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We show that the dimension of spacetime becomes complex-valued when its short-scale geometry is
invariant under a discrete scaling symmetry. This characteristic can generically arise in quantum gravities,
for instance, in those based on combinatorial or multifractal structures or as the partial breaking of
continuous dilation symmetry in any conformal-invariant theory. With its infinite scale hierarchy, discrete
scale invariance overlaps with the traditional separation between ultraviolet and infrared physics and it can
leave an all-range observable imprint, such as a pattern of log oscillations and sharp features in the cosmic
microwave background primordial power spectrum.
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I. INTRODUCTION

Detecting a signature of quantum gravity is perhaps one
of the most exciting things that could happen in the physics
of the 21st century. The quest for a theory beyond general
relativity and the Standard Model of particles, unifying
gravitation and quantum mechanics, has been going on for
decades and it is not planning to stop anytime soon. This
search does not lack diversity: there are about a dozen
major scenarios trying to quantize gravity independently
[1–4] and, in some cases, also to unify all fundamental
forces of Nature. Names such as string theory, group field
theory, asymptotic safety, loop quantum gravity, causal
dynamical triangulations, noncommutative spacetimes, and
several others are familiar to the expert, but they may evoke
only vague images to those not working in the field. Part of
the reason is that we have no empirical evidence in favor of
any of these proposals, either because the theory has not
been developed to the point of producing robust observable
predictions, or effects are negligible and undetectable,
or, finally, simply because we have not reached enough
experimental sensitivity.
Having more than one candidate theory creates the added

problem of fragmentation of efforts, but there is regularity
in this heterogeneity. In all known cases, the dimension
of spacetime changes with the probed scale (dimensional
flow) [5–8]. The energy E� at which the dimension differs
considerably from the observed value D ¼ 4 is typically
too large (of order of the grand-unification or Planck scale,
E� ≳ 1015–1019 GeV) to be probed directly, which means
that running dimensions may remain an academic curiosity,
a beautiful universal feature of quantum gravity with no
applications. But is that so? In this paper, we argue for a
negative answer with important phenomenological conse-
quences. We show that, in theories where the short-scale
spacetime geometry has discrete symmetries in the ultra-
violet (UV), discreteness can originate a long-range

modulation of the spacetime geometry in the form of
logarithmic oscillations. These ripples extend at observable
scales much larger than the Planck length lPl. This
phenomenon is associated with the arising of a complex-
valued dimension, a concept that, at first, might sound very
unphysical even to the most liberal theoretician. However,
we will see that complex dimensions, an old acquaintance
of fractal geometry [9–16], are nothing but the frequencies
nω of the long-rage modulation generated by UV discrete-
ness, which could be observed directly in the sky as a
pattern of sharp spikes in the cosmic microwave back-
ground (CMB) spectrum. We will discuss this general
quantum-gravity prediction in the special case of multi-
fractional theories, improving on very preliminary (single
harmonic, no infinite hierarchy) results [8,17].

II. DISCRETE SCALE INVARIANCE (DSI)
AND LOG OSCILLATIONS

To begin with, we describe how a long-range modulation
arises from a discrete symmetry and how it relates to
dimensional flow in quantum gravity. This section is more
technical than the rest, but not overly so and the payback in
terms of physical insight is worth the effort. Let us derive
the general form of this modulation from a scaling argu-
ment well known in critical systems [18] and fractal
geometry [11], but not employed so far in the literature
of quantum gravity (but see [19]). Consider the half line
z ≥ 0. Scale invariance, also known as self-similarity, is the
symmetry of a function fðzÞ under a coordinate arbitrary
rescaling, fðλzÞ ¼ cfðzÞ for any λ, where c is a constant.
The solution of this equation is a power law fðzÞ ∝ zα, so
that c ¼ λα. Critical systems usually have scale-invariant
properties governed by power laws, near the critical point
of a continuous phase transition; then, α is called a critical
exponent. On the other hand, f is invariant under a discrete
scaling symmetry if

fðλωzÞ ¼ λαω½fðzÞ − gðzÞ� ð1Þ*calcagni@iem.cfmac.csic.es
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for some fixed λω and α, where gðzÞ is a regular function
analytic at all points z ≥ 0. The ordinary continuous scaling
symmetry corresponds to an arbitrary dilation factor λ.
Focusing our attention on the nonanalytic behavior f − g
close to the “critical” point z ¼ 0, we can ignore g as a first
approximation. In quantum gravity, this would correspond
to consider the UV behavior of f at scales z ¼ l=l� ≪ 1,
where l� is a reference scale separating the UV from the
infrared (IR) and l is the probed length. The solution of (1)
with gðzÞ ¼ 0 is

fðzÞ ¼ zαFωðzÞ; FωðλωzÞ ¼ FωðzÞ: ð2Þ

Rewriting FωðzÞ ¼ Gðln z= ln λωÞ, the scale invariance of
FωðzÞ translates into a logarithmic periodicity of G with
period 1 [9–14].
Restoring the regular part g ≠ 0, the general solution

of (1) is the Weierstrass-type function

fðzÞ ¼ gðzÞ þ
Xþ∞

n¼1

λ−αnω gðλnωzÞ: ð3Þ

For a certain range of λω and α, f is nowhere differentiable;
g ¼ cos is the original case considered by Weierstrass in
1872. Equation (3) is related to Eq. (2) by the so-called
zeta function, which we will need also to determine the
dimension of spacetime. Let z ≥ 0. The zeta function
of a function fðzÞ is defined by the Mellin transform
ζfðsÞ ≔

Rþ∞
0 dzzs−1fðzÞ=ΓðsÞ. Applying this to a function

with a DSI, from Eq. (1) and inverting with respect to ζf
one has

ζfðsÞ ¼
λsþα
ω ζgðsÞ
λsþα
ω − 1

: ð4Þ

Since gðzÞ is regular for z > 0, the poles of ζg take only
negative integer values sj ¼ −j, j ∈ Nþ, and contribute only
to the regular part of fðzÞ [20,21]. The other poles sl of ζf are
the solutions of the complex-valued equation λslþα

ω ¼ e−2πil,
where l ∈ Z. Redefining λω ≕ expð−2π=ωÞ, then sl ¼
−αþ ilω. Consistently, plugging Eq. (4) into the inverse
Mellin transform fðzÞ ¼ ð2πiÞ−1 R γþi∞

γ−i∞ dsz−sΓðsÞζfðsÞ and
using Cauchy residue theorem, one gets

fðzÞ ¼ zα
Xþ∞

l¼−∞
ΓðslÞζgðslÞe−ilω ln z ≕ zαFωðzÞ; ð5Þ

exactly reproducing the profile (2). Furthermore, if f is real
(as in fractals), then one rearranges the sum to get

FωðzÞ ¼ A0 þ
Xþ∞

n¼1

½An cosðnω ln zÞ þ Bn sinðnω ln zÞ�; ð6Þ

where A0 ¼ Γð−αÞζgð−αÞ and ðAn ∓ iBnÞ=2 ¼
Γðs�nÞζgðs�nÞ.
Discrete scale invariance is an ubiquitous feature of many

physical situations involving disorder, growth and rupture
[22,23], turbulence [24–26], financial crashes [27–29],
earthquake precursory seismicity [30–32], as well as chaotic,
spin, critical, and general hierarchical systems [21,33].
DSI is especially important in fractal geometry [9–11,15].
Deterministic (i.e., exactly self-similar) fractals are described
by fractional measures with log oscillations, while random
fractals (randomized scaling ratio λ at each iteration of the
set) are obtained by averaging over oscillations [15]. This is
the fundamental basis from which multifractional quantum
theories of matter fields and gravity were formulated [8].

III. SPACETIME DIMENSIONS

Quite surprisingly, the log-periodic modulation factor Fω

in Eq. (5) arises in all quantum gravities where the
Hausdorff and/or spectral dimension vary with the scale
[34]. Throughout this work, we do not distinguish between
space and spacetime, since the time direction is usually
Euclideanized when considering dimensions.
The Hausdorff dimension dHðlÞ ≔ d lnV=d lnl is the

scaling of the volume VðlÞ of a D-ball (or a D-cube) with
radius (respectively, edge size) l. If dH ¼ const, then
VðlÞ ∝ ldH and, in ordinary space, dH ¼ D coincides with
the topological dimension. If the Hausdorff dimension
dHðlÞ is scale-dependent, then the volume scales as [34]

VðlÞ ¼ lD

�
1þ

Xþ∞

n¼1

1

αn

�
l
ln

�
Dðαn−1Þ

FnðlÞ
�
; ð7Þ

where FnðlÞ ¼ b0;nþbnðl=l∞Þ−inωþb−nðl=l∞Þinω, b0;n
and b�n are complex, we introduced a scale hierarchy
fl∞;lnþ1 < lng for dimensional reasons, and αnþ1 > αn
and ω are real parameters. For a monotonic dimensional
flow with UV Hausdorff dimension smaller than in the IR,
b0;1 > 0 and 0 ≤ αn < 1. The details of the model deter-
mine all these parameters, but the form (7) of VðlÞ is
universal. In particular, in the UV (l ≪ l� ≡ l1) duvH ≃Dα
(where α≡ α1), while dIRH ≃D. Equations (5) and (7) agree
under the identification f ¼ V=lD − 1, z ¼ l=l∞, αn ¼ α,
and ln ¼ l�. [One should not confuse the regular part gðzÞ
with the term lD in Eq. (7): in quantum gravity, DSI is
an approximate symmetry valid only in the UV.] In this
configuration, there are only two scales l∞ and l�; the
general multiscale case (many αn and ln) corresponds to a
multi-DSI geometry.
The spectral dimension dSðlÞ ≔ −d lnP=d lnl is the

scaling of the inverse of the return probability PðlÞ with
the probed scale l, a quantity related to the probability that
a test particle propagates back to a given initial point in
spacetime (see [35] for a review). Thanks to the formal
duality V ↔ 1=P, one can translate all results for the
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Hausdorff dimension to the spectral dimension [34]. If
dS ¼ const, then PðlÞ ∝ l−dS , while the general form of
dSðlÞ is obtained from the definition and the inverse of
Eq. (7). Equation (5) is reproduced for f ¼ ðPlDÞ−1 − 1.
Unless one considers highly nontrivial states of quantum

geometry, the volume V and the return probability P
(which, in quantum gravity, can be replaced by the expect-
ation values hV̂i and hP̂i of, respectively, the volume and
return-probability operator [36,37]) are real-valued and so
are dH and dS. Then, bn ¼ b�−n and the modulation factor
in Eq. (7) becomes a superposition FωðlÞ ¼

P
nFnðlÞ of

logarithmic oscillations:

FnðlÞ ¼ b0;n þ An cos
�
nω ln

l
l∞

�
þ Bn sin

�
nω ln

l
l∞

�
;

ð8Þ

in agreement with Eq. (6) with A0 ¼
P

nb0;n. Self-similar
fractals are characterized by a real-valued measure and,
hence, by log oscillations [16].
As anticipated, the log-oscillating modulation FωðlÞ is

long-range because it is associated with an infinite scale
hierarchy f…; λ−2ω l∞; λ−1ω l∞;l∞; λωl∞; λ2ωl∞;…g in geo-
metric progression. While the traditional separation
between UV and IR, typical of quantum field theory, is
realized by the power-law part in Eq. (7), the DSInvariant
part Fω is insensitive to this dichotomy and modulates
infinitely many intermediate scales λ�n

ω l∞ spanning all
ranges. This constitutes a major departure from the standard
quantum-gravity wisdom about a UV/IR divide, inasmuch
as the impact of the above scale hierarchy can be much
heavier and more characteristic than the imprint usually
looked for in physical observables. Quantum gravity may
be more accessible than believed.
Only some quantum gravities happen to have a variable

dH, but almost all have a variable dS; see Refs. [4,8] for
a case-by-case summary. A scale-dependent dimension
implies the existence of at least one characteristic scale
l�, or in some cases a whole scale hierarchy flng. For this
reason, quantum gravities are said to describe multiscale
geometries. On the other hand, only multifractional space-
times have explicit log oscillations (both in the volume and
the return probability) [8,38], while no hint of them has
been so far recognized in other proposals. The present work
aims to revise this claim.
The above definition of dS has been recently replaced,

in quantum gravity, by a less intuitive but much more
appealing technique, adapted from the dS ¼ const case of
fractal geometry [9–11,16], that identifies the values of the
spectral dimension in the plateaux dS ≃ const of the profile
dSðlÞ with the poles of the spectral zeta function [39]. Here
we apply, for the first time, the same procedure to dH and
show that the Hausdorff dimension of spacetime also has an
interpretation in terms of the poles of the zeta function

associated with the volume. This will allow us to discover,
so to speak, the existence of complex dimensions. The
reader can immediately recast all the results for the case of
dS, by replacing the volume V with the inverse return
probability 1=P.
Recall that Eq. (5) is a log-periodic series with coef-

ficients given by the poles sl ¼ −αþ ilω of the zeta
function. Identifying f with V=lD − 1 and z ∝ l, in
D ¼ 1 topological dimensions this expression determines
the UV Hausdorff dimension dH ¼ α and the complex
Hausdorff dimension

dCH ¼ ω: ð9Þ
This result can be guessed also by noting that log oscillations
come from the combination of complex powers xα�iω,
immediately leading to the identification of the exponent
as a sort of complex-valued dimension. Higher-order har-
monics jlj > 1 give rise to higher dimensions jljdCH.
For the non-DSInvariant function (7), there will be two

families of poles, sl ¼ −Dþ ilω and sm ¼ −Dαþ imω,
giving the IR and UV Hausdorff dimensions dH ≃D;Dα
and the same complex dimension (9). [The IR pole can be
obtained after regularizing the Mellin transform or, exactly,
in theories where the dimensional flow dHðlÞ is known
analytically at all scales, such as in multifractional space-
times; see [39] for the case of dS.] Thus, dCH is independent
of the topological dimension D. Similarly, the complex
spectral dimension dCS will coincide with the frequency ωS
in the return probability (which may differ with respect to
the frequency ω in the volume).
Thus, the Hausdorff dimension of the plateaux of the

dimensional flow of a Euclideanized spacetime is minus the
real part of the poles of the zeta function of the spacetime
measure (volumes), and the complex Hausdorff dimension
is the smallest nonzero imaginary part:

si;l ¼ −dðiÞH þ ildCH; ith plateau: ð10Þ
The poles of the zeta function of the return probability have
the same structure up to a sign, si;l ¼ dðiÞS þ ildCS, possibly
with an extra factor of 1=2 in the real part if another scale
variable σ ∝ l2 is used instead [39]. This concludes the
proof that, quite generically, a spacetime with dimensional
flow and a UV DSI will have a variable Hausdorff and/or
spectral dimension dHðlÞ; dSðlÞ and a constant complex
Hausdorff and/or spectral dimension dCH; dCS, correspond-
ing to the frequency of the log oscillations in the volume
and/or return probability.

IV. DSI IN QUANTUM GRAVITY

Complex dimensions, also called complex critical expo-
nents, appear whenever there is a DSI. The simplest way to
realize DSI in quantum gravity is when spacetime (pre)
geometry has a fundamentally discrete structure similar to
that of hierarchical lattices [33]. This structure, explicit in
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multifractional theories [8], is the most general one
realizing dimensional flow in quantum gravity [34].
Then, logarithmic oscillations arise as an expression of a
DSI in the deep UV. However, the combinatorial structure
of scenarios such as loop quantum gravity, spin foams,
and group field theory can be much less regular than a
hierarchical lattice and complex dimensions may arise
but only in special situations. This possibility is still under
investigation, although preliminary results indicate a
complex-valued spectral dimension in certain superposi-
tions of highly quantum states of geometry [36].
A more flexible scenario we propose here is that a DSI

appears spontaneously from the soft breaking of continuous
scale invariance xμ → λxμ, a subsymmetry of conformal-
invariant field theories. For example, if the scaling ratio λ
were the expectation value of a field and if such field took
discrete values λ → λnω in geometric progression, we would
get a DSI without any underlying hierarchical structure. To
achieve this, and inspired by flux compactification in low-
energy string theory [4,40], we could take p-forms Ap on a
compact subspace Γpþ1, which produce quantized fluxesR
Γpþ1

dAp ¼ lq, where q ≕ 2π=ω is the p-form magnetic

charge. An effective action S½gμν; Ap� characterized by a

conformally coupled metric e−2
R

dApgμν is associated with a

coordinate dilation with arbitrary scaling ratio λ ∼ e−
R

dAp .
However, upon quantizing the flux, one forces the system
to a discretized conformal coupling λ2lω gμν. Then, a DSI and
the inevitable log oscillations are generated dynamically.
Also, different forms yield different fluxes and frequencies
ω, whose superposition can give rise to a log-quasi-periodic
structure [21,22] with a richer behavior. A more precise
treatment should be able to make this mechanism rigorous,
at least in a Euclidean setting. Theories in Lorentzian
signature are more delicate to deal with, since complex
exponents lead to exponentially divergent correlation
functions after Wick rotation [41]. This might suggest that
a UV-finite theory of quantum gravity admitting a well-
defined analytic continuation to and from imaginary time
should have no log oscillations in the time direction.

V. CAN WE OBSERVE COMPLEX DIMENSIONS?

In general, complicating a simple rigid DSInvariant
structure, for instance by disorder effects, does not spoil
log oscillations, and complex exponents are found to be
robust against small perturbations [21]. This can be
relevant in quantum gravity, where coarse graining by low-
resolution instruments [38] (i.e., averaging over a log-
period [15]) or highly nontrivial superpositions of geometry
states could randomize a UV DSI and wipe it out. However,
in a multiscale geometry this phenomenon of destructive
interference does not cancel the log oscillations completely
and we may wonder whether their footprint is observable.
Here we can gain an insight by the following remark.

In all known examples in critical, complex, and fractal
systems, the amplitudes An and Bn in Eq. (8) decay with n
either exponentially (An, Bn ∼ e−γn, as in the Potts model
with antiferromagnetic interactions or in walks on
DSInvariant fractals) or as a power law (An, Bn ∼ n−u,
as in the Potts model with ferromagnetic interactions)
[20,21]. As a consequence, the first harmonics n ¼
1; 2;…; nmax are enough to fit experimental data. This
loosely justifies the use of the first harmonic in multifrac-
tional theories [8,17], but another possibility is to consider
several harmonics simultaneously and constrain the micro-
structure of quantum geometry from their amplitudes. In
fact, the above two classes of amplitude behavior (expo-
nential or power law) correspond to different interaction
properties among the sites of a discrete structure, as
illustrated by Potts models of interacting spins on lattices
[20]. If higher-order log oscillations could be constrained
efficiently, then one could determine their suppression laws
for An and Bn and gain a valuable insight about the details
of the spacetime structure (fundamental or effective)
originating it, for instance how spin labels distribute in
the pregeometric combinatorial complexes of some discrete
quantum gravities. One can investigate whether present-
generation CMB data (such as those of the last PLANCK
release) are sensitive enough to this higher-order effect.
We can get a flavor of the outcome by considering the
parametrization

An ¼ an
e−γn

nu
; Bn ¼ bn

e−γn

nu
; ð11Þ

which is the real-valued analogue of the complex ampli-
tudes classified in Ref. [20]. The coefficients an, bn and the
parameters γ and u are determined by the Mellin transform
of g, as noticed below Eq. (6).
We apply Eq. (11) to a cosmological example of

quantum-gravity-related phenomenology, the inflationary
scalar power spectrum of the multifractional theory with
q-derivatives. In this fundamentally multiscale spacetime
[8,17], dispersion relations are deformed, which results in a
modification of the primordial scalar perturbation spectrum
Ps. For an isotropic binomial measure with a UV intrinsic
DSI, the massless dispersion relation k2 ¼ 0 is deformed
into p2ðkÞ ¼ pμðkμÞpμðkμÞ ¼ 0 (sum only over p indices),
where for each direction (no index summation)

pμðkμÞ ¼ 1

VD¼1½ðkμÞ−1�

¼ kμ
�
1þ 1

α

�
kμ

k�

�
1−αX

n
FnðkμÞ

�
−1
; ð12Þ

where FnðkÞ is the momentum-space analogue of Eq. (8)
and all the scales l−1

n and l−1
∞ are replaced by momentum

(energy) scales kn, k∞ (here there is only one k1 ≡ k�). In
particular, the propagation of all classical and quantum
particles is affected by DSI, for instance as a log-periodic
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modulation of the propagation speed. In the context of
inflation, having composite momenta pμðkμÞ produces a
bending of the spectrum at small scales superposed to a
modulation pattern. While the standard scalar spectrum is
parametrized, to leading order in a slow-roll approximation,
as PsðkÞ ∝ kns−1, where k ¼ jkj is the spatial comoving
wavenumber and ns is the scalar spectral index, in the
theory with q-derivatives this parametrization would be
inadequate because the slow-roll approximation can be
relaxed and the spectral index be far away from 1 in certain
regimes. Thus, it is more convenient to adopt, up to
numerical factors, the form

PsðkÞ ∝ ½pðkÞ�ns−1; ð13Þ

where pðkÞ ¼ jpj. This PsðkÞ is the exact extension to all
harmonics of the first-harmonic approximate spectrum
found in Ref. [17]. Figure 1 shows several types of

behaviour up to nmax harmonics. If An, Bn are constant,
then when nmax increases oscillations become spikes at
logarithmic intervals. When γ increases, amplitudes
decrease and they virtually disappear into tiny ripples
already for γ ≃ 1. When u increases, the plot becomes
festooned already for u≃ 1.
The sensitivity of CMB data [42] to features [43],

especially sharp ones such as the above spikes, could mark
the imprint we are looking for. The temperature spectrum
[44], temperature non-Gaussianity [45–47], and polariza-
tion [48] can all be scanned for this purpose. Usually, fine
features are inserted ad hoc in the power spectrum [43,49]
or generated by inflationary dynamics [43,50–52], while in
the present case they arise purely from geometry. Since
features can even improve the fit of PLANCK 2015 data [52],
the issue at stake here is not just how to constrain the
parameters of one or more quantum-gravity models, but
also whether these models can account for some details
of the CMB multipole spectrum better than the standard
ΛCDM model of general relativity. Following a likelihood
analysis similar to that of Ref. [17], we will report on this
in a future publication.
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Note added.—After submission, [53] appeared where
the authors discussed a phase transition between a
continuous and a discrete scale invariance in Lifshitz-
type Hamiltonian models. After some elaboration, these
results can have a direct application to Hořava–Lifshitz
gravity and corroborate the main claim of this paper,
providing another and important explicit example of how
discrete scale invariance (and complex dimensions) can
emerge naturally in quantum gravities. This example adds
to the two cases discussed here, multifractional theories
and a generic conformal-invariant theory with p-forms
coupled to the metric.
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