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We present a new type IIB supergravity background of the warped form AdS, x M, with dilaton, B-
field and all Ramond-Ramond fluxes turned on. We obtain the solution by applying non-Abelian T-duality
to a certain representative of a class of AdS, backgrounds in massive IIA supergravity. By explicitly
constructing the Killing spinor of the seed solution and using an argument involving Kosmann spinorial Lie
derivative we demonstrate that the background is supersymmetric.
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I. INTRODUCTION

One of the most distinctive characteristics of string theory
in its aim to connect with the real world is the need for
compactification. The search for four-dimensional vacua
has, consequently, a distinguished and rich history. Although
originally the focus has been on compactifications on Calabi-
Yau spaces leading to supersymmetric Minkowski vacua, in
the past decade the tools for understanding compactification
with fluxes have been developed; for a review see [1]. In this
direction AdS, vacua play a central role as they are
considered a potentially important stepping stone toward
de Sitter vacua. One of our motivations in this work is to
widen the class of AdS, vacua not just by presenting one new
background but by demonstrating the reach of a particular
solution-generating mechanism. Another motivation for the
study of AdS, vacua arises from holography where such
supergravity solutions are conjectured to be dual to three-
dimensional conformal field theories.

The main new ingredient that we exploit to construct the
new solution is non-Abelian T-duality (NATD)[2—4]. There
has recently been a resurgence of interest in non-Abelian
T-duality including its systematic extension to the Ramond-
Ramond sector [5,6]. One immediate application of this
duality has been to generate solutions from various seed
backgrounds in the context of the AdS/CFT correspon-
dence; for a limited list see [7-12].

One of the hopes that we have in pursuing the construction
of explicit solutions using non-Abelian T-duality is that it
could provide new solutions that have avoided classification
efforts in constructing AdS vacua. One such example is a new
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solution with AdSs factor [13] that defied previous classi-
fication schemes [14] which assumed nonvanishing F's flux.
This solution stimulated work to go back and complete the
classification efforts providing further insight in some new
classes of solutions [15]. This last effort brought about
understanding into a class of AdSs solutions with no D3
brane interpretation. This is an example of the synergy
between NATD and the general structure of AdS vacua in
supergravity. We hope that our efforts in this manuscript might
lead to similar scrutiny in the important series of classifying
solutions with an AdS, factor, see for example [16].

Several new solutions with AdS, factors were recently
provided in [17]; in this manuscript we extend to a more
interesting class by applying non-Abelian T-duality to a
representative background in the massive type IIA class
presented in [18]. These are N = 2 solutions of the form
AdS, x M, where the internal manifold Mg is locally a
codimension-one foliation such that the five-dimensional
leaves admit a Sasaki-Einstein structure. Alternatively, Mg
can be thought of as a two-sphere bundle over a four-
dimensional Kihler-Einstein base.

The rest of the manuscript is organized as follows. In the
Sec. II we review the class of massive IIA solutions of [18];
we also discuss its “massless” limit which provides a
perhaps more intuitive form of the solution. In this section
we also present explicitly the Killing spinors which will be
subsequently used to argue for the supersymmetry of the
dual solution. In Sec. III we present the non-Abelian T-dual
solutions corresponding to the massless limit and to the full
massive solution in type IIB. We conclude in Sec. IV.

II. MASSIVE AdS; BACKGROUNDS

Let us start by reviewing the solutions corresponding to
the class described in [18]. These are massive type IIA

© 2017 American Physical Society
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N = 2 solutions of the form AdS, x M, with Mg a two-
sphere bundle S?(B,) over a four-dimensional Kéhler-
Einstein base B,. In the case where B, is a smooth
manifold of positive curvature,' these solutions can be
thought of as massive IIA deformations of the N = 2 TIA
circle reductions of the M-theory AdS, x Y?4(13,) back-
grounds of [20,21], where Y7+4(13,) is a seven-dimensional
Sasaki-Einstein manifold. The first such massive deforma-
tion was constructed in [22] and corresponds to the special
case p = 2, g = 3, B, = CP? [the Y*>(CP?) space is also
referred to as M'""! in the physics literature].”

We will adopt the conventions of [25] which result in
certain simplifications. The general form of this solution is:

ds}y = 9 ds?(AdS,) + ds* (M),
ds*(Me) = 2O ds?(B,) + 40 (f2(6)d6*

+ sin?0(d¥ + A)?), (2.1)

with

1
2 — sin? Ge2(A-0)"

f(0) = (2.2)

where the two warp factors A, C obey the following system
of first-order differential equations:

A’ 1 tan 0 1 — sin?0e?(A=C)
=ztant ——————~,
2 2 — sin?@e?(A=C)
: 2(4-0) 1+ e84
Y . (23
1 sin( )2 — §in20e2A=C) 1 + cos2hedA (2.3)

where a prime denotes a derivative with respect to 6. For
convenience, we drop the explicit 6 dependence in A(0)
and C(0).

We now specialize to the case where the base manifold is
B, = CP?. In this particular case the metric is given by

1
ds*(B;) =3 (d,u2 + Zsinzu(a% + 03+ cosz/w%)), (2.4)

where we use the following definitions for SU(2) Maurer-
Cartan forms:

'Smooth four-dimensional Kiihler-Einstein manifolds of pos-
itive curvature were classified in [19]: they are CP' x CP!, CP?,
and the del Pezzo surfaces dPs, ..., dPg.

’A closely related AdS, x S® massive IIA solution is that of
[23]. Although S° can locally be put in the form of an S? bundle
over CPP2, its topology is different from that of any regular S?(13,)
bundle. This can be seen e.g. by comparing their second Betti
numbers. Other AdS,; backgrounds in massive IIA have been
discussed in [24].
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o1 = sinydO, — cosy sin O,dep,,
0, = cosydl, + siny sin 0,d¢,.

03 — dl/f + cos 92d¢2. (25)
The connection that appears in Eq. (2.1) is A = —2sin? uo;
and it is related to the Kihler form j on B4 by dA = —}.
The metric on B, is normalized so that R,,,, = 2¢,.,-
The Neveu Schwartz (NS) flux is written in terms of the
Ramond Ramond (RR) fluxes, to ensure the Bianchi
identities dF »— HAF 2 = 0 are obeyed, which leads to

1
By =p+——F,, (2.6)
Fy
where f is some closed 2-form. The dilaton is given by
2 64
= 2.7
¢ 1 + cos? 0edt 27)
The RR fluxes are given by3
FO - —1,
p2C—44
F, = Vj—eAZ,(d¥Y + A) A db,
cosf
€4C A~
F4 = TV_] A _] —+ 2€2A+2CCOSHZQJ AN (d"P + A) AN d@,
34C-24
Fg=— sin@f(0)j A jA (dY+A) AdO, (2.8)

where we have defined V = (1 —sin?@e24=0), V =
2V —-1), Z; = (sin@ + 24’ cos0), and Z, = (cosOA’ —
sin @) and taken g, = 1, L = 1 for simplicity.

A. Vanishing Romans mass limit

In the following it will be useful to take the limit of zero
Romans mass, which we will call the massless limit of the
solution. This solution has been presented in [22]. In order
to do so we must first reinstate g; and L in the solution.
Moreover we define

Go=L73g: = Lety  Co=LeC. (2.9)
With these definitions the metric reads
dsl, = ezAdAsz(AdS4) +ds*(Ms),
ds2 (M) = Cds?(By) + A (f2(80)d6>
+ sin?0(d¥ + A)?) (2.10)

>The RR fluxes, given here in the conventions of the
democratic formalism, have all legs along the internal space:
they are the so-called “magnetic” fluxes. There are also “electric”
fluxes which are related to the above by ten-dimensional Hodge
duality.
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with

1
f0) = —————, (2.11)
2 — sin?0e>A=C)
where now ds>(AdS,) is the metric of an AdS space with
unit radius of curvature. The two warp factors A, C obey the

following system of first-order differential equations:

o 1 1 —si 29 2(/0\—C)
- 2 — sin20e?4-0)
L £2(4=C) 1+L—8€8;X

C = Zsin(Z@) (2.12)

2 —sin20e2A=C) | 4 L=8cos20edA

The NS flux is written in terms of the RR fluxes as before,

1
Bz :/}’—’——Fz, (213)
Fy
where S is some closed 2-form. The dilaton is given by
°2 64
el T (2.14)

1 + L~8cos?0ed4
The RR fluxes are given by
95Fo = —L7%,

e2C—4A

9. F) = Vj—eAZ,(d¥ + A) A do,

cosd
) oA ..
gF,=L* - Vi A j+2L74e?A2C cos 07, )
A (d¥Y + A) A db,

) 4C-2A
gsF6 =

sin@f(@)j A j A (dY +.A) A dO,
(2.15)
A—(OJ))

where we have again defined V = (1 — sin® fe?(

s

V=02V-1), Z =(sinf+ 2;1/0059), and Z,=
(cos 0A — sin 9).
The massless limit consists in taking
Lo  ¢A C— finite. (2.16)

Taking this limit in Eq. (2.12) we see that the warp factors
obey the system

o1 1 — sin20e2(A-0)
A, — _tan HSln—eoo s
2 2 — sin2@e2(A=C)
2(A=C)

e

o1
C = sin(2) —
4 2 — sin20e2(A=C)

(2.17)
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It is worth pointing out that the system in Eq. (2.12) could
also be studied perturbatively around the point L = oo,
along the lines of [22]. This is akin to the perturbation
provided for explicit examples in [26]. The meaning of
turning on a Romans mass was established to be dual to
choosing, in the context of Aharony, Bergman, Jafferis, and
Maldacena (ABJM), a nonvanishing sum of Chern-Simons
levels [27]. It would be, therefore, quite interesting to study
the system in Eq. (2.12) more generally.

The system in Eq. (2.17) admits the following analytic
solution:

o o 1
A=C= —Zlog(Z(l +cos?0)) + Ay, (2.18)

where A is a constant, which also gives
/6) = ——
1 +4cos’d’

The metric is as in Eq. (2.10), which is manifestly
independent4 of L,

(2.19)

2o

- V2V1 + cos20

- _d0* in26(d¥ 20, 2.22
+(1+cos29)2 + sin?0( —|—A)} (2.22)

ds3, ds*(AdS,) + ds?(B,)

The RR fluxes F, and F¢ are also manifestly independent
of L, as given in Eq. (2.15). They can be written explicitly
in a manifestly closed form,

95 Fy = —e 0d[V2(1 4 cos20) cos O(d¥ + A)|

o 3 1 1
Fo=—=e*d|—(1+cos’8)2cosfj A jA (d¥ + A }
9F6 = =3 ﬁ< ) JAJA( )

(2.23)

Moreover we have Fy = F, = 0 in the massless limit, and
also H = 0.” Finally, the dilaton is given by

*Note that under the coordinate transformation,
cos t

cosld = ———, 2.20
V1 + sin? ¢ ( )
the metric takes the form
1 +sin’t| 4 1
ds?y = ¥y +25m [dsz(AdS4) +ds*(By) + 5 dr*
2sin®¢
—(d¥ + A)?|, 2.21
1+ sinzt( +A) ] (2.21)

which, after a rescaling of the ¥ coordinate, matches the
metric presented in [17,22].

*Note that Eq. (2.6) is no longer valid in the massless limit: For
nonzero Romans mass the F, Bianchi identity can be used to
solve for H, leading to Eq. (2.6). On the other hand, in the case of
zero Romans mass the F, Bianchi identity reads dF, = 0 and
does not impose any constraints on H. In other words Eq. (2.6)
should simply be discarded in the massless limit, and be replaced
by the condition that F, is closed.
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2 = g2 et (2.24)
as follows from Eq. (2.14). This background can be thought
of as arising from a dimensional reduction of AdS, x M'!!
along the ¢, angle and was studied by Petrini and Zaffaroni
in [22]. The non-Abelian T-duality of this background was
presented in [17].

B. The Killing spinors and supersymmetry

We now proceed to explicitly present the supersymmetry
of the background of Eq. (2.1) and its massless limit. The
SU(3) structure in the massless limit is constructed as
follows. First we define a complex one-form K and a local

SU(2) structure (7, d),

: ido
K=e|l————sinf(d¥ + A)|,

“ 1+ cos?0 sinf(d¥ +4)
j= ezg(sin ONRw + cos b)),

& = e (cos M — sin 0) + iJw), (2.25)

where IZ is given in Eq. (2.18), j is the Kéhler form of B,,

w=e>"®, and @ is the holomorphic two-form of B,

which satisfies

jAw@=0;
di> =2iA N @.

JAG=ReARD = I0 A I
(2.26)

Then one can construct an SU(3) structure (J, Q) on Mg
given by

Q=idAK; J:j—l—%K/\K*. (2.27)
As noted in [18] there is a one-parameter family of SU(3)
structures on M, which are obtained from Egs. (2.25),
(2.27) by 6-independent SO(2) rotations in the (Nw, Jw)
plane. These rotations act nontrivially on the almost
complex structure of Mg (and thus on the Killing spinor,
as we explain below) while leaving invariant the metric and
the fluxes of the solution. The upshot is that the background
possesses a one-parameter family of Killing spinors asso-
ciated with the SO(2) family of SU(3) structures generated
by Eq. (2.27), consistent with the N = 2 supersymmetry of
the solution.

The Killing spinor is obtained as follows. We first note
that associated to an SU(3) structure on Mg there is a
(generally nonintegrable) almost complex structure which
can be constructed out of RNQ alone [28],

(2.28)

1 N
Im :ﬁg ])|.-~p5§){9n1plp2919p3p4p57
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where &P1-Ps is purely numeric and the normalization
constant was fixed by imposing 1,,71," = —5j,. On the
other hand, there is a correspondence between almost
complex structures and Weyl spinors, up to complex
multiplication.® The (positive-chirality, internal part of
the) Killing spinor of the supergravity solution is precisely
the Weyl spinor associated to the almost complex structure
Eq. (2.28) which is, in its turn, induced by the SU(3)
structure.

The way to explicitly construct the spinor associated to
an almost complex structure is described in some detail in
e.g. [29]. Here we will outline the main steps. Let us define
a holomorphic/antiholomorphic projector with respect to
the nonintegrable almost complex structure,

[Hi]}nn = (6% :F ilﬂ’ln)' (2'29)

| =

Correspondingly, we define holomorphic/antiholomorphic
gamma matrices as follows:

Vi =[], 7, (2.30)

with y,, := e,,“y,, Where y, are gamma matrices in flat six-
dimensional space.From the definition above it follows
that

{rmoria } =205, = Gon F i pn-
(2.31)

{rmri}=0;

The Killing spinor # is then given as a solution to the
algebraic equation,

ymn = 0. (2.32)

Starting from the SU(3) structure in Eq. (2.27) and
following the procedure described above, a family of
solutions to Eq. (2.32), parametrized by one real parameter
p, can be shown to be the following:

*More precisely, on a 2n-dimensional Riemannian spin mani-
fold M., there is a correspondence between almost complex
structures and line bundles of pure spinors. However, for n <3
every Weyl spinor is pure.

In constructing the explicit Killing spinor solutions, we will
use the 6d gamma matrix basis,

71 =00 & 0y ® oy, Y2 =00 ® 0 ® 03,
73 =01 Q09 ® 03,74 =03 Q 0y Q 03,

¥s = 02 @ 01 @ 0y, Y6 = 02 @ 03 & 0.
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1 +sin@sin2¥ + p(sinfcos2¥ + i cos )
p(—1+sin@sin2¥) — sin@cos 2¥ + i cos €
—pcosO+i(l+ psin@cos2¥ + sin@sin 2¥)
—cosO+i(p(—1+sinOsin2¥) + sinfcos 2¥)
p(—1+sin@sin2¥) —sindcos 2¥ + i cos 6)
—1 —sin@sin2¥ — p(sin@cos2¥ + icosH)
—cosO+i(p(—1+sin@sin2¥) — sinHcos 2W)
pcosO—i(1+sinfsin2¥ + psinfcos2¥)

(2.33)

R

The value of the normalization « is given by

a= 2\6\/1 + p? +2psin@cos2¥ — (p? — 1) sinOsin 2P,

and it ensures that 'y = 1. Of course the solution to
Eq. (2.32) can only be determined up to complex multi-
plication: it gives rise to a one-parameter family of spinor
line bundles which should correspond to the SO(2) family
of SU(3) structures generated from Eq. (2.27) in the way
described above. The (internal part of the) full Killing
spinor is given by © = ce*/?;, where ¢ is a complex
constant and A is the warp factor. Clearly, the Killing spinor
©® depends only on the spacetime coordinates 6 and ¥
which are coordinates of the S fiber.

It is intuitively clear that if we dualize along directions on
which the Killing spinor does not depend, we will preserve
supersymmetry. In our case the Killing spinor is indepen-
dent of the coordinates (6,, ¢,,w) defining the SU(2)
isometry on which we dualize; we can conclude that
supersymmetry is preserved after applying NATD. This
is precisely the claim made in [17] to argue for the
supersymmetry of the background in Eq. (3.1). A way to
make the intuitive argument regarding independence of
coordinates rigorous was first presented in [5]. Clearly,
what is required is to turn the coordinate-dependent state-
ment into a tensorial, coordinate-independent statement.
Indeed, [30] established that the supersymmetry variations
after T-duality are related to the variations before T-duality
through the Kosmann spinorial Lie derivative, which
vanishes when the Killing spinors are independent of the
T-duality directions, thus providing a rigorous basis for the
intuition alluded to in our reasoning.

For the Killing spinors in the massive case we follow a
very similar procedure to the one above, but with the
following modification to the local SU(2) structure forms:

K = eAlif(0)d6 — sin 0(d¥ + A)].
j = *(sinO%Rw + cos 0)),

@ = e*C(cos ONw — sinj + iSw), (2.34)
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where w = (9 2% 3 with f, ¢ functions of @ which we
do not need to specify explicitly. This case possesses
dynamic SU(3) structure, therefore there will be two
independent spinors 7, 17, on Mg corresponding to the
two SU(3) structures constructed from Q; = iw A K,
Q, = —io* A K. The (internal parts of the) full Killing
spinors are then certain #-dependent linear combinations of
N, M. In the following it will be convenient to
define 7 = {(0) + 2¥.

An explicit solution to the massive Killing spinor
Eq. (2.32) is given by

1+ sin@sint + psinfcost + ipcosd

—p —sinfcosz + psin@sint + i cosd
—pcos@+i(l+sinfsint + psinfcoszt)
1 | —cos@+ i(—p —sin@cosz+ psinfsinz)
m:a_l —p —sinfcosz+ psinfsint + i cos
—1 —sin@sint — psinfcost — ipcosd

—cos0+ i(—p —sinfcost + psinfsint)

pcosd —i(1+sinfsinz + psinfcosr)
(2.35)

The normalization «; is given by

a = 2\/5\/1 + p* +2psin@cost — (p> — 1) sin@sinz.
The second, linearly independent, Killing spinor solution is

—1 +sin@sint + psinédcost + ipcosd
p —sinfcosz + psinfsint + icosf
—pcos@+i(—1+sin@sinz + psindcosr)

1 —cosf +i(p —sinfcost+ psinfsint)
”2:06_2 p —sinfcost + psin@sint + icosd '
1 —sinfsinz — psinfcosz — ipcosd

—cos@+i(p—sinfcosz+ psinfsinr)

pcos@+i(1 —sinfsinz — psinfcosr)

(2.36)

with normalization

a, = 2\/5\/1 + p?> —2psin@cost+ (p> — 1)sinfsinz.

As it is clear from the explicit expressions Eqgs. (2.35) and
(2.36) the Killing spinors in the massive case are also
independent of the coordinates along which the NATD is
performed and thus supersymmetry is preserved in the
massive dual solution, which we will present in Sec. III B.
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III. TYPE IIB BACKGROUNDS FROM
NON-ABELIAN T-DUALITY

The non-Abelian T-duality procedure has been utilized
to generate many new supergravity backgrounds. Its
application to the background in Egs. (2.10)—(2.15) con-
stitutes one of our main results. Hence, a brief review of the
procedure [specific to the dualization along SU(2) iso-
metries] [7] is included for the benefit of the reader.

Essentially, the non-Abelian T-duality procedure is a
generalization of what is done in Abelian T-duality. A
three-step Biischer procedure is applied to a 2D string o
model whose target space possesses a non-Abelian isom-
etry group. Throughout the paper we will assume SU(2) so
that the NS sector fields can be written as

ds? = G, (x)dx*dx* + 2G,,;(x)dx" L + g;;(x)L'L/,
B = B, (x)dx" A dx* + B,;(x)dx* AL
1

3

bij(x)Li AL, (3.1)
where y,v =1,...,7 and i, j = 1, 2, 3. Here the L'’s are
Maurer-Cartan forms, which are written explicitly in
Eq. (2.5) above as o,. We will write the Lagrangian density

succinctly as
‘CO = QA38+XA(3_XB, (32)

where A,B =1, ...,10 and

Q v Q i .
ou= (g5 ) ot =@t (3
Qi E;;
with
Qﬂl/ = G/w + an Q;u' = G;u' + B/,tiv
Qi = G, + By, E;j = gij + bjj. (3.4)

The first step is to gauge the SU(2) isometry by changing
derivatives to covariant derivatives and introduce gauge
fields. Next, one needs to ensure the gauge fields are
nondynamical and can be integrated out, therefore, the
second step is to add a Lagrange multiplier term to
Eq. (3.2). Three new variables [corresponding to the
dimension of SU(2)] are introduced in the form of
Lagrange multipliers, »;. Eliminating the angles of SU
(2) and adopting the three Lagrange multipliers as new
coordinates is a convenient gauge fixing choice. Step three
is to integrate out the gauge fields to obtain the dual
Lagrangian density,

L= 0,0, X40_X", (3.5)

where we can read off the dual components of 0 4p from

PHYSICAL REVIEW D 96, 046013 (2017)
-1 -1
QAB . <Q/w - QMiMij ij | Qﬂiji )
- -1 —1 ’
M0, | M
8iXA = (6iX", (‘3iv").

(3.6)

We have additionally defined M;; = E;; + f;;, and
fij=d efjvk. The dual metric and B, are the symmetric

and antisymmetric components of Oz, respectively. The
dilaton transformation is given by

(3.7)

The transformation of the RR fluxes is formally quite
elegant, though in practice can be cumbersome. First, a
bispinor is constructed out of the RR forms and their Hodge
duals, (in type IIA):

1 Hi oty
”,} p .

® S
e
PZ?;:OFZW /Fp:? " (38)

Next, we construct a matrix Q defined by

rrrs r4r
Q:( +§u ) 117 (39)

with % = k%7, where x and z are determined by the
original geometry and Lagrange multipliers by «“;x“; = g;;
and 7' = ﬁ (b' + v'). Finally, the dual fluxes simply arise

from inverting €:

P=ro. (3.10)

A. NATD of massless limit

In this section we present the background resulting from
applying non-Abelian T-duality along the SU(2) isometry
defined by the o; in Eq. (2.5) on the background given by
Eqgs. (2.22)—(2.24). This background was originally pre-
sented in [17], but we present it here to match our notation
and normalization conventions for convenience. As argued
in Sec. II. A above, the background is manifestly indepen-
dent of the scale L. We will continue to use the notation

introduced in that section, noting that the explicit form of A
is given by Eq. (2.18) above. The o’ terms are introduced by
the NATD via the Lagrange multipliers, »;. We have chosen
NATD gauge fixing v; — mux;, transformed to spherical
coordinates, (p, y, &), and conveniently fixed m = 3

g
The NS sector of this background is

046013-6
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ds? = A ds?(AdS,) + e (3d;ﬂ n m d92) n % a¥? + ﬁ A 2sin2ud(p sin y )2
N 402; 16A [edeS;l;/Asin% JEP 1 <a’3/2p2 \(;Z—/SI ysiny d(psing) - \/gd(p cosy) ) 2] |
B, — 81622’; 2952“;2 SN 1ew A dpy + 3“/2522%@ cosy) A d¥,
2 = 02A6/3 : A= 271325%:” [4e4;‘sin4,uQ + a?p?K], (3.11)

gse
where we have defined the following one-forms,

dEY = (Qdé — 4sin® 0d¥),
dpy = (pKdy + cos ysiny(Q — 4)dp),
dOu = (Z, sin udf — 2 cos p cos Odu), (3.12)
and included the following definitions,
Q = 4cos? u + 3 sin? usin? 0,
K = Qcos?y + 4sin’ y,
M = o?p? cos? y + 4e*A sin* . (3.13)
The RR sector contains all of the fluxes, given by
98_2;‘ sin

g, F, = Ze S [cos Osin pd(p cos y) — p cos ydOu],

32V

9¢~24\/p cos

320 [3 cos Osin®@ sin udu + 2 cos uZ,do) A dp A d¥

;]sﬁ.? =

27?4 cos psin’u sin @
4a(6)a’??

729p3sin’ y sin y
262144v/d' QA

[cos @ cos y sin udy — 4 sin ydOu| A dp A dEY — dO A du N d¥Y

729e4j‘psin7,u siny
65536a/>/2A

o . 2TVdp
64

[dOu A d(psiny) A dEY],

9t sinu
160>/ sin 0a(0)

g, Fs = dVol(AdSy) A dp + dVol(AdS,) A (2cosOsin®0 sin ud® — a(0)? cos uZ, du)

72964;‘,02 cos usin’y sin y
655360*2a(0)A
+2cospZdO) A dp A dy] A dE A AP, (3.14)
where a(0) = 2(1 + cos? 0).

Asnoted in [17], this background has singularities generated by the NATD at 4 = 0 and at 4 = 7 simultaneous with p = 0
or y = 0. Analogous to what happens in Abelian T-duality, the singularity at 4 = 0 is produced by the collapsing cycle in
front of the SU(2) isometry direction before the duality, as can be seen from Eq. (2.4). The other singular locus
{u=mr/2,p=0} or {u =n/2,y =0} is certainly milder.

Finally, we examine the behavior of the metric and fields near the 4 = 0 singularity. In this limit we find for the NS sector,

[6sin0dO A du A dpy + a(6) sin (3 cos Osin®0 sin udu

. de? 3 e~ 1
2, 024 2 A 202 lIJZ -~ 2 2 2| ain2 in2 P 2 : 2
ds* ~e*t | ds*( dS4)+7(1+00529)2+s1n 0d o <du - dp* +v* |sin’y(d& —sin*0d¥P) +p20052)(d(ps1n)() })}
2566 3
e2‘b~Ty€p2, By~ [sin0cosdp A d¥ —psinydy A de]. (3.15)
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where we have defined v = p? and set & and g, to 1. Equation (3.15) is consistent with the general form of NS5-branes,® up
to a factor of p? in the dilaton. As explained in [31], this factor arises from the differing volumes of the original and NATD
submanifolds. Thus, we determine that the ¢ = 0 singularity is due to the presence of smeared NS5 branes, common to
NATD-generated backgrounds.

For completeness, we additionally present the RR fluxes near u ~ 0, which simplify to

9 °

F|~ % e u(cos Od(p cos y) — pZ,df) + p cos O cos ydv],
9 pl(3 3siny . .

Fs~ 52 508 Osin“0dv + 27,d0 | + D (v(cos@cos ydy — 4sinyZ,dO) + siny cosOdv) |,
27p

It is worth noting that [32] provided known examples where the 6D SCFTs dual to massive type IIA NS5, D6- D8 brane
constructions have been studied in full detail. On the supergravity side these models can further be shown to contain AdS,
as a subfactor of AdS,. The appearance of the AdS, further signals a dual 3D CFT theory. The analysis of this type of 3D
CFT is beyond the scope of this work, but we hope that a more fundamental description of our solution in terms of a brane
box picture will very likely mimic that of [32] with the appropriate dualities included.

B. NATD of massive case

In this section we present a new type IIB supergravity background resulting from the application of a non-Abelian T-duality
with respect to the SU(2) isometry defined by the ¢’ in B, above, on the background given by Egs. (2.10)—(2.15). We continue

using the definitions for A E’ given in Eq. (2.9). Note that we have set the closed 2-form from Eq. (2.6), # = 0 for simplicity.
The NS sector of the background is given by

. . . . 462A40) 0082 usin20 3 .
ds® = A ds*(AdS,) + €A £(0)2d6” + 3e*Cdu® + ‘ (gs T g2 i e*Ca?sin’ud(p siny)?
81 2C 2eind ) a2 » 81 M
¢ psm psk 12 R — — cos Od(p cos y)
40964/ Q A 4096c0s*0A a

o 2L4 — / o o 2
+e™# < 37 sinpuV Mdou — %p siny(e*Aa’p cos @ cos y — 2e*CLAsin’uV)d(p sinx))] ,
a \

. 81e‘4/2psin2,u siny .. ¢ ~ : ~
B, = 2 [2e*CL4sin?uV Qd(p siny) — e* a’p cos Odpy| A dEY
> = 31924 cos 0D A [ uVQOd(psiny) p P

/

3 . —4A] 4
+ % (e“sinzed(p cosy) A d¥ +

m dgﬂ AN d([) COS){))

81e 4L sin ysiny

[—2e2CL4/sin2uV Qdbu A d(psiny) + e*Aap cos 0dou A dgy]

204802c0s200 A
R 5 ~ 27si 2 o - - ~
e 2 — WA, A= IOZTag (4e*Csin'u0 + a?p?K + B), (3.17)

with e72% defined in Eq. (2.14), and we have defined the following one-forms:
¥Type I NS5 branes are described by

ds?> = —d* + dx} + -+ dx2 + H(dx} + -+ dx})e*’ = H, H = H(xg, ..., X9), V2H =0,
where H is a harmonic function of the coordinates transverse to the branes.
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— (QdE — 4¢* sin? 0d%),
dpy = (pKdy + cos y siny(Q — 4¢*)dp),
doy = (62;\ cos@sinuZ,dd — 2e2‘0j cos uVdu),
duf) = (ezA cos 0sin uZ,d6 — e*C cos pdy). (3.18)
We have additionally defined
Q = 462&COSZﬂ + 3e24 sin®@sin’y,
= Qcos?y + 4ezesin2)(,
y 1 . .
B =—— (4> L*Qsin’uV (e*L*sin>uV
e34cos?0
—eMdpcosfcosy)),
Y 202 4C i 4 B
M = p*a*cos*y + de sm,u—i—é. (3.19)

Note that in B,, we have omitted a total derivative term that
naturally appeared in the dualization procedure.

Before we present the RR sector of the background, we
would like to make a few comments about the massless
|

96—8;\+2E

o .

sin®u
F pdp +
G T 64Lt

16L%a/3/2cos?0
. 9e=2442C\/o/ p cos? uZ,

3 160
243~ 18448C o5y sin® uP, Z,

2048'%/2 cos* OA
9¢ —6A+42C

Cos yi sin p
8L3a'3/2 cos 00

do A dp N dY

PHYSICAL REVIEW D 96, 046013 (2017)

limit. As mentioned above, we can easily track terms that
vanish in the limit with the scale L. Since NATD inverts
terms present in the isometry direction (analogous to the

R — % in a simple case of Abelian Tduahty) it would

seem natural to take L — 0, and g,A, C — finite in the
massless limit. This is true for A, as it reduces to A. In
addition, the metric and B, of Eq. (3.17) reduce to that of
Eq. (3.11). However, the dilaton does not obey the limit
because it retains the term defined in Eq. (2.14), which
requires L — oo in order to reduce to Eq. (2.24). Since this
is contradictory, we conclude the massless limit does not
seem to exist after applying NATD. This could be expected,
given that NATD is a nontrivial, generally noninvertible
transformation. For similar reasons, we will not expect the
RR fluxes to reduce to Eq. (3.14). We will now turn to their
presentation.
In the following we will define

P, = (68;‘ cos? 0 + L8V?),

Py = (% cos? O + LEV2). (3.20)

Then the RR Fluxes take the form

LV dOu — 2e8’?‘cos29(du~9 +2¢%C cos uvau)),

(L3QV? + 314 cos? @ sin’ Osin uV)do A du A d¥

[de 2c cospusinu(L¥VZ, — 2684 cos? 0Z,)d(pcosy)

— ¢ cos 9[e4Aa’p cos 0cos yZ, 0 — €2 L* sin® u(2(4€2C cos? u + Q)VZ,

—37(0)sin00)]du] A dO A d¥

729 o—4AT20 4 3 sin’
_|_
262144V/d cos 00 A

[8 cos uV Q (e

sin? ydé& + 2 cos? xsin?> 0d¥) A du

+sinp sin;((4eZA cos OsinyZ,d6 — VQ cos ydy) A dE¥) A dp

243€_SA+2Cp2 sin® u
131072L%a/3/? cos? (9Q A

[(362;‘ cos 0 sin® sin)((2e8/3 cos20Z, — L8VZ,)dO A dEY

+ 662C cos psin? psiny OPydu A dE) A dpy — 3¢2C sind usiny QP dp A dy A dEW
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+ 8¢ cos pcos yQ(LEp cos OKVZ,d6 — 3¢*C sin? psin® O(2LEV? + P,)dp) A du A d¥]

2436~ 144+6C o usin y
4096L*a’"/? cos* OA
X du A d(pcosy) A d¥ + L¥p cos y cos t9VZl(4626 cos? u(Py + 2L8V?)

[3¢2C sin? yu sin? O(2L8 €% cos? OV3 + L1OVA + ¢!04 cos? 9F)

+ 362 sin? psin? 0(3L8V? + e84 cos? O(4V — 1)))dO A du A d¥]

243¢~12A43C Ly inS 4
65536'5/2 cos3 00 A

[3¢%4 cos Osin® u sin)(VQ(ZeSA cos?0Z, — L3VZ,)

X dO A dE® A d(psiny) + 6¢2C cos p sin? usinyVO? Pydiu A dE A d(psin 7)
_ 2424+2C cos yu sin? i sin® OV Q(cos yPrd(p cos y) + 2VPdp) A du A d¥

+ Sezgp COS 4 COS 9(3e8’n‘+2& cos? @sin? usin yQ(2VZ, + Z,V)déE

+ [L8V2Z,0(3 cos? yO + 4¢2C sin? y) + 3194 cos? @sin? O sin? u(cos?yVZ,0

— 82 sin? yVZ,)|d¥) A dO A dyl,

o 27Vd 9o sinp
s = dAVol(AdS,) A dp +
9:F's = —gg—pdVol(AdSy) n dp 324/ cos Osin Of(0)

dVol(AdS,)

A [—626(3L8f(9) $in OV — 2¢% cos? 0Z,)(sin ud(p cos y) + 2p cos p cos ydu)
+ ezj‘p cos y cos @ sin @ sin pf () (egj‘f(é) sin@V 4 3L8Z,)d6)]

9p—8A+2C gjp3 u
T 6@ cos? Osin 0 £(6)

dAVOl(AdS,) A [2¢% cos? 07, dud — 3LEf(6) sin OVdby

— 2¢% cos ¢9V(e2’?‘f(9)2 sinusin? O(V — 1)d0 + 4e2C cos 1 cos 0Z,du)]

72962;”4&,03 cos y sin® ysin y
131072L*Vd A
4 cos y sin p[3 sin p sin® OVdu — 4 cos 0 cos uZ,dA) A dy) A dE A dp A AP

[—8 cos @sinydO A du

729e‘2/3+46p2 cos y sin’ p sin y
65536a/%/2 cos OA
+ 3 cosOsin@cos y(e* sin? usin OVZ, — £(0)Q)d(psiny)

[(12e2& cos @sin Of (6) sin yd(p cos y)

_ 8¢2C cos OVZ,((1 + cos? u) cos y sin ydp + p(cos? ucos? y + sin? y)dy)) A dO A du
+ e sin (3 sin g sin® OV2du — cos pcos O(Z, + 2VZ,)dO) A dp A dy] A dé A d'P

7296_62+6&p cos ysin’ psiny
32768L%a’>/? cos OA
+ (8L8¢2C cos? uV? — 2¢8 cos2 00)Z,]d(psiny) A dO A du A dE A d¥P. (3.21)

[3L3f(0)sinOVQ + L8(4€2& cos? uV — 62 sin? usin?0(V —1))z,

For this background we have verified that the Bianchi identities dF; = 0 and dFs — H3 A F3 = 0 are satisfied, which
together provide nontrivial checks that this background is indeed a solution.
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The singularity at u = 0 is present here, again due to the collapsing cycle before duality. Additional milder singular loci
are defined by the zeros of A in Eq. (3.17), one at {u = 7/2,0 = 0,p =0} or {u = x/2,0 = 0,y = 0} being an obvious
example. The brane interpretation in the massive case is conceptually similar to that of the massless case in Eq. (3.15). Near
u~0, we find

ds? ~ A [ds?(AdS,) + £(0)2d6” + sin?0d¥?]

30 .- L262C Psinly | ¢ . —8A-2C .

+— |*Cd? + 5——d(psiny)? + ——=(e*dé — e**sin*0d¥)* + 5 (2L*(e** v cos O cos y Z,d6
4u poCoSy e2C 4cos 0

e cos yVdv) + e* cos 0(cos yd(p cos y) — sinyd(psiny)))?|,

eZd) B 25666;}—2&
27up* (1 + —ESAESSZQ)
3 o o 3 L4 6—82—26 o o o
B, ~ 3 [e2(4=C)sin®Q cos ydp A d¥ — psinydy A dE] — Py [€*Cpcos yV[2e*C L4y sinyVdy — e** cos Odp] A dv
Upcos

— 2eM+2C2 cos Osin yV (eC sinydp A dE — 2e* p cos ysin®dy A dP)

+ e up cos y cos OZ, (e** cos Odp — 26214y sinyVdy) A d6). (3.22)

Note that the first line of B, above has precisely the same structure as in the massless case. This indicates that the NS5
interpretation is also at play here. However, as the other terms indicate, there are potentially other NS5 extended in different
directions.

The RR fluxes simplify considerably near y ~ 0:

B =G
98_2;‘_2&/121 9¢~64 2C, (78 84 2
Fy = Tda Adp N d¥P + L cosd [e*“U(L°VZ —2e®cos*0Z,)d(p cos y)

1 2644+2C g 0(3£(0) sin0 — e4zp cosOcosyZ,)dv] A dO A d¥

27420 4, . . )
ﬁ [€2€V (e2Csin’ydé + e*Acos?ysin®0dP) A dv
cos

+ using(e2 cos OsingZ,d0 — Ve cos ydy) A (2CdE — Asin>0d®)] A dp

9e=04+2CL %) cos yVZ,

do A dv A dY,
+ 32cosd Y
- 944
Fs ==—dVol(AdS,) A d, dvol(Ads
57 64 ol(AdS,) P ¥ 30 cos 0sin 0 () ol(AdS:)

A [—62&(3L8f((9) sin OV — 268;‘6052922) (vd(pcosy) + pcos ydv)
+ I/262’3p cos y cos @sin 01 (6) (e8fo‘f(9) sin@V + 3L8Z,)d6)]

729e%412Cp sin y

YIIIL [cos Osinydv + v cos y cos 0Z,dy] A dO N dE A dp A dY. (3.23)
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IV. CONCLUSIONS

We have constructed a new solution in type IIB with an
AdS, factor and all fluxes turned on. By explicitly con-
structing the Killing spinor of the seed solution and further
exploiting an important result about the independence of
the Killing spinor on the coordinates along which we
perform NATD we were able to establish the supersym-
metry of the background. Our arguments hold for both the
massless case, as previously argued in [17], and now for the
massive case.

Given the work on AdS, compactifications of IIB on
manifolds with local SU(2) structure [16], it would be
extremely interesting to cast our background in this mold.
NATD acts on pure spinors, written as polyforms, via the
matrix Q, which is also used to construct the dual RR
fluxes. Typically it transforms the pure spinors from SU(3)
structure type to SU(2) structure type in the dual via
V) — ppsuGI-1 wsU@) — pSUC)0-1 [33]. We would
expect to see an explicit mapping between the SO(2) family
of SU(3) structures to an SO(2) family of SU(2) structures
after the NATD, similar to what was shown in [12]. At the
moment, simplification of the dual pure spinors into a
practical form has not yielded significant results, given the
shear size of the background. We, nevertheless, hope to
return to this task in the future as it might shed some light
on this class of backgrounds.

PHYSICAL REVIEW D 96, 046013 (2017)

Finally, it would be interesting to study the field theory
dual to this class of solutions. Much progress has been
made in understanding the field theories dual to the
NATD’s of AdSs x 3 [34] and a reduction from M-theory
of an AdS, background preserving A =4 [31]. It is
possible that the “completion” (as defined in those refer-
ences) of the NATD backgrounds presented here fit into
some N = 2 SUSY version of the ' = 4 class presented
in [31]. There are, however, many new ingredients in the
solutions we have constructed here. The brane configura-
tion setups in [31,34] hinged on the fact that the B,
generated from the NATD contained a 2-cycle, on which
the quantity by = # /. 5 B, is constrained to be bounded in

the interval [0,1]. Identifying a similar 2-cycle in our case is
not obvious, so it is at present unclear to what extent the
arguments used in [31] can be generalized to our case.
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