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As was shown recently, non-Abelian vortex strings supported in four-dimensionalN ¼ 2 supersymmetric
QCD with the U(2) gauge group and Nf ¼ 4 quark multiplets (flavors) become critical superstrings. In
addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size
moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target
space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact
threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify
them with hadrons of four-dimensionalN ¼ 2 QCD. One massless state was found previously; it emerges as
a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this
paper, we find a number of massive states. To this end, we exploit the approach used in LST little string
theory, namely, the equivalence between the critical string on the conifold and noncritical c ¼ 1 string with
the Liouville field and a compact scalar at the self-dual radius. The states we find carry “baryonic” charge (its
definition differs from standard). We interpret them as “monopole necklaces” formed (at strong coupling)
by the closed string with confined monopoles attached.
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I. INTRODUCTION

It was recently shown [1] that the non-Abelian solitonic
vortex string in a certain four-dimensional (4D) Yang-Mills
theory becomes critical at strong coupling. This particular
4D theory in which the non-Abelian vortex is critical
is N ¼ 2 supersymmetric QCD with the U(2) gauge
group, four quark flavors and the Fayet-Iliopoulos (FI) [2]
parameter ξ.
Non-Abelian vortices were first discovered in N ¼ 2

supersymmetric QCDwith the gauge group UðNÞ andNf ≥
N flavors of quark hypermultiplets [3–6]. The non-Abelian
vortex string is 1=2 Bogomolny-Prasad-Sommerfeld (BPS)
saturated and therefore has N ¼ ð2; 2Þ supersymmetry on
its world sheet. In addition to four translational moduli
characteristic of the Abrikosov-Nielsen-Olesen (ANO)
strings [7], the non-Abelian string carries orientational
moduli as well as the size moduli if Nf > N [3–6] (see
Refs, [8–11] for reviews). Their dynamics are described by
the effective two-dimensional sigma model on the string
world sheet with the target space

Oð−1Þ⊕ðNf−NÞ
CP1 ; ð1:1Þ

to which we will refer as the weighted CP model
[WCPðN;Nf − NÞ]. For Nf ¼ 2N, the model becomes
conformal. Moreover, for N ¼ 2, the dimension of the
orientational/size moduli space is six, and these moduli
can be combined with four translational moduli to form a

ten-dimensional space required for the superstring to
become critical.1 In this case, the target space of the world
sheet 2D theory on the non-Abelianvortex string isR4 × Y6,
where Y6 is a noncompact six-dimensional Calabi-Yau
manifold, the resolved conifold [12,13].
The main obstacle in describing the solitonic vortex

string as a critical string is that the solitonic strings are
typically thick. Their transverse size is given by 1=m,
where m is a typical mass scale of the four-dimensional
fields forming the string. This leads to the presence of a
series of higher-derivative corrections to the low-energy
sigma model action. The higher-derivative corrections
run in powers of ∂=m. They make the string world sheet
“crumpled” [14], and the string does not produce linear
Regge trajectories at small spins [1].
The higher-derivative corrections on the noncritical string

world sheet are needed to be properly accounted for in order
to improve the UV behavior of the string theory [15].
Without them, the low-energy world sheet sigma model does
not lead to UV complete string theory. In particular, this
means that, say, the ANO string in four dimensions [7] never
becomes thin.
On the other hand, the non-Abelian vortex string on the

conifold is critical and has a perfectly good UV behavior.
This opens the possibility that it can become thin in a
certain regime. This cannot happen in weakly coupled bulk

1This setup corresponds to the Virasoro central charge in the
WCPðN;Nf − NÞ sector cWCP ¼ 9.
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theory because at weak coupling m ∼ g
ffiffiffiffi
T

p
and is always

small in the units of
ffiffiffiffi
T

p
. Here, g is the gauge coupling

constant of the four-dimensionalN ¼ 2 QCD, and T is the
string tension.
A conjecture was put forward in Ref. [1] that at strong

coupling in the vicinity of a critical value of g2c ∼ 1 the non-
Abelian string on the conifold becomes thin, and higher-
derivative corrections in the action can be ignored. It is
expected that the thin string produces linear Regge trajec-
tories for all spins. The above conjecture implies2 that
mðg2Þ → ∞ at g2 → g2c. Moreover, it was argued in
Refs. [16,17] that it is natural to expect that the critical
point gc where the vortex string becomes thin is the self-
dual point g2c ¼ 4π; see Refs. [18,19].
A version of the string-gauge duality for 4D QCD was

proposed [1]; at weak coupling, this theory is in the Higgs
phase and can be described in terms of (s)quarks and
Higgsed gauge bosons, while at strong coupling, hadrons
of this theory can be understood as string states formed
by the non-Abelian vortex string. This hypothesis was
further explored by studying string theory for the critical
non-Abelian vortex in Refs. [16,17].
The vortices in the UðNÞ theories under consideration

are topologically stable and cannot be broken. Therefore,
the finite length strings are closed. Thus, we focus on the
closed strings. The goal is to identify closed string states
with hadrons of the 4D N ¼ 2 QCD.
The first step of this program, namely, identifying

massless string states was carried out in Refs. [16,17]
using supergravity formalism. In particular, a single matter
hypermultiplet associated with the deformation of the
complex structure of the conifold was found as the only
4D massless mode of the string. Other states arising from
the massless ten-dimensional graviton are not dynamical
in four dimensions. In particular, the 4D graviton and
unwanted vector multiplet associated with deformations of
the Kähler form of the conifold are absent. This is due to
noncompactness of the Calabi-Yau manifold we deal with
and non-normalizability of the corresponding modes over
six-dimensional space Y6.
Moreover, it was also discussed [16,17] how the states

seen in 4D N ¼ 2 QCD at weak coupling are related to
what we obtain from the string theory at strong coupling. In
particular, the hypermultiplet associated with the deforma-
tion of the complex structure of the conifold was interpreted
as a monopole-monopole baryon [16,17].
In this paper, we make the next step and find a number

of massive states of the closed non-Abelian vortex string,
which we interpret as hadrons of 4D N ¼ 2 QCD.
However, to this end, we cannot use our formulation of

the critical string theory on the conifold. The point is that
the coupling constant 1=β of the world sheet WCP(2,2) is
not small. Moreover, β tends to zero once the 4D coupling
g2 approaches the self-dual value we are interested in. At
β → 0, the resolved conifold develops a conical singularity.
The supergravity approximation does not work for massive
states.3

To analyze the massive states, we apply a different
approach, which was used for little string theories (LSTs);
see Ref. [20] for a review. Namely, we use the equivalence
between the critical string on the conifold and noncritical
c ¼ 1 string that contains the Liouville field and a compact
scalar at the self-dual radius [21,22]. The latter theory
(in the Wess-Zumino-Novikov-Witten (WZNW) formu-
lation) can be analyzed by virtue of algebraic methods. The
spectrum can be computed exactly [23–27].
The states that we find carry a “baryonic” charge—we

interpret them as “monopole necklaces” formed (at strong
coupling) by the closed string with confined monopoles
attached.
It is worth mentioning that the solitonic vortex describes

only nonperturbative states. Perturbative states, in particu-
lar massless states associated with the Higgs branch in the
original 4D Yang-Mills theory are present for all values of
the gauge coupling and are not captured by the vortex string
dynamics.
The paper is organized as follows. In Sec. II, we review

the world sheet sigma model emerging on the critical
non-Abelian vortex string. In Sec. III, we briefly review
conifold geometry and the massless state associated with
deformations of the conifold complex structure. In Sec. IV,
we describe the equivalent formulation in terms of the
noncritical c ¼ 1 string, and in Sec. V, we calculate its
spectrum. Section VI presents an interpretation of states
we found in terms of the baryonic monopole necklaces. We
summarize our conclusions in Sec. VII.

II. NON-ABELIAN VORTEX STRING

A. Four-dimensional N = 2 QCD

As was already mentioned, non-Abelian vortex-strings
were first found in 4D N ¼ 2 supersymmetric QCD with
the gauge group UðNÞ and Nf ≥ N flavors of the quark
hypermultiplets supplemented by the FI D term ξ [3–6];
see, for example, Ref. [10] for a detailed review of this
theory. Here, we just mention that at weak coupling g2 ≪ 1
this theory is in the Higgs phase in which scalar compo-
nents of quark multiplets (squarks) develop vacuum

2At Nf ¼ 2N, the beta function of the 4DN ¼ 2 QCD is zero,
so the gauge coupling g2 does not run. Note, however, that
conformal invariance in the 4D theory is broken by the FI
parameter ξ, which does not run either.

3This is in contradistinction to the massless states. For the
latter, we can perform computations at large β where the super-
gravity approximation is valid and then extrapolate to strong
coupling. In the sigma-model language, this procedure corre-
sponds to chiral primary operators. They are protected by N ¼
ð2; 2Þ world sheet supersymmetry, and their masses are not lifted
by quantum corrections.
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expectation values (VEVs). These VEVs break the UðNÞ
gauge group Higgsing all gauge bosons, while the global
flavor SUðNfÞ is broken down to the so-called color-flavor
locked group. The resulting global symmetry is

SUðNÞCþF × SUðNf − NÞ × Uð1ÞB; ð2:1Þ

see Ref. [10] for more details. The unbroken global Uð1ÞB
factor above is identified with a baryonic symmetry. Note
that what is usually identified as the baryonic U(1) charge is
a part of our 4D theory gauge group. “Our” U(1) is a
combination of two U(1) symmetries; the first is a subgroup
of the flavor SUðNfÞ, and the second is the global U(1)
subgroup of UðNÞ gauge symmetry.
The 4D theory has a Higgs branch formed by massless

quarks which are in the bifundamental representation of the
global group (2.1) and carry baryonic charge; see Ref. [17]
for more details. In the case N ¼ 2, Nf ¼ 2N ¼ 4, we will
deal with here, the dimension of this branch is

dimH ¼ 4NðNf − NÞ ¼ 16: ð2:2Þ

The above Higgs branch is noncompact and is hyper-
Kählerian [19,28], and therefore its metric cannot be
modified by quantum corrections [19]. In particular, once
the Higgs branch is present at weak coupling, we can
continue it all the way into strong coupling.

B. World sheet sigma model

The presence of color-flavor locked group SUðNÞCþF is
the reason for the formation of the non-Abelian vortex
strings [3–6]. The most important feature of these vortices
is the presence of the so-called orientational zero modes. In
the N ¼ 2 4D theory, these strings are 1=2 BPS saturated;
hence, their tension is determined exactly by the FI
parameter,

T ¼ 2πξ: ð2:3Þ

Let us briefly review the model emerging on the world
sheet of the non-Abelian critical string [1,16,17].
The translational moduli fields (they decouple from all

other moduli) in the Polyakov formulation [29] are given by
the action

S0 ¼
T
2

Z
d2σ

ffiffiffi
h

p
hαβ∂αxμ∂βxμ þ fermions; ð2:4Þ

where σα (α ¼ 1, 2) are the world sheet coordinates, xμ

(μ ¼ 1;…; 4) describing the R4 part of the string target
space and h ¼ detðhαβÞ, where hαβ is the world sheet
metric, which is understood as an independent variable.
If Nf ¼ N, the dynamics of the orientational zero modes

of the non-Abelian vortex, which become orientational
moduli fields on the world sheet, is described by the

two-dimensional N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ
model.
If one adds extra quark flavors, non-Abelian vortices

become semilocal. They acquire size moduli [30]. In par-
ticular, for the non-Abelian semilocal vortex at hand, in
addition to the orientational zero modes nP (P ¼ 1, 2), there
are the so-called size moduli ρK (K ¼ 1, 2) [3,6,30–33].
The gauged formulation of the effective world sheet

theory for the orientational and size moduli is as follows
[34]. One introduces the U(1) charges �1, namely, þ1 for
n’s and −1 for ρ’s,

S1 ¼
Z

d2σ
ffiffiffi
h

p n
hαβ

�
~∇αn̄P∇βnP þ∇αρ̄K ~∇βρ

K
�

þ e2

2
ðjnPj2 − jρKj2 − βÞ2

o
þ fermions; ð2:5Þ

where

∇α ¼ ∂α − iAα; ~∇α ¼ ∂α þ iAα; ð2:6Þ

and Aα is an auxiliary gauge field. The limit e2 → ∞ is
implied. Equation (2.5) represents the WCPð2; 2Þ model.4

The total number of real bosonic degrees of freedom
in (2.5) is six, where we take into account the D-term
constraint and the fact that one U(1) phase can be gauged
away. As was already mentioned, these six internal degrees
of freedom are combined with the four translational moduli
from (2.4) to form a ten-dimensional space needed for the
superstring to be critical.
In the semiclassical approximation, the coupling con-

stant β in (2.5) is related to the 4D SU(2) gauge coupling g2

via [10]

β ≈
4π

g2
: ð2:7Þ

Note that the first (and the only) coefficient is the same
for the 4D QCD and the world sheet beta functions. Both
vanish at Nf ¼ 2N. This ensures that our world sheet
theory is conformal.
The total bosonic world sheet action is

S ¼ S0 þ S1: ð2:8Þ

Since the non-Abelian vortex string is 1=2 BPS, it preserves
N ¼ ð2; 2Þ in the world sheet sigma model, which is

4Both the orientational and the size moduli have logarithmi-
cally divergent norms; see, e.g., Ref. [31]. After an appropriate
infrared regularization, logarithmically divergent norms can be
absorbed into the definition of relevant two-dimensional fields
[31]. In fact, the world-sheet theory on the semilocal non-Abelian
string is not exactly the WCPðN; ~NÞ model [33]; there are minor
differences. The actual theory is called the zn model. Never-
theless, it has the same infrared physics as the model (2.5) [35].
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necessary to have N ¼ 2 space-time supersymmetry
[36,37]. Moreover, in Ref. [17], it is shown that the string
theory of the non-Abelian critical vortex is type IIA.
The global symmetry of the world sheet sigma model

(2.5) is

SUð2Þ × SUð2Þ × Uð1Þ; ð2:9Þ

i.e., exactly the same as the unbroken global group in the
4D theory (2.1) at N ¼ 2 and Nf ¼ 4. The fields n and ρ
transform in the following representations:

n∶ ð2; 0; 0Þ; ρ∶ ð0; 2; 1Þ: ð2:10Þ

C. Thin string regime

As is well known [18,19], the 4D Yang-Mills theory at
hand possesses a strong-weak coupling duality, namely,

τ → τD ¼ −
1

τ
; τ ¼ i

4π

g2
þ θ4D

2π
; ð2:11Þ

where θ4D is the four-dimensional θ angle.
The 2D coupling constant β can be naturally complexi-

fied, too, if we include the θ term in the action of the
model (2.5),

β → β þ i
θ2D
2π

:

The exact relation between 4D and 2D couplings is

exp ð−2πβÞ ¼ −hðτÞ½hðτÞ þ 2�; ð2:12Þ

where the function hðτÞ is a special modular function of τ
defined in terms of the θ functions,

hðτÞ ¼ θ41=ðθ42 − θ41Þ:

This function enters the Seiberg-Witten curve for our 4D
theory [18,19]. Equation (2.12) generalizes the quasiclass-
ical relation (2.7). Derivation of the relation (2.12) will be
presented elsewhere [38,39].
Note that the 4D self-dual point g2 ¼ 4π is mapped onto

the 2D self-dual point β ¼ 0.
According to the hypothesis formulated in Ref. [1],

our critical non-Abelian string becomes thin in the strong
coupling limit in the self-dual point τc ¼ i or g2c ¼ 4π. This
gives

m2 → ξ ×

8<
:

g2; g2 ≪ 1

∞; g2 → 4π

16π2=g2; g2 ≫ 1

; ð2:13Þ

where the dependence of m at small and large g2 follows
from the quasiclassical analysis [10] and duality (2.11),
respectively.
Thus, we expect that the singularity of mass m lies at

β ¼ 0. This is the point where the non-Abelian string
becomes infinitely thin, higher-derivative terms can be
neglected, and the theory of the non-Abelian string reduces
to (2.8). The point β ¼ 0 is a natural choice because at
this point we have a regime change in the 2D sigma model
per se. This is the point where the resolved conifold defined
by the D term in (2.5) develops a conical singularity [13].

III. MASSLESS 4D BARYON AS DEFORMATION
OF THE CONIFOLD COMPLEX STRUCTURE

In this section, we briefly review the only 4D massless
state associated with the deformation of the conifold
complex structure. It was found in Ref. [17]. As was
already mentioned, all other modes arising from massless
ten-dimensional graviton have non-normalizable wave
functions over the conifold. In particular, the 4D graviton
is absent [17]. This result matches our expectations since
we started with N ¼ 2 QCD in the flat four-dimensional
space without gravity.
The target space of the sigma model (2.5) is defined by

the D-term condition

jnPj2 − jρKj2 ¼ β: ð3:1Þ

The U(1) phase is assumed to be gauged away. We can
construct the U(1) gauge-invariant “mesonic” variables

wPK ¼ nPρK: ð3:2Þ

These variables are subject to the constraint detwPK ¼ 0,
or

X4
α¼1

w2
α ¼ 0; ð3:3Þ

where

wPK ¼ σPKα wα;

and the σ matrices above are ð1;−iτaÞ, a ¼ 1, 2, 3.
Equation (3.3) defines the conifold Y6. It has the Kähler
Ricci-flat metric and represents a noncompact Calabi-Yau
manifold [12,13,34]. It is a cone that can be parametrized
by the noncompact radial coordinate

~r2 ¼
X4
α¼1

jwαj2 ð3:4Þ

and five angles; see Ref. [12]. Its section at fixed ~r
is S2 × S3.
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At β ¼ 0, the conifold develops a conical singularity, so
both S2 and S3 can shrink to zero. The conifold singularity
can be smoothed out in two distinct ways: by deforming
the Kähler form or by deforming the complex structure.
The first option is called the resolved conifold and amounts
to introducing a nonzero β in Eq. (3.1). This resolution
preserves the Kähler structure and Ricci flatness of the
metric. If we put ρK ¼ 0 in (2.5), we get the CPð1Þ model
with the S2 target space (with the radius

ffiffiffi
β

p
). The resolved

conifold has no normalizable zero modes. In particular, the
modulus β, which becomes a scalar field in four dimensions
has non-normalizable wave function over the Y6 [17].
As explained in Refs. [17,40], non-normalizable 4D

modes can be interpreted as (frozen) coupling constants
in the 4D theory. The β field is the most straightforward
example of this, since the 2D coupling β is related to the 4D
coupling; see Eq. (2.12).
If β ¼ 0, another option exists, namely, a deformation of

the complex structure [13]. It preserves the Kähler structure
and Ricci flatness of the conifold and is usually referred to
as the deformed conifold. It is defined by deformation of
Eq. (3.3), namely,

X4
α¼1

w2
α ¼ b; ð3:5Þ

where b is a complex number. Now, the S3 cannot shrink to
zero, and its minimal size is determined by b.
The modulus b becomes a 4D complex scalar field.

The effective action for this field was calculated in
Ref. [17] using the explicit metric on the deformed conifold
[12,41,42],

SðbÞ ¼ T
Z

d4xj∂μbj2 log
T2L4

jbj ; ð3:6Þ

where L is the size of R4 introduced as an infrared
regularization of the logarithmically divergent b field
norm.5

We see that the norm of the b modulus turns out to be
logarithmically divergent in the infrared. The modes with the
logarithmically divergent norm are at the borderline between
normalizable and non-normalizable modes. Usually, such
states are considered as “localized” on the string. We follow
this rule. We can relate this logarithmic behavior to the
marginal stability of the b state; see Ref. [17]. This scalar
mode is localized on the string in the same sense in which the
orientational and size zero modes are localized on the vortex-
string solution.
The field b being massless can develop a VEV. Thus, we

have a new Higgs branch in 4D N ¼ 2 QCD, which is

developed only for the self-dual value of the coupling
constant g2 ¼ 4π.
The logarithmic metric in Eq. (3.6) in principle can

receive both perturbative and nonperturbative quantum
corrections in the sigma model coupling 1=β. However,
for N ¼ 2 theory, the nonrenormalization theorem of
Ref. [19] forbids the dependence of the Higgs branch metric
on the 4D coupling constant g2. Since the 2D coupling β is
related to g2, we expect that the logarithmic metric in (3.6)
will stay intact. We confirm this expectation in the next
section.
In Ref. [17], the massless state b was interpreted as a

baryon of 4D N ¼ 2 QCD. Let us explain this. From
Eq. (3.5), we see that the complex parameter b (which is
promoted to a 4D scalar field) is singlet with respect to both
SU(2) factors in (2.9), i.e., the global world sheet group.6

What about its baryonic charge?
Since

wα ¼
1

2
Tr½ðσ̄αÞKPnPρK�; ð3:7Þ

we see that the b state transforms as

ð1; 1; 2Þ; ð3:8Þ

where we used Eqs. (2.10) and (3.5). In particular, it has the
baryon charge QBðbÞ ¼ 2.
To conclude this section, let us note that in the type IIA

superstring the complex scalar associated with deforma-
tions of the complex structure of the Calabi-Yau space
enters as a 4DN ¼ 2 hypermultiplet. Other components of
this hypermultiplet can be restored by N ¼ 2 supersym-
metry. In particular, the 4D N ¼ 2 hypermultiplet should
contain another complex scalar ~b with baryon charge
QBð ~bÞ ¼ −2. In the stringy description, this scalar comes
from the ten-dimensional 3-form; see Ref. [43] for a review.

IV. NONCRITICAL c= 1 STRING

As was explained in Sec. I, the critical string theory on
the conifold is hard to use for calculating the spectrum of
massive string modes because the supergravity approxi-
mation does not work. In this paper, we take a different
route and use the equivalent formulation of our theory as a
noncritical c ¼ 1 string theory with the Liouville field and a
compact scalar at the self-dual radius [21,22].
Noncritical c ¼ 1 string theory is formulated on the

target space

R4 × Rϕ × S1; ð4:1Þ
5The infrared regularization on the conifold ~rmax translates into

the size L of the 4D space because variables ρ in Eq. (3.4) have an
interpretation of the vortex string sizes, ~rmax ∼ TL2.

6Which is isomorphic to the 4D global group (2.1) at N ¼ 2,
Nf ¼ 4.
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where Rϕ is a real line associated with the Liouville field ϕ
and the theory has a linear in ϕ dilaton, such that string
coupling is given by

gs ¼ e−
Q
2
ϕ: ð4:2Þ

Generically, the above equivalence is formulated
between the critical string on noncompact Calabi-Yau
spaces with isolated singularity on the one hand and the
noncritical c ¼ 1 string with the additional Ginzburg-
Landau N ¼ 2 superconformal system [21] on the other
hand. In the conifold case, this extra Ginzburg-Landau
factor in (4.1) is absent [44].
In Refs. [21,44,45], it was argued that noncritical string

theories with the string coupling exponentially falling off at
ϕ → ∞ are holographic. The string coupling goes to zero in
the bulk of the space-time, and nontrivial dynamics (LST)7;
is localized on the “boundary.” In our case, the boundary
is the four-dimensional space in which N ¼ 2 QCD is
defined.
The holography for our non-Abelian vortex string theory

is most welcome and expected. We start with N ¼ 2 QCD
in 4D space and study the solitonic vortex string. In our
approach, ten-dimensional space formed by 4D “real”
space and six internal moduli of the string is an artificial
construction needed to formulate the string theory of a
special non-Abelian vortex. Clearly, we expect that all
nontrivial real physics should be localized exclusively on
the 4D boundary. In other words, we expect that LST in our
case is nothing other than 4DN ¼ 2 supersymmetric QCD
at the self-dual value of the gauge coupling g2 ¼ 4π (in the
hadronic description).
The linear dilaton in (4.2) implies that the bosonic stress

tensor of c ¼ 1 matter coupled to 2D gravity is given by

T−− ¼ −
1

2
½ð∂zϕÞ2 þQ∂2

zϕþ ð∂zYÞ2�: ð4:3Þ

The compact scalar Y represents c ¼ 1 matter and satisfies
the following condition:

Y ∼ Y þ 2πQ: ð4:4Þ

Here, we normalize the scalar fields such that their
propagators are

hϕðzÞ;ϕð0Þi ¼ − log zz̄; hYðzÞ; Yð0Þi ¼ − log zz̄:

ð4:5Þ

The central charge of the supersymmetrized c ¼ 1 theory
above is

cSUSYϕþY ¼ 3þ 3Q2: ð4:6Þ

The criticality condition for the string on (4.1) implies that
this central charge should be equal to 9. This gives

Q ¼
ffiffiffi
2

p
: ð4:7Þ

Deformation of the conifold (3.5) translates into
adding the Liouville interaction to the world sheet sigma
model [21]

δL ¼ b
Z

d2θe−
ϕþiY
Q : ð4:8Þ

The conifold singularity at b ¼ 0 corresponds to the string
coupling constant becoming infinitely large at ϕ → −∞;
see Eq. (4.2). At b ≠ 0, the Liouville interaction regularizes
the behavior of the string coupling, preventing the string
from propagating to the region of large negative ϕ.
In fact, the c ¼ 1 noncritical string theory can also be

described in terms of a two-dimensional black hole [46],
which is the SLð2; RÞ=Uð1Þ coset WZNW theory
[21,22,26,47] at the level

k ¼ 2

Q2
: ð4:9Þ

This relation implies in the case of the conifold (Q ¼ ffiffiffi
2

p
)

that

k ¼ 1; ð4:10Þ

where k is the total level of the Kac-Moody algebra in the
supersymmetric version (the level of the bosonic part of the
algebra is then kb ¼ kþ 2 ¼ 3). The target space of this
theory has the form of a semi-infinite cigar; the field ϕ
associated with the motion along the cigar cannot take
large negative values due to semi-infinite geometry. In this
description, the string coupling constant at the tip of the
cigar is gs ∼ 1=b.

V. VERTEX OPERATORS AND THE SPECTRUM

In this section, we consider vertex operators for the
noncritical string theory on (4.1) and calculate the string
spectrum.

A. Vertex operators

Vertex operators for the string theory on (4.1) are
constructed in Ref. [21]; see also Refs. [26,44]. Primaries
of the c ¼ 1 part for large positive ϕ (where the target space
becomes a cylinder Rϕ × S1) take the form

Vj;m ≈ exp ð
ffiffiffi
2

p
jϕþ i

ffiffiffi
2

p
mYÞ: ð5:1Þ

7The main example of this behavior is nongravitational LST
in the flat six-dimensional space formed by the world volume of
parallel NS5 branes.
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For the self-dual radius (4.7) (or k ¼ 1), the parameter 2m in
Eq. (5.1) is an integer. In the left-moving sector, 2m is the
total momentum plus the winding number along the compact
dimension Y. For the right-moving sector, we introduce 2m̄,
which is the winding number minus momentum; then, we
consider operators with m̄ ¼ �m.
The primary operator (5.1) is related to the wave function

over “extra dimensions” as follows:

Vj;m ¼ gsΨj;mðϕ; YÞ:

The string coupling (4.2) depends on ϕ. Thus,

Ψj;mðϕ; YÞ ∼ e
ffiffi
2

p ðjþ1
2
Þϕþi

ffiffi
2

p
mY: ð5:2Þ

We look for string states with normalizable wave functions
over the extra dimensions which we will interpret as
hadrons of 4D N ¼ 2 QCD. The condition for the string
states to have normalizable wave functions reduces to [21]

j ≤ −
1

2
: ð5:3Þ

The scaling dimension of the primary operator (5.1) is

Δj;m ¼ m2 − jðjþ 1Þ: ð5:4Þ

Unitarity implies that it should be positive,

Δj;m > 0: ð5:5Þ

The spectrum of the allowed values of j and m in (5.1)
was determined exactly by using the Kac-Moody algebra
for the coset SLð2; RÞ=Uð1Þ in Refs. [23–27]; see Ref. [48]
for a review. Both discrete and continuous representations
were found. Parameters j and m determine the global
quadratic Casimir operator and the projection of the spin on
the 3-axis,

J2jj;mi¼−jðjþ1Þjj;mi; J3jj;mi¼mjj;mi; ð5:6Þ

where Ja (a ¼ 1, 2, 3) are global SLð2; RÞ currents.
We have

(i) Discrete representations with

j¼−
1

2
;−1;−

3

2
;…; m¼�fj;j−1;j−2;…g:

ð5:7Þ

(ii) Principal continuous representations with

j¼−
1

2
þ is; m¼ integer or m¼half-integer;

ð5:8Þ

where s is a real parameter.

(iii) Exceptional continuous representations with

−
1

2
≤ j < 0; m ¼ integer: ð5:9Þ

We see that discrete representations include the normal-
izable states localized near the tip of the cigar, while
the continuous representations contain non-normalizable
states8 see Eq. (5.3). This nicely matches our qualitative
expectations.
Discrete representations contain states with a negative

norm. To exclude the ghost states, a restriction for spin j is
imposed [23–25,27,48]:

−
kþ 2

2
< j < 0: ð5:10Þ

Thus, for our value k ¼ 1, we are left with only two
allowed values of j,

j ¼ −
1

2
; m ¼ �

�
1

2
;
3

2
;…

�
ð5:11Þ

and

j ¼ −1; m ¼ �f1; 2;…g: ð5:12Þ

Below, in this section, we will first consider normalizable
string states from discrete representations, and finally, in
Sec. V E, we discuss the physical interpretation of the
continuous representations.

B. Massless baryon

Our first task now is to rederive the massless baryon b
associated with deformations of the conifold complex
structure (see Ref. [17] and Sec. III) within the framework
of the noncritical Liouville string theory described above.
To this end, we consider vertex operators for 4D scalars.
The 4D scalar vertices VS in the ð−1;−1Þ picture have the
form [21]

VS
j;mðpμÞ ¼ e−φeipμxμVj;m; ð5:13Þ

where φ represents bosonized ghosts and pμ is the 4D
momentum of the string state. These states are the lowest
components ofN ¼ 2 multiplets in four dimensions. Also,
the Gliozzi-Scherk-Olive (GSO) projection restricts the
integer 2m for the operator in Eq. (5.13) to be odd [21,49],

m ¼ lþ 1

2
; jlj ¼ 0; 1; 2;… ð5:14Þ

8We will discuss the case j ¼ − 1
2
, which is on the borderline

between normalizable and non-normalizable states, in the next
subsection.
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The condition for the state (5.13) to be physical is

pμpμ

8πT
þ ð2lþ 1Þ2

4
− jðjþ 1Þ ¼ 1

2
; ð5:15Þ

where we used Eqs. (5.4) and (5.14). This determines the
masses of the 4D scalars,

ðMSÞ2j;l
8πT

¼ −
pμpμ

8πT
¼ ð2lþ 1Þ2

4
−
1

2
− jðjþ 1Þ; ð5:16Þ

where the Minkowski 4D metric with the diagonal entries
ð−1; 1; 1; 1Þ is used.
Consider the states that are on the borderline between

normalizable and non-normalizable, namely, the states with

j ¼ −
1

2
: ð5:17Þ

For l ¼ 0 (m ¼ 1
2
) and l ¼ −1 (m ¼ − 1

2
), Eq. (5.16) gives

the lightest states with

MS
j¼−1

2
;l¼0

¼ MS
j¼−1

2
;l¼−1 ¼ 0: ð5:18Þ

This is our massless baryon b associated with deformations
of the complex structure of the conifold (plus antibaryon ~b).
To confirm this, let us show that it has a logarithmically
normalizable wave function in terms of the conifold radial
coordinate ~r; see Eq. (3.6).
For j ¼ − 1

2
, all states (5.13) have constant wave func-

tions with respect to the Liouville coordinate ϕ. Thus, the
norm of these states is ðϕmax − ϕminÞ. To relate ϕ to ~r, we
note that ϕmin is determined by the Liouville interaction
term (4.8), which becomes of the order of unity at this
point. This gives

ϕ ∼ log ~r2; ð5:19Þ

where we used that ~r2min ¼ jbj. In particular, this gives
log ~r2max=jbj for the norm of the massless state with l ¼ 0,
as expected [see Eq. (3.6)].

C. Massive 4D scalars

Now, consider the states (5.13) with arbitrary values
of l in (5.14), still assuming j ¼ − 1

2
. From Eq. (5.16), we

obtain their masses

ðMSÞ2
j¼−1

2
;l
¼ 8πTlðlþ 1Þ; jlj ¼ 0; 1; 2;… ð5:20Þ

All these states are logarithmically normalizable with
respect to the conifold radial coordinate.
What are their quantum numbers with respect to the 4D

global group (2.1)? They are all invariant with respect to
SU(2) factors. To determine their baryon charge, note that

the Uð1ÞB transformation of b in the Liouville interaction
(4.8) is compensated by a shift of Y. Therefore, m in
Eq. (5.1) is proportional to the baryon charge. Normalization
is fixed by the massless baryon b, which has QBðbÞ ¼ 2 at
m ¼ 1

2
; l ¼ 0. This implies

QBðVj;mÞ ¼ 4m: ð5:21Þ

We see that the momentum m in the compact Y direction
is in fact the baryon charge of a string state. In particular,
4D scalar states (5.20) are all baryons for positive l and
antibaryons for negative l with

QB ¼ 4lþ 2:

The masses of 4D scalars as a function of the baryonic
charge are shown in Fig. 1.
To conclude this subsection, let us note that the second

allowed value of j, j ¼ −1 in Eq. (5.12) is excluded by the
GSO projection, which selects only half-integer values ofm
for states (5.13); see Eq. (5.14).
Note also that the 4D scalar states found above are

the lowest components of N ¼ 2 multiplets. Other com-
ponents can be restored by virtue of 4D N ¼ 2
supersymmetry.

D. Spin-2 states

At the next level, we consider 4D spin-2 states coming
from space-time “gravitons.” The corresponding vertex
operators are given by

VG
j;mðpμÞ ¼ ξμνψ

μ
Lψ

ν
Re

−φeipμxμVj;m; ð5:22Þ

B
2

0
4 6 8−2−4−6−8

1

2

3

4

5

Q

M 2 /8    Tπ

FIG. 1. Spectrum of spin-0 and spin-2 states as a function of the
baryonic charge. Closed and open circles denote spin-0 and spin-
2 states, respectively.
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where ψμ
L;R are the world sheet superpartners to 4D

coordinates xμ; moreover, ξμν is the polarization tensor.
The condition for these states to be physical takes the

form

pμpμ

8πT
þm2 − jðjþ 1Þ ¼ 0: ð5:23Þ

The GSO projection selects now 2m to be even, m ¼ l,
jlj ¼ 0; 1; 2;… [21], and thus we are left with only one
allowed value of j, j ¼ −1 in Eq. (5.12). Moreover, the
value m ¼ l ¼ 0 is excluded. This leads to the following
expression for the masses of spin-2 states:

ðMGÞ2j;l ¼ 8πTl2; jlj ¼ 1; 2;…: ð5:24Þ

We see that all spin-2 states are massive. This confirms the
result in Ref. [17] that no massless 4D graviton appears
in our theory. It also matches the fact that our boundary
theory, 4D N ¼ 2 QCD, is defined in flat space without
gravity.
All states with masses (5.24) are baryons for l > 0 and

antibaryons for l < 0, with the baryon charge QB ¼ 4m ¼
4l. The masses of 4D spin-2 states as a function of the
baryonic charge are shown in Fig. 1.
We expect that all 4D states with a given baryon charge

considered in this and previous subsections are the lowest
states of the Regge trajectories linear in 4D spin.

E. Non-normalizable states

In Ref. [17], the continuum spectrum of non-normalizable
states was interpreted as unstable string states. Since the
Liouville coordinate ϕ is related to the radial coordinate ~r
on the conifold [see (5.19)], the modes with j > − 1

2
are

power non-normalizable on the conifold. The conifold radial
coordinate ~r has the physical interpretation of a distance
from the string axis in 4D space; see Eqs. (3.4) and (3.2).
Therefore, the wave functions of the non-normalizable states
are saturated at large distances from the vortex-string axis
in 4D.
These states are not localized on the string. The infinite

norm of these states should be interpreted as an instability.
Namely, these states decay into massless bifundamental
quarks inherent to the Higgs branch of our four-
dimensional N ¼ 2 QCD. This instability is present
already at the perturbative level; see Sec. II and Ref. [17].
Our vortex string has a conceptual difference compared

to the fundamental string. In compactifications of the
fundamental string, all states present in four dimensions
are string states. The string theory for the vortex strings
of Refs. [1,17] is different. The string states describe only
nonperturbative physics at strong coupling, such as mesons
and baryons. The perturbative massless moduli states seen
at week coupling are not described by this theory. In

particular, the Higgs branch (and associated massless
bifundamental quarks) found at weak coupling can be
continued to the strong coupling; they persist there. It can
intersect other branches but cannot disappear (for quarks
with the vanishing mass terms) [19].
One class of non-normalizable unstable modes is given

by the exceptional continuous representation (5.9). For
jmj ¼ 1; 2;…, the continuous spectra parametrized by
j in Eq. (5.9) start from the thresholds given by
masses (5.24).
Another class of unstable string states corresponds to the

principal representation given by complex values of j,

j ¼ −
1

2
þ is; ð5:25Þ

see Eq. (5.8). These states have continuous spectra para-
metrized by s. The parameter s has a clear-cut interpretation
of a momentum along the Liouville direction. Therefore,
we interpret these states as decaying modes of the string
states interacting with the perturbative bifundamental
quarks rather than the hadronic states of N ¼ 2 QCD.
Much in the same way as for the exceptional represen-

tation, the principal continuous spectra for half-integer m
start from thresholds given by masses (5.20). Using this
picture, we are led to conclude that the continuous spectra
contain multiparticle states formed by a given baryon and a
number of emitted bifundamental quarks with zero total
baryonic charge. This issue needs future clarification.

VI. PHYSICAL INTERPRETATION
OF STRING STATES

In this section, we reveal a physical interpretation of all
baryonic states found in the previous section as monopole
necklaces.
Consider first the weak coupling domain g2 ≪ 1 in four-

dimensional N ¼ 2 QCD. It is in the Higgs phase; N
squarks condense. Therefore, non-Abelian vortex strings
confine monopoles. However, the monopoles cannot be
attached to the string endpoints. In fact, in the UðNÞ
theories, confined monopoles are junctions of two distinct
elementary non-Abelian strings [5,6,50] (see Ref. [10] for a
review). As a result, in four-dimensional N ¼ 2 QCD, we
have monopole-antimonopole mesons in which the monop-
ole and antimonopole are connected by two confining
strings. In addition, in the UðNÞ gauge theory, we can have
baryons appearing as a closed necklace configuration of
N × ðintegerÞ monopoles [10]. For the U(2) gauge group,
the lightest baryon presented by such a necklace configu-
ration consists of two monopoles; see Fig. 2.
Moreover, the monopoles acquire quantum numbers

with respect to the global symmetry group (2.1). To see
that this is the case, note that in the world sheet theory on
the vortex string the confined monopole is seen as a kink
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interpolating between two distinct vacua (i.e., distinct
elementary non-Abelian strings) in the corresponding 2D
sigma model [5,6,50]. At the same time, we know that the
sigma model kinks at strong coupling are described by the
nP and ρK fields [51,52] [for the sigma model described
by Eq. (2.5), it was shown in Ref. [53]) and therefore
transform in the fundamental representations9 of two non-
Abelian factors in Eq. (2.1).
As a result, the monopole baryons in our case can be

singlets, triplets, or bifundamentals or form higher repre-
sentations of both SU(2) global groups in Eq. (2.1). With
respect to the baryonic Uð1ÞB symmetry in Eq. (2.1), the
monopole baryons can have charges

jQBðbaryonÞj ¼ 0; 1; 2:::; ð6:1Þ

see Eq. (2.10). In particular, nonzero baryonic charge is
associated with the ρ kinks. In the U(2) gauge theory, the
monopole necklace can be formed by an even number of
monopoles.
All these nonperturbative stringy states are heavy at

weak coupling, with mass of the order of
ffiffiffi
ξ

p
, and therefore

can decay into screened quarks that are lighter and,
eventually, into massless bifundamental screened quarks.
Now, we pass to the self-dual point β ¼ 0 in the strong

coupling region. As was already discussed, all string states
found in Sec. V have nonzero baryon charge QB ¼ 4m;
see Eq. (5.21). The lightest state (the massless b state) has
QB ¼ 2. It can be formed by minimum two monopoles; see
Fig. 2. The spin-2 massive state (5.22) with m ¼ 1 can be
formed by the monopole necklace with a minimum of four
monopoles.
All stringy monopole necklace baryons found in Sec. V

are singlets with respect to two SU(2) factors in Eq. (2.1).
They are metastable and can decay into pairs of massless
bifundamental quarks in the singlet channel with the same

baryon charge. The metastability of stringy baryons on the
string side is reflected in the logarithmic divergence of their
norm and the presence of continuous spectra. Detailed
studies of the nonperturbative Higgs branch formed by
VEVs of massless b and interactions of stringy baryons
with massless bifundamental quarks are left for future work.

VII. CONCLUSIONS

Previously, we observed that non-Abelian vortex strings
supported in four-dimensional N ¼ 2 supersymmetric
QCD with the U(2) gauge group and Nf ¼ 4 flavors of
quark hypermultiplets can represent critical superstrings in
ten-dimensional target space R4 × Y6 where Y6 is a non-
compact Calabi-Yau manifold. This can be called “reverse
holography.” Indeed, we start from a well-defined four-
dimensional Yang-Mills theory and, analyzing the vortex
strings it supports, add six extra dimensions—the moduli of
the string world sheet theory—which relates our construc-
tion (at the critical value of the coupling constant g2 ¼ 4π
corresponding to β ¼ 0) to a critical string theory on a
six-dimensional conifold.
In this paper, the mass spectrum of the string states is

determined using equivalent formulation in terms of c ¼ 1
noncritical string theory with the Liouville field. The string
states per se are identified with the hadronic states in the
four-dimensional theory. Since the extradimensional space
is not compact, the above identification becomes possible
because our string theory is holographic; nontrivial physics
is “projected” to the 4D boundary. This behavior is typical
for LSTs. The reason for holography is that the string
coupling constant exponentially falls off at large values of
the noncompact Liouville coordinate [see (4.2)], and the
bulk physics becomes trivial and decouples.
Of course, the holography of our string theory is

expected since our starting point was 4D N ¼ 2 QCD.
Holography ensures the presence of normalizable string
states localized in 4D space, which we identified as hadrons
of N ¼ 2 QCD. Also, we qualitatively interpret non-
normalizable states as decay modes of the hadronic states.
The Higgs branch existing in our four-dimensional

N ¼ 2 QCD leads to strictly massless quark hypermultip-
lets, which are evident at weak coupling and survive the
transition to strong coupling. This implies a peculiar
behavior in the infrared. In particular, the masses of the
string states derived in Secs. V C and V D are in fact the end
points of the branch cuts. Note, however, that exactly the
same situation would take place in QCD with massless
quarks giving rise to massless pions. Say, every lowest-
lying state with the given baryon number would represent
the beginning of a branch cut. The pion mass could be lifted
by an arbitrarily small perturbation. Disentangling infrared
effects of the Higgs branch from physics of the critical
string under consideration will be the subject of a sub-
sequent work.

(b)(a)

FIG. 2. Examples of the monopole necklace baryons: a) Mass-
less b baryon with QB ¼ 2; b) Spin-2 baryon with QB ¼ 4. Open
circles denote monopoles.

9Strictly speaking, to make both bulk monopoles and world
sheet kinks well defined as localized objects, one should
introduce an infrared regularization, say, a small quark mass
term. When we take the limit of the zero quark masses, the
kinks become massless and smeared all over the closed string.
However, their global quantum numbers stay intact.
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