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Alternative scenarios to the big bang singularity have been subject of intense research for several decades
by now. Most popular in this sense have been frameworks were such singularity is replaced by a bounce
around some minimal cosmological volume or by some early quantum phase. This latter scenario was
devised a long time ago and referred as an “emergent universe” (in the sense that our universe emerged
from a constant volume quantum phase). We show here that within an improved framework of canonical
quantum gravity (the so-called quantum reduced loop gravity) the Friedmann equations for cosmology are
modified in such a way to replace the big bang singularity with a short bounce preceded by a metastable
quantum phase in which the volume of the universe oscillates between a series of local maxima and
minima. We call this hybrid scenario an “emergent-bouncing universe” since after a pure oscillating
quantum phase the classical Friedmann spacetime emerges. Perspective developments and possible tests of
this scenario are discussed in the end.
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I. INTRODUCTION

Physical situations in which quantum gravity effects are
expected to be relevant typically correspond to extreme
gravitational regimes, such as the initial phase of the
universe and the interior of black holes. As such, the
characterization of such regimes is crucial for the validation
of quantum gravity (QG) models.
The most promising scenario for experimental confirma-

tion of quantum gravity phenomenology is realized in
cosmology. The detection of cosmicmicrowave background
radiation provides a unique window on phenomena occur-
ring at early stages and, even though inflationwashes out the
initial conditions, some imprints of the quantumphase of the
universe could survive in the radiation filling the universe
today and be revealed in forthcoming experiments.
There are two main scenarios replacing the big bang in

QG: the bouncing universe and the emergent universe. The
bouncing universe [1] predicts that going backward in time
the universe collapses up to a finite value for the scale
factor, before which it starts expanding again. The bounce
implies a violation of the null energy condition and it has
been realized only with some exotic matter fields, as in
quantum cosmology [2], or including modifications in the
gravitational sector, as in loop quantum cosmology (LQC)
[3,4]. In this latter case, the granular spacetime structure

makes gravity repulsive at Planckian scales, thus bridging
the collapsing and the expanding classical solutions.
The emergent universe scenario postulates that the

universe started from a local static quantum phase.
A realization has been proposed in string gas cosmology
[5], in the presence of a scalar field with an exponential
potential [6] and in Galileon cosmology [7]. Another
realization of this scenario has been proposed in early
developments of LQC [8], using some quantum gravity
corrections (the so-called inverse volume corrections),
which later on were shown to be subdominant with respect
to those producing the bounce (holonomy corrections).
In an attempt to discriminate among such scenarios, we

felt it useful to investigate the outcome of some more
refined scheme of calculation starting from quantum
gravity. In this sense the theory we consider is quantum
reduced loop gravity (QRLG) [9–11], which provides an
alternative realisation of the cosmological sector of loop
quantum gravity (LQG) [12] with respect to LQC.
While the latter implements a LQG-inspired quantisation

scheme on a symmetry reduced classical kinematics
(minisuperspace), in QRLG the symmetry reduction is
achieved in two steps. First, by implementing at the
quantum level some convenient gauge fixing—i.e. the
diagonality of the 3-metric (imposed à la Gupta–Bleuer)
which greatly simplifies the quantum kinematics—and then
by imposing a semiclassical limit via the evaluation of the
so obtained quantum Hamiltonian on coherent states
implementing homogeneity and isotropy.
Let us stress that QRLG can be considered as an

intermediate theory between full LQG and LQC, since
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while it preserves some of the basic LQG structures (e.g.
discrete graphs and intertwiners), it realizes them in a
simplified context in which computations can be performed
analytically. In this way, it provides in the semiclassical
limit, a Hamiltonian which can be seen as a quantum
corrected form of the effective Hamiltonian of LQC.
In a previous work [13], two of the present authors

demonstrated how the resulting universe evolution does not
depart significantly from that of LQC when tracing back in
time from the late universe up to the bounce.
Here, we study numerically the effective equations before

the bounce, finding a surprising result: the prebouncing
universe never becomes classical, but it emerges from a
quantum phase. Such a quantum phase is characterized by
oscillations between consecutive local minima and maxima
of universe volume due to pure quantum gravity corrections.
These oscillations, as we approach the classical expanding
universe phase, tend to increase their amplitude, since as we
go forward in time matter starts to dominate over gravity.
Then after a last bounce similar to the one of LQC, a super-
inflationary phase occurs and eventually a classical
Friedman Robertson Walker (FRW) universe develops.
It is worth noting that this new scenario is not postulated

at all, but it follows directly from solving some effective
equations of motion derived via a nonperturbative treatment
of the universe quantum gravitational degrees of freedom.
Hence our results provide a first realization of an emergent-
bouncing universe scenario from a full fledged quantum
gravity setting.

II. SINGULARITY RESOLUTION IN LQC

In order to understand the origin of the new physical
scenario we are going to present here, it is convenient to
sketch first how the resolution of the big bang singularity is
realised in LQC.
As briefly mentioned before, in this framework a LQG-

inspired quantization is applied on a phase space which has
already been constrained to be homogenous and isotropic.
Let us then consider a flat FRW model (we adopt units
G ¼ ℏ ¼ c ¼ 1)

ds2 ¼ N2ðtÞdt2 − a2ðtÞðdx2 þ dy2 þ dz2Þ; ð1Þ
a and N being the scale factor and the lapse function. It is
convenient to parametrize the phase-space in terms of the
following variables

b ¼ γ
_a
a

v ¼ V0

a3

2πγ
; ð2Þ

γ and V0 being respectively the Immirzi parameter and the
considered fiducial volume,1 while the only nonvanishing
Poisson brackets reads

fv; bg ¼ −2: ð3Þ

The quantization procedure of LQG is inequivalent with
respect to the Wheeler–DeWitt formulation, since one of
the two phase space coordinates, being related to con-
nection variables, cannot be promoted to a quantum
operator.2 As a consequence of this quantization scheme,
one finds that the effective classical Hamiltonian of
LQC is [14,15]

HLQC ¼ −
3v
4Δγ

sin2ðb
ffiffiffiffi
Δ

p
Þ þ P2

ϕ

4πγv
; ð4Þ

where Δ ¼ 4π
ffiffiffi
3

p
equals the minimum eigenvalue of the

area operator in LQG and Pϕ denotes the momentum of a
massless noninteracting scalar field used to model the
universe thermal bath (this is the most relevant kind of
nonexotic matter field close to the singularity).
The Hamiltonian is constrained to vanish because of

invariance under diffeomorphisms along the timelike
direction. The basic difference with the classical
Hamiltonian is due to the term sin2ðb ffiffiffiffi

Δ
p Þ, which replaces

Δb2. This replacement (holonomy correction) is a direct
consequence of the adopted polymer-like quantization
scheme [16]. Inverse volume corrections are also present,
but they are subdominant with respect to the holonomy
ones and in what follows we will neglect them.
Now the relevant physics can be conveniently conveyed

in terms of effective equations of motion, since simulations
have shown that they are able to capture all the relevant
quantum corrections [14,15]. By computing the Hamilton
equations and using the Hamiltonian constraint HLQC ¼ 0,
one gets

�
_a
a

�
2

¼ 8π

3
ρm

�
1 −

ρm
ρcr

�
; ð5Þ

�
ä
a
−

_a2

a2

�
¼ −8πρm

�
1 − 2

ρm
ρcr

�
; ð6Þ

where the energy density of the scalar field is ρm ¼
P2
ϕ=2V

2 (with V ¼ V0a3 equal to the physical volume)
and ρcr ≡ 3=ð8πγ2ΔÞ is a critical energy density.
For ρm ≪ ρcr the evolution is essentially the one dictated

by classical Friedmann equation, but for ρm ∼ ρcr a bounce
occurs and, going backward in time, the universe starts
expanding again. The resulting picture is a bouncing
universe, thus a resolution of the singularity (the equations
of motion for v and b have been solved numerically and the
result for v is shown in Fig. 1).

1Note that such fiducial volume is just an infrared regulator,
which can be safely removed in the end, since all the results can
be written in terms of physical variables b and v.

2This is due to the fact that in LQG only holonomies operators
exist and connection operators are not defined.
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III. MODIFIED EQUATIONS IN QRLG

Let us start by briefly reviewing the procedure that
leads to the effective Hamiltonian derived in [13]. This
Hamiltonian is constructed as the expectation value of the
quantum Hamiltonian proper of QRLG over homogenous
and isotropic semiclassical states and via a statistical
average over an ensemble of classically equivalent systems:
in QRLG states associated to the gravitational field are
represented by cubical graphs.
In this context semiclassical states have been constructed

in the homogeneous and isotropic case by labeling different
quantum states by a total number of cells N and by peaking
the variables of all cubical cells around the same quantum
numbers (j,θ). These quantum numbers determine the
collective phase space variables (v, b).
It is possible to verify that there exist a lot of different

microstates (N, j, θ) that realize the same macrostate (v, b).
Assuming that all the possible microstates are equiprobable
we have to take into account the weight associated to each
one on a fixed macrostate. This can be done by considering
a density matrix whose coefficients take into account the
occurrence of the various microstates through a binomial
distribution

ρv;b ¼
X
N

1

2Nmax

�
Nmax

N

�
jN; j; θihN; j; θj: ð7Þ

Considering the Gaussian approximation to the binomial
distribution and taking the expectation value of the QRLG
Hamiltonian over (7), it follows that

H∼
Z ffiffiffi

2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πNmax

p e−
ðN−Nmax=2Þ2

Nmax=2 N2=3sin2
�
v1=3b

N1=3

�
dN: ð8Þ

Then through a saddle point expansion around the
maximum of the weighting factor Nmax=2 and identifying
ð2=NmaxÞ1=3 ¼

ffiffiffiffi
Δ

p
=v1=3 we obtain the following

Hamiltonian

HQRLG ¼ −
3v
4Δγ

sin2ðb
ffiffiffiffi
Δ

p
Þ þ P2

ϕ

4πγv

−
b2Δ3=2

24πγ2
cosð2b

ffiffiffiffi
Δ

p
Þ; ð9Þ

which coincides with that of LQC, Eq. (4), up to the last
term which is the next to the leading order term of the
saddle point expansion.
In [13] it was outlined how the dynamics generated by

the Hamiltonian (9) overlaps that of LQC up to the bounce,
while here we want to extend that analysis further. Let us
then introduce the following quantities

ρg ¼ −
Δ3=2b2

9V
; ð10Þ

ρ̄cr ¼ −
1

Δ
; ð11Þ

Ωg ¼ −Δρg ¼
ρg
ρ̄cr

; ð12Þ

Ωm ¼ ρm
ρcr

: ð13Þ

The density ρg has no analogue in LQC and can be
interpreted as a negative energy density source whose
origin is purely quantum gravitational (as testified by the
dependence on the minimal area Δ). In what follows we
call it geometrical energy density, keeping in mind that it is
not really an energy density source, being proportional to
_a2. We also defined Ωg as the ratio of the geometrical
energy density to what we call critical gravitational energy
density ρ̄cr, the reason will be clear in what follows.
Similarly, we defined Ωm as the ratio of the matter energy
density to the critical energy density of LQC.
From HQRLG ¼ 0, one finds

sin2ðb
ffiffiffiffi
Δ

p
Þ ¼ ðΩm −ΩgÞ=ð1 − 2ΩgÞ; ð14Þ

and since the maximum and the minimum of the right-hand
side are for Ωm þΩg ¼ 1 and Ωm ¼ Ωg, it follows that
0 < Ωm þ Ωg ≤ 1, from which 0 < Ωm;Ωg < 1. These
conditions tell us that ρcr and ρ̄cr are upper bounds for ρ
and ρg, respectively.
The equations of motion we get from (9) read for HQRLG

_v ¼ 3v

2
ffiffiffiffi
Δ

p
γ
sinð2b

ffiffiffiffi
Δ

p
Þ
�
1þ Δ2b

9πγv
cotð2b

ffiffiffiffi
Δ

p
Þ − Δ5=2b2

9πγv

�

ð15Þ

_b ¼ −
P2
ϕ

πγv2
þ b2Δ3=2

12πγ2v
cosð2b

ffiffiffiffi
Δ

p
Þ; ð16Þ

FIG. 1. Dynamics of v in LQC: the universe experiences a
contracting phase after which undergoes to a bounce followed by
an expanding phase.
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from which the following modified Friedmann equation
can be derived

�
_a
a

�
2

¼
�
8π

3
ρm þ ρg

γ2

�
ð1 − 2ΩgÞ−1

�
1 −

Ωm − Ωg

1 − 2Ωg

�

×

�
1þ 2Ωg

b
ffiffiffiffi
Δ

p cotð2b
ffiffiffiffi
Δ

p
Þ − 2Ωg

�
2

: ð17Þ

We can start analyzing the above equation neglecting
subdominant terms in a 1=V expansion. A posteriori, we
shall show, numerically solving the Eqs. (15) and (16), that
this simplification still provides a correct intuition on the
general behavior of the scale factor. Hence, instead of (17),
let us consider

�
_a
a

�
2

¼
�
8π

3
ρmþ

ρg
γ2

�
ð1−2ΩgÞ−1

�
1−

Ωm−Ωg

1−2Ωg

�
: ð18Þ

One can immediately notice that (differently from what
happens in the case of LQC) even if ρm ¼ 0 there is a
nontrivial evolution of the scale factor, entirely due to
quantum gravitational corrections. This seems very rea-
sonable as one does not generically expect the matter field
to dominate the universe evolution close to the would be
classical big bang singularity. Let us then characterize the
stationary points of Eq. (18) by considering the two
conditions ensuring _a ¼ 0

(i) Ωm þΩg ¼ 1 corresponding to sin2ðb ffiffiffiffi
Δ

p Þ ¼ 1 and
qualitatively of the same kind of bouncing point
found in LQC,

(ii) Ωm ¼ Ωg corresponding to sin2ðb
ffiffiffiffi
Δ

p Þ ¼ 0which is
a novel possibility allowed for by the last term
in Eq. (9).

The presence of the second type of stationary point with
respect to LQC suggests that the prebounce dynamics could
be different (if these other stationary points are not
dynamically excluded).
The other equation we get from (15) and (16) reads

�
ä
a
−

_a2

a2

�
¼ −

�
3

Δγ2
sin2ðb

ffiffiffiffi
Δ

p
Þ þ 4πρm

�
·

× ð1 − 2sin2ðb
ffiffiffiffi
Δ

p
ÞÞ; ð19Þ

from which using (14) it follows that Ωm þΩg ¼ 1
corresponds to a local minimum of the universe volume,
while Ωm ¼ Ωg is a local maximum.

IV. NUMERICAL ANALYSIS

We now present the solution of the full equations (15)
and (16), obtained through a numerical analysis performed
with Mathlab and checking the validity of the solution
through the Hamiltonian constraint HQRLG ¼ 0.

The numerical investigation has been carried out taking
as initial condition a classical late FRW universe and then
evolving such universe backward in time. The result is
plotted in Fig. 2. The initial data of the presented simulation
are v ¼ 104, b ¼ 0.005 and Pϕ ¼ 154, no significant
qualitative modification occurs taking different values
corresponding to another classic universe.
A careful reader might have noticed that in Fig. 2 the plot

of v has been truncated in the far past. Indeed, going
backward in time the numerical simulation encounters a
violation of the Hamiltonian constraint, and the saddle
point expansion which leads to (9) cannot be considered
reliable any more. A more complete analysis of the full
Hamiltonian constraints can indeed be carried out, and
preliminary investigations seem to confirm that the scenario
here presented can be extended without any qualitative
change at arbitrary earlier times [17].
The behavior of the universe volume after the bounce

confirms the results presented in [13]: it is qualitatively the
same as in LQC up to the bounce, which corresponds to the
condition Ωm þ Ωg ≈ 1 and to a global minimum.
However, the most interesting phase is the prebouncing

phase shown in Fig. 2. Before the bounce, going backward
in time, the universe experiences a metastable quantum
phase in which the gravitational energy density and the
matter energy density interact in such a way that the volume
of the universe oscillate between the maximum condition
Ωm ≈Ωg and the minimum condition Ωm þ Ωg ≈ 1.
This signifies that, evolving backward in time, the

gravitational energy density, Eq. (10), starts to be non-
negligible and strongly modifies the time symmetric LQC
bounce scenario. Indeed, being able to compensate the
matter contribution, ρg allows the volume of the universe in
the prebounce phase to be bounded.
Another interesting feature that emerges from Fig. 2 is

the prebounce oscillatory behavior: going forward in time

-40 -35 -30 -25 -20 -15 -10 -5 0
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2000

4000
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v

FIG. 2. Dynamics of v in QRLG: Our classical universe
emerges from a metastable quantum oscillating phase in which
the volume of the universe is bounded and can never reach
classical values.
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the volume oscillations increase their amplitude, until the
gravitational energy density is not able to compensate
anymore the matter contribution and eventually the uni-
verse starts to expand approaching the classical Friedmann
dynamics.
In summary, the final picture is that of a modified

emergent universe scenario, where from an initial quantum
phase the classical spacetime emerges, and the LQC
bounce point, can be seen as the last minimum after which
matter starts to dominates over gravity. We can name this
type of evolution an emergent-bouncing universe scenario.

V. DISCUSSION

In this section, we discuss the physical origin of the
prosed scenario. The novel dynamical feature with respect
to LQC is provided by the last term in (9). This term
emerges as soon as the graph structure on which quantum
states are based (and in particular the total number of
nodes) is allowed to vary, according to the prescription
discussed in [13].
The summation over different graphs is a natural tool in

LQG and in this work we deduced its implications in a
cosmological setting. It is evident that the most relevant of
such implications is the explicit break of the scale invari-
ance of the classical theory.
Indeed considering that homogeneity and isotropy are

global properties of FRW cosmological spacetimes, the set
of global variables ðv; bÞ were introduced to represent a
collective homogeneous and isotropic geometry on a
quantum level. To do this, a global quantum number which
characterize the whole graph was needed namely, the total
number of nodes N. Hence it is quite natural to expect that
the fluctuations of this quantum number lead to some
global corrections, which in QRLG scale as vpl=v.
These corrections are different in nature from the local

ones that lead to the bounce, indeed they can be considered
a direct consequence of the lattice description of cosmo-
logical spacetimes in QRLG. It is worth noticing that this
kind of terms, even if they are of a different physical nature,
are also present in LQC, however they can be considered
subleading corrections.
The appearance of this kind of corrections is considered

problematic by some authors [18], essentially because it
implies that the dynamics depends on how big the
considered spatial region is. This is not surprising in a
quantum gravity perspective, like QRLG and LQG, in
which the atoms of space-time have fixed physical volume
and, their number depends on the size of the considered
spatial region, so that the dynamics is affected too. In other
words, we are just saying that from a QG perspective it is
quite reasonable that two Universes, one made by ten and
the other by hundred Planckian cells, experience different
dynamical behaviors.
Finally, it is also worth mentioning that the break of scale

invariance is not at odds with the assumption of local

homogeneity: homogeneity is preserved, in the form that all
points in space “see” the same cubic lattice.3

VI. CONCLUSIONS

We provided a new scenario for the resolution of the
initial cosmological singularity, which mixes the bouncing
and emergent scenarios, in a sense that the classical
spacetime emerges from a pure quantum phase. The
universe starts from an early oscillating phase, but as matter
starts to dominate over gravity, it undergoes to a final
bounce and a rapidly expanding phase which approaches a
classical FRW at late times. Quantum gravity corrections,
computed in the framework of QRLG, are responsible for
this peculiar behavior: before the bounce they tend to
compensate the matter energy contribution, bounding the
volume of the universe to different local maxima that do not
allow it to reach a classical regime.
Let us stress that our derivation can be seen as a technical

refinement on previous results obtained within loop quan-
tum cosmology (which seemed instead to suggest a time
symmetric bounce) and as such it strongly suggests that
once properly taking into account pure quantum gravita-
tional (matter content independent) effects, an emergent
universe scenarios could be a quite robust prediction within
canonical quantum gravity.
Remarkably, the “emergent-bouncing universe” scenario

here derived, provides a completely new framework to
address the problems of standard cosmology. Since during
the oscillating phase approaching the maxima and minima
for the volume, the Hubble radius is infinite and the
physical wavelength of fluctuations is approximately con-
stant. This solves the horizon problem.
In this respect, it would be interesting to reconsider the

so-called entropy paradox and the generation of scale
invariant perturbations within this framework as this might
provide a testable alternative to inflation (see, e.g. the
relevant discussion in [19]). Alternatively, it would be
worth investigating the modifications to the CMB spectrum
predicted in this scenario. For example, by introducing an
inflaton field realizing inflation after the end of the
bouncing phase, similarly to what has been done in
LQC [20].
Finally, it is worth mentioning that it has been claimed

the quantum noise recorded by detectors at late time in the
universe could be affected by the evolution of the latter at
early times so that in principle experiments of this kind
could be used to distinguish between big bang and
bouncing scenarios [21]. It would then be interesting to
investigate the outcome of this sort of gedankenexperiment

3This can be formally realized by taking semiclassical states
for the geometry having some homogeneous quantum numbers
and based at equivalence classes of diffeomorphism related
graphs, such that the nodes of the graph are indeed abstract
and not physical points.
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in the case of the hybrid emergent universe scenario here
proposed (albeit one could suspect that the very similar
behavior around the bounce predicted by LQG and QRLG
could leave a degeneracy between these models).
All of the above analyses could tell us how to exper-

imentally distinguish the proposed model with respect to
other bouncing and emergent scenarios. We hope that the
present work will stimulate such exciting developments and

further investigations which will provide tests for assessing
the phenomenological viability of this new scenario.
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