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We propose a new holographic dual of conformal field theory defined on a manifold with boundaries,
i.e., boundary conformal field theory (BCFT). Our proposal can apply to general boundaries and agrees
with Takayanagi [Phys. Rev. Lett. 107, 101602 (2011)] for the special case of a disk and half-plane. Using
the new proposal of AdS=BCFT, we successfully obtain the expected boundary Weyl anomaly, and the
obtained boundary central charges naturally satisfy a c-like theorem holographically. We also investigate
the holographic entanglement entropy of BCFT and find that the minimal surface must be normal to the
bulk spacetime boundaries when they intersect. Interestingly, the entanglement entropy depends on the
boundary conditions of BCFTand the distance to the boundary. The entanglement wedge has an interesting
phase transition that is important for the self-consistency of AdS=BCFT.
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I. INTRODUCTION

Conformal field theory (CFT) and boundary conformal
field theory (BCFT) [1] are crucial to the description of
critical phenomena and quantum phase transitions in many-
body condensed matter systems and quantum field theory,
and are also fundamental building blocks in string theory.
The AdS=CFT correspondence [2,3] is a concrete realiza-
tion of holography. The duality has not only opened the
door to previously intractable strongly coupled nonpertur-
bative systems in quantum field theories (QFTs), but has
also offered many useful insights into the fundamental
properties of quantum gravity. In this regard, it is interest-
ing to extend the AdS=CFT correspondence to BCFT in
order to get a new handle on tackling some of the difficult
dynamical problems in BCFT. The presence of a boundary
in the QFTwill also offer new twists in the realization of the
AdS=CFT correspondence, and should lead to a deeper
understanding of the holographic principle.
Consider a BCFT defined on a manifold M with a

boundary P. Takayanagi [4] proposed to extend the
d-dimensional manifold M to a (dþ 1)–dimensional
asymptotically AdS space N so that ∂N ¼ M∪Q, where
Q is a d-dimensional manifold which satisfies ∂Q ¼
∂M ¼ P. See Fig. 1 for an example. The gravitational
action for a holographic BCFT is [4,5]

I ¼
Z
N

ffiffiffiffi
G

p
ðR − 2ΛÞ þ 2

Z
M

ffiffiffi
g

p
K þ 2

Z
Q

ffiffiffi
h

p
ðK − TÞ

þ 2

Z
P

ffiffiffi
σ

p
θ; ð1Þ

where θ ¼ arccosðnM · nQÞ is the supplementary angle
between the boundaries M and Q, and is needed for a
well-defined variational principle for the joint P [6]. We
have taken 16πGN ¼ 1. Note that here we have allowed in

the action a constant term T on Q. T can be regarded as the
holographic dual of boundary conditions of BCFT since it
affects the boundary entropy [and also the boundary central
charges, see Eqs. (17) and (18) below], which is closely
related to the boundary conditions (BCs) [4,5].
A central issue in the construction of the AdS=BCFT is

the determination of the location ofQ in the bulk. Imposing
a Dirichlet BC on M and P, δgijjM ¼ δσabjP ¼ 0, we get
the variation of the on-shell action

δI ¼ −
Z
Q

ffiffiffi
h

p
ðKαβ − ðK − TÞhαβÞδhαβ: ð2Þ

Interestingly, Takayanagi [4] proposed to impose a
Neumann BC on Q,

Kαβ − ðK − TÞhαβ ¼ 0; ð3Þ

to fix the position of Q. For more general boundary
conditions that break boundary conformal invariance,
Takayanagi [4] proposed to add matter fields on Q and
replace Eq. (3) by

N

M

Q

P

z

FIG. 1. BCFT on M and its dual N.
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Kαβ − Khαβ ¼
1

2
TQ
αβ; ð4Þ

where we have included 2Thαβ in the matter stress tensor

TQ
αβ. For a geometrical shape of M with high symmetry,

such as the case of a disk or half-plane, Eq. (3) fixes the
location of Q and produces many elegant results for BCFT
[4,5,7]. However since Q is of codimension 1 and its shape
is determined by a single embedding function, Eq. (3) gives
too many constraints and there is no solution in a given
metric such as AdS generally. On the other hand, of course,
there should exist a well-defined BCFT with general
boundaries. As motivated in [4,5], Eqs. (3) and (4) are
natural from the viewpoint of a braneworld scenario.
However, from a practical point of view, it is not entirely
satisfactory, because one has a large freedom to choose the
matter fields as long as they satisfy various energy con-
ditions. As a result, it seems one can put the boundary Q
at almost any position one likes. In addition, it is not
appealing that the holographic dual depends on the details
of matter onQ. In this paper, we propose a new holographic
dual of BCFT with Q determined by a new condition (7).
This condition is consistent and provides a unified treat-
ment for general shapes of P. Besides, as we will show
below, it yields the expected boundary contributions to the
Weyl anomaly.

II. NEW PROPOSAL FOR HOLOGRAPHIC BCFT

Instead of imposing the Neumann BC (3), we propose to
impose on Q the mixed BCs Πα0β0

−αβδhα0β0 ¼ 0 and

ðKαβ − ðK − TÞhαβÞΠþαβ
α0β0 ¼ 0: ð5Þ

Here Π� are projection operators satisfying Πþαβ
α0β0 þ

Π−αβ
α0β0 ¼ δα

0
α δ

β0
β and Π�αβ

α0β0Π�α0β0
α1β1 ¼ Π�αβ

α1β1 . Since
we could impose at most one condition to fix the location of
the codimension-1 surface Q, we require Πþ to be of the
form Πþαβ

α0β0 ¼ AαβBα0β0 . ΠþΠþ ¼ Πþ then implies
trABT ¼ 1. The mixed boundary condition (5) becomes

ðKαβ − ðK − TÞhαβÞAαβ ¼ 0; ð6Þ

where Aαβ are to be determined. It is natural to require that
Eq. (6) be linear in K so that it is a second-order differential
equation for the embedding. In this work we propose the
choice Aαβ ¼ hαβ, and the condition for Q becomes the
traceless condition

TBYα
α
¼ 2ð1 − dÞK þ 2dT ¼ 0; ð7Þ

where TBYαβ ¼ 2Kαβ − 2ðK − TÞhαβ is the Brown-York
stress tensor on Q. In general, it could also depend on
the intrinsic curvatures which we will treat in [8].

The condition (7) is consistent and provides a unified
treatment for general shapes of P. Besides, as we will show
below, it yields the expected boundary contributions to
the Weyl anomaly. We will also show below that there are
problems with the other choices such as

Aαβ ¼ λ1hαβ þ λ2Kαβ þ λ3Rαβ þ � � � ; λ1; λ2 ≠ 0. ð8Þ

A few remarks on Eq. (7) are in order. (i) We note that the
condition (4) is similar in form to the junction condition for
a thin shell with spacetime on both sides [6]. However, here
Q is the boundary of spacetime and not a thin shell, so there
is no need to consider the junction condition. (ii) For the
same reason, it is expected that Q has no backreaction on
the geometry, just as for the boundary M. (iii) Equation (7)
implies that Q is a constant mean curvature surface, which
is, just as is the minimal surface, of great interest in both
mathematics and physics. (iv) Equation (7) reduces to the
proposal by [4] for a disk and half-plane, and it can
reproduce all the results in [4,5,7]. (v) Equation (7) is a
purely geometric equation and has solutions for arbitrary
shapes of boundaries and arbitrary bulk metrics. (vi) In
general, there could be more than one self-consistent
boundary condition for a theory [9], so the proposal of
[4] and our proposal have, in principle, no contradiction.
Very importantly, our proposal gives a nontrivial boundary
Weyl anomaly, which solves the difficulty met in [4,5].
Let us recall that in the presence of a boundary, the Weyl

anomaly of CFT generally picks up a boundary contribu-
tion hTa

aiP in addition to the usual bulk term hTi
iiM, i.e.,

hTi
ii ¼ hTi

iiM þ δðx⊥ÞhTa
aiP, where δðx⊥Þ is a delta func-

tion with support on the boundary P. Our proposal yields
the expected boundaryWeyl anomaly for 3D and 4D BCFTs
[10–12],

hTa
aiP ¼ c1Rþ c2Trk̄2; d ¼ 3; ð9Þ

hTa
aiP ¼ a

16π2
Ebdy
4 þ b1Trk̄3 þ b2Cac

bck̄ba; d ¼ 4;

ð10Þ

where c1, c2, b1, b2 are boundary central charges, and
a ¼ 2π2 is the bulk central charge for 4D CFTs dual to
Einstein gravity. Here R and k̄ab are the intrinsic curvature
and the traceless part of the extrinsic curvature of P, Cabcd
is the pullback of the Weyl tensor of M to P (it is Cac

bc ¼
−Can

bn), and

Ebdy
4 ¼4

�
2TrðkRÞ−kRþ2

3
Trk3−kTrk2þ1

3
k3
�

ð11Þ

is the boundary term of the Euler density E4 ¼
RijklRijkl − 4RijRij þ R2. Ebdy

4 (11) is needed in order to
preserve the topological invariance of E4 on the manifold
with boundaries. Since Q is not a minimal surface in our
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case, our results [(17) and (18)] are nontrivial generalizations
of the Graham-Witten anomaly [13] for the submanifold.

III. HOLOGRAPHIC BOUNDARY
WEYL ANOMALY

A. Action method

One way to derive the Weyl anomaly is to obtain it from
the logarithmic divergent terms of the gravitational action
[14]. For our purpose, we focus below only on the
boundary contributions to the Weyl anomaly.
Consider the asymptotically AdS metric in the

Fefferman-Graham gauge,

ds2 ¼ dz2 þ gijdxidxj

z2
; ð12Þ

where gij ¼ gð0Þij þ z2gð1Þij þ � � �, gð0Þij is the metric of BCFT

on M, and gð1Þij can be fixed by the Penrose-Brown-
Henneaux (PBH) transformation [15]

gð1Þij ¼ −
1

d − 2

�
Rð0Þ
ij −

Rð0Þ

2ðd − 1Þ g
ð0Þ
ij

�
: ð13Þ

Note that the curvatures in our notation differ from those of
[15] by a minus sign. Without loss of generality, we choose

the Gauss normal coordinates for the metric gð0Þij ,

ds20 ¼ dx2 þ ðσab þ 2xkab þ x2qab þ � � �Þdyadyb; ð14Þ

where P is located at x ¼ 0 and ya are the coordinates along
P. The bulk boundary Q is given by x ¼ Xðz; yÞ.
Expanding it in z,

x ¼ a1zþ a2z2 þ � � � þ ðbdþ1 ln zþ adþ1Þzdþ1 þ � � � ;
ð15Þ

where the coefficients a and b are functions of y.
Substituting Eqs. (12)–(15) into the boundary condition
Eq. (7), we obtain that

T ¼ ðd − 1Þ tanh ρ; a1 ¼ sinh ρ;

a2 ¼ −
cosh2ρTrk
2ðd − 1Þ ; ð16Þ

where we have reparametrized the constant T. It is worth
noting that the other choices (8) of Aαβ gives the same
T; a1; a2 but different a3; a4;…. In other words, the results
(16) are independent of the choices of Aαβ in the boundary
condition (6) [8]. In fact since Kα

β ¼ a1ffiffiffiffiffiffiffiffi
1þa2

1

p δαβ þOðzÞ, one
obtains from (6) that ð1 − dÞ a1ffiffiffiffiffiffiffiffi

1þa2
1

p þ T ¼ 0 as long as

Aα
α ≠ 0. This gives the first two terms in Eq. (16). As for the

coefficient a2, according to [16], the embedding function
Eq. (15) is highly constrained by the asymptotic symmetry
of AdS, and it can be fixed by PBH transformations up to
some conformal tensors. Adapting the method of [16] to the
present case, one can indeed prove the universality of a2
in the Gauss normal coordinates [8]. In this way, we obtain

a2 ¼ − cosh2ρTrk
2ðd−1Þ , which agrees with the result obtained in

[16] for the special case of aodd ¼ ρ ¼ 0.
Now we are ready to derive the boundary Weyl anomaly.

For simplicity, we focus on the case of 3D and 4D BCFTs.
Substituting Eqs. (12)–(16) into the action (1) and selecting
the logarithmic divergent terms after the integral along x
and z, we can obtain the boundary Weyl anomaly. We note
that IM and IP do not contribute to the logarithmic
divergent term in the action since they have at most
singularities in powers of z−1 but there is no integration
along z; thus, there is no way for them to produce log z
terms. We also note that only a2 appears in the final results.
The terms including a3 and a4 automatically cancel each
other out. This is also the case for the holographic Weyl
anomaly and universal terms of entanglement entropy for
4D and 6DCFTs [17,18]. After some calculations, we obtain
the boundary Weyl anomaly for 3D and 4D BCFTs as

hTa
aiP ¼ sinh ρR − sinh ρTrk̄2; ð17Þ

hTa
aiP ¼ 1

8
Ebdy
4 þ

�
coshð2ρÞ − 1

3

�
Trk̄3

− coshð2ρÞCac
bck̄ba; ð18Þ

which takes the expected form Eqs. (9) and (10). It is
remarkable that the coefficient of Ebdy

4 takes the correct value
to preserve the topological invariance of E4. This is a
nontrivial check of our results. In addition, the boundary
charges c1 in Eq. (9) is expected to satisfy a c-like theorem
[5,19,20]. As was shown in [4,7], the null-energy condition
on Q implies ρ decreases along renormalization group (RG)
flow; this is also true for us. As a result, Eq. (17) indeed obey
the c theorem for boundary charges, which is another
support for our results. Most importantly, our confidence
is based on the above universal derivations that there is no
need to make any assumption about Aαβ in the boundary
condition (6).
We remark that, based on the results of free CFTs [11]

and the variational principle, it has been suggested that the
coefficient of Ck in Eq. (18) is universal for all 4D BCFTs
[12]. Here we provide evidence, based on holography,
against this suggestion: our results agree with the sugges-
tion of [12] for the trivial case ρ ¼ 0, though they disagr
ee generally. As argued in [20], the proposal of [12] is
suspicious since it means that there could be no indepen-
dent boundary central charge related to the Weyl invariantffiffiffi
σ

p
Cac

bck̄ba. However, in general, every Weyl invariant
should correspond to an independent central charge, such
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as the case for 2D, 4D, and 6D CFTs. In addition, we notice
that the law obeyed by free CFTs usually does not apply to
strongly coupled CFTs; see [21–24] for examples.
In the above, we have proven that, by using the method

of Ref. [14], all the possible boundaries Q allowed by
Eq. (6) produce the same boundary Weyl anomaly for 3D
and 4D BCFTs. Thus, this method cannot distinguish the
proposal (7) from the other choices (8).

B. Stress-tensor method

To resolve the above ambiguity, let us use the holographic
stress tensor [25] to study the boundary Weyl anomaly,
as this method needs the information of ða3; a4;…Þ and,
hence, can distinguish the different choices of the BC (6).
For simplicity, we focus on the case of 3D BCFT.
The first step of the method [25] is to find a finite action

by adding suitable covariant counterterms. We obtain

Iren ¼
Z
N

ffiffiffiffi
G

p
ðR − 2ΛÞ þ 2

Z
M

ffiffiffi
g

p �
K − 2 −

1

2
RM

�

þ 2

Z
Q

ffiffiffi
h

p
ðK − TÞ þ 2

Z
P

ffiffiffi
σ

p ðθ − θ0 − KMÞ; ð19Þ

where we have included in M the usual counterterms in
holographic renormalization [25,26], θ0 ¼ θðz ¼ 0Þ is a
constant [5], and KM, the extrinsic curvature of P, is the
Gibbons-Hawking term for RM on M. Notice that there is
no freedom to add other counterterms, except for some
finite terms that are irrelevant to the Weyl anomaly. For
example, we may add terms like

ffiffiffi
σ

p
R and

ffiffiffi
σ

p
K2

M to IP.
However, such terms are invariant under constant Weyl
transformations, so they do not contribute to the boundary
Weyl anomaly. In conclusion, the renormalized action (19)
is unique up to some irrelevant finite counterterms. From
Eq. (19), it is straightforward to derive the Brown-York
stress tensor on P,

Bab ¼ 2ðKMab − KMσabÞ þ 2ðθ − θ0Þσab: ð20Þ

In the spirit of [5,25,26], the boundary Weyl anomaly is
given by

hTa
aiP ¼ lim

z→0

Ba
a

z2
¼ lim

z→0

4ðθ − θ0Þ − 2KM

z2
; ð21Þ

where θ ¼ cos−1 x0ffiffiffiffiffiffiffiffiffiffiffi
gxxþx02

p þOðz3Þ, θ0 ¼ cos−1ðtanh ρÞ, and
KM ¼ z ∂xð ffiffi

g
p ffiffiffiffiffi

gxx
p Þffiffi
g

p þOðz3Þ. Substituting Eqs. (12)–(16)
into Eq. (21), we get

hTa
aiP ¼ −

sech2ρ
4

½48a3 þ sinh 3ρð2q − 3k2 − 4Trk̄2Þ
þ sinh ρð2Rþ 6q − 6k2 − 6Trk̄2Þ�; ð22Þ

where q is the trace of qab. This gives the correct boundary
Weyl anomaly (17) if and only if

a3 ¼
1

48
sinh ρ½coshð2ρÞð−2R − 4qþ k2 þ 10Trk2Þ

− 4R − 8qþ 3k2 þ 12Trk2�; ð23Þ

which is just the solution to our proposed boundary
condition (7). One can check that the other choices (8)
give different a3 and, thus, can be excluded. Following the
same approach, we can also derive the boundary Weyl
anomaly for 4D BCFT [8], which agrees with the correct
result (18) iff a3 and a4 are given by the solutions to Eq. (7).
This is very strong support for the boundary condition (7)
we proposed.

IV. HOLOGRAPHIC ENTANGLEMENT ENTROPY

Following [27,28], it is not difficult to derive the holo-
graphic entanglement entropy for BCFT; this is also given
by the area of minimal surface

SA ¼ AreaðγAÞ
4GN

; ð24Þ

where A is a subsystem on M and γA denotes the minimal
surface that ends on ∂A. What is new for BCFT is that the
minimal surface could also end on the bulk boundary Q,
when A is close to the boundary P. It turns out that γA is
always orthogonal to Q when they intersect. See Fig. 1 for
an example.
One way to see the orthogonality condition is to keep the

endpoints of extreme surfaces γ0A freely onQ, and select the
one with minimal area as γA. It follows immediately that γA
is orthogonal to the boundary Q when they intersect,

naγA · nQjγA∩Q ¼ 0: ð25Þ

Here nQ is the normal vector of Q and naγA are the two
independent normal vectors of γA. Another way to see the
condition (25) is that, otherwise there will arise problems in
the holographic derivations of entanglement entropy when
using the replica trick. In the replica method, one considers
the n-fold cover Mn ofM and then extends it to the bulk as
Nn. It is important that Nn is a smooth bulk solution. As a
result, the Einstein equation should be smooth on surface
γA. Now the metric near γA is given by [28]

ds2 ¼ 1

r2ε
ðdr2 þ r2dτ2Þ þ ðgij þ 2Kaijxa þOðr2ÞÞdyidyj;

where ε≡ 1 − 1
n, r is coordinate normal to the surface,

τ ∼ τ þ 2πn is the Euclidean time, yi are coordinates along
the surface, xa ¼ ðr cos τ; r sin τÞ, and Kaij are the two
extrinsic curvature tensors. Going to complex coordinates
z ¼ reiτ, the zz component of Einstein equations
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Rzz ¼ −Kz
ε

z
þ � � � ð26Þ

is divergent unless the trace of extrinsic curvatures vanish,
Ka ¼ 0. This gives the condition for a minimal surface
[28]. Labeling the boundary Q by fðz; z̄; yÞ ¼ 0, we obtain
the extrinsic curvature of Q as

K ∼ ε∂zf∂ z̄f

�∂zf
z̄

þ ∂ z̄f
z

�
þ � � � : ð27Þ

Thus, the boundary condition (7) is smooth only if
∂zfjγA∩Q ¼ ∂ z̄fjγA∩Q ¼ 0, which is exactly the orthogonal
condition (25). As a summary, the holographic entanglement
entropy for BCFT is given by the Ryu-Takayanagi (RT)
formula (24) together with the orthogonal condition (25).

V. BOUNDARY EFFECTS ON ENTANGLEMENT

Let us take a simple example to illustrate the boundary
effects on entanglement entropy. Consider the Poincaré
metric of AdS3, ds2 ¼ ðdz2 þ dx2 − dt2Þ=z2, where P is at
x ¼ 0. For simplicity, in what follows we focus on T ¼
tanh ρ ≥ 0. Solving Eq. (7) for Q, we get x ¼ sinhðρÞz.
We choose A as an interval d ≤ x ≤ dþ 2l. Because of
the presence of a boundary, there are now two kinds of
minimal surfaces: one ends onQ and the other one does not.
Determining which one has the smaller area depends on d.
From Eqs. (24) and (25), we obtain

SA ¼
8<
:

1
2GN

logð2lϵ Þ; d ≥ dc;

ρ
2GN

þ 1
4GN

log
�
4dðdþ2lÞ

ϵ2

�
; d ≤ dc;

ð28Þ

where dc ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ρ þ 1

p
− l is the critical distance. It is

remarkable that entanglement entropy (28) depends on the
distance d and the boundary condition (ρ) when it is close
enough to the boundary. This behavior is expected from the
viewpoint of BCFT, because correlation functions in BCFT
generally depend on the distance to the boundary [29].
To extract the effects of the boundary on the entangle-

ment entropy, let us define the following quantity when A
does not intersect the boundary P:

IA ≡ SCFTA − SBCFTA : ð29Þ

The complementary situation, where the entangling surface
intersects the boundary P, is discussed in [4]. Here, in
Eq. (29) SCFTA is the entanglement entropy when the
boundary disappears or is at infinity. In holographic
language, it is given by the area of minimal surface that
does not end on Q. Thus, SCFTA is equal to or bigger than
SBCFTA and IA is always non-negative. It is expected that
the boundary does not affect the divergent parts of the
entanglement entropy when A∩P ¼ 0, so that all the

divergences cancel in Eq. (29). As a result, IA is not
only non-negative but also finite. Physically, IA measures
the decrease in the entanglement of the subsystem A with
the environment when a boundary is introduced. For the
example discussed above, we find

IA ¼
(
0; d ≥ dc
1
4G log

�
l2

dðdþ2lÞ
�
− ρ

2G ; 0 < d < dc;
ð30Þ

which is indeed both non-negative and finite. Note that IA
depends both on the distance from the boundary and the
boundary condition when d < dc, but becomes indepen-
dent of them when d ≥ dc. This represents some kind of
phase transition. It is also intriguing to note that, in this
simple example, IA is just one half of the mutual informa-
tion between A and its mirror image A0, so it must be non-
negative and finite. See Fig. 2 for an example.

VI. ENTANGLEMENT WEDGE

According to [30,31], a subregion A on the AdS boundary
is dual to an entanglement wedge EA in the bulk where all the
bulk operators within EA can be reconstructed by using only
the operators of A. The entanglement wedge is defined as the
bulk domain of dependence of any achronal bulk surface
between the minimal surface γA and the subsystem A.
It is interesting to study the entanglement wedge in

AdS=BCFT. For simplicity, let us focus on the static
spacetime and constant time slice. A key observation is
that the entanglement wedge exhibits a phase transition and
becomes much larger than that in AdS=CFT, when A gets
bigger and approaches the boundary (see Fig. 3). This
phase transition is important for the self-consistency of
holographic BCFT. If there is no phase transition, then EA is
always given by the first kind (as shown in left-hand side of
Fig. 3) and there will be a large space left outside even
when A fills up the whole M and P. This would mean that
there are operators in the bulk that cannot be reconstructed
from the operators on the boundary. Thanks to the phase

FIG. 2. Subsystem A and its mirror image A0.
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transition, EA for large A is given by the second kind of
wedge (right-hand side of Fig. 3). As a result, all the bulk
operators can be reconstructed by using the boundary
operators.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have proposed a new holographic dual
of BCFT that can accommodate all possible shapes of the
boundary P in a unified prescription. The key idea is to
impose the mixed boundary condition (7) so that there is
only one constraint for the codimension-1 boundary Q. In
general there could be more than one self-consistent
boundary condition for a theory [9], so our proposal and
that of [4] do not, in principle, contradict each other.
However, the proposal of [4] is too restrictive to include the
general BCFT. The main advantage of our proposal is that
we can easily deal with all shapes of the boundary P. It is
appealing that the bulk boundary Q is given by a constant

mean curvature surface, which is a natural generalization of
the minimal surface.
Applying the new AdS=BCFT, we obtain the expected

boundaryWeyl anomaly, and the obtained boundary central
charges naturally satisfy a c-like theorem holographically.
As a by-product, we give a holographic argument against
the proposal of [12] and clarify the validity of the SRE ¼
SEE conjecture [32], which is based on [12] and depends
sensitively on the boundary conditions of nonfree BCFTs.
In addition, we find the holographic entanglement entropy
is given by the RT formula together with the condition that
the minimal surface must be orthogonal to Q if they
intersect. The presence of boundaries leads to many
interesting effects, e.g., the phase transition of the entan-
glement wedge. Of course, many things are left to be
explored, for instance, the edge modes [33,34], the shape
dependence of entanglement [35,36], the applications to
condensed matter, and the relation between BCFT and
quantum information [37]. Finally, it is straightforward to
generalize our work to Lovelock gravity, higher dimen-
sions, and general boundary conditions.
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