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In this article, we define and quantize a truncated form of the nonassociative and noncommutative
Snyder ϕ4 field theory using the functional method in momentum space. More precisely, the action is
approximated by expanding up to the linear order in the Snyder deformation parameter β, producing an
effective model on commutative spacetime for the computation of the two-, four- and six-point functions.
The two- and four-point functions at one loop have the same structure as at the tree level, with UV
divergences faster than in the commutative theory. The same behavior appears in the six-point function,
with a logarithmic UV divergence and renders the theory unrenormalizable at β1 order except for the
special choice of free parameters s1 ¼ −s2. We expect effects from nonassociativity on the correlation
functions at β1 order, but these are cancelled due to the average over permutations.

DOI: 10.1103/PhysRevD.96.045021

I. INTRODUCTION

There is consensus in the theoretical and mathematical
physics nowadays that at short distances spacetime has to
be described by nonstandard geometrical structures, and
that the very concept of point and localizability may no
longer be adequate. Together with string theories [1], this is
one of the oldest motivations for the introduction of
noncommutative (NC) geometry [2–8]. The simplest kind
of noncommutative geometry is the so-called “canonical”
one [3,9–14]. Usually, the construction of a field theory on
a noncommutative space is performed by deforming the
product between functions (and, hence, between fields in
general) with the introduction of a noncommutative star
product. The noncommutative coordinates x̂μ satisfy

½x̂μ; x̂ν� ¼ iθμν; ð1Þ
with coordinates xμ being promoted to Hermitian operators
x̂μ satisfying (1). Note that the choice of the star(⋆)-product
compatible with (1) is not unique.
The simplest case jθμνj ∼ const is the well-known Moyal

noncommutative spacetime [11]: jθμνj does not depend on
coordinates, and it scales like length2 ∼ Λ−2

NC, with ΛNC
being the scale of noncommutativity with the dimension of
energy. For Moyal geometry, it was proven recently that
there exists a θ-exact formulation of noncommutative
gauge field theory based on the Seiberg-Witten map

[1,14] that preserves unitarity [15] and has improved
UV/IR behavior at the quantum level by introducing
supersymmetry [16–19]. All these could also have impli-
cations for cosmology, for example, through the determi-
nation of the maximal decoupling temperature of the
right-handed neutrino species in the early Universe [20].
There are other important models, like the κ-Minkowski

and the Snyder geometries, where we might expect similar
properties with analogous cosmological consequences. For
example, results in [20] represent one of the strongest
motivations for our investigation of Snyder spaces.
The κ-Minkowski models [21–27], are represented by

½x̂μ; x̂ν� ¼
i
κ
ðδμ0x̂ν − δν

0x̂μÞ; ð2Þ

where κ is a mass parameter. On the other hand, Snyder’s
spacetime [28], the subject of this investigation, belongs to
a rather different type of models [29–32], and is defined by
the phase space commutation relations,

½x̂μ;x̂ν�¼ iβMμν; ½pμ;x̂ν�¼−iδμν− iβpμpν; ½pμ;pν�¼0;

ð3Þ

where Mμν ¼ xμpν − xνpμ are Lorentz generators, xμ are
the undeformed canonical coordinates and pμ the momen-
tum generators. Noncommutative coordinates x̂μ and
momentum generators pμ transform as vectors under
Lorentz generators and β is a real parameter β ∝ l2

P, where
lP is the Planck length.

*meljanac@irb.hr
†smignemi@unica.it
‡josip.trampetic@irb.hr, trampeti@mppmu.mpg.de
§youjiangyang@gmail.com

PHYSICAL REVIEW D 96, 045021 (2017)

2470-0010=2017=96(4)=045021(11) 045021-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.045021
https://doi.org/10.1103/PhysRevD.96.045021
https://doi.org/10.1103/PhysRevD.96.045021
https://doi.org/10.1103/PhysRevD.96.045021


The Moyal and the κ-Minkowski geometries break the
Lorentz invariance. Such effects are manifested in their star
product. On the contrary, in his seminal paper Snyder [28]
observed that assuming a noncommutative structure of
spacetime and hence a deformation of the Heisenberg
algebra it is possible to define a discrete spacetime without
breaking the Lorentz invariance. It is, therefore, interesting
to investigate the Snyder model from the general point of
view of noncommutative geometry.
More recently, the formalism of Hopf algebras has been

applied to the study of noncommutative geometries [4]. The
Snyder model has been studied in a series of papers [30–36]
and the associated Hopf algebra investigated in [30,36],
where the model has been generalized and the star product,
coproducts and antipodes have been calculated using the
method of realizations. A different approach was used in
[35], where the Snyder model was considered from a
geometrical perspective as a coset in momentum space, and
the results are equivalent to those of Refs. [31,32]. A further
generalization of Snyder spacetime deformations was
recently introduced in [36–38]. Also several nonassociative
star/cross product geometries and related quantum field
theories have been discussed recently in [39].
In this paper we consider a Snyder-like quantum field

theory, where the action is modified by truncating the
model to first order in the deformation parameter β. The
drawback of this truncation is the loss of the ultraviolet
behavior of the original theory. In particular, we remark that
the original theory could be ultraviolet finite. Moreover,
any possible nonperturbative effect like the celebrated
UV/IR mixing in [14,40,41] is also lost. Among other
features, UV/IR mixing connects the noncommutative field
theories with holography via UVand IR cutoffs in a model
independent way [42,43]. Holography and UV/IR mixing
are known in the literature as possible windows to quantum
gravity [10,42]. In spite of this deficiency, we believe that
our investigation is interesting as a starting point for further
investigations on the properties of the full theory.
The paper is organized as follows: in the second section,

we introduce the Hermitian realization of the model and the
star product corresponding to this realization. The Snyder-
deformed action for a ϕ4 theory based on the above
formalism is introduced in Sec. III. The quantization of
the theory, including the tree-level, four-point function, as
well as the one-loop two-, four-, and six-point functions, is
discussed in Sec. IV. The effect of Snyder’s nonassocia-
tivity is presented in Sec. V. Finally, in Sec. VI, we discuss
the UV divergences and their possible disappearance in the
full theory.

II. HERMITIAN REALIZATION
OF SNYDER SPACES

Following Refs. [36,38], we consider the Hermitian
realization of the Snyder spaces,

x̂μ ¼ xμ þ β

�
s1Mμαpα þ ðs1 þ s2Þðx · pÞpμ

− i

�
s1 þ

Dþ 1

2
s2

�
pμ

�
þOðβ2Þ; ð4Þ

withD the dimension of the spacetime we are considering,1

and s1, s2 real parameters. The generators Mμν; pμ, and xμ,
pμ, generate the undeformed Poincaré and Heisenberg
algebras, respectively. The commutation relations ½x̂μ; x̂ν�;
½pμ; x̂ν� are

½x̂μ; x̂ν� ¼ iβðs2 − 2s1ÞMμν þOðβ2Þ;
½pμ; x̂ν� ¼ −iðδμνð1þ βs1p2Þ þ βs2pμpνÞ þOðβ2Þ; ð5Þ

which implies that the coordinates x̂μ become commutative
for s2 ¼ 2s1.
The corresponding star product takes the following form,

eikx ⋆ eiqx ¼ eiDμðk;qÞxμeiGðk;qÞ; ð6Þ

and it is in general nonassociative and noncommutative.
However, for specific choice s2 ¼ 2s1 in (5), the star
product (6) becomes associative and commutative. The
functionsDμðk; qÞ and Gðk; qÞ are given up to first order in
β for arbitrary s1 and s2 by

Dμðk; qÞ ¼ kμ þ qμ þ β

�
kμ

�
s1q2 þ

�
s1 þ

s2
2

�
k · q

�

þ qμs2

�
k · qþ k2

2

��
þOðβ2Þ; ð7Þ

Gðk; qÞ ¼ −iβ
�
s1 þ

Dþ 1

2
s2

�
k · qþOðβ2Þ; ð8Þ

and they satisfy relation

det

�∂Dμðk; qÞ
∂kν

�����
k¼−q

¼ det

�∂Dμðk; qÞ
∂qν

�����
k¼−q

¼ eiGðk;−kÞ þOðβ2Þ; ð9Þ

which induces the cyclicity of the star product under usual
integration

Z
fðxÞ ⋆ gðxÞ ¼

Z
fðxÞgðxÞ þOðβ2Þ: ð10Þ

1We write directly D here since this factor later enters the loop
computation and we use dimensional regularization when evalu-
ating loop integrals. Dimensional regularization appears to be a
natural choice because there is no tensor structure other than
metric in our formulation of the Snyder theory and so we only
encounter scalar and vector objects and no pseudoscalars or
pseudovectors.
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In other words, a usual integration removes the effects of
the deformation by at least one order, since both Dμðk; qÞ
and Gðk; qÞ contain Oðβ1Þ terms while any deformation
effect in (10) must start at Oðβ2Þ. Note that, in principle, an
integral over any star product of two fields under the
Hermitian realization condition would reduce to the inte-
gral of the usual multiplication. This is certainly true for
Moyal and κ-Minkowski cases; however, for the above
conjecture in the general case of Snyder spaces, we only
have a rigorous proof up to the Oðβ2Þ and in the Snyder
realization of the full theory [38].
Note also that using Eqs. (6)–(8), it is straightforward to

show that the 3-cyclicity for nonassociative star products

Z
f ⋆ ðg ⋆ hÞ ¼

Z
ðf ⋆ gÞ ⋆ h; ð11Þ

is lost except when s2 ¼ 2s1.

III. THE ϕ4 THEORY ON SNYDER SPACES

The action for a Snyder-type ϕ4 theory on four-dimen-
sional Euclidean spacetime2 is given by

S ¼
Z

1

2
ðð∂μϕÞ ⋆ ð∂μϕÞ þm2ϕ ⋆ ϕÞ þ Sint; ð12Þ

where

Sint ¼ −
λ

4!

Z
ϕ ⋆ ðϕ ⋆ ðϕ ⋆ ϕÞÞ: ð13Þ

Up to the first order in β we can remove the star product on
the left using the cyclicity property of the star product (10)
to get

S1 ¼
Z

1

2
ðð∂ϕÞ2 þm2ϕ2Þ − λ

4!
ϕðϕ ⋆ ðϕ ⋆ ϕÞÞ

þOðβ2Þ: ð14Þ

The definition (6) of the star product then allows us to write
the interaction in momentum space as follows

S1int ¼ −
λ

4!

Z
ϕðϕ ⋆ ðϕ ⋆ ϕÞÞ

¼ −
λ

4!

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4

d4q3
ð2πÞ4

d4q4
ð2πÞ4

× g3ðq1; q2; q3; q4Þ · ð2πÞ4δðD4ðq1; q2; q3; q4ÞÞ
× ~ϕðq1Þ ~ϕðq2Þ ~ϕðq3Þ ~ϕðq4Þ þOðβ2Þ; ð15Þ

where

D4ðq1; q2; q3; q4Þ ¼ q1 þDðq2; Dðq3; q4ÞÞ; ð16Þ

and

g3ðq1; q2; q3; q4Þ ¼ 1þ iGðq2; Dðq3; q4ÞÞ
þ iGðq3; q4Þ þOðβ2Þ: ð17Þ

This is our starting point for the following calculations.

IV. QUANTIZING THE SNYDER
FIELD THEORY

Since the quadratic part of the classical action is
undeformed, it is convenient to adopt the functional method
in momentum space, previously used in similar problems
like for example [41]. Our starting point is the generating
functional

Z½J� ¼ eW½J� ¼ exp

�
−Sþ

Z
Jϕ

�
; ð18Þ

which we shall evaluate perturbatively. The generating
functional for the free theory is

Z0½J� ¼ exp

�Z
d4xd4yJðxÞGðx − yÞJðyÞ

�
: ð19Þ

Since the free Euclidean Green’s function is simply

Gðx − yÞ ¼
Z

d4k
ð2πÞ4

eikðx−yÞ

k2 þm2
; ð20Þ

the free generating functional can be reduced to the
momentum space expression

Z0½J� ¼ exp

�Z
d4xd4yJðxÞGðx − yÞJðyÞ

�

¼ exp

�Z
d4k
ð2πÞ4

~JðkÞ 1

k2 þm2
~Jð−kÞ

�
: ð21Þ

The generating functional of the interacting theory is
obtained by introducing the interaction through functional
derivatives of the free generating functional, i.e.

Z½J� ¼ N exp

�
λ

4!

Z
d4q1
ð2πÞ4

d4q2
ð2πÞ4

d4q3
ð2πÞ4

d4q4
ð2πÞ4

× g3ðq1; q2; q3; q4Þ · ð2πÞ4δðD4ðq1; q2; q3; q4ÞÞ

×
δ

δ ~Jðq1Þ
δ

δ ~Jðq2Þ
δ

δ ~Jðq3Þ
δ

δ ~Jðq4Þ

�
Z0½J�: ð22Þ

The functional derivative δ
δ ~JðqÞ satisfies

δ

δ ~JðqÞ
~JðpÞ ¼ ð2πÞ4δðp − qÞ; ð23Þ2In order to avoid complications, we choose to work directly

on Euclidean spacetime.
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where the factor ð2πÞ4 follows from the normalization
adopted for the Fourier transformation,

ϕðxÞ ¼
Z

d4p
ð2πÞ4 e

ipx ~ϕðpÞ: ð24Þ

The Green’s function obtained from the generating
functional contains, in principle, a number of δ functions,
in particular the composite ones on the vertices, so we need
a strategy to handle them properly. We choose the follow-
ing prescription: first we work on the position space
connected correlation functions

Gðx1; x2;…::; xnÞ ¼
Z Yn

i¼1

dDpi

ð2πÞD eipixi
δ

δ ~JðpiÞ
W½J�

����
J¼0

;

ð25Þ

because all external and internal momenta are integrated
over and consequently all δ functions can be evaluated as
well. We then integrate over one specific fixed external
momentum pn in order to remove the final (composite) δ
function that describes the modified overall momentum
conservation. This is not the only possible choice one could
make, but we will stick with it and construct both tree and
one-loop level integrals accordingly.

A. Tree-level, four-point function

As an example of the method described in the last section
as well as a basis for the further computations, we evaluate
first the tree-level, four-point correlation function,
Gtreeðx1; x2; x3; x4Þ (corresponding to Fig. 1), which is
defined as follows:

Gtreeðx1; x2; x3; x4Þ ¼
λ

4!

Z
d4p1

ð2πÞ4
d4p2

ð2πÞ4
d4p3

ð2πÞ4
d4p4

ð2πÞ4
eip1x1

p2
1 þm2

×
eip2x2

p2
2 þm2

eip3x3

p2
3 þm2

eip4x4

p2
4 þm2

· ð2πÞ4
X
σ∈S4

δðD4ðσðp1; p2; p3;p4ÞÞÞ

· g3ðσðp1;p2; p3; p4ÞÞ; ð26Þ
where σ ∈ S4 denotes the sum over all momenta permu-
tations, i.e.

δðD4ðσðp1; p2; p3; p4ÞÞÞ
¼ δðD4ðq1 ¼ pσð1Þ; q2 ¼ pσð2Þ; q3 ¼ pσð3Þ; q4 ¼ pσð4ÞÞÞ;

ð27Þ

g3ðσðp1; p2; p3; p4ÞÞ
¼ g3ðq1 ¼ pσð1Þ; q2 ¼ pσð2Þ; q3 ¼ pσð3Þ; q4 ¼ pσð4ÞÞ:

ð28Þ

The composite δ function δðD4ðσðp1; p2; p3; p4ÞÞÞ is then
evaluated with respect to p4

3:

δðD4ðσðp1; p2; p3; p4ÞÞÞ

¼ δðp4 − p4ðp1; p2; p3ÞÞ
det

�∂D4μ ðσðp1;p2;p3;p4ÞÞ
∂p4ν

����
p4¼p4ðp1;p2;p3Þ

; ð29Þ

where p4ðp1; p2; p3Þ is the solution to the equation

D4ðσðp1; p2; p3; p4ÞÞ ¼ 0: ð30Þ

At β1 order, this equation can be solved iteratively, noting
that

D4ðσðp1; p2; p3; p4ÞÞ ¼ p1 þ p2 þ p3 þ p4

þ βD1
4ðσðp1; p2; p3; p4ÞÞ

þOðβ2Þ; ð31Þ

thus, the iterative solution of p4 takes the following form:

p4ðp1; p2;p3Þ ¼ p0
4ðp1;p2; p3Þ þ βp1

4ðp1; p2;p3Þ þOðβ2Þ
¼ −p1 −p2 −p3 − βD1

4ðσðp1; p2; p3;p0
4

¼ −p1 −p2 −p3ÞÞ þOðβ2Þ: ð32Þ

Similarly, in order to obtain Gtreeðx1; x2; x3; x4Þ up to β1

order, we have to expand the g3 factor and the Jacobian
determinant in (29) up to first order in β around the solution
p4ðp1; p2; p3Þ. This is straightforward since both of them
have a constant value 1 at β0 order, and hence the expansion
involves only expansions of these two objects up to β1

order at the place p4 ¼ p0
4 ¼ −p1 − p2 − p3. Moreover, at

β1 order, the determinant reduces to

FIG. 1. Four-point Feynman rule.

3We find necessary to evaluate the composite δ functions
during the formulation of correlation functions because in loop
calculation the loop momenta on the vertex should stay fixed (for
example in a tadpole diagram). All we can generate through the
composite δ function(s) is then how a certain external momentum
becomes dependent on the other/others.
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det

�∂D4μ
ðσðp1; p2; p3; p4ÞÞ

∂p4ν

�����
p4¼p0

4

¼ 1þ tr
∂D1

4μ
ðσðp1; p2; p3; p4ÞÞ

∂p4ν

����
p4¼p0

4

þOðβ2Þ: ð33Þ

Finally, we also notice that the momentum in the last external propagator is shifted from the commutative solution p0
4. We,

therefore, expand it to β1 order, too, obtaining

eip4ðp1;p2;p3Þx4

p4ðp1; p2; p3Þ2 þm2
¼ e−iðp1þp2þp3Þx4

ðp1 þ p2 þ p3Þ2 þm2
·

�
1þ βp1

4ðp1; p2; p3Þ ·
�
ix4 þ

2ðp1 þ p2 þ p3Þ
ðp1 þ p2 þ p3Þ2 þm2

��

þOðβ2Þ: ð34Þ

Now we collect all β1-order contributions and sum over the S4 permutations to obtain

Gtreeðx1; x2; x3; x4Þ ¼ G0
treeðx1; x2; x3; x4Þ þ βG1

treeðx1; x2; x3; x4Þ þOðβ2Þ

¼ λ

Z
d4p1

ð2πÞ4
d4p2

ð2πÞ4
d4p3

ð2πÞ4
eip1x1

p2
1 þm2

eip2x2

p2
2 þm2

eip3x3

p2
3 þm2

e−iðp1þp2þp3Þx4

ðp1 þ p2 þ p3Þ2 þm2

·

�
1þ β

3

�
Σ1 þ Σ2 ·

�
ix4 þ

2ðp1 þ p2 þ p3Þ
ðp1 þ p2 þ p3Þ2 þm2

���
þOðβ2Þ; ð35Þ

where

Σ1ðp1;p2;p3Þ¼ðDþ2Þðs1þs2Þðp1 ·p2þp2 ·p3þp3 ·p1Þ;
ð36Þ

Σ2ðp1; p2; p3Þ ¼ −ðs1 þ s2Þðp1ððp1 þ p2 þ p3Þ2 − p2
1Þ

þ p2ððp1 þ p2 þ p3Þ2 − p2
2Þ

þ p3ððp1 þ p2 þ p3Þ2 − p2
3ÞÞ: ð37Þ

B. One-loop, two-point function

Following the same procedure as for the tree-level, four-
point function, we can now evaluate the one-loop, two-
point function of Fig. 2,

G1−loopðx1; x2Þ ¼
1

2

λ

4!

Z
dDp1

ð2πÞD
dDp2

ð2πÞD
dDl
ð2πÞD

eip1x1

p2
1 þm2

×
eip2x2

p2
2 þm2

1

l2 þm2

· ð2πÞ4
X
σ∈S4

δðD4ðσðp1; p2;l;−lÞÞÞ

· g3ðσðp1; p2;l;−lÞÞÞ: ð38Þ

A peculiar property of Snyder and some other noncom-
mutative field theories [44] is that, due to the law of
addition of the momenta, p1 and p2 are, in general,
different, so the momenta are not strictly conserved due
to loop effects.

All δ functions in (38) can be evaluated using the
iterative procedure of subsection IVA. After summing
over all these permutation channels, we observe that the
structures Σ1 and Σ2 emerge as expected. Using Σ1 and Σ2,
we can rewrite G1−loopðx1; x2Þ as follows:

G1−loopðx1;x2Þ ¼
λ

2

Z
dDp1

ð2πÞD
eip1x1

p2
1þm2

e−ip1x2

p2
1þm2

×
Z

dDl
ð2πÞD

1

l2þm2

�
1þβ

3

�
Σ1ðp1;l;−lÞ

þΣ2ðp1;l;−lÞ ·
�
ix4þ

2p1

p2
1þm2

���

þOðβ2Þ: ð39Þ

Once we evaluate Σ1 and Σ2 explicitly, an intriguing
cancellation happens to send Σ2 to zero and erases the
effect of momentum nonconservation completely. The
one-loop, two-point function then boils down to

FIG. 2. Tadpole contribution to the two-point function.
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G1−loopðx1; x2Þ ¼
λ

2

Z
dDp1

ð2πÞD
eip1x1

p2
1 þm2

e−ip1x2

p2
1 þm2

Z
dDl
ð2πÞD

1

l2 þm2

�
1 −

β

3
ðDþ 2Þðs1 þ s2Þl2

�
þOðβ2Þ

¼ λ

2

Z
dDp1

ð2πÞD
eip1x1

p2
1 þm2

e−ip1x2

p2
1 þm2

�
1þm2

β

3
ðDþ 2Þðs1 þ s2Þ

�
ð4πÞ−D

2mD−2Γ
�
1 −

D
2

�
: ð40Þ

While the integral is quartic divergent, the Green
function has the same structure as at tree level, thus one
could, in principle, renormalize it using a mass counter-
term δm2.

C. One-loop, four-point function

As the commutative counterpart, one-loop, four-point
function can still be split into three Mandelstam-variable
channels, as depicted in Figs. 3–5

G1−loopðx1; x2; x3; x4Þ ¼ Is þ It þ Iu; ð41Þ

but each of them now splits into two, depending on which
of the two vertices is evaluated to the β1 order, as we choose
once again to integrate over the external momentum p4

only. Note that this procedure creates an additional
momentum shift within the loop-integral when p4 is
attached to the β0 vertex which is not explicitly shown
in the diagrams. By realizing that the β0 vertex is totally
symmetric with respect to all momenta attached, we are
able, from Fig. 3, to obtain the following expression

Is ¼ I0s þ βðI1 þ I2Þ þOðβ2Þ; ð42Þ
with

I0s ¼
λ2

2

Z
dDp1

ð2πÞD
dDp2

ð2πÞD
dDp3

ð2πÞD
eip1x1

p2
1þm2

eip2x2

p2
2þm2

eip3x3

p2
3þm2

e−iðp1þp2þp3Þx4

ðp1þp2þp3Þ2þm2
·
Z

dDl
ð2πÞD

1

ðl2þm2Þððlþp1þp2Þ2þm2Þ ;

ð43Þ

the usual β0-order loop contribution, while

I1 ¼
λ2

6

Z
dDp1

ð2πÞD
dDp2

ð2πÞD
dDp3

ð2πÞD
eip1x1

p2
1 þm2

eip2x2

p2
2 þm2

eip3x3

p2
3 þm2

e−iðp1þp2þp3Þx4

ðp1 þ p2 þ p3Þ2 þm2

·
Z

dDl
ð2πÞD

1

ðl2 þm2Þððlþ p1 þ p2Þ2 þm2Þ

·

�
Σ1ð−l;lþ p1 þ p2; p3Þ þ Σ2ð−l;lþ p1 þ p2; p3Þ

�
ix4 þ

2ðp1 þ p2 þ p3Þ
ðp1 þ p2 þ p3Þ2 þm2

��
; ð44Þ

and

I2 ¼
λ2

6

Z
dDp1

ð2πÞD
dDp2

ð2πÞD
dDp3

ð2πÞD
eip1x1

p2
1 þm2

eip2x2

p2
2 þm2

eip3x3

p2
3 þm2

e−iðp1þp2þp3Þx4

ðp1 þ p2 þ p3Þ2 þm2

·
Z

dDl
ð2πÞD

1

ðl2 þm2Þððlþ p1 þ p2Þ2 þm2Þ

·

�
Σ1ðp1; p2;lÞ þ Σ2ðp1; p2;lÞ

�
ix4 þ

2ðp1 þ p2 þ p3Þ
ðp1 þ p2 þ p3Þ2 þm2

þ 2ðlþ p1 þ p2Þ
ðlþ p1 þ p2Þ2 þm2

��
; ð45Þ

are the β1-order corrections from Snyder-type deformations. Once we work out all the objects explicitly, the s-channel
integral boils down to

Is ¼ G0
treeðx1; x2; x3; x4Þ · ðIs þ βðI1 þ I2ÞÞ þ βG1

treeðx1; x2; x3; x4Þ · Is; ð46Þ
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where

Is ¼
Z

dDl
ð2πÞD

λ

ðl2 þm2Þððlþ p1 þ p2Þ2 þm2Þ ; ð47Þ

is the usual s-channel scalar loop integral while

I1 ¼−
λ

6

Z
dDl
ð2πÞD

ðDþ2Þðs1þ s2Þl2

ðl2þm2Þððlþp1þp2Þ2þm2Þ ; ð48Þ

and

I2 ¼
λ

6

Z
dDl
ð2πÞD

2ðlþp1þp2ÞΣ2ðp1;p2;lÞ
ðl2þm2Þððlþp1þp2Þ2þm2Þ2 ; ð49Þ

presents Snyder-type deformation effects within the loop
integral at β1 order. We are particularly interested in the UV
divergence within these two integrals. It is easy to see that
I2 is quadratic UV divergent. An explicit computation
shows that in the D → 4 − ϵ limit this integral reduces to

I1 ¼ λðs1 þ s2Þ
m2

ð4πÞ2
�
4

ϵ
þ 1

3
− 2γE

−
Z

1

0

dz log
m2ðzð1 − zÞðp1 þ p2Þ2 þm2Þ

ð4πÞ2
�

þOðϵÞ: ð50Þ

The integral I2 requires a more detailed investigation.
Writing down explicitly the numerator

I2 ¼
λ

3
ðs1 þ s2Þ

Z
dDl
ð2πÞD

ðlþ p1 þ p2Þ4 − ðlþ p1 þ p2Þ · ðp1p2
1 þ p2p2

2 þ ll2Þ
ðl2 þm2Þððlþ p1 þ p2Þ2 þm2Þ2

¼ λ

3
ðs1 þ s2Þ

Z
1

0

dz
Z

dDl
ð2πÞD

2zð3z − 2Þð1þ 2
DÞðp1 þ p2Þ2

ðl2 þ zð1 − zÞðp1 þ p2Þ2 þm2Þ2 þ finite terms; ð51Þ

where z is the usual Feynman variable. In the D → 4 − ϵ limit the integral reduces to

I2 ¼
λ

3
ðs1þ s2Þ

1

ð4πÞ2
�
1þ1

2
þ ϵ

8

�
ðp1þp2Þ2

Z
1

0

dz2zð3z−2Þ ·
�
2

ϵ
− γEþ log4π− logðzð1− zÞðp1þp2Þ2þm2ÞþOðϵÞ

�

þ finite terms: ð52Þ

We can then find that the 1=ϵ divergence vanishes because
Z

1

0

2zð3z − 2Þ ¼ 2ðz3 − z2Þj10 ¼ 0; ð53Þ

therefore, the whole integral remains finite in dimensional
regularization.
The t and u channels, corresponding to Figs. 4 and 5, can

be obtained from the s-channel formulas above by the
permutations p2 ↔ p3 and p1 ↔ p3, respectively.

The one-loop structure (46) suggests that we should
renormalize the four-point function by introducing a
β-expansion of the coupling constant counter term

δλ ¼ δλ0 þ βδλ1 þOðβ2Þ: ð54Þ

We see that the UV divergence in Is can be absorbed by
δλ0, and the new divergence from I1 by δλ1. The latter is
valid since the 1=ϵ term is proportional to the mass only.

FIG. 3. Bubble diagram contributions to the four-point function
in the s channel.

FIG. 4. Bubble diagram contributions to the four-point function
in the t channel.

FIG. 5. Bubble diagram contributions to the four-point function
in the u channel.
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D. UV divergence in the one-loop, six-point function

Our experience with two- and four-point function shows
that the degree of divergence of each of them is higher than
its commutative counterpart, which suggests that the
one-loop, six-point function can pick up UV divergent

contributions also from the triangle diagram of Fig. 6,
where the black dot represents the β1 vertex which contains
the Σ1ðp1; p2;lÞ term. Explicit evaluation, starting from
(15), gives the following form of the divergent integral in
one channel:

IUV
6 ¼

Z
dDl
ð2πÞD

Σ1ðp1; p2;lÞ þ Σ1ðlþ p1 þ p2; p3; p4Þ þ Σ1ðlþ p1 þ p2 þ p3 þ p4; p5;−lÞ
ðl2 þm2Þððlþ p1 þ p2Þ2 þm2Þððlþ p1 þ p2 þ p3 þ p4Þ2 þm2Þ

¼
Z

dDl
ð2πÞD

ðDþ 2Þðs1 þ s2Þð−l2 þP
1≤i<j≤5pi · pjÞ

ðl2 þm2Þððlþ p1 þ p2Þ2 þm2Þððlþ p1 þ p2 þ p3 þ p4Þ2 þm2Þ ; ð55Þ

with Σ1 being defined in (36). The sum of three Σ1’s
contains also contributions from two additional diagrams
obtained from the diagram in Fig. 6 by shifting the black
dot to the other two available positions in the diagram.
Other channels can be obtained by an appropriate permu-
tation of the external momenta. As we can see, the first term
in the numerator gives rise to a logarithmic UV divergence.
However, we can of course still remove this divergence by
demanding s1 þ s2 ¼ 0. In this case, all nontrivial β1-order
quantum corrections are removed, and we are dealing with
exactly the same renormalization procedure as in the
commutative theory.

V. THE EFFECT OF SNYDER
NONASSOCIATIVITY

The Snyder-type star products discussed in Sec. II are, in
general, nonassociative, except in the case s2 ¼ 2s1, which
means that the ordering of the products matters. Taking into
account integration by parts, from (15) we obtain two
additional types of ϕ4 interactions, giving altogether the
following:

S1int ≡ ðS1intÞ1 ¼ −
λ

4!

Z
ϕðϕ ⋆ ðϕ ⋆ ϕÞÞ; ð56Þ

ðS1intÞ2 ¼ −
λ

4!

Z
ϕððϕ ⋆ ϕÞ ⋆ ϕÞ; ð57Þ

ðS1intÞ3 ¼ −
λ

4!

Z
ðϕ ⋆ ϕÞðϕ ⋆ ϕÞ: ð58Þ

Repeating the computation in prior sections, using ðS1intÞ2
and ðS1intÞ3 in place of ðS1intÞ1, we find that all three variants
of the Snyder-type ϕ4 interaction give the same results at
the first order in β. This result is rather surprising. Each of
the permutation channels contains different inputs, yet the
average over all permutations totally cancels all these
effects. It is, however, possible that going to higher orders
in β, this degeneracy is lost.

VI. ON THE SNYDER-TYPE REALIZATION
WITH s1 = − s2

A particularly interesting result of our tree- and one-loop
level study is that one special combination s1 ¼ −s2
removes all β1-order corrections. As we are going to show
below, it turns out that this point contains peculiar infor-
mation also from the point of view of realizations.
A fundamental quantity in the realization approach to the

noncommutative space is the action of the NC wave
operator on identity:

eiðkx̂Þ ⊳ 1 ¼ eiKðkÞ·xeiFðkÞ ð59Þ

For a general NC coordinate x̂μ ¼ xαφμ
αðpÞ þ χμðpÞ, KμðkÞ

and FðxÞ satisfy the following differential equations

dKμðλkÞ
dλ

¼ kαφμ
αðKμðλkÞÞ ð60Þ

dFðλkÞ
dλ

¼ kαχαðKμðλkÞÞ: ð61Þ

For Snyder-type spaces it is natural to assume that
KμðkÞ ¼ kμKðβk2Þ, since there is no relevant tensor struc-
ture other than the Lorentz/Euclidean metric. Now for the

FIG. 6. Typical diagram contribution to the six-point function.
The β1-order contribution has to be considered as running over all
three vertices in order to complete each channel.
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Snyder-type realization φμ
αðpÞ¼δμαð1þβs1p2Þþβs2pαpμ,

we have

dKμðλkÞ
dλ

¼ kμKðβλ2k2Þ þ λkμ
dKðβλ2k2Þ

dλ
¼ kαðδμαð1þ βs1K2ðkÞÞ þ βs2KαðkÞKμðkÞÞ
¼ kμð1þ βλ2k2ðs1 þ s2ÞK2ðβλ2k2ÞÞ: ð62Þ

One can then easily see that K ¼ 1 when s1 þ s2 ¼ 0, i.e.
Kμ ¼ kμ. Such a realization is called Weyl realization in the
literature, see [45] and references therein.
Furthermore, for Hermitian realizations of the Snyder-

type spaces we have

χμðpÞ ¼ −
1

2
½xα;φμ

αðpÞ�

¼ −
i
2

∂φμ
αðpÞ
∂pα

¼ −iβ
�
s1 þ

Dþ 1

2
s2

�
pμ: ð63Þ

Then, for the Weyl realization where s1 þ s2 ¼ 0 (63)
reduces to

χμðpÞ ¼ −
i
2
βs2ðD − 1Þpμ: ð64Þ

Therefore, (61) reads

dFðλkÞ
dλ

¼ −
i
2
βs2λðD − 1Þk2; ð65Þ

and its solution for λ ¼ 1 is given by

FðkÞ ¼ −
i
4
βs2ðD − 1Þk2: ð66Þ

Finally, the fundamental relation between the product of
two plane wave operators

eiðkx̂Þ ⊳ eiðqx̂Þ ¼ eiPðk;qÞxeiQðk;qÞ ð67Þ

and the star product of two plane wave functions

eiðkxÞ ⋆ eiðqxÞ ¼ eiDðk;qÞxeiGðk;qÞ ð68Þ

is also slightly simplified, namely

Dðk; qÞ ¼ Pðk; qÞ; Gðk; qÞ ¼ Qðk; qÞ − FðkÞ; ð69Þ

since KμðkÞ is now trivial.
It remains to solve for Pμðk; qÞ and Qðk; qÞ completely.

The authors expect that such solution can be found in the
near future.

VII. DISCUSSION AND CONCLUSION

In this article we have studied Snyder field theory with
the action truncated at first order in the deformation
parameter β, producing an effective model on commutative
spacetime. The study is performed by using the functional
method in momentum space up to one loop.
We recall the main points of our analysis: we have

proposed a simple perturbative quantization for the ϕ4

theory on Snyder-type spaces with Hermitian realizations
and have evaluated the one-loop, two- and four-point
functions at β1 order, showing that they give raise to
UV divergences. They are stronger than in the commutative
theory, but nevertheless they can be absorbed by the tree
level counter-terms.
However, the β1 order one-loop, six-point function

receives a logarithmic UV divergent quantum correction
in general, which renders the theory unrenormalizable.
Remarkably, at β1 order, all information about nonasso-
ciativity in the definition of ϕ4 interaction is canceled,
namely one obtains identical results for both the tree and
the one-loop correlation functions independently of the
ordering of the products.
Inspecting the β1-order equations (36), (37), (50), (51),

(55), we find that the correlation functions depend on the
free parameters s1 and s2 only through their sum s1 þ s2. In
other words, one can turn off all nontrivial β1-order effects
by setting s1 ¼ −s2, which corresponds to the removal of
the dependence on the dilatation operator ðx · pÞ from the
definition of the noncommutative coordinates x̂μ in (4).
Generally speaking, the effects of noncommutativity can

only be properly displayed when the star product is treated
nonperturbatively, since any truncation up to a certain order
of the deformation parameter would normally remove
nontrivial effects. However, certain special cancellations
of divergences found after the truncation may remain
partially valid in the full theory [46]. From this perspective
the special features of the point s1 ¼ −s2 found in this work
could maintain their importance. In fact, this special point
does lead to certain nontrivial β-exact structure in the
determination of realizations, as shown in Sec. VI.
As already mentioned above, so far our investigation has

been limited to the first order in the β-deformation
parameter. The full theory has of course different proper-
ties, especially in the UV limit, which could be finite for
some choices of the defining commutation relations. For
example, let us consider the case of the original Snyder
model [28] corresponding to s1 ¼ 0, s2 ¼ 1: in the full
theory the cyclicity condition still holds, so that the
propagators are the same as in the linearized theory, while
the vertices take the form

Gtreeðp1; p2; p3; p4Þ

¼ λ

4!

δðD4ðp1; p2; p3; p4ÞÞ
½ð1þ βp2 ·Dðp3; p4ÞÞð1þ βp3 · p4Þ�5=2

: ð70Þ
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The extra terms in the denominator with respect to
the commutative case improve notably the convergence
properties of the loop integrals in the UV regime, and
would likely render them finite. This should, however,
be checked explicitly. It is also possible that the
problems due to nonconservation of momenta in loops
are solved as in the linearized theory, when the average over
the ordering of the lines entering a vertex is performed.
A rigorous proof of these properties is, obviously,

difficult, since the calculations are rather involved. This
problem is currently under study. Our general formalism for
the generating functional may be a good starting
point towards an investigation of the full theory. We hope
that the special cancellation point s1 ¼ −s2 can be revisited
and play a role within the framework of the full theory too.
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