constrain the image ρðT cÞ, which must lie
entirely within the allowed subregions of S that are carved
out numerically. (See Fig. 8 for a sketch.) We formulate a
series of conjectures about ρ which assign a distinguished
role to the self-dual points at τ ¼ i or τ ¼ expðiπ=3Þ on the
conformal manifolds of the A or D series of N ¼ 4 SYM
theories. We emphasize that these conjectures pertain to the
nonperturbative behavior of the nonplanar gauge theories at
finite coupling. This is a regime beyond the usual reach of
either ordinary perturbation theory or integrability.
It would be very interesting to confirm (or refute) our

results by other methods. For example, our conjectures are
generally compatible with the S-duality improved resum-
mations of perturbative results performed in [21–23], but it
would be better if such resummation methods could be
improved and put on firmer conceptual footing, perhapswith
the help of resurgence theory [24,25]. We also look forward
to progress in the lattice formulation ofN ¼ 4 super Yang-
Mills theory [26–28], which may offer an independent
approach to extracting the same data that we are studying
herewith the bootstrap.At the same time, there is a great deal
of room to improve the bootstrap results using established
methods. One can, for example, study different correlation
functions and different observables; initial results in this

direction were reported in [20,29], and the groundwork for
further numerical analysis is provided by the solution of the
superconformal Ward identities for half-BPS correlation
functions presented in [30,31].6 In future work we hope to
move this program forward through the simultaneous
analysis of multiple correlators in the style of [17].
The rest of the paper is organized as follows. We begin in

Sec. II with a self-contained review of the structure of the
200 four-point function, tailored to the numerical analysis
that we have undertaken. We then provide in Sec. III a short
review of the numerical bootstrap approach pioneered in
[14]. In Sec. IV we present in detail the first batch of
numerical results (a preview of which appeared in [1]) and
speculate on the nonperturbative behavior of scaling
dimensions in N ¼ 4 super Yang-Mills theories. In par-
ticular, we conjecture to have obtained scaling dimensions
in some of these theories for a self-dual value of the
coupling. In Sec. V we present new results involving OPE
coefficients and scaling dimensions of other operators in
the theory. These results potentially connect the isolated
points of Sec. IV through a line on the conformal manifold
to the free-field theory.

II. THE 200 FOUR-POINT FUNCTION

Our primary object of study is the four-point function of
200 operators. This operator is the superconformal primary
of the stress tensor supermultiplet, so it is universally
present in any local N ¼ 4 SCFT. This correlator has been
studied extensively in N ¼ 4 super Yang-Mills theories,
both at weak coupling (see [33] for a state-of-the-art
computation, and references therein for further results)
and at strong coupling in the planar limit using holography
[34]. It also sits at one of the three vertices of the Wilson
loop/correlator/amplitude triangle of observables in planar
N ¼ 4 super Yang-Mills [35,36]. We will make contact
with some of these results below, though our main results
are nonperturbative and apply to the nonplanar theories.
Superconformal invariance strongly constrains the struc-

ture of this correlation function and imposes selection rules
that determine the superconformal blocks in terms of which
the correlator will be decomposed. These constraints were
solved in [5], and we discuss them in detail below. We will
take this opportunity to rephrase them in light of the
discovery of a protected subsector of the OPE algebra that
is isomorphic to a chiral algebra [11]. The chiral algebra
controls certain meromorphic functions that enter the
solution of the superconformal Ward identities. The heart
of this section is the detailed derivation of several results
announced in [1], notably the unitarity bound c ≥ 3=4 that
is valid for any interacting N ¼ 4 SCFT and the bootstrap
equation that controls the unprotected operator dimensions

5Upper bounds on OPE coefficients in the 200 four-point
function were first derived using numerical bootstrap methods
in [20].

6Similar results were obtained in [32] for N ¼ 4 theories with
defects.
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and OPE coefficients appearing in the 200 four-point
function. Representation theory of the N ¼ 4 supercon-
formal algebra plays a crucial role in this analysis, so we
begin with a short review of shortening conditions for
N ¼ 4 superconformal multiplets.

A. Representations of the
N = 4 superconformal algebra

The four-dimensional N ¼ 4 superconformal algebra is
psuð2; 2j4Þ, and its unitary irreducible highest-weight
representations are described in detail in [37]. These
representations are traditionally labeled by the quantum
numbers of their superconformal primary operator—the
scaling dimension Δ, Lorentz spins ðj; j̄Þ, and suð4Þ
Dynkin labels ½d1; d2; d3�. Because we are studying the
four-point function of scalar operators, we will mostly be
concerned with symmetric traceless Lorentz tensors with
j ¼ j̄ a half-integer. For such representations we will
frequently define the spin l ≔ jþ j̄ ¼ 2j ∈ Z.
If a superconformal primary is not annihilated by any

special combination of supercharges, then its representation
is a long multiplet and is denoted AΔ

½d1;d2;d3�ðj;j̄Þ. The

superconformal descendants in a long multiplet all have
positive norm if and only if

Δ ≥ ΔA ≔ max

�
2þ 2jþ 1

2
ð3d1 þ 2d2 þ d3Þ;

2þ 2j̄þ 1

2
ðd1 þ 2d2 þ 3d3Þ

�
: ð2:1Þ

Alternatively, certain combinations of supercharges may
annihilate a superconformal primary, in which case the

multiplet is called short or semishort. There is one basic
shortening and one basic semishortening condition (which
takes an exceptional form for primaries with j ¼ 0), which
are respectively given by

b∶ Qi
αj½d1;d2;d3�ðj;j̄Þih:w:¼0 α¼þ;−

c∶
�
Qi

−−
1

2jþ1
Jþ−Qiþ

�
j½d1;d2;d3�ðj;j̄Þih:w:¼0 j>0;

εαβQi
αQi

βj½d1;d2;d3�ð0;j̄Þih:w:¼0 j¼0:

ð2:2Þ

The labels b and c follow the notation introduced in [37].
For a given representation, these shortening conditions may
hold for a range of values of i ¼ 1;…; s, in which case they
are denoted b

s
4 and c

s
4. Similar conditions can be imposed

for the action of the supercharges ~Qiα on the highest weight
state, with i ¼ 4;…; 4 − s̄. We denote these by b̄

s̄
4 and c̄

s̄
4.

A representation can obey both barred and unbarred
shortening conditions, but not in every combination. The
shortening conditions on the two sides are subject to
compatibility conditions—the complete list of possible
representations are those displayed in Table I, along with
conjugate representations obtained by interchanging j ↔ j̄
and d1 ↔ d3. As in [37], we denote representations by

X
s
4
;s̄
4

½d1;d2;d3�ðj;j̄Þ with X a letter from the first column of Table I

encoding the different shortening conditions.7

TABLE I. The unitary irreducible representations of psuð2; 2j4Þ. Underlined Dynkin labels must be nonzero. We omitted the CPT
conjugate multiplets which can be obtained by interchanging j ↔ j̄ and d1 ↔ d3.

Type ðs; s̄Þ ½d1; d2; d3� ðj; j̄Þ Δ Comments

A (0,0) (0,0) ½d1; d2; d3� ðj; j̄Þ ≥ΔA Generic long
b ðb; 0Þ (1,0) ½d1; d2; d3� ð0; j̄Þ 1

2
ð3d1 þ 2d2 þ d3Þ d1 − d3 > 2þ 2j̄

c ðc; 0Þ (1,0) ½d1; d2; d3� ðj; j̄Þ 2þ 2jþ 1
2
ð3d1 þ 2d2 þ d3Þ d1 − d3 > 2ðj̄ − jÞ

(2,0) ½0; d2; d3� ðj; j̄Þ 2þ 2jþ 1
2
ð2d2 þ d3Þ −d3 > 2ðj̄ − jÞ

(3,0) ½0; 0; d3� ðj; j̄Þ 2þ 2jþ 1
2
d3 −d3 > 2ðj̄ − jÞ

(4,0) [0, 0, 0] ðj; j̄Þ 2þ 2j j > j̄
B ðb; b̄Þ (1,1) ½d1; d2; d1� (0,0) d2 þ 2d1 1=4 BPS

(2,2) ½0; d2; 0� (0,0) d2 1=2 BPS
(4,4) [0, 0, 0] (0,0) 0 Identity

C ðc; c̄Þ (1,1) ½d1; d2; d3� ðj; j̄Þ 2þ jþ j̄þ d1 þ d2 þ d3 d1 − d3 ¼ 2ðj̄ − jÞ
(1,2) ½d1; d2; 0� ðj; j̄Þ 2þ jþ j̄þ d1 þ d2 d1 ¼ 2ðj̄ − jÞ
(1,3) ½d1; 0; 0� ðj; j̄Þ 2þ jþ j̄þ d1 d1 ¼ 2ðj̄ − jÞ
(2,2) ½0; d2; 0� ðj; jÞ 2þ 2jþ d2
(4,4) [0, 0, 0] ðj; jÞ 2þ 2j Higher-spin currents

D ðb; c̄Þ (1,1) ½d1; d2; d3� ð0; j̄Þ 1þ j̄þ d1 þ d2 þ d3 d1 − d3 ¼ 2þ 2j̄
(1,2) ½d1; d2; 0� ð0; j̄Þ 1þ j̄þ d1 þ d2 d1 ¼ 2þ 2j̄
(1,3) ½d1; 0; 0� ð0; j̄Þ 1þ j̄þ d1 d1 ¼ 2þ 2j̄

7A similar table appeared recently in the comprehensive
work [38]. Although their organization is slightly different, the
resulting set of multiplets is the same.
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Let us point out a couple of important entries in the
table. The maximally semishort multiplets are denoted by
C1;1½0;0;0�ðj;jÞ. These semishort multiplets contain higher-spin

conserved currents, which are the hallmark of free CFTs
[7]. We will consequently demand that such multiplets
are absent in our analysis of interacting N ¼ 4 SCFTs.
The maximally short multiplets, also known as half-BPS

multiplets, are denoted by B
1
2
;1
2

½0;p;0�ð0;0Þ. In particular, the

stress tensor supermultiplet is such a representation with
p ¼ 2. The superconformal primary is a dimension two
scalar that is the lowest weight of the 200 representation of
suð4Þ with Dynkin labels [0, 2, 0]. This is the two-index
symmetric traceless representation of soð6Þ, so we will
denote this operator schematically as OIJ

200 with I, J
fundamental indices of soð6Þ. In N ¼ 4 SYM theories
this operator is simply TrðΦfIΦJgÞ with ΦI the elementary
scalar fields of the theory. The superconformal descendants
of OIJ

200 include the supercurrents, R-symmetry currents,
and the stress tensor.

B. The 200 four-point function

The four-point function of stress tensor multiplets can be
analyzed in superspace and can be shown to allow only a
single superconformally invariant structure [4]. From this
follows the remarkable fact that four-point functions of
arbitrary combinations of superconformal descendants in
this multiplet are determined completely in terms of the
four-point function of the “top-component” scalars OIJ

200 .
Without loss of information we can therefore restrict our
analysis to the latter four-point function. From a bootstrap
perspective, it is a huge simplification to be able to analyze
the (complicated) four-point function of stress tensors in
terms of a scalar four-point function. This is one benefit of
applying bootstrap methods to superconformal field
theories.
It is convenient to contract the soð6Þ indices onOIJ

200 with
a six-dimensional complex “polarization vector” wI ,

Oðw; xÞ ≔ wIwJOIJ
200 ðxÞ: ð2:3Þ

We may demand that wIwI ¼ 0 because δIJOIJ
200 ¼ 0. The

four-point function in question can then be written as
follows:

hOðw1; x1ÞOðw2; x2ÞOðw3; x3ÞOðw4; x4Þi

¼ 1

x412x
4
34

F ðwij; u; vÞ; ð2:4Þ

where the form of the right-hand side is dictated by
conformal invariance. Here u and v denote the conformal
cross ratios

u≡ zz̄≔
x212x

2
34

x213x
2
24

; v≡ ð1− zÞð1− z̄Þ≔ x214x
2
23

x213x
2
24

: ð2:5Þ

Global suð4Þ invariance further implies that F ðwij;u; vÞ is
a function only of wij ≔ wi · wj. Because by construction
the correlator is a homogeneous polynomial of degree four
in the wi with each vector appearing exactly twice, we can
write

F ðwij; u; vÞ ¼ w2
12w

2
34a1ðu; vÞ þ w2

13w
2
24u

2a2ðu; vÞ
þ w2

14w
2
23u

2v−2a3ðu; vÞ
þ w12w23w34w41uv−1c1ðu; vÞ
þ w13w23w24w41u2v−1c2ðu; vÞ
þ w12w24w34w31uc3ðu; vÞ: ð2:6Þ

This leaves six functions of the conformal cross ratios,
where extra factors of u and v have been introduced to
make the six functions aiðu; vÞ and ciðu; vÞ match those
defined in [5].
The full four-point function is invariant under permuta-

tions of the four external operators. At the level of the six
functions defined above, invariance upon interchanging the
first and the second operators requires that

a1ðu; vÞ ¼ a1ðu=v; 1=vÞ; a2ðu; vÞ ¼ a3ðu=v; 1=vÞ;
c1ðu; vÞ ¼ c3ðu=v; 1=vÞ; c2ðu; vÞ ¼ c2ðu=v; 1=vÞ;

ð2:7Þ

while interchanging the first and the third operators
requires that

a1ðu; vÞ ¼ a3ðv; uÞ; a2ðu; vÞ ¼ a2ðv; uÞ;
c1ðu; vÞ ¼ c1ðv; uÞ; c2ðu; vÞ ¼ c3ðv; uÞ: ð2:8Þ

Additional permutations do not lead to any further
constraints.
We have to this point imposed all of the constraints

following from conformal symmetry, suð4Þ invariance, and
crossing symmetry on the structure of the four-point
function. The constraints of superconformal invariance
impose further conditions which greatly simplify our
numerical analysis. These constraints were analyzed in
detail in [5], and in the next few paragraphs we summarize
their findings.
It is shown in [5] that the six functions aiðu; vÞ and

ciðu; vÞ can all be expressed in terms of a single two-
variable function Gðu; vÞ, plus three (meromorphic) single-
variable functions fiðzÞ. Explicitly, they find that
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c1ðz; z̄Þ −
1 − z
z

a1ðz; z̄Þ −
z

1 − z
a3ðz; z̄Þ ≕ f1ðzÞ;

c2ðz; z̄Þ þ ð1 − zÞa2ðz; z̄Þ þ
1

1 − z
a3ðz; z̄Þ ≕ f2ðzÞ;

c3ðz; z̄Þ þ za2ðz; z̄Þ þ
1

z
a1ðz; z̄Þ ≕ f3ðzÞ; ð2:9Þ

and similarly with z ↔ z̄. The only independent combi-
nation of the ai and ci not fixed by (2.8) and (2.9) in terms
of the single variable functions is then given by

a2ðz; z̄Þ þ
1

v2
a3ðz; z̄Þ þ

1

v
c2ðz; z̄Þ ≕ Gðu; vÞ: ð2:10Þ

The ai and ci are then all completely determined in terms of
the fi and G, subject to (2.7).

1. Bootstrapping the meromorphic functions

It was noted in [5] that the meromorphic functions are
protected by supersymmetry and can therefore be fixed by
their free-field values in super Yang-Mills theories. Their
appearance was understood to be connected to a much
larger physical picture in [11], where it was shown that they
themselves are correlators of an auxiliary chiral algebra.
The existence of this chiral algebra follows generally from
N ¼ 2 superconformal invariance. It will consequently be
useful to reconsider our four-point function in terms of the
N ¼ 2 superconformal algebra suð2; 2j2Þ.
From this perspective, the suð4ÞR symmetry splits into

the suð2ÞR × uð1Þr of the N ¼ 2 superconformal algebra,
along with an additional suð2ÞF flavor symmetry. In
the soð6Þ language this amounts to the natural split
soð6Þ → soð4Þ × soð2Þ, with soð4Þ ≅ suð2ÞR × suð2ÞF.
The 6 of soð6Þ decomposes as the 4 of soð4Þ and a 2
of soð2Þ, and the first of these can be interpreted as the
ð2; 2Þ0 of suð2ÞR × suð2ÞF × uð1Þ. The 200 decomposes
according to

200 → ð3; 3Þ0 þ ð2; 2Þþ1 þ ð2; 2Þ−1 þ ð1; 1Þþ2

þ ð1; 1Þ−2 þ ð1; 1Þ0: ð2:11Þ

The relevant term for our purposes is the ð3; 3Þ0. The
operator in this representation is the superconformal
primary of an N ¼ 2 suð2ÞF flavor current multiplet. In
the language of [11] it is a Schur operator, and after the
appropriate superconformal twist it becomes an affine
current jAðzÞ, with A an adjoint index of suð2ÞF. Its
OPE in the chiral algebra is standard,

jAðzÞjBð0Þ ∼ k2dδAB

z2
þ ifABCjCð0Þ

z
; ð2:12Þ

where the level k2d ¼ − 1
2
k4d, and by N ¼ 4 supersym-

metry the four-dimensional level k4d ¼ 4a ¼ 4c with
a ¼ c the central charges of the theory. The singular
terms in the OPE completely fix the current four-point
function,

z212z
2
34hjAðz1ÞjBðz2ÞjCðz3ÞjDðz4Þi

¼ δABδCDþ z2δACδBDþ z2

ð1− zÞ2 δ
ADδBC−

z
k2d

fACEfBDE

−
z

k2dðz−1Þf
ADEfBCE; ð2:13Þ

where z ≔ z12z34=z13z24 the holomorphic cross ratio, and
we have rescaled the currents jAðzÞ so that they have
unit norm.
In terms of the polarization vectors wI we must recover

this four-point function by first replacing wI → wμ for I ∈
f1; 2; 3; 4g and setting w5 and w6 to zero. The wμ can then
be split as wμ ¼ σμα _αv

α ~v _α where we adopt the convention
that dotted (undotted) indices are for suð2ÞR (suð2ÞF).
Altogether this amounts to

wij → ðvi · vjÞð ~vi · ~vjÞ; ð2:14Þ

where vi · vj ¼ ϵαβvαi v
β
j . The superconformal twist of [11]

then proceeds as follows. We restrict all four xi to lie in a
two-plane, where we introduce complex coordinates
ðzi; z̄iÞ. We then set ~vi ¼ ð1; z̄iÞ. The resulting correlator
must be meromorphic in its positions—i.e., the dependence
on the z̄i drops out—and in fact should match the affine
current four-point function above.
For the correlation function at hand this is easily verified.

In complex coordinates, and after the substitution (2.14),
the correlator becomes

1

jz12j4jz34j4
F ðvij; ~vij; z; z̄Þ: ð2:15Þ

The superconformal twist is implemented by setting
~vij → z̄ij. If we also recall that two-dimensional vectors
obey the following identity:

ðv1 · v2Þðv2 · v3Þðv3 · v4Þðv4 · v1Þ

¼ 1

2
ððv1 · v2Þ2ðv3 · v4Þ2 þ ðv1 · v4Þ2ðv2 · v3Þ2

− ðv1 · v3Þ2ðv2 · v4Þ2Þ; ð2:16Þ

then some simple algebraic manipulations lead to the
following expression for the four-point function:
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1

jz12j4jz34j4
F ðvij; z̄ij; z; z̄Þ ¼

1

z212z
2
34

�
z

2ðz − 1Þ
��

v212v
2
34

�
c1ðz; z̄Þ þ zc2ðz; z̄Þ − ð1 − zÞc3ðz; z̄Þ −

2ð1 − zÞ
z

a1ðz; z̄Þ
�

þ v213v
2
24ð−c1ðz; z̄Þ − zc2ðz; z̄Þ − ð1 − zÞc3ðz; z̄Þ − 2zð1 − zÞa2ðz; z̄ÞÞ

þ v214v
2
23

�
c1ðz; z̄Þ − zc2ðz; z̄Þ þ ð1 − zÞc3ðz; z̄Þ −

2z
1 − z

a3ðz; z̄Þ
��

: ð2:17Þ

We observe that after some reorganization, demanding
meromorphicity of this correlator precisely reproduces the
superconformal ward identities of (2.9). We can compare
this equation with Eq. (2.13) and, using also that
fACEfBDE ¼ 2ðδABδCD − δADδBCÞ for suð2Þ and the con-
ventions for the meromorphic functions introduced in (2.9),
we can find that

f1ðzÞ ¼ −
1

z
þ 1

z − 1
þ 2 −

2

k2d
;

f2ðzÞ ¼ −zþ 1

1 − z
þ 1 −

2

k2d
;

f3ðzÞ ¼ zþ 1

z
−

2

k2d
: ð2:18Þ

This agrees with the results of [5], where the variables
c and a in that paper are related to ours according to
cDO ¼ −2=k2d and aDO ¼ 1. [Note also that kDO ¼
f1ðzÞ þ f2ðzÞ þ f3ðzÞ ¼ 3ð1 − 2

k2d
Þ.] We emphasize that

the derivation here does not use any assumption about
the existence of a weak-coupling limit described by super
Yang-Mills theory in order to arrive at an explicit expres-
sion for the meromorphic functions, so this is a completely
general input for the bootstrap program for N ¼ 4 SCFTs.
In what follows we will consider the conformal block

decomposition of the four-point function according to the
operator product expansion in the channel where operators
at x1 and x2 are fused. The orthonormal suð2ÞF polariza-
tion vector structures for the singlet, triplet, and quintuplet
in that channel are given by

P1ðvijÞ ¼
1

3
v212v

2
34; P3ðvijÞ ¼

1

2
ðv214v223 − v213v

2
24Þ;

P5ðvijÞ ¼
1

2
ðv213v224 þ v214v

2
23Þ −

1

3
v212v

2
34: ð2:19Þ

The contributions of the singlet, triplet, and quintuplet
operators in the chiral algebra are then captured in the
following basis for the meromorphic functions,

ĥ1ðzÞ ≔
z

2ðz − 1Þ ð3f1ðzÞ þ zf2ðzÞ − 3ð1 − zÞf3ðzÞÞ;

ĥ3ðzÞ ≔
z

2ðz − 1Þ ð2f1ðzÞ þ 2ð1 − zÞf3ðzÞÞ;

ĥ5ðzÞ ≔
z

2ðz − 1Þ ð−2zf2ðzÞÞ: ð2:20Þ

In terms of the functions introduced in [5] we have ĥ3ðzÞ≡
− ~fðzÞ and ĥ5ðzÞ≡ ~f2ðzÞ.
Notice that the N ¼ 4 superconformal Ward identities

dictate that ĥ1ðzÞ ¼ 3k − 3ð1
2
− 1

zÞĥ3ðzÞ þ ð3ðz−1Þz2 − 1
2
Þĥ5ðzÞ

where k is a constant defined in [5]. This identity should
hold at the level of the individual superconformal blocks,
and from the expressions below one may indeed verify that
ĥ1ðzÞ is a finite sum over blocks if ĥ3ðzÞ and ĥ5ðzÞ are.

C. Superconformal block decomposition

It is a direct consequence of (super)conformal invariance
that any four-point function can be decomposed into
(super)conformal blocks that correspond to the exchange
of all operators belonging to an irreducible representation
of the (super)conformal algebra. Here we will consider the
decomposition into superconformal blocks that arises by
fusing together the operators at x1 and x2.
The set of superconformal representations that can

appear in the OPE of two 200 operators is restricted by
superconformal invariance. Schematically we have [39,40]

B
1
2
;1
2

½0;2;0�ð0;0Þ × B
1
2
;1
2

½0;2;0�ð0;0Þ

→ 1þ B
1
2
;1
2

½0;2;0�ð0;0Þ þ B
1
2
;1
2

½0;4;0�ð0;0Þ þ B
1
4
;1
4

½2;0;2�ð0;0Þ

þ
X∞
l¼0

C1;1½0;0;0�ðj;jÞ þ
X∞
l¼0

C
1
2
;1
2

½0;2;0�ðj;jÞ þ
X∞
l¼0

C
1
4
;1
4

½1;0;1�ðj;jÞ

þ
X
Δ;l

AΔ
½0;0;0�ðj;jÞ: ð2:21Þ

We will see below that Bose symmetry dictates that all the
spins l ¼ 2j appearing in this equation are even.
Let us make a few preliminary comments concerning this

OPE. First of all, the stress tensor multiplet itself appears,
with a coefficient that is fixed to be 2=c if the operators are
unit normalized (see below). The presence of another
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half-BPS multiplet of type B
1
2
;1
2

½0;4;0�ð0;0Þ is in agreement with

expectations from the half-BPS chiral ring. The other short
multiplets are quarter BPS and semishort. They are not of
specific significance to us, with the exception of the
multiplets of type C1;1½0;0;0�ðj;jÞ: these contain higher-spin

currents and should not appear in an interacting theory
[7]. Finally, the only long multiplets that can appear are of
type AΔ

½0;0;0�ðj;jÞ, with a superconformal primary operator

that is an R symmetry singlet and has even Lorentz spin.8

Equation (2.1) reduces to

Δ ≥ 2þ l; ð2:22Þ

for these particular multiplets.
In the remainder of this section we will derive the

superconformal blocks for all the multiplets listed above,
and show that the chiral algebra essentially determines all
of the OPE coefficients for short and semishort multiplets.

1. Superconformal blocks

As a first step toward the superconformal block decom-
position let us consider the global suð4ÞR symmetry. In the
tensor product of two 200 representations we find

ð200 ⊗ 200Þs ¼ 1 ⊕ 200 ⊕ 84 ⊕ 105;

ð200 ⊗ 200Þa ¼ 15 ⊕ 175: ð2:23Þ

Using explicit projection tensors for these irreducible
representations one may determine the precise combina-
tions of the aiðu; vÞ and ciðu; vÞ that encode the contribu-
tions of operators in a given representation. In particular,
we have

1∶ 20a1 þ u2a2 þ
u2

v2
a3 þ

10

3

�
u
v
c1 þ uc3

�
þ u2

3v
c2;

200∶ u2a2 þ
u2

v2
a3 þ

5

3

�
u
v
c1 þ uc3

�
þ u2

6v
c2;

840∶ u2a2 þ
u2

v2
a3 −

u2

2v
c2;

1050∶ u2a2 þ
u2

v2
a3 þ

u2

v
c2;

150∶ u2a2 −
u2

v2
a3 − 2

�
u
v
c1 − uc3

�
;

175∶ u2a2 −
u2

v2
a3: ð2:24Þ

These equations may be rewritten in terms of the functions
fiðzÞ and Gðu; vÞ. The expressions are not particularly
illuminating, with the exception of

1050∶ u2Gðu; vÞ;

which follows directly from (2.10).
In general the superconformal block decomposition of

four-point functions is fairly involved because of the differ-
ent superconformal multiplets that can appear in the OPE.
Correspondingly, one finds in the literature a variety of
methods for computing the superconformal blocks, with no
clear winner amongst them. Instead each method is more or
less suitable depending on the spacetime dimension, number
of supercharges, and possible shortening conditions of the
external and the exchanged operators. For our particular
four-point function the authors of [5] found a remarkable
shortcut that we will explain in this subsection.
First define the following atomic functions:

hðatÞðβ;zÞ≔
�
−
1

2
z

�
β−1

zF½β;z�;

GðatÞ
Δ;lðz; z̄Þ≔ u−2GðlÞ

Δþ4ðz; z̄Þ

≔ u−2
�
u

1
2
ðΔþ4−lÞ

z− z̄

��
−
1

2
z

�
l
zF

�
1

2
ðΔþ4þlÞ;z

�

×F

�
1

2
ðΔþ2−lÞ; z̄

�
− z↔ z̄

��
ð2:25Þ

with

F½α; z� ≔ 2F1ðα; α; 2α; zÞ: ð2:26Þ

Here GðlÞ
Δ ðz; z̄Þ is an ordinary four-dimensional conformal

block corresponding to a conformal primary with scaling
dimension Δ and spin l being exchanged in a four-point
function of identical scalars. Similarly zβF½β; z� is an
ordinary slð2Þ block, which accounts for the exchange
of an operator and all of its holomorphic derivatives.
Next we use the fact that every unitary irreducible

representation of the superconformal algebra contains a
finite number of representations of the underlying (bosonic)
conformal algebra. Correspondingly, each superconformal
block decomposes into a finite sum of ordinary conformal
blocks in the different R-symmetry channels. Furthermore,
from the structure of the superconformal twist described
above one sees that a superconformalmultiplet contributes at
most a finite number of slð2Þ blocks to the ĥRðzÞ. It follows
that for each superconformal block, the contributions tohiðzÞ
and Gðz; z̄Þ are finite sums of the functions hðatÞðβ; zÞ and
GðatÞ
Δ;lðz; z̄Þ, respectively. (This explains our nomenclature: in

a sense, these atomic functions are the minimal contributions
in the superconformal block decomposition.)

8Simple examples of such operators in the N ¼ 4 SYM
theories are the Konishi operator TrðΦIΦIÞ and double trace
operators of the form OIJ

200∂2nOIJ
200 .
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The complete analysis of the superconformal blocks has
been carried out in this way in [5]. Most remarkably, in
almost all cases the superconformal block contributes a
single one of the GðatÞ

Δ;lðz; z̄Þ atomic blocks to Gðu; vÞ. In
Table II we display the details of the superconformal blocks
and their decomposition into atomic functions for all of the
relevant supermultiplets. It was verified explicitly in [5] that
each of these superconformal blocks can be written as a

finite sum of ordinary conformal blocks in each of the six
R-symmetry channels listed in (2.24).

2. OPE coefficients

The ĥRðzÞ are fixed by the chiral algebra, and corre-
spondingly we know their exact decomposition into atomic
parts. They are given as follows:

ĥ1ðzÞ ¼ 3þ
X∞
n¼0

�
−
4nþ1ð2nþ 1Þð2nþ 2Þ!ð2nþ 1Þ!

ð4nþ 2Þ! þ ð2nÞ!ð2nþ 1Þ!4nþ1

cð4nþ 1Þ!
�
hðatÞð2nþ 2; zÞ;

ĥ3ðzÞ ¼
X∞
n¼0

�
4nð2nþ 1Þ!ð2nÞ!

ð4n − 1Þ! −
4nþ1ðð2nÞ!Þ2
2cð4nÞ!

�
hðatÞð2nþ 1; zÞ;

ĥ5ðzÞ ¼
X∞
n¼0

�
−
4nþ1ð2nþ 1Þð2nþ 2Þ!ð2nþ 1Þ!

ð4nþ 2Þ! −
ð2nÞ!ð2nþ 1Þ!4nþ1

2cð4nþ 1Þ!
�
hðatÞð2nþ 2; zÞ; ð2:27Þ

where we made the replacement k2d ¼ −2c. From
Table II, we see that the OPE coefficients (squared) for
the superconformal blocks for almost all multiplets that
participate in the chiral algebra are fixed by the chiral
algebra correlator. The list of OPE coefficients after
imposing chiral algebra constraints is displayed in
Table III.
We observe that there are two families of undetermined

coefficients. The first series are the aΔ;l for the long
multiplets, which have no direct connection to the chiral
algebra. The second series are the coefficients αl of the

C1;1½0;0;0�ðj;jÞ multiplets, which are also not fixed by the chiral

algebra. This ambiguity arises because the ĥRðzÞ do not
change under the simultaneous addition of these

superconformal blocks and a superconformal block of type

B
1
4
;1
4

½2;0;2�ð0;0Þ or C
1
4
;1
4

½1;0;1�ðj;jÞ (with relative coefficient 4), as is

evident by inspection of Table II. Underlying this pattern of
undetermined OPE coefficients are two recombination
rules for the N ¼ 4 superconformal algebra [37],

A2
½0;0;0�ð0;0Þ ≃ C1;1½0;0;0�ð0;0Þ ⊕ B

1
4
;1
4

½2;0;2�ð0;0Þ

⊕ D
1
4
;3
4

½2;0;0�ð0;0Þ ⊕ D
3
4
;1
4

½0;0;2�ð0;0Þ;

A2þ2j
½0;0;0�ðj;jÞ ≃ C1;1½0;0;0�ðj;jÞ ⊕ C

1
4
;1
4

½1;0;1�ðj−1
2
;j−1

2
Þ

⊕ C
1
4
;3
4

½1;0;0�ðj−1
2
;jÞ ⊕ C

3
4
;1
4

½0;0;1�ðj;j−1
2
Þ: ð2:28Þ

TABLE II. Superconformal blocks. In this table dl ≔ ðlþ 3Þ2=ðð2lþ 5Þð2lþ 7ÞÞ and j ¼ l=2 is a non-negative integer. Notice
that there is a typo in Eq. (8.31) in [5], but the correct expression can be read off from Eq. (8.21) in that paper.

Type Gðz; z̄Þ ĥ1ðzÞ ĥ3ðzÞ ĥ5ðzÞ
1 0 3 0 0
AΔ

½0;0;0�ðj;jÞ GðatÞ
Δ;lðz; z̄Þ 0 0 0

C1;1½0;0;0�ðj;jÞ 0 3
2
hðatÞðlþ 2; zÞ þ 3

2
dlhðatÞðlþ 4; zÞ −hðatÞðlþ 3; zÞ 0

B
1
2
;1
2

½0;2;0�ð0;0Þ
0 1

2
hðatÞð2; zÞ −hðatÞð1; zÞ 0

C
1
4
;1
4

½1;0;1�ðj;jÞ GðatÞ
lþ4;lþ2ðz; z̄Þ 6hðatÞðlþ 4; zÞ þ 6dlþ2hðatÞðlþ 6; zÞ 4hðatÞðlþ 5; zÞ 0

B
1
4
;1
4

½2;0;2�ð0;0Þ GðatÞ
ð2;0Þðz; z̄Þ −6hðatÞð2; zÞ − 6d0hðatÞð4; zÞ 4hðatÞð3; zÞ 0

C
1
2
;1
2

½0;2;0�ðj;jÞ GðatÞ
ðlþ2;lþ2Þðz; z̄Þ − 1

2
hðatÞðlþ 4; zÞ hðatÞðlþ 3; zÞ þ dlþ1hðatÞðlþ 5; zÞ −2hðatÞðlþ 4; zÞ

B
1
2
;1
2

½0;4;0�ð0;0Þ GðatÞ
ð0;0Þðz; z̄Þ 0 d−1hðatÞð3; zÞ −2hðatÞð2; zÞ
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These rules imply that the long multiplets at threshold
decompose into four short multiplets, out of which only the
first two multiplets make an appearance in the four-point
function in question. For this reason the exchange of this set
of operators can be captured in two ways: either by the
blocks of two short multiplets or by the block of a single
long multiplet at threshold. Since a single long multiplet
cannot contribute to the chiral algebra part of the correlator,
the contributions of short multiplets that are indistinguish-
able from a long multiplet must cancel from the chiral
algebra.
Fortunately in the case at hand it is straightforward to fix

the αl. The C1;1½0;0;0�ðj;jÞ multiplets contain higher-spin con-
served currents for all l, and we do not expect these to be
present in an interacting theory.9 For this reason we are
tempted to set the αl to zero. A close inspection of Table III
then reveals a surprise: if c < 3=4, then the coefficient of

the B
1
4
;1
4

½2;0;2�ð0;0Þ multiplet would become negative for α0 ¼ 0,

in violation of unitarity. Therefore, in those cases α0 must
be nonzero, and we conclude that all unitary N ¼ 4
theories with c < 3=4 necessarily contain higher-spin
conserved currents. We may rephrase this result as a
unitarity bound: c ≥ 3=4 for any interacting N ¼ 4 theory.
The threshold value c ¼ 3=4 is precisely the smallest
possible value in the list of N ¼ 4 SYM theories, corre-
sponding to the choice of suð2Þ gauge algebra. Exotic
N ¼ 4 theories with c < 3=4 are ruled out.

In pursuing a numerical bootstrap approach we should
make no further assumptions beyond unitarity, crossing
symmetry and (if possible) the absence of higher-spin
currents. This leads to the following strategies.
c ≥ 3=4: We assume that there are no higher-spin

currents. Correspondingly we set all the αl to zero. We
could in theory also demand absence of all the A2þ2j

½0;0;0�ðj;jÞ
multiplets in the numerical setup. This is, however, infea-
sible in practice, because we cannot exclude long multiplets
just above the unitarity bound (i.e., multiplets of the form
A2þ2jþϵ

½0;0;0�ðj;jÞ with arbitrarily small ϵ), and the numerics cannot

reliably distinguish between the two.
c < 3=4: In this case unitarity dictates that α0 has to be

nonzero. We therefore set it to its lowest possible value as
dictated by unitarity, namely α0 ¼ 2

c −
8
3
. The coefficient of

the B
1
4
;1
4

½2;0;2�ð0;0Þ block is then precisely zero. We set to zero all

the other αl with l > 0. In this way any further contribu-
tions of higher-spin currents to the four-point functions
can be written as A2þ2j

½0;0;0�ðj;jÞ multiplets, and the aΔ;l ≥ 0

for every unitary solution of the crossing symmetry
constraints.
Of course, the theory with higher-spin currents is

expected to be free and thus solvable with analytic
methods. We have nevertheless performed a numerical
analysis also for c < 3=4, both for completeness and as a
nontrivial consistency check of our methods.
From Table II it is clear that Gðu; vÞ receives contribu-

tions from both long and (semi)short multiplets. We can
therefore split it into two parts,

Gðu; vÞ ¼ Glongðu; vÞ þ Gshortðu; v; cÞ; ð2:29Þ

with

Glongðu; vÞ ¼
X
Δ;l

aΔ;lG
ðatÞ
Δ;lðz; z̄Þ;

Gshortðz; z̄; cÞ ¼ λ2½B1
2
;1
2

½0;4;0�ð0;0Þ�GðatÞ
0;0 ðz; z̄Þ

þ λ2½B1
4
;1
4

½2;0;2�ð0;0Þ�GðatÞ
2;0 ðz; z̄Þ

þ
X∞
j¼0

λ2½C1
2
;1
2

½0;2;0�ðj;jÞ�GðatÞ
lþ2;lþ2ðz; z̄Þ

þ
X∞
j¼0

λ2½C1
4
;1
4

½1;0;1�ðj;jÞ�GðatÞ
lþ4;lþ2ðz; z̄Þ: ð2:30Þ

The coefficients λ2½·� are those given in Table III with the αl
fixed in accordance with the above discussion. This
expression highlights the utility of the chiral algebra in
determining the contributions of short multiplets to the
four-point function, including OPE coefficients.
Happily, Eq. (2.30) can be explicitly summed. For c ≥

3=4 we find

TABLE III. Coefficients of the superconformal blocks. The
normalization of the superconformal blocks follows from Table II.
As before j ¼ l=2 is a non-negative integer. The coefficients of

the C
1
4
;1
4

½1;0;1�ðj;jÞ (with αlþ2 ¼ 0) and of the C
1
2
;1
2

½0;2;0�ðj;jÞ multiplets are

respectively denoted elþ2 and dlþ2 in Eq. (8.36) in [5].

Type Coefficient

1 1

AΔ
½0;0;0�ðj;jÞ aΔ;l

C1;1½0;0;0�ðj;jÞ αl

B
1
2
;1
2

½0;2;0�ð0;0Þ
2
c

C
1
4
;1
4

½1;0;1�ðj;jÞ
2lþ1ðlþ3Þ!ðlþ4Þ!

ð2lþ7Þ! ððlþ 3Þðlþ 6Þ − 3
cÞ þ 1

4
αlþ2

B
1
4
;1
4

½2;0;2�ð0;0Þ
2
3
− 1

2c þ 1
4
α0

C
1
2
;1
2

½0;2;0�ðj;jÞ
2lþ2ðlþ2Þ!ðlþ3Þ!

ð2lþ5Þ! ððlþ 3Þðlþ 4Þ þ 1
cÞ

B
1
2
;1
2

½0;4;0�ð0;0Þ
2þ 1

c

9In the free SYM theories the higher-spin current multiplet of
type C1;1½0;0;0�ð0;0Þ is the Konishi multiplet. This is lifted from the
spectrum of (semi)short multiplets at nonzero coupling.
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Gshortðz; z̄Þ ¼ 6

zz̄

�
4 − 2zz̄ðz2 þ zz̄þ z̄2 − 4Þ þ ðzþ z̄Þðz2 þ z2z̄2 þ z̄2 − 6Þ

ð1 − zÞ2ð1 − z̄Þ2 þ 3

c

�
1þ 1

ð1 − zÞð1 − z̄Þ
��

þ 2 logð1 − zÞ
ð1 − z̄Þ

�
−3ðz̄4 − 6z̄2 þ 4z̄Þ þ zð2z̄4 − z̄3 þ 4z̄2 − 18z̄þ 12Þ

ðz − z̄Þz2z̄ð1 − z̄Þ −
1

c

�
9z̄ − 18

z2z̄
−
4

z
þ 4

ðz − z̄Þ
��

þ 2 logð1 − z̄Þ
ð1 − zÞ

�
3ðz4 − 6z2 þ 4zÞ − z̄ð2z4 − z3 þ 4z2 − 18zþ 12Þ

ðz − z̄Þzz̄2ð1 − zÞ −
1

c

�
9z − 18

zz̄2
−
4

z̄
−

4

ðz − z̄Þ
��

þ 12 logð1 − zÞ logð1 − z̄Þ
z2z̄2

�
2þ 3

c

�
: ð2:31Þ

For c < 3=4 the nonzero α0 just adds a single block. An
explicit expression of this type is convenient but not
necessary for the numerical analysis below. The expression
given in (2.30) as an infinite sum can be used to numeri-
cally approximate Gshortðz; z̄; cÞ and its derivatives to any
desired precision by summing a large but finite number
of terms.

D. Crossing symmetry equations

We are now ready to revisit the crossing symmetry
equations (2.7) and (2.8). The first of these has the simple
consequence that the spins l in the conformal block
decomposition are all even integers. The second equation
is nontrivial and will be the subject of our numerical
analysis. Using (2.9) and (2.10) we find that Eqs. (2.8) are
equivalent to crossing symmetry for the chiral algebra

four-point function plus an additional constraint on the
two-variable function Gðu; vÞ given by

v2Gðu; vÞ − u2Gðv; uÞ þ 4ðu2 − v2Þ þ 4ðu − vÞ
c

¼ 0:

ð2:32Þ

In this expression we have already substituted the solutions
for the fiðzÞ given in (2.18).
With Gðu; vÞ split into short and long parts, the funda-

mental crossing symmetry equation can be written as

X
Δ;l

aΔ;lF
ðatÞ
Δ;lðu; vÞ − Fshortðu; v; cÞ ¼ 0; ð2:33Þ

with10

FðatÞ
Δ;lðu; vÞ ≔ ðz − z̄Þðv2GðatÞ

Δ;lðu; vÞ − u2GðatÞ
Δ;lðv; uÞÞ;

Fshortðu; v; cÞ ≔ ðz − z̄Þ
�
−v2Gshortðu; vÞ þ u2Gshortðv; uÞ − 4ðu2 − v2Þ − 4ðu − vÞ

c

�
: ð2:34Þ

Unitarity requires that Δ ≥ lþ 2 and aΔ;l ≥ 0. The
remainder of this paper is dedicated to the numerical
analysis of Eq. (2.33). We will extract nonperturbative
information about the spectrum and OPE coefficients of the
long multiplets as a function of the central charge c of the
theory.

III. BOOTSTRAP METHODS

The undetermined data in the crossing equation (2.33) is
the spectrum of long multiplets fΔi;lig and their (squared)
OPE coefficients aΔi;li ¼ λ2i ; the central charge c is a fixed
input parameter. The key idea of [14] and subsequent work

is to make restrictive assumptions about these data and then
proceed to derive contradictions with (2.33). This is
generally achieved using numerical methods.
As a standard example, we might assume that all

operators with l ¼ 0 appearing in the conformal block
decomposition have scaling dimension greater than a
certain fixed value Δ⋆

0 . (This is a nontrivial assumption
only if Δ⋆

0 > 2.) This assumption will lead to a contra-
diction if one can find a real-valued linear functional ϕ such
that

ϕ · 0 ¼ 0;

ϕ · Fshortðu; vÞ ¼ −1;

ϕ · FðatÞ
Δ;0ðu; vÞ ≥ 0; ∀ Δ ≥ Δ⋆

0 ;

ϕ · FðatÞ
Δ;lðu; vÞ ≥ 0; ∀ Δ ≥ lþ 2; ∀ l > 0: ð3:1Þ

10The factors of ðz − z̄Þ are included for convenience when
computing derivatives of these functions at the point z ¼ z̄ ¼ 1

2
.

They do not add any physical content to the crossing relation
given here.
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By linearity, such a functional will give a strictly positive
result when acting on the left-hand side of (2.33) but will
return zero when acting on the right-hand side. The
existence of such a functional would therefore imply that
any unitary solution of the crossing symmetry equation will
have at least one scalar operator whose dimension is less
than Δ⋆

0 .
11 One can easily extend this example by making

additional assumptions about the spectrum of operators
with spin, e.g., that there exist no operators of spins zero or
two with dimensions less than some values Δ⋆

0 and Δ⋆
2 ,

respectively, or more generally that there are gaps up to
some dimensions Δ⋆

l for each l.
This strategy has proven fruitful even when one restricts

to linear functionals of the particular form

ϕ · fðz; z̄Þ ¼
� XΛ

m;n¼0

αm;n
∂m

∂zm
∂n

∂z̄n fðz; z̄Þ
�����

z¼z̄¼1
2

; ð3:2Þ

for some finite cutoff Λ ∈ Zþ and with αm;n ∈ R. Because

of the symmetry properties of Fshortðu; vÞ and FðatÞ
Δ;lðu; vÞ,

we may restrict tom < n andmþ n ∈ 2Zþ without loss of
generality. A functional in this class is completely deter-
mined by the parameters fαm;ng, so the task at hand is to
exhaustively search the finite-dimensional space of these
parameters at fixed Λ for a functional that satisfies the
correct positivity properties. For future reference, we define
the dimensionality of the space of functionals at fixed Λ as

NðΛÞ ≔
XΛ
n¼0

Xn−1
m¼nðmod 2Þ

1 ¼ 2Λ2 þ ð−1ÞΛ − 1

8
: ð3:3Þ

In the case of the standard strategy outlined above, it is of
interest to determine the minimum excludable value for Δ⋆

0

with a given space of functionals determined by Λ. The
simplest way to do this is to implement a binary search:
starting with some trial Δ⋆

0 , we search for fαm;ng such that
(3.1) is satisfied. If a feasible set of values is found, then we
lower Δ⋆

0 and repeat the procedure. If not, then we raise Δ⋆
0

instead. We can iterate until we have converged to within an
arbitrarily small distance of the optimal value of Δ⋆

0 .
A variant of the above strategy can be used to extract

bounds for OPE coefficients. For example, let us assume
that the conformal block decomposition contains a scalar
operator with dimension Δ̂0. We then look for a functional
that solves the following optimization problem:

minimize ðϕ · Fshortðu; vÞÞ while

ϕ · 0 ¼ 0;

ϕ · FðatÞ
Δ̂0;0

ðu; vÞ ¼ 1;

ϕ · FðatÞ
Δ;lðu; vÞ ≥ 0; ∀ Δ ≥ lþ 2; ∀ l ≥ 0: ð3:4Þ

Compatibility with (2.33) then implies that

λ2Δ̂0;0
≤ ϕ · Fshortðu; vÞ: ð3:5Þ

In this case no binary search is necessary: the optimal value
of the bound is found directly by the minimization
procedure.
As a final variant, we can bound squared OPE coef-

ficients in the presence of gaps in the spectrum. In this
scenario we assume, e.g., that the scalar spectrum contains
one operator of dimension Δ̂0 and all other scalar operators
have a dimension greater than some value Δ⋆

0 ≥ Δ̂0. The
two relevant optimization problems are then given by

minimize ðϕ · Fshortðu; vÞÞ while

ϕ · FðatÞ
Δ̂0;0

ðu; vÞ ¼ �1;

ϕ · FðatÞ
Δ;0ðu; vÞ ≥ 0; ∀ Δ ≥ Δ⋆

0 ;

ϕ · FðatÞ
Δ;lðu; vÞ ≥ 0; ∀ Δ ≥ lþ 2; l > 0: ð3:6Þ

Depending on the choice of sign on the second line, the
result of this optimization produces an upper or lower
bound for the squared OPE coefficient of the operator of
dimension Δ̂0. More precisely,

λ2Δ̂0;0
≶� ðϕ · Fshortðu; vÞÞ: ð3:7Þ

If we choose the positive sign, it may happen that ϕ ·
Fshortðu; vÞ < 0 in which case (3.7) is in contradiction with
the reality of λΔ̂0;0

. In that case our assumption about the
spectrum cannot be reconciled with crossing symmetry, and
we have to modify it, e.g., by lowering Δ⋆

0 . On the other
hand, if we pick the negative sign, then it may happen that
ϕ · Fshortðu; vÞ > 0 and the bound is trivial. This occurs, for
example, if we set Δ̂0 ≥ Δ⋆

0 .
Two different computational strategies have emerged for

performing the types of functional searches described here.
They proceed by formulating this problem as, respectively,
a linear program or a semidefinite program. These are both
examples of convex optimization problems for which there
exist decisive computer algorithms. We have employed
both of these approaches in our analysis. Below we review
the setup relevant to each and give some of the technical
details relevant to our implementation.

11Correspondingly, the existence of any consistent, unitary
solution of (2.33) implies that for ϕ satisfying (3.1), we will find
that ϕ · FðatÞ

Δ;0ðu; vÞ is less than zero somewhere in the region
2 ≤ Δ ≤ Δ⋆

0 .

BEEM, RASTELLI, and VAN REES PHYSICAL REVIEW D 96, 046014 (2017)

046014-12



A. Linear programming

The inequalities (3.1), (3.4), and (3.6) should be imposed
for all l ≥ 0, and in addition for all values of the continuous
parameter Δ compatible with unitarity. They are therefore
infinite in number with cardinality that of the continuum. In
the linear programming approach to this problem, we
render this set of inequalities finite by truncating the set
of spins l ≤ lmax and the dimensions Δl ≤ Δl;max for
which the inequalities are considered, and further discretiz-
ing the set of scaling dimensions. This is a reasonable
approach because the building blocks of the functionals—

namely the derivatives of the functions FðatÞ
Δ;l evaluated at

z ¼ z̄ ¼ 1
2
—depend continuously on Δ and have well-

defined asymptotic behavior for Δ ≫ 1 and for l ≫ 1.
By taking the grid of scaling dimensions fine enough and
taking large enough cutoffs, one may expect that the
functionals that solve the corresponding inequalities will
solve the general infinite set of inequalities. Indeed, one

may use asymptotic formulas for the FðatÞ
Δ;l to verify that the

constraints are also valid beyond Δl;max and lmax; see [14].
Additionally, discretization effects can be investigated
experimentally by checking that the results are unchanged
upon refinement of the grid.
Once the set of linear inequalities is rendered finite, the

optimization problems described above become standard
examples of linear programs. In notation adapted to our
purposes a general linear program is an optimization
problem of the form

minimizeoverαm;n

XΛ
m;n¼0

cm;nαm;n;

subject to
XΛ
m;n¼0

Fm;nαm;n¼−1;

XΛ
m;n¼0

fm;nαm;n>0; fm;n∈Rq; ð3:8Þ

where the inequality on the last line is meant to hold for
each component separately. The precise mapping of the
parameters is self-evident for all the feasibility and opti-
mization problems listed above. Notice that the first
problem (3.1) is a pure feasibility study, and in that case
we can simply set cm;n ¼ 0. The number q of inequality
constraints on the last line is the total number of ðΔ;lÞ
pairs in our discretization, which is generally very large.
For most of the results in this paper we use lmax ¼ 20, and
for each l the scaling dimensions were discretized with a
grid spacing ranging from δΔ ¼ 2 × 10−3 at small values of
Δ up to δΔ ¼ 1 for Δ ∼ 75, along with a sparse set of very
large dimension values up to Δl;max ¼ 500, leading to a
total of 9659 constraints. We use the IBM ILOG CPLEX
optimizer to perform the optimization.

B. Semidefinite programming

An elegant alternative to the discretization used in the
linear programming approach to these problems is the
semidefinite programming method introduced in [41] and
further developed in [17,18]. This method does not require
discretization nor the introduction of a Δmax, though it is
still necessary to truncate the set of spins considered to
l ≤ lmax with sufficiently high cutoff that the various
derivatives used in the functional are well-approximated
by their large l asymptotics for l ≥ lmax.
The basis for the semidefinite program approach is the

existence of precise approximations for the derivatives of
the atomic conformal blocks evaluated at z ¼ z̄ ¼ 1

2
as

polynomials in the conformal dimension Δ, multiplied by a
universal (that is, independent of the derivatives being
taken) prefactor that is positive for all values of Δ that are
compatible with unitarity,

∂m
z ∂n

z̄F
at
Δ;l

�
1

2
;
1

2

�
≈ χlðΔÞPl

mnðΔÞ; ð3:9Þ

with Pl
mnðΔÞ polynomial and where

χlðΔÞ > 0; Δ ≥ 2þ l:

These approximations can be motivated quite generally
using recursion relations for conformal blocks [17], but in
our case they can be seen from the explicit form of the
atomic conformal blocks. In particular, we adopt the radial
variables of [42],

ρ ≔
z

ð1þ ffiffiffiffiffiffiffiffiffiffi
1 − z

p Þ2 ; z ¼ 4ρ

ð1þ ρÞ2 ; ð3:10Þ

and similarly for ρ̄ðz̄Þ. In terms of these radial variables, the
hypergeometric function (2.26) appearing in the atomic
superconformal blocks is given by

z
α
2F½α; z� ¼ ð4ρÞα22F1

�
1

2
;
α

2
;
αþ 1

2
; ρ2

�
: ð3:11Þ

The Taylor series expansions of the above function and its
derivatives about ρ ¼ 0 converge uniformly (and quickly)
for all α ≥ 0 at ρðz ¼ 1

2
Þ ≈ 0.1716. Keeping terms up to a

fixed order in the Taylor series gives a polynomial in Δ for
any l multiplied by a positive prefactor.
With polynomial approximations of this type in place,

the problem of finding a functional ϕ as described above
becomes a simple example of a “polynomial matrix
program” [18]. Using again a notation adapted to our
purposes such a program takes the general form
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minimize overαm;n

XΛ
m;n¼0

cm;nαm;n;

subject to
XΛ
m;n¼0

Fm;nαm;n¼−1;

∀y>0∶
XΛ
m;n¼0

Mm;nðyÞαm;n≽0; Mm;n∈R½y�s×s:

ð3:12Þ

where M≽0 means that the matrix M is positive semi-
definite. For our purposes it suffices to consider only
diagonal matrices Mm;n, more precisely

MmnðyÞ

¼

0
BBBBBB@

P0
mnðyþΔ⋆

0Þ 0 � � � 0

0 P2
mnðyþΔ⋆

2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Plmax
mn ðyþΔ⋆

lmax
Þ

1
CCCCCCA
:

ð3:13Þ
This form causes the positive semidefiniteness constraint to
degenerate into a set of simple inequalities, one for each of
the diagonal elements. The requirement that these inequal-
ities hold for all y > 0 implies they hold for all Δ greater
than the imposed gaps Δ⋆

l. The precise mapping of the
other parameters is then again straightforward for each of
the problems listed above.
The precision polynomial matrix program solver SDPB

was developed to solve precisely this type of feasibility/
optimization problem by transforming it to a semidefinite
program and implementing an arbitrary precision primal-
dual interior point method [18]. We have used SDPB and this
approach to derive stronger bounds than were achievable
using the linear programming method with a machine-
precision solver. In particular, the large Λ results for
c ¼ 3=4 and large c reported below required these meth-
ods, with which we were able to raise the cutoff as high
as Λ ¼ 38.12

IV. BOUNDS ON LEADING-TWIST
OPERATOR DIMENSIONS

In this section we report bounds for the scaling dimen-
sions of the lightest long multipletsAΔ

ðl
2
;l
2
Þ½0;0;0� for fixed spin

l that appear in the superconformal block decomposition of
the 200 four-point function. In other words, we are explor-
ing the spectrum of leading-twist unprotected singlet

operators (LTUSOs). Recall that Bose symmetry restricts
j to be integer, so l must be even. We focus on spins
l ∈ f0; 2; 4g, leaving the extension to higher spins for
future investigation.

A. Single channel bounds

The most straightforward operator bounds are upper
bounds for the dimension of the LTUSO of a fixed spin
with no restrictions imposed on the spectrum of operators
of other spins. These bounds are derived by searching for
functionals of the type given by (3.1) and maximizing Δ⋆

l.
In Fig. 1 we display upper bounds of this type for spins
l ¼ 0, 2, 4. The blue curves, which show the best bounds
in the plots, were obtained using the linear programming
method with Λ ¼ 17, corresponding to Nð17Þ ¼ 72 inde-
pendent coefficients αm;n. The yellow curves represent
bounds derived using smaller values for Λ. The curves
themselves are interpolations through a finite number of
data points, which are displayed explicitly only for the blue
curves. We have marked with vertical lines the values c ¼
3=4 and c ¼ 1=4, which are the relevant values for N ¼ 4
SYM theories with gauge algebras suð2Þ and uð1Þ,
respectively. The kink at c ¼ 3=4 is related to the non-
smoothness of Fshortðu; vÞ at this value of c. As was
outlined above, this is due to the inclusion of higher-spin
currents for c < 3=4.
The plots in Fig. 1 suggest that the bounds are close to

converging to a definite best value representing the limit
Λ → ∞. We can explore this apparent convergence by
studying the bounds for many values of Λ and considering
the extrapolation to infinite Λ. It has been observed in a
number of previously studied cases that these extrapola-
tions are often quite regular, and sometimes make con-
nections with known physics [43]. We have performed such
an investigation for c ¼ 3=4 using the semidefinite pro-
gramming approach, with which we have been able to test
up to Λ ¼ 38 [corresponding to a search space of dimen-
sion Nð38Þ ¼ 361]. Extrapolations of the single-channel
bounds for l ¼ 0, 2, 4 are shown in Fig. 2.

1. Consistency at small and large central charges

In order to interpret our bounds in the context of SYM
theories, it is sensible to pay particular attention to the cases
c ¼ 1=4 and c ¼ ∞. For these values of the central charge,
there are known solutions to crossing symmetry that have a
reasonable chance to realize the maximum dimensions for
LTUSOs. Consequently we can use these cases to inves-
tigate whether these numerical methods are making contact
with actual SCFTs.
We first consider the case of c ¼ 1=4. This is the value of

c in the uð1Þ SYM theory, which is free. The conformal
block decomposition of the free-field-theory four-point
function has been analyzed in [5] for any gauge group.
It has non-negative OPE coefficients for all c ≥ 1=4, and

12Further details on the choice of parameters used to derive the
numerical results in this paper are available from the authors upon
request.
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FIG. 2. Upper bounds for the dimensions of the LTUSOs of spins l ¼ 0, 2, 4 for c ¼ 3=4 as a function of 1=Λ for Λ ¼ 14; 15;…; 38.
These bounds were derived using the semidefinite programming method with SDPB [18]. The red line denotes the “corner estimate” of
the extremal value for these operator dimensions from [1,21]—see also Sec. IV B.

FIG. 1. Upper bounds for the dimension of the LTUSO of spin l ¼ 0, 2, and 4, respectively, as a function of the (square root of the)
central charge.
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for c > 1=4 the first unprotected operator of spin l sits at
the unitarity bound Δl ¼ 2þ l. On the other hand, for
c ¼ 1=4 the coefficient of the unprotected scalar operator at
the unitarity bound vanishes, and the lowest-dimension
unprotected singlet operator appearing with nonzero coef-
ficient has dimension four. (More precisely, for c ¼ 1=4 the
entire contribution of the dimension-two Konishi operator
is accounted for by the higher-spin conserved-current
block, and therefore a2;0 ¼ 0.) This physical result is
beautifully reproduced by the numerical bounds in
Fig. 1: the spin-two and spin-four bounds are approaching

the unitarity bounds of 4 and 6, respectively, at c ¼ 1=4.
The scalar bound, however, approaches the value 4 instead.
(For c ¼ 1=4 the best numerical bounds shown are given
by Δ⋆

0 ¼ 4.055, Δ⋆
2 ¼ 4.185, and Δ⋆

4 ¼ 6.155.)
In the other extreme, we consider the case of infinite

central charge. The c → ∞ limit of N ¼ 4 SYM is usually
considered in the context of the ’t Hooft double-scaling limit
in terms of λ ¼ g2YMN. At a strictly infinite central charge,
these theories enjoy large N factorization for all values of λ,
and the 200 four-point function is given by the “mean field
solution” computed as a sum of disconnected contributions,

hOðw1; x1ÞOðw2; x2ÞOðw3; x3ÞOðw4; x4Þi ¼
1

x412x
4
34

Fm:f:ðwij; u; vÞ

≔ hOðw1; x1ÞOðw2; x2ÞihOðw3; x3ÞOðw4; x4Þi
þ hOðw1; x1ÞOðw3; x3ÞihOðw2; x2ÞOðw4; x4Þi
þ hOðw1; x1ÞOðw4; x4ÞihOðw2; x2ÞOðw3; x3Þi: ð4:1Þ

The LTUSO for any spin in this solution is the double-trace
operator of the form OIJ

200∂μ1 � � � ∂μlO
IJ
200 , which has dimen-

sion 4þ l. This double trace value is the maximum gap for
LTUSOs in the known solutions to crossing at large c.
Happily, these operator dimensions appear to be reproduced
by our numerical analysis for very large c. In Fig. 3 we show
the upper bounds for spins l ¼ 0, 2 asΛ is increased up to a
maximum value of 38 for spin zero and 36 for spin two. The
best bounds derived in these two cases are Δ⋆

0 ¼ 4.0141�
0.0001 and Δ⋆

2 ¼ 6.00068� 0.00003, and one sees by
examination (and curve fitting) that the bounds are very
likely approaching the mean field values of 4 and 6. We will
investigate subleading behavior in the 1=c expansion below.

2. Extremal solutions

It is encouraging that for large and small values of c, the
numerical functional method produces bounds that are not
only consistent with known solutions to crossing

symmetry, but appear to be converging toward optimal
bounds that are saturated by precisely the values for those
known solutions. In other words, the numerical bounds are
plausibly converging toward the best possible bounds.
For intermediate values of c the numerical bounds will

similarly converge toward some optimal value. We expect
that there is a solution of crossing symmetry that prevents
the bounds from decreasing further—such solutions are
also known as extremal solutions because they maximize
the gap in a given channel. Notice that the extremal
solutions cannot correspond to weakly coupled Yang-
Mills theories: weak coupling and c > 1=4 translate to
very small gaps for all spins. We will discuss possible
physical interpretations of the extremal solutions in
detail below.
An approximation to the extremal solution for a given

optimization problem can be recovered directly by appeal-
ing to a key result concerning the numerical strategy we
have employed. For each of the linear programs formulated

FIG. 3. Numerical upper bounds for spin-zero and spin-two LTUSOs at infinite central charge. The curves in the two cases are a two-
parameter linear fit and a three-parameter exponential fit. The mean field theory values of Δ0 ¼ 4 and Δ2 ¼ 6 are shown in red.
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in Sec. III there exists a dual linear program, which
amounts precisely to the search for a solution to the
truncated crossing symmetry equations obtained by con-
sidering only the constraints imposed by demanding that
the ðm; nÞth derivatives of (2.33) vanish at z ¼ z̄ ¼ 1

2
for

m; n ≤ Λ.13 This duality is actually exploited in modern
numerical methods (see for example [15]): rather than
finding a functional one may instead try to find a solution to
the truncated equations [45,46], and in this formulation we
allow a trial spectrum if such a solution can be found.14 By
increasing the cutoffΛwe increase the number of equations
that must be satisfied, and in this way we expect to obtain a
solution to the full crossing symmetry equation at the
boundary of the allowed region as Λ → ∞. This would be
precisely the extremal solution of the previous paragraph.
We can summarize the above discussion in the following
conjecture.
Conjecture 1 The observed convergence of the numeri-

cal bootstrap bounds is a consequence of the existence of
exact extremal solutions to the crossing equation (2.33).
The dimensions of the first operators in the scalar, spin-two,
and spin-four channels of these extremal solutions lie close
to the numerical bounds shown in Fig. 1.
There are two reasons for formulating this result as a

conjecture rather than a theorem. First of all, though there
exists ample numerical evidence for the convergence of the
truncated solution to a full solution, there is currently no
rigorous theorem concerning the convergence of the
numerical results. Second, we cannot claim with absolute
certainty that our results represent an asymptotic region;
i.e., we cannot rigorously claim that the bounds obtained
are very close to their optimal values. However, we hasten
to add that these objections should not discourage the
reader: in our view the numerical evidence is very solid,
and the convergence is very good.

3. General consistency conditions

The existence of the mean field solution (4.1) has the
following interesting consequence.15 Consider a solution to
crossing symmetry F ðwij; u; vÞ with positive OPE coef-
ficients for finite c > 3=4 and with gap Δ⋆

l in the channel
with spin l. The linear combination

αF ðwij; u; vÞ þ ð1 − αÞFm:f:ðwij; u; vÞ ð4:2Þ

interpolates between our original solution and the mean-
field solution, has positive OPE coefficients for all

0 ≤ α ≤ 1, and from its conformal block decomposition
we find an effective central charge given by ceff ¼ c=α ≥ c.
It therefore provides a valid solution to crossing symmetry
with gaps given by minðΔ⋆

l;lþ 2Þ for each l. In other
words, as long as Δ⋆

l ≤ lþ 2 the existence of this one
solution for a given value of c implies the existence of a
solution with the same gaps for all other values of ceff > c.
It follows that the bound for the first operator of spin l is
necessarily a nondecreasing function of c, at least as long
as c > 3=4 and the bound is smaller than lþ 2. (For c <
3=4 the higher-spin currents invalidate the above argu-
ment.) This monotonicity is manifest in the numerical
results of Fig. 1.
In fact, this is just a simple example of a more general

subtlety that arises from the possibility of taking linear
combinations of solutions of crossing symmetry. This issue
has particular impact in the case of the superconformal
bootstrap, as it is often the case in supersymmetric theories
that there will be a number of inequivalent theories that will
all have some BPS operator in their spectrum with fixed
quantum numbers. A linear combination of four-point
functions for those theories can then affect the numerical
bounds that can conceivably be derived using single
correlator techniques. Linear combination effects of this
type have been observed previously in the study of three-
dimensional N ¼ 8 theories [48].
Our numerical bounds are also consistent with the

general ideas presented in [49,50] concerning the spectrum
at large spin and convexity of the twist τ ¼ Δ − l of the
lowest-lying operators as a function of spin. Taken together,
the results of those papers imply that the OPE decom-
position of our correlator must contain an operator with
twist less than four for any spin l ≥ 4. A quick inspection
of Table II shows that for c ≥ 3=4 this operator is
necessarily the primary of a long multiplet, resulting in
an analytic bound that is, for example, Δ ≤ 8 for the spin-
four multiplets. Our numerical bounds improve on this
result for low values of c. For very large c the analytic
bound is slightly stronger, which we ascribe to the finite
value of the numerical cutoff Λ.

B. Combining the bounds

In practice, we do not expect the solutions of crossing
symmetry that maximize the dimension of the LTUSO of a
given spin to have operators at the unitarity bound for other
spins. We can then hope to get extra information about the
collection of extremal functionals by bounding the possible
simultaneous gaps for several spins at once. In Fig. 4 we
plot the exclusion surface in the three-dimensional space
spanned by the three gaps ðΔ⋆

0 ;Δ⋆
2 ;Δ⋆

4Þ. The strategy to
obtain this surface is the same as the single channel bounds
of the previous subsection: we perform a binary search for
functionals of the type (3.1), but now with gaps in all three
channels simultaneously. Consistency with crossing sym-
metry requires that all consistent, unitary N ¼ 4 theories

13In the case of the semidefinite program method, we are not
aware of an equally clear argument relating the dual optimization
problem to the solution of the truncated crossing equation. See
[44] for additional discussion of this point.

14It is a theorem that in the cases under consideration the two
methods are completely equivalent [47].

15The argument presented here is rather general and applies to
nonsupersymmetric theories as well.
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with the given central charges must have a triplet of
operators of spins 0, 2, and 4 corresponding to a point
somewhere below the yellow surface shown in these
figures.16 To orient the reader we note that the bounds
presented in Fig. 1 (for the given values of c) correspond to
the intersections of the surfaces of Fig. 4 with the axes.
The exclusion surfaces in Fig. 4 have a rather striking

shape which is nearly cubic for each value of the central
charge.17We should considerwhether this shape is consistent
with theoretical expectations and if it provides insight
concerning the extremal solutions of Conjecture 1. First, it
is important to realize that the surfaces are again necessarily
monotonic in the sense that, if we move along the surface,
then each Δ⋆

l has to be a nonincreasing function of the other
two scaling dimensions. This is because one cannot pass
from an excluded point to an allowed point by increasing the
gap in one channel (increasing one of the Δ⋆

l).

Consider now the set S of points ðΔ̂0; Δ̂2; Δ̂4Þ that
correspond to valid solutions to the crossing symmetry
equations. From the aforementioned monotonicity argu-
ment we deduce that for each point p ∈ S the numerical
bound will never be able to exclude any points in the
interior of the cuboid with horizontal and vertical faces and
with corner point p. The best possible bound is therefore
the union of all the cuboids spanned by all points p ∈ S.
This is the bound that we would expect to find in the
limit Λ → ∞.
In Fig. 4 we find what can best be described as a single

approximate cuboid. Qualitatively this is the same thing we
find for all other values of the central charge. This teaches
us two important lessons. First, the approximately cubic
shape suggests that our bounds have converged relatively
well, which provides us with further evidence for
Conjecture 1. Second, the expected union of cuboids
should reduce to a single cuboid if there exists a single
extremal point pext where all three of Δ̂0, Δ̂2, and Δ̂4 are
simultaneouslymaximized within S. Then all other cuboids
lie within the cuboid corresponding to pext. It is therefore
natural to conjecture that this is what is happening with our
bounds.

FIG. 4. Combined-channel exclusion plots for the LTUSOs of spin l ¼ 0, 2, 4. The plots are for central charges c ¼ 3
4
, c ¼ 15

4
, and

c ¼ ∞, as labeled.

16The unitarity bound on the operator dimensions Δ ≥ lþ 2
restricts us to the octant shown in the figures.

17We have performed similar analyses for many additional
values of c between 3=4 and infinity, and the qualitative shape
stays more or less the same.
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Conjecture 2 For a given value of c, the three single-
channel bounds in Fig. 1 all converge toward a single
extremal solution which is the same for the three different
spins. This solution simultaneously maximizes the dimen-
sion of the first unprotected operator for all three spins. The
corresponding point pext lies close to the vertex of the
cuboids that we obtained numerically.
For infinite c this extremal solution should be the mean-

field solution (4.1). This is borne out by Fig. 5 which
provides a close-up view near the corner of the cube with
c ¼ ∞. We see that the exclusion surface just wraps around
the point (4,6,8) corresponding to the mean-field solution.
This detailed view of the exclusion surface also illustrates
that the vertex of the cuboid is rounded off rather than
perfectly sharp. Also, the faces are not perfectly horizontal
or vertical: for example, the top face intersects the vertical
axis at the value 4.074. We suspect these are all finite Λ
effects and that the bounds approach a sharp cuboid
as Λ → ∞.

C. Interpretation of the extremal solution

In the previous subsections we interpreted our bounds in
terms of a hypothetical single extremal solution, which is
completely determined in terms of the central charge c of the
theory. However, the existence of a solution for a certain
value of c does not automatically imply the existence of a
corresponding full-fledgedN ¼ 4 SCFT. Counterexamples
are known in similar contexts: there exists a one-parameter
family of solutions to crossing symmetry (with positive
coefficients) in two dimensions [51], but only for given
values of the central charge does this solution belong to a
unitary (nonsupersymmetric) CFT. Similarly, one may ana-
lytically continue the four-point functions of the OðNÞ
models to fractional N and obtain consistent results for a
single correlator, but nevertheless find conflicts with unitary
in other correlators.

In this subsection we will consider the possibility of
giving a physical interpretation of the extremal solutions
away from the points c ¼ 1=4 and c ¼ ∞. We will see that
for a very large (but finite) central charge we can actually
understand them relatively precisely. For specific smaller
values of c we will conjecture that the extremal solutions
should be interpreted as physical solutions in strongly
coupled N ¼ 4 SYM theories.

1. Interpretation for large central charge

In the ’t Hooft limit of the N ¼ 4 SYM theories, the
mean-field solution (4.1) is the leading-order approxima-
tion for the 200 four-point function in the 1=N2 expansion,
for all values of the coupling λ. The first subleading term
depends on the ’t Hooft coupling and can be computed at
weak coupling using perturbation theory or at strong
coupling using supergravity.
At weak coupling the first subleading correction intro-

duces the Konishi operator to the conformal block expan-
sion, and similarly in other spin channels one finds new
operators with dimensions at the unitarity bounds. This
behavior is consistent with the numerical bounds, but
comes nowhere close to saturating them. The extremal
solution does not correspond to weakly coupled SYM
theory.
At large ’t Hooft coupling we are in better shape. The

first subleading term in the 1=N2 expansion, as computed
with tree-level Witten diagrams in AdS5, introduces no new
unprotected operators below the double-trace operators, but
the double-trace operators get small negative anomalous
dimensions. For the operators of lowest spin this anoma-
lous dimension has been computed in [5,34,52], with the
following result:

Δ0 ¼ 4 −
16

N2
þ � � � ¼ 4 −

4

c
þ � � � ;

Δ2 ¼ 6 −
4

N2
þ � � � ¼ 6 −

1

c
þ � � � ;

Δ4 ¼ 8 −
48

25N2
þ � � � ¼ 8 −

12

25c
þ � � � : ð4:3Þ

In Fig. 6 we display the large c behavior of the bounds
shown in Fig. 1, together with a plot of (4.3). We also added
an admittedly crude approximation of the operator dimen-
sion obtained by manually estimating the location of the
corner of a cuboid such as those shown in Fig. 4. As shown
in Fig. 5 the corner is not sharp, so our estimate is an
interval rather than a point.
We can improve our estimates of the operator dimen-

sions in the extremal solution by extrapolating the upper
bounds as a function of the cutoff Λ. In Fig. 7 we show the
result of extrapolating to infinite Λ the sequence of upper
bounds in the scalar channel for 11 large values of c. This
strongly reinforces the conjecture that the large c extremal
solution is precisely the supergravity solution in the

FIG. 5. Detailed view of the corner of the cube corresponding to
c ¼ ∞. The superimposed axes intersect at the point
ðΔ̂0; Δ̂2; Δ̂4Þ ¼ ð4; 6; 8Þ, which corresponds to the mean-field
solution.
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neighborhood of infinite central charge, and we can
plausibly make the following conjecture.
Conjecture 3 For a parametrically large central charge

the extremal solution is the mean-field solution, and the
first 1=c correction to the extremal solution is equal to the
leading 1=N2 correction as computed from type IIB super-
gravity on AdS5 × S5.
We should emphasize that the success of the mean-field

solution and its supergravity correction at a large central
charge was not obviously guaranteed. Naively one can take
the large c limit in a manner that is not controlled by planar
SYM. For example, we can fix the coupling constant g2YM to
beOð1Þ and then takeN ≫ 1. The behavior of the theory in
such limits is less tractable, and a priori we could not have
excluded a solution to the crossing symmetry equations
with a larger gap than observed in the mean-field solution.
Our numerical bounds, however, teach us that this is, in
fact, not possible. Analytic work supporting the same

conclusion can be found in [53,54], and subleading
corrections in λ were obtained in [55].

2. Interpretation for finite central charge

Let us now consider finite values of c > 3=4.18 The
extremal solution cannot correspond to weakly coupled
N ¼ 4 SYM theory because the gaps are far larger than
those that appear in the free theory. If we assume that the
extremal solution is physical and does not correspond to an
“exotic” theory with N ¼ 4 supersymmetry, then it must
correspond to a strongly coupled point on the conformal
manifold ofN ¼ 4 SYM theories for the given value of the

FIG. 6. Numerical and analytic results for LTUSO dimensions at a large central charge. Gray lines correspond to the bounds of Fig. 1,
and blue lines were obtained using the semidefinite programming method with Λ ≤ 38. The vertical intervals represent manual estimates
of the location of the “corner” of cuboids such as those in Fig. 4 for the given values of the central charge. Finally, the red line segments
correspond to the leading 1=N2 correction to the mean-field solution obtained from supergravity and given in (4.3).

FIG. 7. Extrapolated upper bounds for the LTUSO in the scalar and spin-two channels at a large central charge. For each data point we
have extrapolated from bounds for 12 values of Λ ¼ 14;…; 36 to Λ ¼ ∞. The red dashed lines are plots of the supergravity expression
for the double-trace dimensions given in (4.3). Since these are extrapolations, they are not strictly bounds, so there is no contradiction in
the fact that they lie below the supergravity curve in the plot on the right.

18In principle we wish to consider only those values of c
corresponding to physical theories. Although our current results
do not show this, we expect that a more careful analysis involving
multiple correlators will restrict the allowed values of c to a
discrete set.
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central charge. However, an important consequence of our
conjecture that there is a single extremal solution for fixed c
is that such a point must be very special: the scaling
dimensions of the LTUSOs of spin zero, two, and four
should be simultaneously extremized.
The conformal manifolds ofN ¼ 4 SYM theories have a

single complex dimension parametrized by the marginal
coupling τ. We will first consider only the theories with a
simply laced gauge algebra, for which this conformal
manifold is simply the upper half-plane H modulo the
action of PSLð2;ZÞ.19 This conformal manifold has three
distinguished points: the weakly coupled point at i∞, and
the two self-dual points at τ ¼ i and at τ ¼ expðiπ=3Þ. At
the latter two points the theory enjoys enhanced Z2 and Z3

symmetry, respectively. It is natural to expect that the
dimensions of operators should at the very least have local
extrema at these fixed points.20 The self-dual points on the
conformal manifolds of the simply laced N ¼ 4 SYM
theories are therefore our candidates to correspond to the
extremal solutions. At present, we do not have a view on
whether the An series or the Dn series will control the
extremal solutions, so we make the following noncommittal
conjecture.
Conjecture 4 For the values of the central charge

corresponding to simply laced N ¼ 4 SYM theories of

eitherA type orD type, the extremal solution is the four-point
function at one of the self-dual points on the conformal
manifold. At other values of the central charge the extremal
solution is an unphysical continuation of these.
Pictorially this conjecture is explained in Fig. 8. For a

central charge c that is equal to one of the SYM central
charges, the set S discussed above includes in particular the
entire conformal manifold of this SYM theory, which for
the simply laced theories is H=PSLð2;ZÞ as shown on the
left in Fig. 8. This conformal manifold needs to be mapped
to the inside of our cuboid. A hypothetical two-dimensional
version of this map is shown on the right in Fig. 8. If the
embedding extends all the way to the corner of the cuboid,
then we may naturally expect that one of the self-dual
points gets mapped there. Given our limited knowledge of
the strong-coupling behavior of N ¼ 4 SYM theories, we
will refrain from speculating which of the two self-dual
points actually gets mapped to the corner of the cuboid.

3. Speculations on the spectrum of N = 4
SYM at strong coupling

What does the spectrum of operator dimensions of N ¼
4 SYM look like at finite coupling? Besides our numerical

FIG. 8. The scaling dimensions Δ0, Δ2 are functions on the conformal manifoldM ¼ H=PSLð2;ZÞ of N ¼ 4 SYM theories and as
such define a map fromM to the allowed region shown on the right. The weakly coupled point at i∞ is known to map to the lower left
corner. We do not know what happens at strong coupling but have sketched one possible embedding that is consistent with the bounds.
The content of conjecture 4 is that the corner point of the allowed rectangle (or cuboid if we include Δ4) actually approximates the image
of one of the two self-dual points.

FIG. 9. On the left, the behavior of scaling dimensions in the
strict planar limit. On the right, an approximate behavior for very
large but finite N.

19Technically this yields an orbifold, but referring to this space
as a “manifold” is a common abuse of language. For the
nonsimply laced theories the action of S-duality is more com-
plicated and also changes the gauge algebra; see for example
[9,10].

20To wit, modular invariant functions that are smooth on H
must be stationary at these two points, although this could
theoretically be merely a saddle point. (A function that is at
least C2 on H must, however, have a local extremum at the Z3

invariant point.)
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results, there exist at least three sources of information to
inform our opinion on this question: perturbation theory at
weak coupling, S-duality, and the spectrum of the suðnÞ
theories in the ’t Hooft limit as obtained from integrability.
For definiteness, let us restrict our attention to low-lying,
unprotected, R-symmetry-singlet, superconformal primary
scalar operators. At weak coupling the lightest operator in
this sector is the Konishi operator of dimension 2þOðg2Þ,
and the next operators have dimension 4 −Oðg2Þ.21 In the
remainder of this section we entertain some speculations
concerning the strong-coupling behavior of this part of the
spectrum. For simplicity our plots below will not show the
dependence of the operator dimensions on the θ angle.
To make contact with known results let us first consider

the planar limit; that is, we hold λ ¼ g2N fixed and send
N → ∞. The dimension of the Konishi operator then grows
without bound as λ1=4 for very large λ. In the same limit the
double-trace operator OIJ

200O
KL
200 has Δ ¼ 4 for all λ due to

large N factorization. This behavior is sketched in the left
plot of Fig. 9, where for simplicity we omitted other
operators with Δ ¼ 4 at weak coupling.22 If we take N
large but finite, then we expect this behavior to change
smoothly. Furthermore, because there is no strict distinc-
tion between single- and double-trace operators any-
more, we expect that levels begin to repel each other.
This leads to a picture as sketched on the right of Fig. 9.23

Notice that in this figure λ is plotted on the horizontal axis,
so g2 is actually zero in the left plot and very small in the
right plot.
Let us now consider finite values of the central charge,

where we can use perturbation theory at weak coupling. In
the suðNÞ theories the dimension of the Konishi operator is
known to four loops and given by [58–61]24

Δkon ¼ 2þ 3Ng
π

−
3N2g2

π2
þ 21N3g3

4π3

þ
�
−39þ 9ζð3Þ − 45ζð5Þ

�
1

2
þ 6

N2

��
N4g4

4π4
þ � � � ;

ð4:4Þ
with g ¼ g2YM=4π. For the dimension four operators there is
mixing already at leading order. The results of [56] indicate
that for finite N at one loop there is always one operator
with a negative anomalous dimension, resulting in

Δ4 ¼ 4 −
jfðNÞjNg

π
þ � � � ð4:5Þ

with fðNÞ determined through diagonalization of a 4 × 4
matrix. For example, we have

fð2Þ¼ 3

2
; fð3Þ¼ 0.804;…; fðNÞ¼ 10

N2
þO

�
1

N3

�
:

ð4:6Þ

Our main question is now how to extend these results to
strong coupling. We have sketched three possible scenarios
in Fig. 10. The simplest possible scenario is sketched on the
left in Fig. 10. The anomalous dimension of Konishi grows
to a maximum at the self-dual point g ¼ 1, and the
dimension four operators have some other unspecified
behavior. For g > 1 the dimensions simply mirror those
of g < 1 because of S-duality. Alternatively, the dimension
of the next-to-lowest operator could approach that of the
Konishi operator at some non-self-dual coupling g < 1.
Because of level repulsion this would lead to a qualitative
picture as sketched in the middle of Fig. 10. Notice that
this second scenario would be in contradiction with
Conjecture 4 because the extremal point now occurs where
the levels approximately cross, not at the self-dual point
g ¼ 1. This scenario nevertheless seems attractive at larger
values of N, as it naturally connects to the large N behavior
as sketched on the right in Fig. 9. This tension with our
conjecture motivates a more detailed analysis of the corners
of the cuboid exclusion surfaces at high precision (large Λ).
On the right of Fig. 10 we have sketched a scenario where

FIG. 10. Three possible scenarios for the behavior of scalar operator dimensions as a function of the coupling. The red dotted line is
the self-dual point g ¼ 1, and S-duality relates the spectrum for 1 < g < ∞ to the region 0 < g < 1. The point that maximizes the
dimension of the first scalar operator presumably corresponds to the extremal solution.

21There are no suð4ÞR-singlet scalars with Δ ¼ 3.
22We refer to [56] for a comprehensive one-loop analysis

in the SUðNÞ theories.
23This picture has been studied recently in more detail in [57].
24For recent results on instanton corrections to unprotected

operators—including the Konishi operator—see [62–64] and
references therein.
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the Konishi operator is not a singlet under SLð2;ZÞ, so at
the self-dual point it has a dual partner with exactly the
same anomalous dimension.
Of course, very little is known about the behavior of

scaling dimensions in N ¼ 4 SYM theories when g ∼ 1.
One natural attempt to improve our understanding is the
resummation of perturbative results. S-duality of N ¼ 4
SYM implies that this is the asymptotic behavior around
both g ¼ 0 and g ¼ ∞. Following [65], several manifestly
S-dual resummation procedures were proposed in [21] (see
also [66] for additional developments). As discussed in
more detail in that paper, for suð2Þ gauge algebra these
results agree remarkably well with the results presented
above, providing some additional evidence for the reali-
zation of the leftmost scenario of Fig. 10 for c ¼ 3=4.

V. BOUNDS INVOLVING OPE COEFFICIENTS

Up to this point we have been concerned with the LTUSO
of a given spin l.Wewill henceforth denote its dimension by
Δð1Þl, and the positive coefficient of the corresponding
conformal block by að1Þl. In the previous section we
presented a central-charge-dependent upper bound on
Δð1Þl, which we denoted by Δ⋆

l. In this section we go a step
further and consider the next operator of the same spin. We
will call the dimension of this operator Δð2Þl and denote its
upper bound as Δ⋆

ð2Þl. This upper bound will depend on the
spin l, the central charge c, and the unknown values Δð1Þl
and að1Þl.We have chosen to present results forl ∈ f0; 2; 4g
and c ∈ f3

4
; 15
4
;∞g as before. In each casewe have produced

plots for Δ⋆
ð2Þl as a function of Δð1Þl and að1Þl.

As in the case of the three-dimensional cubes shown in
Fig. 4, our principal aim is to carve out as closely as
possible the image of the conformal manifold in the three-
dimensional space spanned by ðΔð1Þl; að1Þl;Δð2ÞlÞ. An
additional virtue of this investigation is that the fixed value
of Δð1Þl can serve as a rough proxy for the interaction
strength of the theory: we can approach the free theory by
dialing Δð1Þl to the unitarity bound and describe a strongly
interacting theory by dialing Δð1Þl to its upper limit Δ⋆

l. We
will explain below that this leads to significant improve-
ments in our ability to carve out physical solutions to the
crossing equations.
Results for c ¼ 3

4
are shown in Fig. 11 and similar results

for c ¼ 15
4
and c ¼ ∞ can be found in Figs. 12 and 13. The

surfaces in the figures were obtained by fixing Δð1Þl and
Δ⋆

ð2Þl, and deriving upper and lower bounds on að1Þl using
the second optimization method described in Sec. III. The
surfaces shown were obtained by interpolating through
several hundred data points per plot, the location of which
were chosen carefully to obtain additional resolution near
the sharper transitions. We used the linear programming
method with Λ ¼ 17, and one could probably improve the
results further by adopting the semidefinite programming

method and raising the cutoff. The plots in Fig. 11 contain a
great deal of information. We discuss the details in the next
few paragraphs.
General constraints. Let us first observe some general

constraints in the space spanned by the triplet
ðað1Þl;Δð1Þl;Δ⋆

ð2ÞlÞ. Unitarity restricts us to the octant with
að1Þl ≥ 0 and Δ⋆

ð2Þl;Δð1Þl ≥ lþ 2. We further have
Δ⋆

ð2Þl ≥ Δð1Þl by assumption, which is indicated by the
grey wedge at the bottom of the three-dimensional plots.
From the previous section we also know that Δð1Þl ≤ Δ⋆

l.
This upper bound is the straight line that cuts off the
allowed region on the right of the two-dimensional plot and
at the far end in the three-dimensional plots. As in Fig. 1,
we have indicated in yellow the same bound obtained for
lower values of the cutoff Λ.
Basic structure. Suppose now that we send að1Þl → 0. In

that case the first block disappears, the corresponding Δð1Þl
becomes irrelevant, and the bound obtained in the previous
section then dictates that Δ⋆

ð2Þl → Δ⋆
l for all Δð1Þl. This is

the constant value obtained along the rightmost boundary
of the three-dimensional plots. If we now increase að1Þl
away from zero, holding Δð1Þl fixed, then Δ⋆

ð2Þl ought to

increase (because we already satisfied the constraint of the
previous section), and we can obtain a nontrivial Δ⋆

ð2Þl all

the way until a point where að1Þl hits its own upper bound
and no solution to crossing symmetry exists at all. The
existence of such an upper bound is an experimental fact
and is responsible for the cutoff at the top of the two-
dimensional plots and the abrupt cliff on the left side of the
three-dimensional ones. In the plots we have again used
yellow lines to indicate the location of this upper bound for
lower values of Λ. We find a clear dependence of the bound
on Δð1Þl, with a kink for the spin-two and spin-four plots
that we discuss below.
Behavior at Δð1Þl ¼ Δ⋆

l. Next we consider the far side of
the three-dimensional plots. Here Δð1Þl approaches its
upper bound Δ⋆

l. As we discussed above, in that case
there is a unique approximate solution to crossing sym-
metry, and in this solution að1Þl is fixed to some critical
value. In our plots this uniqueness is represented as follows.
If our chosen value for að1Þl lies far below the critical value,
then we will find that Δ⋆

ð2Þl is approximately equal to Δ⋆
l,

because the second operator is then forced to take over the
missing contribution of the first operator. On the other
hand, once our assumed value for að1Þl exactly coincides
with the critical value, then we find that Δ⋆

ð2Þl will shoot up
to the correct dimension of the second operator in the
channel. This is precisely the peak that we observe along
this edge of the plot. This peak is expected to get sharper by
increasing Λ. If we dial að1Þl even further, then no value for
Δð2Þl will be able to remedy the situation—the solution to
crossing symmetry ceases to exist.
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Known solutions to crossing symmetry. The blue dots in our plots correspond to the free theories or, for c ¼ ∞, to the
strict planar limit. For finite c the corresponding values are given by

free-field theory∶ Δð1Þl ¼ lþ 2; að1Þl ¼ 2lþ1
ððlþ 2Þ!Þ2
ð2lþ 4Þ!

1

c
; Δl

ð2Þl ¼ lþ 4: ð5:1Þ

This is Eq. (8.37) of [5] with the replacement of their coefficient c with the inverse central charge, which is 1=c in our
notation. For infinite central charge this coefficient goes to zero, and instead we have

planar limit∶ Δð1Þl ¼ 4; að1Þl ¼ 2lþ2ðlþ 2Þ!ðlþ 3Þ!
24ð2lþ 5Þ! ðlþ 1Þðlþ 6Þ; Δl

ð2Þl ¼ lþ 6; ð5:2Þ

FIG. 11. OPE bounds for N ¼ 4 SCFTs with c ¼ 3=4.
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which is obtained from Eq. (8.34) in [5] after setting their
coefficients t ¼ 2 and a ¼ 1. In all cases our bounds are
compatible with these points, and we in fact expect the
bounds to converge toward these points upon further
increasing Λ. Notice that this convergence is already very
clear in the large c limit shown in Fig. 13.
Physical solutions. So where precisely is the physics in

these plots? This question is answered by envisioning a
map from the conformal manifold of N ¼ 4 SYM into the
octant spanned by ðað1Þl;Δð1Þl;Δ⋆

ð2ÞlÞ. The image must be

“anchored” at the free-field theory points, and it extends

from these points to some surface that should lie entirely
inside the domain allowed by our bounds. The conjectures
of the previous sections furthermore state that it extends all
the way to the peak of the three-dimensional plots where
all three of Δð1Þl, Δð2Þl, and að1Þl are maximized.
Consequently, the most interesting region of our plots
(for finite c) is the curve corresponding to the upper bound
on the left side of the three-dimensional plots and on the top
in the two-dimensional plots. Here að1Þl and Δð2Þl are both
maximized for a given Δð1Þl. By repeating the same
arguments as before, we would like to claim that the curve

FIG. 12. OPE bounds for N ¼ 4 SCFTs with c ¼ 15=4.
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itself traces an “extremal path” on the conformal manifold
between the free-field point and a self-dual point.25 If so,
then this plot presents a notable improvement over the
three-dimensional plots shown in Fig. 4, because we are
now carving out the image of an entire curve rather than a
single point on the conformal manifold.
As stated above, our eventual ambition is to improve our

methods so that we can carve out the image of the
conformal manifold completely. The current approach,
even when pushed to very high Λ, would most likely still
leave an allowed region that is too large, much as the cubes

in Fig. 4. A more detailed analysis, with other correlation
functions and/or observables, will be necessary to carve
away further inconsistent points.
Kinks. Along the path for the spin-two and spin-four

operators we observe some rather striking kinks. Their
location varies significantly with the cutoff Λ, as indicated
by the yellow curves, and it is rather likely that the kinks
will eventually meet the free-field point on the left of the
two-dimensional plots. On the other hand, if these kinks
would persist even for very large Λ, then they may
represent some interesting physics on the moduli space
ofN ¼ 4 SYM theories. For example, the kinks may be the
numerical avatar of an approximate crossing of operator
dimensions as sketched in the middle plot in 10. If so, then
the third operator should be relatively close to the second

FIG. 13. OPE bounds for N ¼ 4 SCFTs with c ¼ ∞.

25The current curve is probably a crude approximation to this
path because we are still relatively far from the free-field point.
This can, however, easily be improved by increasing Λ.
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operator. It should be possible to investigate this possibility
using current technology.
The free-field solution. We expect a unique solution to

the crossing symmetry equations both when Δð1Þl is equal
to its upper bound Δ⋆

l and when it is equal to the unitarity
bound lþ 2. As discussed above, this uniqueness is clearly
visible in the numerical bounds in the first case, but in the
second case we do not observe the same sharp peak. The
aforementioned linear combinations of solutions partially
explain this behavior: in this case we can combine the free-
field and the extremal solutions to show that Δ⋆

ð2Þl will
never drop below Δ⋆

l, even when Δð1Þl sits at the unitarity
bound. This, however, does not explain the rather gradual
ascent of our bounds toward the actual free solution, which
we leave as an interesting puzzle for the future.
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