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Entanglement entropy for 2D gauge theories with matters
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We investigate the entanglement entropy in 1 + 1-dimensional SU(N) gauge theories with various matter
fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement
entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection
sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes,
(2) logarithm of the dimensions of their representations, which is associated with “color entanglement,” and
(3) EPR Bell pairs, which give “genuine” entanglement. We explicitly show that entanglement entropies (1)
and (2) above indeed appear for various multiple “meson” states in gauge theories with matter fields.
Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and
analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is
roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground
state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher
order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the

continuum limit can be understood from the lattice ground state obtained in the HPE.
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I. INTRODUCTION

Entanglement is a key feature, which distinguishes
quantum worlds from classical worlds. Simply saying,
entanglement allows us to know detailed information
about subsystem A once we measure the other subsystem
B, even though we know nothing about each subsystem
A & B separately before we make a measurement.
Recently these entanglement caught attention since it
becomes more and more clear that the notion of
entanglement is one of the key feature to understand
the gauge/gravity duality [1] and emerging smooth space-
time (see for example, [2]). Needless to say, all of the
forces except for gravity in Nature are described by
gauge theories, and furthermore due to the gauge/gravity
duality, quantum gravity in asymptotic anti-de Sitter
space is also equivalent to certain gauge theory non-
perturbatively. In order to understand how the space-time
emerges through the idea of entanglement and gauge/
gravity duality, deepening our understanding of entangle-
ment in gauge theory must be crucial.

Entanglement in spin system is well defined and there
is no ambiguity for its definition. Decomposing the
Hilbert space into “inside” and “outside,” and by tracing
out the “outside” Hilbert space, we obtain the density
matrix of the “inside” states. Its von Neumann entropy is
the entanglement entropy between “inside” and “outside”.
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However the situation is a bit more subtle in gauge
theories. In gauge theories, Hilbert space cannot be
decomposed into two gauge invariant subsystem properly,
due to the local gauge invariance condition, which gives
nonlocal constraints for the allowed states. As a result,
there exists non-local operators such as Wilson loops
which spread both inside and outside, and thus restrict
Hilbert spaces of inside and outside through Gauss’s law
constraints. The absence of the gauge invariant decom-
position brought some confusions for how to define the
entanglement entropy in gauge theories.

The main problem of how to define the entanglement
entropy associated with the nonproduct nature of the
Hilbert space in gauge theories is now solved through
recent works [3—6]. For Abelian gauge theory, Casini et al.
in [3] pointed out that the presence of a nontrivial center,
which commute with all the operators on the inside (Hilbert
space), characterizes the ambiguity of the entanglement
entropy in gauge theories. Clearly this center corresponds
physically to gauge invariant Wilson loop operators pen-
etrating the boundary. They connect inside and outside
Hilbert spaces, and also split the inside Hilbert space into
several different superselection sectors labeled by fluxes of
the penetrating loop. In each superselection sector, the
Hilbert space can now be written as a tensor product of
inside and outside Hilbert spaces 7:[};, ﬂ!,‘m. They allow us
to define reduced density matrix pX such that Trpk =1,
where k is the label for different superselection sectors,
specifying the penetrating gauge flux “representations” at
all boundaries. Then the definition of the entanglement
entropy is given as [3]

© 2017 American Physical Society
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Ser == _pilog(p) = Y _piTrgupllogpk,  (1.1)
k k

where the second term is the weighted average of the
“genuine” entanglement on each sector k with the prob-
ability py, which we mean EPR Bell pairs obtained in
entanglement distillation,

S(pl) = —Trge piy log pis, (1.2)
while the first term is the classical Shannon entropy for the
probability distribution of the variables on the center.' Note
that this classical entropy is different from the genuine
entanglement entropy.

The “extended Hilbert space” definition of the entan-
glement entropy is given in [4-6]. In these, we literally
extend the Hilbert space in such a way that the Hilbert
space is no more restricted to gauge invariant state only

Ogrst|phys) = 0. (1.3)
As a result of this extension, the Hilbert space can now
be decomposed as a tensor products of two (gauge
noninvariant) subsystems without ambiguity. In the
lattice formulation of gauge theories, the extended
Hilbert space can be identified to the Hilbert space of
a spin system, so that one can define the entanglement
entropy unambiguously. For example in the U(1) case,
the explicit calculation becomes possible [7,8], and it
has been shown in [4] that this definition agrees
with (1.1).

In non-Abelian gauge theory, however, the extended
Hilbert space entanglement entropy definition needs an
extension of (1.1), which consists of three terms as [8]

See = —Zl?k log pi + Zpk <Z log dk">
K K i

= i Trzpk log p. (1.4)
k

The first and third term are essentially the same as (1.1),
while the peculiarity of the non-Abelian gauge theory
appears in the second term, which contains the sum over
boundary vertices index i, where i runs all boundary
vertices and k' is the irreducible representation of the
penetrating gauge loop at that boundary with dy; being the
dimension of the representation k’.” Thus the second term
vanishes for the Abelian case since all representations are

n [3], it is also shown that different choices of the inside
operators give different centers and then it is possible to take a
trivial center such that the classical entropy for the sector
distribution part vanishes.

’Note that k = {k',k?,...,k™}, where n, is a total number
of boundary vertices.
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1-dimensional. Here the superselection sector is labeled by
k = {k‘|i € all boundary vertices in 7X }. Since the rep-
resentations in non-Abelian gauge theory are no more one
dimensional, the requirement of wave function being gauge
invariant (singlet) at the boundaries generates a new type of
entanglement between inside and outside states. In other
words, the non-Abelian gauge theory has a new term in
(1.4), which is the entanglement entropy associated with
“color” at each boundary.

Although the appropriate definition is given, definitely
more detailed aspects of the entanglement entropy, espe-
cially for non-Abelian gauge theories, need to be better
understood both qualitatively and quantitatively. A pur-
pose of this paper is twofold: one is to deepen our
understanding of the formula (1.4) in non-Abelian gauge
theories with various matter fields, by explicitly evaluat-
ing the contributions to each of the three terms in (1.4).
This is because the non-Bell pair contributions, i.e., the
first and second terms of (1.4) are less familiar. The other
is to study the vacuum entanglement entropy of non-
Abelian gauge theories through the lattice formulation.
Gauge theories are well defined on the lattice, and
moreover, once we employ the extended Hilbert space
definition, the gauge theory on the lattice effectively
reduces to the one essentially equivalent to the usual spin
system.

The entanglement entropy for the ground state in
non-Abelian gauge theories is especially interesting and
it is well studied by the strong coupling expansion in
the lattice formulation [6,9-11]. In the formulation by
Kogut-Susskind [12], the Hamiltonian for pure gauge
theories (without matter fields) in lattice regularization is
given by [13]

2 . 1
H— 92Y_M > J+—5—> (plaquette terms), (1.5
@ k() Jymd

where a is the lattice spacing, gyy is the bare gauge
coupling on the lattice, and J; ; 1s the generator of the gauge
transformation at the vertex i for the link (ij), which
satisfies jl?j = jjz-i. In the strong coupling limit that
gym — oo, the ground state, which we call the strong
coupling ground state |0),,., is given by the tensor
product of the ground state |0),; of each link as

|0>str0ng = %|0>117 (16)

where |0),; satisfies .7%/|O>ij = 0. Therefore there is no
entanglement for the strong coupling ground state. Note
that plaquette terms disappear in 2 dimensions, so that one
can always obtain this |0)y.,, as a ground state in
2-dimensional pure gauge theories at an arbitrary value
of the coupling constant. In other words, not only the

045020-2



ENTANGLEMENT ENTROPY FOR 2D GAUGE THEORIES ...

ground state obtained in higher dimensional (d > 3) pure
gauge theories at strong coupling limit but also that of
2-dimensional gauge theories at an arbitrary coupling
ground state are given by [0) o, 0N the lattice.

On the other hand, the vacuum in continuum gauge
theories, which we call the continuum ground state, is
manifestly entangled: tracing out the subsystem makes the
rest subsystem into mixed states like the Bogoliubov
transformation. This is not a contradiction, however, since
the lattice gauge theories at the strong coupling limit is far
from the continuum limit. Due to the asymptotic freedom of
gauge theories, the continuum gauge theory with non-zero
renormalized coupling (the IR theory) is obtained from the
lattice gauge theory in the limit of zero bare gauge coupling
(the UV theory).

Therefore, it is important to understand how the strong
coupling ground state approaches the entangled continuum
ground state in the process of the continuum limit. In
generic dimensions, however, solving the gauge theory on
the lattice analytically is very hard exercise, unless we take
the strong coupling limit or the expansion around it. That is
why people use numerical simulations in lattice gauge
theories, which are shown to be very successful. This
situation is a little different in 2-dimensions, since a
2-dimensional pure gauge theory is in some sense “trivial”
due to the absence of local physical degrees of freedom.
As a result, we can calculate entanglement entropy for any
states at an arbitrary coupling constant [14], so that we
can take the continuum limit analytically. Unfortunately,
genuine entanglement, i.e., the third term in (1.4), vanishes
in 2-dimensional pure gauge theories even in the continuum
limit [14] as is expected.

Once we add matter fields to pure gauge theories in
2-dimensions, genuine entangled states emerge due to the
existence of local degrees of freedom. We thus take these
gauge plus matter theories as toy models of pure gauge
theories in higher dimensions, since gauge plus adjoint
matters in 2-dimensions, for example, are expected to
have analogous behaviors as higher dimensional pure
Yang-Mills theories with compactified extra (d—2)
dimensions. While pure gauge theories plus matters
can not be solved analytically even in 2-dimensions,”
we can include effects of matter fields order by order in
the hopping parameter expansion (HPE) for the small
hopping parameter K = 1/(2 + (ma)?), where m is the
bare mass of matter field and ma must be large for the
HPE to work."

In this paper, using the HPE but at an arbitrary gauge
coupling, we demonstrate how the genuine entanglement
entropy emerges for the ground state of gauge plus matter
fields in 2-dimensions. We mainly consider matter fields

*Unless we take large N limit [15].
“The massless theory or the continuum limit with the finite
mass corresponds to K = 1/2, its maximum value.
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in the fundamental representation, but an essential idea
works similarly for adjoint matters and other representa-
tions. Adding adjoint matters is an interesting set-up,
since it resembles the large N Dl1-brane gauge theory,
which is dual to the string theory in the curved space-
time [16].

The organization of this paper is as follows. In Sec. II, we
review the lattice study in [6] for the pure gauge theory in
2-dimensions, which has no local physical degrees of
freedom. Therefore, there is no genuine entanglement in
2-dimensional pure gauge theory. Then in Secs. III and IV,
we add matter fields, and study entanglement of various
meson excited states. Section V gives a short summary of
the first part. Then in Sec. VI, we show at the leading order
of HPE that these meson states appear in the ground state of
this theory, which is the eigenstate of the “transfer matrix”
T with the largest eigenvalue. The transfer matrix is the
time translation operator on the lattice with one time unit
and is related to the Hamiltonian H as 7' = e~%# . Then later
in Sec. VII, we consider the higher order corrections of
HPE and show that the strong coupling ground state and
lattice meson states mix to form the true ground state, and at
the K° order, the ground state of the transfer matrix shows
nonzero genuine entanglement, and we end with discussion
in Sec. VIII on our picture of how the strong coupling
ground state, which has no entanglement, is connected to
the continuum entangled ground state.

Throughout this paper,’ we consider SU(N) gauge
theory with N > 3.

II. ENTANGLEMENT ENTROPY FOR
PURE GAUGE THEORY IN
LATTICE FORMULATION

In this section, we briefly illustrate how the second terms
of the entanglement entropy in Eq. (1.4) appear in the 2-
dimensional pure gauge theory on the lattice formulation
[14], using explicit examples.

We will consider the 7 vertex spatial lattice given in
Fig. 1 as a simple example, which is good enough to see the
essential points, and one can easily generalize the results in
this section to more general cases.

Consider following wave function

R(U)=yp(U)= FET(U)(UE U UpUsUssUsgUgrU7y),
(2.1)

where U;; € SU(N) is the spatial gauge link variable

between the vertices i and j, which satisfies Uj = U,Tj,

’For N = 2 case, the analysis, especially in Sec. IV, is slightly
modified since meson is un-oriented due to the fact that
fundamental = antifundamental for SU(2).
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FIG. 1. Toy seven vertex lattice setup. Black vertices and solid
lines belongs to inside and white vertices and dotted lines to outside.

and J(F(U2 is the character for the ‘fundamental represen-
tation” F.

Straightforward calculation shows that the reduced
density matrix becomes

PHYSICAL REVIEW D 96, 045020 (2017)
(U2, Us3, U711V 12, Va3, Vi)

:/dW34dW45dW56dW67)(F
X (U71U1Ups W3y WysWseWe7)
XX F(Wg7 Wgs ths W§4 V§3 VIz V%)

1
= —xp(Un U U Vi Vi, Vi),

N (2.2)

where we used (6.19) and integrated out outside-link
variables W3y, Wys, Wse, We,. Therefore the square of
the reduced density matrix is

1 +
(U1, Uss, Ug1[p?|V12, V3. V) = m/dledW23dW71)(F(U7lU12U23W;3W12W;1))(F(W71W12W23V;3V12V71)

1 F oot ot
= ﬁ)(F(U71U12U23V;3V12V71)

1
= W<U12’U23’ UnlplVi2, Vs, Vi) (2.3)
where again we used (6.19). This implies
Trp = (2.4)
As a result, we obtain an entanglement entropy Sgg as
.0
Spp = —Trplogp = —hn%a—Trp” =2logN = n,logN. (2.5)
n— n

This is consistent with the “area-law” of the entanglement entropy [17], where the boundary is consists of two sites, i.e., site
3 and 7, so the “boundary site number” n, = 2. To see this further, as an example of n, = 4, we consider a different
separation of in and out regions in such a way that link 2-3 and 5-6 are outside and others are inside. Then using (6.19) and
(6.20), it is straightforward to check the reduced density matrix and its square become

(Uinlp|Vin) :/dWZSdW56)(F(U7lU12W23U34U45W56U67))(F(V27W;6VZSV§4W;3V}sz;l)

= WZF(U&UH UnViLViVi xe(UssUssVisViy), (2.6)
1 f
(UinlP?|Vin) :N4/dledWﬂdWm)(F(UmUﬂU12WIQW;1W67))(F(W67W71leVIQV%Vgﬂ
X/dW34dW45J(F(U34U45W15W§4))(F(W34W45V15V§4)
1
= F<Uin|p|vin>v (2.7)

so that we obtain

®We take the temporal gauge A, = 0 throughout this paper. As will be seen later, this R(U) is the eigenfunction of the transfer
matrix [14].
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Sge = 4logN = n,log N, (2.8)
for n, = 4. It is easy to see in general that
SEE = ny log dR’ (29)

where dy is the dimension of the irreducible representation
R. These are the essential results of [5,14]. Before we end
this section, we have several comments.

Since there is no physical degrees of freedoms in the
2-dimensional pure gauge theory, the result (2.9) cannot
represent the genuine entanglement in the spirit of the
information theory, which is equivalent to the number of
Bell pairs obtained in the entanglement distillation. See
Sec. 4 of [6], for example.

All calculations in the above are done in the extended
Hilbert space definition [4—6]. The Hilbert space in the
gauge theory cannot be written as a tensor product of inside
Hilbert space and outside Hilbert space. In the above
calculations, however, we trace over all of the out states
without worrying about the gauge constraint. This is
possible only in the extended Hilbert space.

In the extended Hilbert space, we can define the
entanglement entropy, which consists of three contributions
as is given (1.4). Different superselection sectors are
distinguished by the electric flux for the Abelian gauge
theory and by the quadratic Casimir for the non-Abelian
gauge theory at each boundary, and the different Casimir
corresponds to the different “spin,” or representation. Due
to the Gauss’s law in 1 4 1 dimension, we have only one
sector, py = 1, in our wave function (2.1), restricted in the
fundamental representation. Therefore (2.9) gives only the
second term in (1.4), as the first and the third term in (1.4)
vanish.
|
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Clearly this entanglement entropy (2.9) is associated
with the fact that in and out link variables connected with
each other at the boundary vertex cannot take values freely
due to the gauge invariance constraint, and this gauge
invariance correlates the two link variables. As a result, this
correlation produces the entanglement obtained in (2.9),
which is the “color entanglement.”

III. ENTANGLEMENT ENTROPY
FOR SINGLE MESON STATES

A. 2d gauge theory with the fundamental
scalar field

Now we consider the 2-dimensional gauge theory with
the fundamental scalar field. Again we consider the Fig. 1
lattice setup. For each vertex n, there is a scalar field ¢,,, in
addition to the link variable U;; = Uj-l- on each link (ij).

Let us consider the following wave function,

1 + ! 7T
(g, Ujj) EN[ 1U12U23U34U 505 H e, (3.1)
m=1

N Js TN
T

(3.2)
v\Y

where A is the normalization constant. This is a single
“meson” state composed by a scalar “quark” (at site n = 1)
and “antiquark” (at site n = 5) pair. For the wave function
of the scalar field to be normalizable, we have introduced
the Gaussian suppression factor ¢™'? with the Gaussian
parameter y. The normalization constant A is obtained
from the condition

1= /[d¢1d§02"’d¢7]/[dU12dU23"'dU7l]lP*((Pi7Uij)lp((/’ivUij)’

where we use (Al) and (A10). Similarly, using (A1), (A2), and (3.2), the reduced density matrix p(@in, Uin; Pin» Vin)

becomes

p((pinv Uin; ¢in7 Vin)

= /[d¢4 T d¢7] /[dW34 e dW67}(D((pin’ ¢out; Uim Wout)q)* <¢in’ @out; Vim Wout)

-3N 3 .
R i Lot —Lpt
= <;> [((/)IUIQVE(.{’]) | | 5P SWI%]’
n=1

and a square of the reduced density matrix thus is given by

045020-5



AOKI, IZUKA, TAMAOKA, and YOKOYA

P, U, V) = / (dpdW)p(p. U W)p(. W: 4. V)

N \y

p((pin’ Uin; ¢in’ Vin)’

where we have performed the W, integral using the
formula (A10) in the third equality, and then the ¢ integral
using (A2) in the fourth equality. From Eq. (3.4), the
entanglement entropy is obtained as

Here
ment

SPund: — _Trplogp = logN. (3.5)
log N simply represents the color charge entangle-

between scalar quark and antiquark in the funda-

mental representation.
A few comments are in order.

®

(i)

This log N term corresponds to the second term
of (1.4). First of all, since a color is neither physical
nor observable, this term cannot be the genuine
entanglement related to the Bell pair, i.e., the third
term in (1.4). A reason why Eq. (3.5) does not satisfy
the area-law of the entanglement is simply because
the flux takes the fundamental representation at the
“boundary vertex” 3 only but the trivial representation
at the “boundary vertex” 7. Furthermore, since we
have already fixed the representation in this setup, the
first term of (1.4) cannot appear in Eq. (3.5).

We can easily show the following. The entanglement
entropy is given again by (3.5) for the wave
functions

(3.6)
J

¢§U56U67U71§01,

1
Y(@;. U;)) = NG [1(@ U ,Up3UsyUys®@s UL US, U, U ) H e P}

PHYSICAL REVIEW D 96, 045020 (2017)

-3nv]2 3
- [1 <f> } H ~Lonon— zdlnd)n/[d(de]((plU12W12¢])(¢1W12V12¢l) 1(@}01+ @302+ 01 03)

(3.4)

(iif)

B.

instead of (3.1), while it vanishes if all fields (quark,
antiquark and all link variables) belong to either
inside or outside such that

PyUssUssUgr 07,
(3.7)

€0I(ﬂ1, €0IU12U23§03»

as expected.
The situation is very similar to the pure gauge theory
in Sec. II. Regarding that the link variable Us,

made up of two scalar fields ¢s¢ and q)gd as
Usﬁcdz(psc(pgd, the result in Eq. (2.5) can be
understood as follows. The argument of log for
the entanglement entropy is the dimensions of the
representation, i.e., the entanglement associated with
color numbers. The coefficient in front of log N
counts a number of boundary vertices in which the
gauge flux penetrates. As we will see in the next
subsection, the adjoint matter field gives the
log (N> — 1) instead of log N contribution to the
entanglement entropy.

2d gauge theory with the adjoint scalar field

For completeness, we show the result with the adjoint

matter field ®. We take

: (3.8)

i=1

for the wave function with the adjoint scalar field ® at the vertex 1 and 5, where £ is the Gaussian suppression factor. The
lattice setup is same as Fig. 1.
Applying (A7) and (Al1) to the condition

1
= |N|2/

the normalization constant is determined as

[dD][dU (@, U1,UpsUsyUss®s Uls U, U Ul )y (@1 U Uns Uy Uys@s U UL, U5, UT) T [ e

045020-6
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116 [ gV
WN2—1< —) . (3.10)

Then, the reduced density matrix is given by

<éin s Vin ‘p|q)m ) Uin>

|N|2H _ﬁT@z_ﬁTr@z/dthm H e‘Z/sz/dW][dXS};(((I)lU12U23W34W45X5W15W;4U;3U72)
i=4.6,7

oty 2
X 1 (@ V1,V Wiy Wys X W45 W34V£3 Vlrz)e 2PTeXs

4p 2,5 AN oyt IR TAN 2 —fTr®2—fTrd?
NI o] 2(URULO UL Uss VE VD VipVas) [ [ e T omer (3.11)
P

:=A

and its square becomes

<q~)in’ Vin‘pz‘q)inv Uin)

ye / dX,)[dxs) [ e / (X AW (UL Uy U Uss Wis W X, Wy W)
=23
= 2 3 2 52
AWEWLX W Wos ViV, @, Vip Vi) e 2T [ T e Ml -/mee

i=1
A \/@ m )3V
() 505

3 2
X (UL UL® U Uy Vi Vi@ Vi Vi) [ [ /Moo
i=1

1 -
= 257 (@in, Vin|p|Pin, Uin) 3.12
it @i VialplPi U) (3.12)
Therefore, the entanglement entropy is obtained as 1 a2 [\ N
—e=—— (3.15)
Sgr = log(N? — 1), (3.13) NP N <a>
which confirms that the argument of log counts a dimen- It is straightforward to show

sion of the representation for the flux at the boundary
vertex.

C. Entanglement entropy for a single meson
with the multiple splitting

Let us consider the situation where vertices 1,2,4,5 and
links (12),(23),(45),(56) belong to inside and the rest
belong to outside. See Fig. 2.

Let us consider the following wave function 4
1 FIG. 2. Black vertices and solid lines belong to inside and whit
= __ [t .2 g to inside an e
lP(¢i ’ UU ) TN [(ﬂz U23U34UssUse U67907] vertices and dotted lines to outside as before. Scalar quark/
—tl 0 syl antiquark are at vertices 2 and 7 and gluon is penetrating at the
H ez H e = (3 '14) boundary vertices 3, 4, and 6 but not 1. The color indices for the
m=1245 n=3,6,7 reduced density matrix can be seen pictorially in the right figure.
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inside outside inside outside inside outside
() @ () @ @ @
@ e O @ @ @
(a) (c) (e)
inside outside inside outside inside outside
e , ® [ @ [ ) ®
@ @@ @

(b) (d)

FIG. 3.

®

Two meson configurations which we consider in this subsection.

1 - - N + Ut
Pin = le/[dfﬂdW] (@hU»W34Uys U56W67§07)(¢7W27V56V45W§4V;3¢2)

% e—a(!ﬁ;@s“r@zf%‘*‘!ﬁ;(ﬁﬂ e‘%(‘ﬂ'lr(ﬂl +¢;(ﬂ2+¢1€04+¢§ ?s )—%(05'1'1751 +¢;¢2 +¢Z¢4+¢§¢5)

M \a

This reduced density matrix can be shown pictorially in
Fig. 2. We thus obtain

1
Pizn = Fpin’ (3.17)
SEE = 310gN, (318)

which is again consistent with the second term in (1.4),
since a number of boundaries on which the penetrating flux
of the fundamental representation exists is n, =3 (at
vertices 3, 4, and 6). The boundary 1 does not contribute
since there is no penetrating flux there.

So far, we obtain the entanglement entropy

Spp = ny log dg, (3.19)

where dp is the dimension of the representation R, and 7,
is the number of boundaries on which there is nontrivial
flux in the representation R of the gauge group.

IV. ENTANGLEMENT FOR MULTIPLE
MESON STATES

We next consider multiple meson states and evaluate
their entanglement entropy. In Sec. IV A, we first consider a
two meson state where two meson excitations do not
overlap each other. Next in Sec. IV B, we consider a
various types of overlapped two meson states whose
excited fluxes go through the same boundary. We classify
these states as in Fig. 3, and consider the entanglement

—4N . . + # a
: <ﬂ> (95U Vis2) e (Uas Use Vi Vi e doiontomntioctaios) Sood)

(3.16)

|

entropy for all of these cases. In Sec. IV C, we consider a
four meson state where all excited fluxes penetrate the same
boundary.

One of the main differences between these multiple
meson excitations and single meson excitations in the
previous section is that we need to decompose the product
of the same link variables of multiple meson excitations at
the same boundary into a sum of irreducible representa-
tions. As a results of this decomposition, we have several
different superselection sectors, labeled by the irreducible
representation R of the penetrating flux. This results in
nonzero contribution to the first term of the entanglement
entropy in (1.4), which is the Shannon entropy associated
with the superselection sector distribution.

In this section, we again use the lattice setup in Fig. 1.

A. Two mesons without overlapping

We first consider a two meson state without overlap.
Explicitly, let us consider the following wave function,

‘P((pia Ulj)

~

1 oo,
=V (@iUssUasUng) (@3Uz3Usaga) [ [ 17,
i=1

(60"
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A straightforward calculation shows that the reduced
density matrix and its square are given by

Pin(@. Us . V)

y 2 g\ 3N vt il T
- (ﬁ) (;) (@1V71U7101) (93U V33h2)

3
X H e 30l (4.3)
i=1
) 1
(@ Ui, V) = 25 im(0. Ui V), (4.4)
Thus the entanglement entropy is
Sge = log N> = 2log N, (4.5)

which is simply the twice of the single meson result (3.5),
and can be understood from (3.19).

B. Two mesons sharing the same boundary

We next consider several types of two overlapping
meson states whose excited fluxes penetrate the same
boundary, as shown in Fig. 3.

1. Case (a): Opposite meson direction
with 4 (anti)quarks at different positions

Let us consider the following state corresponding to
Fig. 3(a),

‘Pa((pi’ Uij)

1 . o 7 .
N (@3U23U34Uss05) (95U UlsUsp3) H e,
a

n=1
2\ 2 —7TN
2 _ () (2
v = (5) )

Overlapping links need to be decomposed into a sum of
irreducible representations. Explicitly, let us consider the
link variable between 3 and 4 vertices. Since there are one
fundamental (Us4) and one antifundamental (U§4) links,
this state split into a sum of “singlet” and “adjoint” states as
follows. Let us first rewrite our state as

(4.6)

(4.7)

Lpa((piv Uij)

1 T
=N (03 Usapsms) (04 Uss3) H e~ (4.8)
a

n=1

where @;_,;’s are defined by
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((ﬂ;—a)a = ((ﬂ;Uza)a» (4.9)
(9640 = (9UsUks)o (4.10)
(@a—s)® = (Ussps)“. (4.11)
We then decompose this state as
((/’;3 U34(P4—»5)((PZ_>4U§4(P3)
= (D), (Pus)”; ((U34)ab(U;4)ij - ]1,5“,'5";;)
+ % (0 303) (04 4Pams) (4.12)
where
(®3)/, = [(403)-’ (@3-3)0 = %5-’;(40L3rﬂ3)] :
(Pye)”; = |:(ﬂsz_>5((ﬂg_>4)i - %55(#2%4(94%]' (4.13)

As mentioned, the first and the second terms in the r.h.s.
of (4.12) represent the adjoint and the singlet states,
respectively.

The reduced density matrix for this state becomes

Pin ((pinv Uin; ¢in7 Vin)

1
= Wﬂ(])(ﬁl)im Uin;¢in9 Vin)

1
+ (1 —m)ﬂ(adj)(fﬂin, Uin; $ins Vin)» (4.14)

where

p(l)((/’in’ Uin; @ins Vin)
4

2 _4N
a4 o
N (?) (@S Uns3) ($5V33s) [ [ e72mon s,

n=1

(4.15)
p(adj)(goinv Uin; Qbin’ Vin)

72 T\ —4N + Jr ; 4 o _1{/)745
TN \y (@S U V) (pls) [ [ e2omon st

n=1
- in» Uin; ins Vin s 4.16
N2 — 1p(1)((p1n ¢ ) ( )
and these matrices satisfy
Trpy = Trpay = L. pfyy = Py (4.17a)
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1

2 _ _

Pag) = N2 _ 1P POPet) = PaaP) = 0-
(4.17Db)

Using these relations, the entanglement entropy for this

state W, is given by’

0
SEE = —hﬂ} - Tr/)"
n—

on

. 0 1 1\~ 1 n—1
__,1353}%:%<W+<1_W) <N2—1> )

1 1 1 1
= — WIOgW‘F I—W log l—m
1
+ (1 —m) 10g(N2 — 1)

= log N2.

(4.18)

In the third line, the first two terms correspond to the
Shannon entropy for the superselection sector distribution
(py = 1/N* and p(,q = 1 — 1/N?), i.e., the first term in
(1.4), while the third term corresponds to the dimension of
the adjoint representation, i.e., the second term in (1.4). On
the other hand, since the genuine entanglement, the third
term in (1.4), is absent here, we cannot extract any Bell
pairs from this state.

2. Case (b): Two excited mesons in the same direction
with 4 (anti)quarks at different positions

Instead of the wave function (4.6), we next consider the
state

Yy (@i, Uij)

1 T
N, (@3U23U34U505) (93U3aUssUsps) H e,

n=1
2\ 2 TN
2 _ (T ("
Aol _<N> <7> ’

where quark-antiquark pairs lie in the same direction as
Fig. 3(b). In this case, we can decompose the state into
“symmetric” and “antisymmetric” states. Similarly to the
previous case, the reduced density matrix becomes

(4.19)

(4.20)

Pin ((pinv Uin; ¢in’ Vin)

N+1
= Wﬂ(sym)((ﬂim Uin; $ins Vin)
N-1
+ a7 Plasym) (¢inv Ui ¢in’ Vin)’ (421)
2N
"We here use lim,_, ‘)0% = AlogA and lim,_,; ‘9*5—:' = logA.
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where these matrices satisfy

Trp(sym) - Trp(asym) =1,
2

2 _
p(s)’m) - N(N+ l)p(sym)’ (4.2221)
5 B 2
p(asym) - mp(asym)’
P(sym)P(asym) = P(asym)P (sym) = 0. (422b)

Therefore the entanglement entropy for ¥, is evaluated as
. 0 N+ 1\ 2 n=1
Spep =—1 —
EE nlf?;an { ( 2N > (N(N+ 1))

' (NJ)" (N(Nz— 1>>H}

B {N+11 N+l N-1, N—l}

N 8N TN %o

N N+110 N(N+1)+N—110 N(N-1)
N BT N BT
=log N2 (4.23)

The result is very similar to the previous case: The first two
terms in the second equality correspond to the Shannon
entropy for the superselection sector distribution with
Psym = (N + 1)/(2N) and Pasym = (N - 1)/(2N)7 and
the next two terms correspond to the color entanglement
with dyy, = N(N +1)/2 and dyeym = N(N — 1)/2, while
there are no Bell pairs in this state.

3. Case (c) and (d): 4 (anti)quarks at the
same positions

In the previous two examples, that entanglement entropy
for two mesons in different quark-antiquark positions is
log N2, which however does not contain any Bell pairs. We
here consider two meson states in the same (anti)quark
positions, which are shown to have the different entangle-
ment entropy. However, again all contributions come from
non-Bell pair parts.

Let us consider the following two wave functions,

1o, T
N (0 3Ussams)’ He_%q’”"’", (4.24)

n=1

ch((piv Ul]) =

Y, (: Uj)

1 L
= J\Td ((/’La Uss@ss) ((ﬂLs u 24(P2q3) H =3,

n=1

(4.25)
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Nl =Ng[?

- 2N(]]\/]4+ ) (g) o (4.26)

which correspond to two meson excitations in the same
and opposite directions at the same (anti)quark positions,
in Fig. 3(c) and (d), respectively.

The reduced density matrices for
become

these states

Pe.in ((pina Uin; ¢in7 Vin) = P(sym) ((pin’ Uin; ¢in7 Vin)7 (427)

N+1
pd,in(win’ Ui} din. Vin) - Wp(l)(goin’ Uin; ¢in Vin)
N-1
TN Plad) (@ins Uini Pins Vin)-

(4.28)

where p(oym) satisfies the relation (4.22a), while p(;) and
P(agj) satisfy the relation (4.17). Note that p. does not have
P(asym) Since identical scalars cannot form antisymmetric

combinations. Similar calculations as before give the
entanglement entropy as

N(N +1
SC.EE = 10g¥ s (429)
N+1 N+1\ N-1. /N-1
Sa.ee {2N Og( 2N )+ 2N Og( 2N )}
N -1
log(N? — 1). 4.
+N og(N*—1) (4.30)

For the case (c) in the same direction, the entanglement
entropy is given solely by the color entanglement of the
symmetric representation without Shannon entropy for the
superselection sector distribution, while for the case (d) in
the opposite direction, both Shannon part and the color
entanglement part appear. Again there is no Bell pair in
both cases.

4. Case (e) and (f): Only 2 (anti)quarks
at the same position

To make the classification complete, we consider the
following wave functions,

7

1l _pt
lpe(q)iiUij) = ((0;_,3U34§04_,5)((01_)5U34q)3) | | e ;(ﬂn(ﬂn’
e

n=1

(4.31)

1 T
Yy (i Uij) = /\Tf (fﬂg-s Uss@as) (fﬂz Usas_s) H eI,

n=1

(4.32)
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)"

where mesons are in the opposite and the same directions
with 2 (anti)quarks are at the same position, corresponding
to Fig. 3(e) and (f), respectively.

The reduced density matrices become

Vel = [Ny = (4.33)

Pe.in (goin’ Uin; ¢im Vin)

1
= in» Uin’ @ins Vin
N/)(l)((pm ¢ )

1
+ (1 - ﬁ)ﬂ(adj)((ﬂm, Uin; hins Vin) (4.34)
pf,in((pin’ Uins ¢in7 Vin) = p(sym)<(ﬂinv Uins ¢inv Vin)’
(4.35)
where  p),  prg), and  pym) satisfy the relation

(4.17) and (4.22a). The resultant entanglement entropy
becomes

S L) 1+ 1= Y 1og (12
= —q—log— ——]lo -—
.EE N N N) 8 N

+ <1 —%) log(N? - 1), (4.36)

N(N + 1)

5 (4.37)

Sf,EE = log

Again, for the case (f) in the same direction, is given
solely by the color entanglement of the symmetric
representation without Shannon entropy part, while for
the case (e) in the opposite direction, both the Shannon
part and the color entanglement part appear. Both states
have no genuine entanglement.

C. Four mesons at the same position

Let us consider a more complicated example, four
mesons at same position as is given in Fig. 4. Our wave
function is

Y(p, U) = = 03Uz’ [0, US 5] H e S0l

i=1

Z|~

(")) (¢ p) ZHE zf/lf/)l

Z|~

},8 P TN
VT TANN+ DN +2)(N +3) <}> » (438)
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inside outside
O > Q@
@ O
O > @
@ < O

FIG. 4. Four mesons we consider in this subsection. For
simplicity, we consider the case that a distance between quark
and antiquark is one lattice spacing for all four mesons.

where we define ¢ = ¢3 and ¢ = Uz4¢4. We will omit the

. vt .
damping factor such as [[_, 72”1 from now on just for
simplicity.

One can decompose our wave function as follows.

Y(p,U) = % (‘Pl(cp, U) +¥re_q (0, U)

where
Y (0, U)=——(¢03)2(0h04)?, 4.40
(p,U) NV T 1)(403403) (P104) (4.40)
lPNl—l(ﬁO’ ) N+2(403(/)3)((/’4404)[(¢3U34€04)(¢4U34fﬂ3)
s T
N (P303) (@404)], (4.41)
Yine oy (n13) (0. U) = (PiU3404) (0} US4003)°
- +2(¢3¢3)(¢4¢4)
2(p3Us04) (@04 Usy03)
1
Nl ————(0i0s) (@) | (442)

Here R of Wg (¢, U) denotes the irreducible representation
of SU(N). Note that above Wy, Wn2_; and Wine(n_1)(n43)

are not normalized at this moment. Like the case (c) before
for two mesons at the same position, anti-symmetric
combinations disappear. See Appendix C for the derivation
of (4.39). Since these wave functions are mutually orthogo-
nal, our reduced density matrix also becomes the sum of
each sector as

(4.43)

$) = > pror(9.9),
R

where R = 1,N* — 1 and N*(N - 1)(N + 3).
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From (4.40)—(4.42), together with the normalization that
Trpr = 1 for each pg, we obtain®

pi(@. @)
NN+ 1)(1\¢4+ 2)(N +3) (0303 (#30)? (;) -
(4.44)
pne-1(@. 9)
o () el
< @il - wloo@iao|. @as)
PNt (N-1)(N+3) (9: @)
v () [y
—N%Ewhmﬂ%(wwmﬂ%)
s e @) )| (4.46)

while (4.38) directly gives the reduced density matrix as

p(.d)

]’4 3N
T 6NN + 1)(N +2)(N +3) <?>

x {(¢§¢3)2(¢§¢3)2 + 4(@ips) (Bi0s) (@503) (D5hs)
+ <¢£¢3>2<¢§¢3>2} | (4.47)

A comparison of these with the formula (4.43) yields

_I(N+2)(N+3) _2(N-1)(N+3)
PL=6"nv+) © PM1T3 N2
(4.48)
1 NN-1
PIN(N-1)(N43) = gm. (4.49)

Since these density matrices satisfy the relation

1
PRPR = d_‘SRR’pR7 (4.50)
R

*Here we omit the damping factor [, e 5¢:0: 1),
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the resulting entanglement entropy for this state is
given by
R )

.0 . 9 ( Pk
See =~ T =i > 5 (28

- —ZpR log pg + ZPR log dg.
R R

(4.51)

where dy is the dimension of the irreducible representation
R. Equation (4.51) corresponds to Eq. (1.4) with the
vanishing Bell pair term.

V. COMMENTS ON THREE CONTRIBUTIONS
TO THE ENTANGLEMENT ENTROPY IN THE
EXTENDED HILBERT SPACE

We have discussed the entanglement entropy for the
1 + 1 dimensional non-Abelian gauge theory on the lattice.
In the extended Hilbert space definition, we have three
contributions to the entanglement entropy as (1.4). In this
section, we illustrate these three contributions, by consid-
ering the following three examples: (1) two spins, (2) the Z,
gauge theory on 1d spatial lattice and (3) the SU(2) gauge
theory with the fundamental scalar field on 1d spatial
lattice. All of these examples give the same mathematical
structure in the extended Hilbert space definition and result
in the same values of entanglement entropy; however, the
interpretation differs for each cases. These viewpoints are
probably not new for experts, but we think it is still useful
to present it here.

A. Two spins

Let us consider two spins, whose Hilbert space is a tensor
product of left and right spins and both of which takes two
values (&), which is

H = [E)ere ® [F)righe = {I++), [+=), [=+). [—=)}.

(5.1)
If we consider following specific state,
) = = )+ s ) (52)
VG vz '

clearly this gives entanglement entropy Sgr = log2. This
represents the genuine entanglement since one can extract
this by entanglement distillation.

B. Z, pure gauge theory on 1d spatial lattice

Instead of above two spins, let us consider a Z, pure
gauge theory on the 1d spatial lattice. To simplify the
argument, we take an extreme situation that the space is
composed of only two links, (12) and (23), with the

PHYSICAL REVIEW D 96, 045020 (2017)
| |+ or =

! OT . T . T

°

T T

FIG. 5. Due to the Gauss’s law constraint, the physical Hilbert
space is 2-dimensional for the Z, pure gauge theory on the 1d
spatial lattice. Here £ represent “electric fluxes,” which label
superselection sectors.

periodic boundary condition (vertices 1 and 3 are identical).
See Fig. 5. Each link variable U;; takes + values and the
corresponding basis is denoted by |+),, which satisfy
63|%),, = £|*£),,, where Pauli 65 is a link operator. The
non-trivial gauge transformation is given by acting 6, on
both links (12) and (23). Here 6; is the electric flux
operator. See Sec. II of [4] for more detail. We have
eigenfunctions of 61,

), ==

"= (5.3)

(o, £ =)o),

where the eigenvalue + represents the electric flux on the
corresponding link. Therefore, there exist only two inde-
pendent gauge invariant states in this setup, which are given
by |++),, or |[==), . Note that states such as [+—), or
|[—+),, are not allowed. It is not gauge invariant due to
Gauss’s law; the electric flux cannot take different values
between (12) and (23).

However, in the extended Hilbert space, we allow
nongauge invariant states, then the Hilbert space becomes

H= {|++>01’ |+_>0‘] ’ |_+>o‘17

__>01 }’ (5 4)
which gives the same structure as (5.1). Under this setup, let
us consider the following specific state

1 1
lw) =ﬁ|++>al +ﬁ|——>gl-

Clearly the state (5.5) shows the entanglement entropy
See = log 2 in the extended Hilbert space definition due to
mathematically the same structure as two spins case.
However physical interpretation is different.

In physical Hilbert space, the two physical states
|++),, and [=—), can not be mixed with each other by
any “local” gauge invariant operation.9 This means that
|++),, and [-—), belong to different superselection
sectors. In addition, in physical Hilbert space, allowed
states are |++), and |-—), only. Therefore once we fix
the superselection sector (either + or —), then physical
Hilbert space shows manifestly a tensor product structure

(5.5)

o]

’For example, if one want to convert |++) 5, into |[—=), by
using only local operations, one must have unphysical |+—) ,or
|—+>(,I as a intermediate state.

o
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-+ 1+ + =) =)
Pinside Poutside Pinside Poutside

FIG. 6. Due to gauge singlet condition for mesons, Hilbert
space for quark-antiquark color configuration is 1-dimensional.
=+ represent color charge.

between inside and outside. Therefore Spp = log?2 is not
the genuine entanglement entropy, but rather should be
interpreted as the distribution entropy associated with
superselection sectors, which is given by

. 1
S = —Zp,-log p; with py = 3 (5.6)

where =+ represents the electric flux at the boundary. This is
a typical example of the first contribution in (1.4).

C. SU(2) gauge theory with fundamental matter

Let us consider again 1d spatial lattice in Fig. 1, where
vertices 1, 2, 3 and link (71), (12), (23) are inside and the
rest are outside. We consider the wave function for the
excited meson which is given by

1 1
lP((oi’ Uij) = N [(pg U34§04} = N [q)jnsideaq)gutside] ’ (57)
where we omit the Gaussian factor for the normalization,
but keep explicitly the color index @ = + in the funda-
mental representation. We denote @3 = @j,q. and
Pouside = Uzas, where link (34) and vertex 4 are both
outside. This is the one we studied in Sec. I1I. Note that this
wave function is gauge-singlet. We focus on the color

degrees of freedom for ¢1Tnside and @gyide- Taking a map as

g”;rnsidei = |i>inside* (583)
¢§utside = |:l:>outsidﬁ:7 (58b)
then the meson wave function (5.7) becomes
W) = = ) + =) (5.9)
G 2l '

See Fig. 6. Mathematical structure is the same as Sec. V B.
In extended Hilbert space, we include gauge-nonsinglet
|[+—) and |—+) states and the Hilbert space becomes

==}

then we have Sgr = log2 for the entanglement entropy.
However physics is different again; This log 2 is due to the
“color” entanglement, which is associated with the color
singlet meson between inside and outside (anti)quarks.
Note that here we have only one superselection sector, the
fundamental representation at the boundary. Thus the first
contribution of (1.4) vanishes. In this way, one obtain color

H = {|++),

+-),

—+),

(5.10)
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entanglement associated with all the boundary with the
dimension of color representation as

S=> logd;,

in each superselection sector, where i represents all
boundary vertex and d; is the dimension of the color
representation.

Note that since gauge singlet condition prohibits the
color configuration |[+—) and |—+), one cannot destroy the
color entanglement by LOCC. This implies that one cannot
extract the entanglement by the distillation, just as the same
as superselection sector prohibits [+—), and |-+), in
Sec. VB and one cannot extract the entanglement by the
distillation in that case.

(5.11)

Summary

We calculate the entanglement entropy for a specific
state in three cases. For all cases, the extended Hilbert space
is constructed as a tensor product of 2-valued (£) degrees
of freedom at inside (left side) and outside (right side),
giving the same structure (5.1), (5.4), and (5.10). Thus the
states (5.2), (5.5), and (5.9) automatically give the same
entanglement entropy log 2. However the interpretations for
the results are different.

In the two spin model, there is no constraint in the
system, i.e., the extended Hilbert space is just the physical
Hilbert space itself. In other words, there is no extension of
the Hilbert space. Then we can interpret the entanglement
entropy as just the number of Bell pairs, the third
contribution in (1.4).

In the Z, pure gauge theory case, the states |++), and
|__>m are separated by the gauge constraint, i.e., these two
belong to different superselection sectors. Then the entan-
glement entropy just originates from the probability dis-
tribution for the each sector, becoming the Shannon
entropy, the first contribution in (1.4).

In the SU(2) gauge theory case, although [++),
and |——), belong to the same superselection sector
(fundamental representation at the boundary), the color
degrees of freedom =+ is not observable. Since the entan-
glement entropy here is associated with color, it should be
nonextractable, and it corresponds to the second contribu-
tion in (1.4).

Lesson from the second and third examples is that there
appears the entanglement which cannot be extracted by
local operations when we consider entanglement in gauge
theories. This is because gauge theories prohibit the local
operations which break the gauge invariance.

VI. TRANSFER MATRIX AND HOPPING
PARAMETER EXPANSION

In the previous sections, we consider the entanglement
entropy for various states, which are chosen by hand, in
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order to demonstrate how the first and the second con-
tributions in (1.4) appear in the 1 4 1 lattice gauge theories
with scalar fields. Our next task is to calculate the
entanglement entropy for the ground state of the 1+ 1
dimensional SU(N) gauge theories with the fundamental
scalar field on the lattice. We are particularly interested in
how the genuine entanglement, i.e., the third contribution in
(1.4) shows up in this theory. In this section, we give several
definitions and formula useful for this purpose. The
calculation of the entanglement entropy will be given in
the next section.

A. Lattice action and transfer matrix

Actions for gauge field and fundamental scalar field on
the 2-d lattice are denoted as

S=38c+Sy. (6.1)
Explicitly the pure gauge action S is given by
1
SG—ﬁZtr F)+U,(F)-2). p=
Gyma®’
(6.2)

where the plaquette Up ;(F) is defined as a minimal closed
loop in the 2-dimensional (Euclidean) space-time as

Upji = U,T,OU,H@.]U;A’OU:?’P (6.3)
F stands for the fundamental representation, i.e., U(F) is an
N x N unitary matrix for G = SU(N), /i is the unit vector in
the p direction (4 = 0, 1 represent Euclidean time direction
and space direction, respectively), gy is the bare gauge
coupling constant and a is the lattice spacing. The gauge
invariant action for the fundamental scalar field is given by

SM = QZZ(ﬂ €0n, (64)
@V20; = > (Ui (F)pip + U, (F)oas — 205},
u=0,1
(6.5)

where m is the mass of the scalar field.

The entanglement entropy for the ground state of the
theory is often calculated in the path integral formalism
using the replica method. In this paper, however, in order to
distinguish all three contributions in (1.4), we employ the
operator formalism, as in the previous case for the pure
gauge theories [14], where the transfer matrix and its
eigenstates (instead of the Hamiltonian) were used to
calculate the entanglement entropy. The transfer matrix
T is defined to generate the time translation by one
(temporal) lattice unit [18,19] and thus is symbolically
denoted as
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T(a, a) = e~@HLlana), (6.6)
where a, (a) is the lattice spacing in the temporal (spatial)

direction and H (a,, a) is the lattice “Hamiltonian” for the
discrete time. In the a, — 0 limit while keeping the spatial

lattice spacing a nonzero, we recover the lattice
Hamiltonian (1.5) for the continuous time as
. 1
H = limH, (a, a) = —lim —log T(a,.a). (6.7)

a,~0 a—~0a,;

Although eigenvalues and eigenstates are different between
H and T at nonzero a,, they agree in the continuum limit
that (a,,a) — (0,0). In particular, the eigenstate for the
largest eigenvalue of 7' corresponds to the ground state of
the theory at a; = a # 0 in one to one, and it approaches to
the ground state of the continuum theory as a — 0.
Hereafter we simply write T = T(a, a).

To derive the transfer matrix from the path integral with
the given action (6.1), we first take the temporal gauge
Ujio = 1 for Vi, and then define 7" as

N Wy,
(W (P W) = /
P,=¥,,

where ¥, = {U,,.¢,,} represents the gauge field U, =

{Uj1} and the scalar fields ¢, = {¢;} at a give time slice

ng, and we fix them to ¥, at ny = 0 and ¥,,,; at np = N,.
We next rewrite the left-hand side of (6.8) as

H DY, eSG+SM

no=1

(6.8)

lI‘N[ lI"oul N'
/. [T 2%, TT e, (©9)
=%in no=1 ny=0
which must be equal to the right-hand side.
We thus obtain
(WA |T|WB) = T(PA, W5)
= To(P")ceTo(UN, UP)Ty (9", ") To(P?),
(6.10)
where
N—1 1
_ i Tyt
To(¥) = g exp {5 {onUn@ni1 + @, Ungy
- (m?a® + 2)¢l¢ﬁ}] : (6.11)
Ni-1 '
c6To(U.V) =[] exp{pe(U,Vi+V,Ui-2)}.  (6.12)
n=0
H exp [pngn + @acbul,  (6.13)
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with the periodic BC in space that Uy, = Uy, V, =V, and
N, = Qo> PN, = o, Where n represents the 1-dimensional
spatial lattice point, we suppress an index for the direction
u=10ofU,;and V, is omitted for simplicity, and ¢ is a
normalization factor such that the largest eigenvalue of T';
is one [see (6.16)].

Note that the expression of T which satisfies (6.8) is not
unique. Instead of (6.10), the asymmetric choice,
(PAT¥P) = ccTo(UA, UP)Ty (0", ") T5(¥P),  (6.14)

also satisfies it, and thus can be used equally well. We use
(6.14) rather than (6.10) for our convenience.

B. Character expansion

In Ref. [14], the character expansion is applied to the
pure gauge part of the transfer matrix 75 as

cToU.V) = [[ S dete Bre(@,V))  (6.15)
n=0 R
RN Ir(B) ;
=1"'p) ,H){l JFRZ#dR ll(ﬂ))(R(UnVn)}
(6.16)

where yg (U) = trU(R) is a character for the irreducible
representation R with its dimension dg = yg(1), and
R =1 denotes the trivial representation, and ¢z = /ljlv’ (p).
The expansion coefficient is given by

In(p) = / AU (U) exp [Bre(U + UT = 2)]. (6.17)

dr

which satisfies

~

i (p)
p—oo A1 (P)

2 (f)
wp) ="

Note that yg (UT) = yg (U) and g (B) = Az (B). We take
cg = A (B) for the normalization.

There are several useful formula for the group integral as
follows.

0< =1. (6.18)

/ (U] (AU e (U B) = iaRR/ﬂAB), (6.19)

/ dU]yx (AUBU") = dix (Ax(B).  (6.20)
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/ [dU]yr (AUBU )yg (CUDUY)

1

“E2_1 [ZR(A)ZR(C)ZR (B)yr(D)+xr(AC)yr(BD)
R

—le{me)xR(cm(BD)+xR<Ac>xR<B>x <D>H,

(6.21)
/ AU yx (AUBU' CUDU)

~ T R AR B (D) A Oz (BD)

- {xR (AC)rr(BD) +1x (A)rx (Cr (Bl (D) H .

(6.22)

C. Hopping parameter expansion (HPE)

Werescale T — c5T so that ¢ does not appear any more.
We also rescale scalar fields as ¢, — VK¢, and ¢, —
VK¢, with the hopping parameter K = 1/(m*a” + 2), so
that 73 and T, becomes

N=1
T3(¥) = [[ exp [~@ion + K{@iUu@uir + @}, 1 Ui}
n=0

. (6.23)
Tu(p. 9) = [ exp [K(puthh + o3b)).  (6.24)
n=0

Assuming that K is small, we can expand the transfer
matrix around K = 0, which is called the hopping param-
eter expansion (HPE) [20,21]. In this case, the Feynman
rule for the scalar field is given by

<((Pl)afﬂ§1> :5nm5fa7 (dadbh) = (D) a(bin)p) =0, (6.25)
((@n,)ah, (@n)c05,)
= 5ba5dc5n,,,n,,6nl.,nd + 5da5b05nu.nd5ng.nh' (626)

We define states as

<(I)B|n7 m> = ¢j’-lvn—>m¢mv Vn—>m = VnVIH»l e Vm—l

(6.27)
(®F(0) = 1. (6.28)
We then calculate 7'|0) up to the order K* and 7'|n, m) up

to the order K3, which are given below.
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3 1
T|0) = (1 + K°NN; + 5 K*NN, + EK‘*NZN%) 0) + Z(K2 +2K* + K*NN)) V|n, n)

K4Z|n n)|lm, m +ZK3< j){|n,n—|— )+ |n,n—1) }+ZK4< > {ln,n+2)+ |n,n=2)}, (6.29)

n#m

Tn,n) = N{1 +2K*(N + 1) + K>N(N, — 2)}|0) + K?|n, n) +K2NZ|m m +K3(/1 >(|n n+1)+|n+1,n)
+|n,n—1>+yn—1,n>)+1<31v<%>2(|m,m+1>+|m+1,m>>, (6.30)
n,n+1)=NK{1+4(N+1)K*+ N(N, - )K2}|0>+K2<’j1> )+K3G )2 Y+ n—1,n+1)}
1 1
+K¥{|n.n) + n+ Ln+ 1)} + K3NY |m.m), (6.31)
n,n—1)=NK{l+4(N+1)K*+ N(N, - )K2}|O>+K2(i> >+K3<jF> n-2)+|n+1,n-1)}
1 1
+K¥{[n.n) +|n—1n=1)} + K3NY |m. m), (6.32)
)—NK2|O>+K2(j—l:>2 >+K3<i—f>3 Y+ n—=1,n+2)}
+K3(’/:—F>{|n,n+1>+|n+1,n+2>}, (6.33)
1
n,n—2>:NK2|0>—|—K2(111—F>2 —2>+K3(/j1—F>3{ 3)+n+1,n-2)}
1 1
Ap
+K3<Z>{|n,n—1)+|n—1,n—2>}, (6.34)

T|n,n+3) = NK3|O>+K2(j> n, n+3)+K3</1> {ln,n+4)+|n—-1,n+3)}
1 1

y 2

K3 (K

" (/ﬁ)
3 2 /1 3 /1

3) = NK3|0) + K > |n n-3)+K - {|n n—4)+|n+1,n-3)}
1 1

+K3G—T>2 n=2)+|n—1,n-3)} (6.36)

A -1
+K3<TF> {ln.n+1-1)+|n+1,n+0D}, (for | > 3) (6.37)
1

)+ n+1,n+3)}, (6.35)

+|n—-1n+1)}

! I+1
T|n,n—1) _Kz(/jl—F> |n,n—l>—|—K3<j{E> {ln,n=1-1)+|n+1,n-10)}
1

+ K3 Gf) {nn—1+1)+|n—1n—D} (for [ > 3). (6.38)
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There are mixings among states, therefore we have to
diagonalize them. Up to the K? order, the states |n,n + )
and |n,n — 1) for [ > 3 are the eigenstates for the transfer
matrix, since

!
Tln,n+1) = K? </}1F> n,n+1), (forl>3). (6.39)
1

Thus at this order, all we have to do is to diagonalize the
mixing among |0), |n, n), |n,n+ 1), and |n,n £ 2) states.

VII. ENTANGLEMENT ENTROPY FOR THE
GROUND STATE BY THE HPE

A. Taking into higher order corrections in K

In Secs. IT and 111, we have seen that a single Wilson loop
or a single meson state holds nonzero entanglement entropy
due to the second term of (1.4), which is associated with the
color entanglement. In Sec. IV, we discussed multiple
meson states, whose fluxes connect quarks-antiquarks
through the boundary. In this case, by decomposing the
wave function into irreducible representations, we obtain
multiple superselection sectors, and as a result, nonzero
entanglement entropy associated with the first term (the
classical Shannon entropy for the probability distribution of
each irreducible representation) as well as the second term
(the color entanglement part) of (1.4) appear. We have
shown these explicit examples, in order to illustrate how we
obtain these non-Bell terms in the entanglement entropy in
the extended Hilbert space definition.

One might wonder whether the Bell pair part of the
entanglement, third term of (1.4), never appears in
2-dimensional gauge theory. In the pure gauge theory,
we cannot have any Bell pairs due to the absence of local
degrees of freedom [14]. In gauge theories with matter
fields, of course, we can always prepare an appropriate
linear combination of meson states by hand, which pro-
duces the Bell pair part in (1.4). Our main interest/concern
here, however, is how the ground state of the gauge theory
(the strong coupling ground state) acquires entanglements
including Bell pairs from matter fields, and how entangle-
ments for the ground state of the continuum gauge theory
can be understood in terms of the lattice ground state.

In the 2-dimensional gauge theory without matter fields,
which corresponds to the leading order of the HPE (K = 0),
the ground state can be calculated exactly at an arbitrary
coupling without strong coupling expansion,10 and it is
written by the tensor product of a trivial state on each link
satisfying jizj|0>,»j =0 as

|O>str0ng = §|O>U (71)

"In 2-dimensions, there is no plaquette term (i.e., magnetic
field), therefore its Hamiltonian has a similar structure to the
strong coupling limit of higher dimensional ones.

PHYSICAL REVIEW D 96, 045020 (2017)

Thus the entanglement entropy of the strong coupling
ground state [0)gy,,, vanishes at K = 0.

Therefore, in this section, we study how the higher order
in K of the HPE makes the strong coupling ground state
entangled, and which part of (1.4) appears. We will show
the following properties.

(1) The strong coupling ground state has no entangle-

ment up to order K? in HPE (Sec. VII B).
(i) The first term (the Shannon part for the super-
selection sector distribution) and the second term
(the color entanglement part) first appear at the order
K3 for the ground state (Sec. VIIC).
(iii) The third term (the Bell pair part) first appears at the
order K® for the ground state (Sec. VIIE).
Since all these contributions are positive definite order by
order in the HPE, they never cancel each other. Therefore,
the above observations imply that the 2-dimensional Yang-
Mills theory with matter fields keeps all three types of
entanglements in (1.4) in the continuum limit.

From now on, we simply denote the strong coupling

ground state |0) as |0).

strong

B. Eigenstates and eigenvalues of 7' up to O(K?)

We first consider contributions at O(K?), and diago-
nalize the transfer matrix 7. At this order, the generic state
|¥) x which mixes with the strong coupling ground state |0)
can be expressed as

W)k = fol0) + D _anln.n)

—|—an n,n+1) —|—ch
n n
—|—Zdn|n,n+2> —l—Zen\n,n—Z}.

n n

n,n—1)

(7.2)

We thus determine the K dependent coefficients a,,, b,,, c,,

d,, e,, and f in such a way that
T1¥)x o |¥)k (7.3)

is satisfied. As long as the HPE converges, the ground state
in the HPE must contain |0), so that we will consider the
state with f, #0. We can set f, =1 without loss of
generality, and we denote it as

G*)g =10) + D _ay|n.n)

—|—an n,n+1) —|—ch
+ Zd,,|n, n+2)+ Zen|n,n -2).

n,n—1)
(7.4)
""This state corresponds to the wave function y;(U), while the

wave function yg(U) with R # 1 describes an excited state,
which yields nonzero entanglement entropy as (2.9).
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At the O(K?), using the transfer matrix 7 given in
Sec. VIC, the ground state is given by

|G+ —

where a;; =

G — (1 +NN,K*

1
Gi =5 {1+K*(14+2NN,))

1
+§\/1 —2(1=2NN;)K>+ {1 +4N(NN,+2)N,}K*.

(7.6)

The complete list of all other eigenstates and eigenvalues at
this order are given in the Appendix E.

In the K — O limit, this state |G™); has a maximum
eigenvalue of the transfer matrix, G} =1, which corre-
sponds to “zero energy”’, since the transfer matrix is related
to the “Hamiltonian” as T ~ e~“#. We therefore identify
this state as the ground state at O(K?), which is composed
of the strong coupling ground state |0) and lartice pointlike
exited meson states |n, n). It is thus clear that this state does
not have any entanglement. More precisely, we can write
this ground state as a product state as

6% = (10 ) (100 Y )

+ O(K3). (7.7)

in

This means that there is no correlation between inside and
outside and thus no entanglement at this order.

On the other hand, the vacuum state |0)., in the
continuum gauge theory is expected to have nonzero
entanglement. So there still remains a qualitative difference
(whether it is entangled or not) between the ground state
|G*)k at O(K?) and the continuum ground state |0)....
This indicates we need higher order of the HPE than K.
Indeed, since the vacuum state in the continuum theory is
realized in the continuum limit as

,(IIIII/IZ‘G+>K - |O>cont ’ (78)
f—oo
where K = (2+ (ma)?)™" - 1/2 and = (2ya?)™" > o0

as a — 0 for finite mass m and coupling gvy, the higher
order terms in the HPE become more and more important as
we approach the continuum limit. Note that our calcula-
tions include all order of the gauge coupling constant at
each order of the HPE. What we will see next is that once
we take into account higher order corrections, |G*1)g
contains various contributions of the entanglement in (1.4).

PHYSICAL REVIEW D 96, 045020 (2017)
C. Entanglement appear at O(K3) corrections

As a next step, we check how K> order effects modify the
properties of |GT) . )k becomes

A
IGH) e = K2Z|nn K3/1—l:zn:(|n,n+l>
,n—1)) + O(K*). (7.9)
We therefore see that the O(K®) contributions

(quark-antiquark pairs separated with unit length) give
the entanglement, once we divide the system into inside
and outside.

Before we will see that the first and the second terms of
(1.4) for the entanglement entropy becomes nonzero at this
order, let us first explain how we obtain the above result.
The eigenvalue equation is given by

T|G*)x = GklG")x. (7.10)
which must be solved order by order. Expanding 7', |G ™) .,
and G; in power series of K, and using the results at O(K?)
in (7.5) and (7.6), we have

T="Ty+K'T, +K*T, + K3T5+ O(K*),  (7.11)

Gk =1Gg) + K'Gy) + K*|Gy) + K°|Gy) + O(K?)
=10) |G3) + O(K*),
(7.12)
Gy =G + K'G] + K*GJ + K*G{ + O(K?)
=1+0+ K*2NN, + K*G; + O(K*), (7.13)

and solve the equations at each order in K.

Since (7.5) and (7.6) satisfy eigenvalue Eq. (7.10) up to
O(K?), it is enough to consider only O(K?) terms. The left-
hand side of (7.10) becomes

K3 (T5|Gg) + T,|GY) + T1|G3) + To|G1)).  (7.14)
while the right-hand side of (7.10) is
K3 (G3|Gg) + Go|GY) + Gi|Gy) + GolGy)).  (7.15)
We therefore obtain
7500) +75/GF) = Gi10) +GF).  (7.16)

where we used |G{) = 0 and G = 0, which are seen from
(7.5) and (7.6), and T = 0 for |n,n) from (6.30). Since
7510) =337, (In,n + 1) )) from (6.29), the
above equatlon is equivalent to
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To|GY) +’l—f2( non+1)+|n,n—1)) = G{|0) +|G5).
(7.17)
By substituting the ansatz that
|GT) = w|0) + Zan n,n) + Zﬂn|n,n +1)
+) talnn=1), (7.18)
into (7.17), together with the relation
7|0) = |0), Toln,n) = Nin,n),
(and the rest is zero) (7.19)

from (6.29)—(6.38), we have

G)k = (1 4+ wKk?)|0) + K*) -
- 1

n

PHYSICAL REVIEW D 96, 045020 (2017)

A

®|0) +Nzn:an|0> +f;( non4 1)+ |nn—1))

= (G +w)|0) + > ayn.n) + > Bln.n+1)
+ yalnn—1). (7.20)

Comparing Lh.s. and r.h.s., we finally obtain,
g .
ﬂn:yn:l—, Gi =a,=0, (7.21)
1

while @ is an arbitrary constant.
In conclusion, we have obtained the eigenstate at the
order of K3 as

n,n) + K3/1—FZ(|n,n + 1)+ |n,n—1)) + O(K*)

— (14 wk?) {|o> + m {Kzzn]n, ny + K3%Z(|n, n 1)+ = 1)) + 0(1{4)}]

e
x |0) + KZZ]n, n) + K3 ZEﬂ:(\n, n+1) 4 [n.n—1)) + OK*),

G* =1+2NN,K> + O(K*). (7.23)
This exactly gives Eq. (7.9).

At this order, the ground state includes terms such as
i,i+ 1) and |i + 1,i), where ith vertex is located in the
inside and (i + 1)th vertex is located in the outside. Thus
there appears the nontrivial electric flux penetrating the
boundary, so that we have a nontrivial superselection sector
distribution. Namely, the term |i, i 4+ 1)(|i + 1, i)) belongs
to a (anti)fundamental sector, whereas the other terms to a
|

Ay
|G+>K|singlet = <|0>1n + KzZ|n, n> + K3 ZZ(

® <0>0ut + K2 |n.n) + K3%Z(|n,n +1) + |n,n — 1>)> + O(K*).

out

Thus the singlet sector is not entangled at all.

Next let us focus on the fundamental sector (the
discussion for the anti-fundamental sector is almost same).
In this sector the state is simply |i,i+ 1) up to its
normalization. If we explicitly denote the color degrees
of freedom a(= 1,2, ...N), the state can be represented as

n

(7.22)

[
singlet sector. Then the state makes the non-zero entangle-
ment entropy corresponding to the first and second terms
in (1.4).

We can confirm that there is no Bell pairs at this order by
investigating each superselection sector. For simplicity, we
here assume that there is only one boundary between ith
inner vertex and (i + 1)th outer vertex with the outer link
variable U, ;.

The singlet sector for the ground state still shows the
tensor product structure,

nn=1))

n,n+1)+

(7.24)

out

[
A
|G+>K|fundamental & K3 TF |l? i+ 1> + O(K4)
1

A
:K3fza:(

+ O(K%),

i’ de>a in ® |bdy’ i+ 1>gut)

(7.25)
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where |i,bdy), corresponds to a quark at ith vertex with
flux going to outside area, and |bdy, i + 1)“ to the similar
object. (As the wave function, these objects are represented
as (¢)), and (U, ;119:+1)", respectively.) Clearly the state
gives the entanglement entropy log N originating entirely
from the color degrees of freedom. For each color, the state
shows the tensor product structure, indicating the absence
of Bell pairs.

Before closing this subsection, we calculate the entan-
glement entropy for this ground state, which is given by

|G+>K = |G+>K|singlet + |G+>K|fundamental

+ |(;Jr > K | anti-fundamental » (7 26)

up to O(K*), where the state in the singlet sector
|G™) klsingler is given by Eq. (7.24) while the one in the
fundamental sector |G™)g|pundamentas Y EQ. (7.25). The
corresponding reduced density matrix p,q becomes

Pred. = P1P1 + P¥PF + PEPF- (7.27)
where
|~/V.in|2|~/\/‘0ut|2 C%‘N
_ . = pe = (728
P1 |N|2 Pr Pr |N|2 ( )
S Y R
PUZIN P i PR yin
1 _

e =—. |F)YF| , 7.29
PF Nm| >< in ( )
with
|Gt = KZZ|n n

; (%) D(non+2) + o =2))) + OLKY)

A
G+ =1+2NN,K> + (7 + 2/1—F + 2NN,> NN,K* + O(K5),
1

PHYSICAL REVIEW D 96, 045020 (2017)

|-/\/in/0ut|2 = <1 + szI\U\"in/out)2 + K4NNin/out
+ 2¢EN(Nigjous — 1) (7.30)
A
NP = NP Nowl* + 263N,  cp=K> ,1F (7.31)
1
|1>in: in >—|—|n—|—1,n>),
(7.32)
|F>in = >ain’ |F>in = Z|bdy’ i>1an (733)

Here Njy(ou) is @ number of sites in the inside (outside)

region, thus N; = Ny, + Ny, and [NV]* and [N oul®

are defined as N> =(GT|GNx, [ Nijoul* =
in/om(1|1>in/om. It is easy to see
2 o1 p _ 1
P1="15 Py = NPF» PE = NPF- (7.34)

The total entanglement entropy Sgg for this state is given by

See =) {-prlogpr + prlogdg},  (7.35)

R=1FF

where dy = 1,dp =dp =N

D. O(K*) and O(K®) corrections

By almost the same way as the previous subsection, we
obtain O(K*) correction to the state |G*) and eigenvalue
G' as

+K3 FZ ln,n+1)+[n,n—1)) +K4(3Z|nn +2Z|nn |n, n) —I—Z|nn |m, m)

n#m

(7.36)

(7.37)

again having three sectors (singlet, fundamental, and antifundamental).
This is obtained from Eq. (7.10) at order K* as follows. Using expansions (7.11), (7.12), and (7.13) at order K*,

we obtain

1,00)

n

= G;0)

A ZF
7 2

+1G4).

1) + )) + To|GY)

(7.38)

A comparison between the Lh.s. and r.h.s. in (7.38), together with the formula (6.29) and the ansatz
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(G3) = @|0) + D anln.n) + D ayuln.m)ln.n) + 3
n n n#Em
+ Z5n|n, n+2)+ Z€n|n, n—2),
gives
e\ 2
Op =€, = (_F) > P Yn =0, (740)
Za
1
=1 (forn#m), a,,= 3 W= 3, (7.41)
+ Ar
G, = 7+2/1——|—2NN, NN,. (7.42)
1

These lead to results (7.36) and (7.37).

Let us consider whether the ground state wave function
(7.36) at O(K*) in the HPE contains the Bell pair part of the
entanglement entropy (1.4). To see this, we examine singlet
sector and (anti)fundamental sector separately. Again we
assume a single boundary between the ith inner vertex and
the (i 4+ 1)th outer vertex.

We first analyze the singlet sector in the following way.
If we assume that the Bell pair part is absent, we
immediately notice that the term |n, n),,|m, m),,, where
the nth vertex is in the inside and the mth vertex is in the
outside, must appear in the ground state as

Ap
|G+>K|fundamental x K3 Z

2
i,i+1>+K4(/1—F>(
M

A . ] )’
= K375 (li.bdy), iy ® [bdy, i + 1)5,) + K* <T)
17, 1
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n,n)|m, m) —1—2,3,, n,n+1) +Zyn

n,n—1)

(7.39)

|G™T) (7.43)

with the coefficient ¢, = 1, which is determined from the
result at the lower order given in (7.24), since such a term
must be a part of the tensor product of inside-only excited
states and outside-only excited states. Inversely, if ¢4 # 1,
such a state cannot be written as a tensor product state given
in (7.24). The result (7.41) indeed shows ¢, = 1 for our
wave function (7.36) at O(K*). Therefore no Bell pair part
appears in this sector.

In the higher orders, we can employ the similar analysis.
With the assumption on the tensor product structure, we can
predict coefficients of new terms at the higher order from
results at lower orders. At O(K°), for instance, the term
n,n)|m, m) cannot exist since there is no corresponding
inside-only or outside-only excited terms at lower orders.
Indeed we cannot construct |n, n)|m, m) states from |0) by
the O(K?) part of T, since we need at least O(K®) terms,
which consist of two “U”-shaped contributions."

The (anti)fundamental sector at K* order has almost the
same structure as the K3 order case, where only difference
is the distance of (anti)quark from the boundary. As is the
case of O(K?), we can explicitly represent the state as

K|singlet 2 C4K4|n’ n>in|m7 m>0ut

ii+2)+]i—1,i+1))+O(K%)

> (i, bdy) iy ® [bdy. i+ 2),)

a

/1 2 "
+ K (7?) > (li = 1.bdy) iy ® [bdy. i)ey,) + O(K)

a'

_ 3
J%;(

again without producing any Bell pairs.

We can apply the similar analysis to the O(K?)
case, and get the tensor product structure. With the
fact that there appears no new superselection sector at
O(K?)," we thus conclude that there is no Bell pair at
this order.

Each “U”-shape is O(K?), see Appendix D for details.
BAt the O(K®), a new adjoint sector appears.

A
i,bdy), +K/1—F|i— 1,bdy>a>
1

+ O(K),

out

mn

A
® (|bdy, i+ 1)+ Kf lbdy, i + 2>a>
1

(7.44)

In the next subsection we will see that once we take into
account O(K®) corrections, the ground state cannot be
written as a tensor product state predicted from lower order
results. As a consequence, we obtain the Bell pair part
at O(K®).

E. Bell pair appears at O(K®) corrections

To show that the Bell pair part appears in the ground state
at O(K®), we perform the same analysis.

045020-22



ENTANGLEMENT ENTROPY FOR 2D GAUGE THEORIES ... PHYSICAL REVIEW D 96, 045020 (2017)

Suppose again that the ith vertex is located in the inside while the (i 4+ 1)th vertex is in the outside. We focus
on the singlet sector of the ground state, and we thus look at the coefficient ¢¢, which is associated with the term at

O(K®) as

|G+>K|singlet 2 CGK6

L) |i 4 104 1)y (7.45)

As was discussed in the previous subsection, if there is no Bell pair, |G*)g|gnge must be the tensor product of the
inside-only excited state and the outside-only excited state, and vice versa. Then, the term |, i);,|i + 1,7 + 1), must
come from the product of |i,i);, and |i + 1,i + 1), at lower order in the HPE. Eq. (7.36) and the absence of terms
such as |i,i);, or |i+1,i+1),, at O(K>) imply that the ¢4 term at O(K®) in (7.45) must be obtained from lower
orders as

[|0>in + K2|i’ i>in + 3K4 i’ i>in + O(KG)]in
® [|0)oue + K2[i 4+ 1. i 4 1)y + 3K i 4 1,0 4 1)y + O(K®)] o
D K2i i)y, @ 3K*i+ 1,0+ 1)y +3K*i i), @ K2|i + 1,0+ 1)y

= 6KO[i, i)y li 4+ 1,0 4 1)y

which gives cg = 6. Inversely if cg # 6, which is the case
we will see, there are Bell pairs in this ground state.

To calculate c¢g, we consider the corresponding terms in
the eigenstate equation,

T|G")x = G¢|GT)k. (7.47)

Since at least the fourth order part of the transfer matrix in
the HPE is needed to generate the |, i)|i + 1,7 + 1) state in
the future time, together with |G{) = 0, the relevant part of
the left-hand side can be calculated as

(T6|Gg) + TalG3)) ko iy vy

= <T6|o> + T4Z n, n))

1
= 6+ 2NN, + .
See Appendix D. 3 b for the explicit calculation to derive
this result.
On the other hand, since |7, i)|i + 1, i + 1) term appears
only at K"(n > 4) order and G| = 0, the right-hand side is
evaluated as

KO |i,i)|i+1,i+1)

(7.48)

(G |G§) + G IGIN) ks iiyjie iy

IIXC6—|—2NN[X1:C6+2NN1. (749)
Thus Eq. (7.47) leads to
1
C6:6+N:C65&6- (750)

We therefore conclude that there is the Bell pair part
of the entanglement entropy in the singlet sector for the
ground state.

(7.46)

|
Finally, we estimate the Bell pair part of the entangle-
ment on the singlet sector at K° order. Since the ground

state |G*)g in Eq. (7.36) has the following structure
GT)

= 0(K?), (7.51)

K |N0n—singlet
the probability distribution p; for the singlet sector
(k =1) and py.y for the non-singlet sector (k # 1)
are given by

P1= 1 + O(KG), pk;él = O(KG) (752)
Therefore, the Bell pair part, the third term of (1.4), is
estimated in the HPE as

SEE' = =D _piTraepl logply
k

= —Try piylogp}, + O(K°).  (7.53)
In fact one can explicitly show that for the ground state
wave function up to O(K®), the Bell pair part of the
entanglement appears only from the singlet sector.
Therefore we here focus on the singlet sector of the
ground state |G*), and evaluate the leading contribution
of the Bell pair part in the HPE.

As discussed, the singlet sector of the ground state has
the following structure.

K6
|G+>K|singlet = ‘\P>in ® |lP>0ut + W

+O(K7),

i’ i>in ® |l+ 1’l+ 1>0ut
(7.54)

Here |¥);, ® |¥),, corresponds to the L.h.s. of (7.46) if we
focus only on the ith and i + 1th vertices. In addition, |¥);,

045020-23



AOKI, IZUKA, TAMAOKA, and YOKOYA

and |¥),, of course contain also purely inside only and
outside only excitations, respectively. In particular, [¥);, oy
becomes [0);,/,, at K =0 as we have seen in previous
section. Since the first term of (7.54) has a tensor product
structure, the second term is crucial to generate the Bell pair
part of the entanglement.

From (7.54), we can obtain the reduced density matrix
Prea. Neglecting O(K7) for the singlet state as

|Nsinglet|2pred.

= ‘\P>inout<ql|q’>outin<l}‘|
K6
+ W |lP>inout<l +Li+ 1|lP>outin<l’ l|
K6
+ W L l>inout<lP|l +Li+ 1>outin<\P|
KG 2
() Tl + 17 104 1+ .1

(7.55)
Here the norm |\ gge|* is

|Nsinglet|2
= k(GG )kl
= m<lP|lP>
K6
+ Win
6

singlet

in out <\P|\P>out

<i’ l|lP>1n out(i + 1’ i+ 1|IP>0ut
K .. . .
+ WM‘P L l>in 0ut<qj|l +Li+ 1>0ut

()
+ =) @i
N in

To diagonalize the reduced density matrix (7.55), we would
like to solve the following eigenvalue problem

i’ i>in 0ut<i + 1’ i+ l‘l + 1’ i+ 1>out'

(7.56)

Prea.|P) = P|P), |P) = a|¥)i, + Bli, i)y, (7.57)
which leads to
(Pn -P P2 ) (a) _o, (7.58)
P21 Pn—P B

where

|Nsinglet|2pll ~ in <lP|lP>1n 0ut<lP|lP>out
K6
+ Win<i’ i

lIJ>in 0ut<i + 1’ i + 1|lP>0ut’
(7.59)
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|Nsinglet|2p12 = in<qj|i: i>in out<lP|lP>out

KG
+Win<l’l

i’ i>in 0ut<i + 1’ i+ 1|\P>out’
(7.60)

|Nsinglet|2p21
K6

= Win<‘P|\P>in out<lP|i + 1’ i+ 1>0ut

K6 2
+ (W) in<i’i|lP>in out<i+ li+ 1|l+ 1i+ 1>out7

(7.61)
|Nsinglet|2p22
K6
- Wincp L l>in 0ut<ql|l +1,i+ 1>0ut
K6 2
+ (N> in<i’ l|l’ i>in 0ut<i +1Li+ 1|l +1Li+ 1>oul'
(7.62)
Thus, the eigenvalue is given by
+ - 244
» _Putrn \/(10112 p22)” +4p1apa . (163)
To evaluate this, we use
in/out<lp|ql>in/out =1+ O(Kz)’ (764)
in/out<n’ n|\P>in/out =N+ O(Kz)’ (765)
in/out (115 71|, M) injout = N(N + 1), (7.66)
which can be obtained by recalling ;, (2. 7|0)iy /ot = N

and ;,,,(0[0);, = 1, together with the fact that in the
leading order in HPE, we have |¥),, = |0);, + O(K?).
Then the leading contribution of (7.63) yields

p=1-K2 K92 (7.67)

We therefore obtain the entanglement entropy S5¢!! for the
singlet state as

SBell — —(1 = K12) log(1 — K'2) = K12 log K12 4 O(K')
= (1 —log K'2)K'? + O(K™). (7.68)
Note that we obtain entangled O(K'>N°) Bell pairs

in the HPE from the O(K®N~!) term in the wave function
(7.54).
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VIII. SUMMARY AND DISCUSSIONS

In this paper, we studied 1+ 1 dimensional SU(N)
gauge theories with matter fields, mainly in the funda-
mental representation of the gauge group. In the first
part of this paper, the entanglement entropy for various
meson states is evaluated using the extended Hilbert
space formalism [4-6]. We show that the entanglement
entropy has two different contributions. One is the
classical Shannon entropy for various different super-
selection sector distribution, which is the first term in
(1.4), and the other is the sum over the logarithm of the
dimensions for the irreducible representation at all
boundaries, which is the second term in (1.4). In the
second part, we consider the ground state in the HPE
and show that the first term and the second term in (1.4)
appear from the ground state at the O(K?), while the
third term, which corresponds to the number of Bell
pairs obtained by the entanglement distillation, appears
at O(K®). Since all terms in (1.4) are positive definite,
they also remain positive even in the continuum limit
B=1/(g4ya*) > 0 and K =1/(m*a®>+2)— 1/2).
This means that the continuum vacuum of gauge
theories with the fundamental matter fields in 141
dimensions contains all terms in (1.4). Unfortunately, it
is very hard to calculate these three contributions
precisely in the continuum limit, since higher and higher
order terms in the HPE are needed toward the con-
tinuum limit.

Even though precise values are unknown, it is certain
that the true vacuum state contains not only the strong
coupling ground state 0),ne, Which is the ground state
of the pure gauge theories, but also gauge invariant
meson states, which consist of multiple pairs of scalar
and antiscalar fields. Since there are no contributions to
the entanglement entropy from the strong coupling
ground state |0)y,one, all of the positive values of three
terms in (1.4) are caused by multiple meson states.
Therefore the entanglement entropy for the true ground
state comes mainly from the meson pair with small
separation (a few lattice spacings) at small K. In the
continuum limit (f - o and K — 1/2), however, the
separation n between the entangled meson pair (the Bell
pair) can become infinitely large due to the higher order
of the HPE, so that r = na becomes nonzero in the
continuum limit. These suggest that the continuum
vacuum entanglement is due to the “condensation” of
multiple meson states. More precisely, the continuum
vacuum is fully filled with lattice meson states. This is
the key picture we obtain through the analysis in this
paper. We end this paper with several comments.

Our results also imply an interesting property. If we
take the continuum limit as f — oo but K < 1/2, the
matter field becomes infinitely heavy, and thus decou-
ples from the low energy physics in the continuum limit,

PHYSICAL REVIEW D 96, 045020 (2017)

so that the continuum theory is the pure gauge theory.
This infinitely heavy matter, however, produces nonzero
(genuine) entanglement of the pure gauge vacuum. This
means that the entanglement might be very sensitive to
degrees of freedom at high energy, which cannot be
detected at low energy. This left-over entanglement
might be much smaller than the entanglement of the
continuum gauge theory with matters, which could be
divergent. Even though the entanglement is not observ-
able in the strict sense, it is interesting if this leftover
entanglement can be detected by some mathematical
means.

To make the above picture for the entanglement entropy
in the continuum limit more quantitative, we have to
perform some kind of resummation for the HPE. At this
moment, unfortunately, we do not have an explicit idea
how to do this generically and we are not sure if this is
possible. However in 1 4+ 1 dimensions, the gauge theory
with matter fields is in principle solvable at least in the
large N limit [15]. We therefore have a good chance to
obtain the entanglement entropy for this model in the large
N limit. This direction is worth investigating furthermore
in future. Note that in this paper we focus especially on
the ground state but it is also interesting to study excited
state entanglement entropy and their time evolution. It is
also interesting to generalize our analysis to higher
dimension.

Finally all of above results suggest interesting points
in holography. In the gauge theory side, the natural
extended Hilbert space definition gives three different
terms for the entanglement entropy. In the gravity
side, however, we have only a minimal area term (RT
formula [22]), at least in the large N limit. There-
fore, which term dominates in the large N limit among
three terms in (1.4) is an important question, when we
compare the results with those in the gravity side. It is
interesting that the genuine entanglement part (=the Bell
pair part) may not be dominant one in the large N limit. In
order to deepen our understanding of the holographic
meaning of the entanglement entropy, it is important to
find the corresponding gravity dual to all of these three
terms in extended Hilbert space entanglement entropy.
Last but not least, it is interesting to ask what corresponds
to the extended Hilbert space in the dual gravity side.
We hope to come back to these questions in the near
future.
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APPENDIX A: USEFUL FORMULAS

We use a,b,c,d,..., and i,j,... as color indices in
fundamental representation (which run 1,...,N) of the
SU(N) gauge group.

1. Matter fields

Scalar field ¢ in Fundamental representation For the
scalar field ¢ in the fundamental representation with

@'p = plo°, we have following useful Gaussian integral

formulas:
2N
/ (dgle=e'e = (\/2) .
a

Y d —agt a1 m\*N
[dolpiple™?? =& — (/=] . (A2)

a

. . 1 T 2N
T b T d,—ap'e _ (sb sd d <b\ ad
/[d(p](pafp Pegle™ ™ = (848" + 818" ) ( a) :

(A3)
The last formula gives
N b Y il N t o
[0 g ) (3l ) S
N(N +1 2N
) % ( Z) ' (A4)

Hermitian N x N matrix scalar X¢; field Next we
consider the Gaussian integral for the Hermitian N x N
matrix field. This is an adjoint representation matter field
for gauge group U(N), whose Gaussian integral becomes

/ [dX] exp (—aTrX?) = (\/9 Nz, (AS)
/ [dX]X“, X¢ s exp (—aTrX?) = 5%5%21—61 < g) NZ,
(A6)

while the Gaussian integral for the field in the adjoint
representation of the gauge group SU(N) leads to
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/[dX]X“bX“d exp (—aTrX?)

1 1 7\ V-l
= <5ad5cb - ]T](sab(scd> 2 ( ;) ., (A7)

where the traceless condition is used. The above formulas
are obtained by expanding

N2l N2=1
X = Z Xy, Z(IA)ab(ZA)Cd =680, (AB)
A=0 A=0

for U(N) and

N2-1 N*-1

1
X = Z X4, Z(fA)ab(tA)cd =00 — N(Sab5cd
A=l A=l

(A9)
for SU(N), where X, is real and tr(4¢%) = 545.

2. Link variables (= exponential of gauge fields)

For link wvariables U“,,U¢,... in the funda-
mental representation (a,b,c,d =1,...,N), the integra-
tion over the group with the invariant Haar measure
[dU| gives

; 1
/[dU]U“bU‘-Cd :N(S“dﬁcb, (AlO)

which can be derived from the symmetry under group
transformation U — LUR [13]. Similarly, one can
show [13]

/ [aU)U“, Ue U U™,

=7l 70685 g 4 8°468,6 ;64

(69188848 + 548,516 4). (Al1)

1

N
where not only a, b, ¢, d but also i, j, k,[ are indices of
the fundamental/anti-fundamental representation and
thus run from 1 to N.

For generic representations R and R’, Eq. (A10) is
replaced with

. 1 i
[lavue®U U R) = e (A1)

where dgr is the dimension of the representation R
(dg = N for the fundamental and dg = N> — 1 for the
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adjoint) and a, b, c,d = 1, ..., dg in this case. Furthermore
Eq. (A11) becomes

[lavve@ue,ur @t ®)
Ty -1 {
1

dg

89,6 ,6 8% 4 + 8% 5%, 6y

(59;88,8°p8 g + 598,564 )| (A13)

APPENDIX B: CHARACTERS
FOR LINK VARIABLES

Characters are very useful in order to handle link
variables for gauge theories, and we review briefly in this
appendix.

For a gauge group element g € G and its representation
g(R), the character is defined as

(B1)

The character satisfies several important properties. One
of them is that the product of characters can be
expressed as the sum of characters. The other important
property of character is that different representation
characters are orthogonal under the group integral.

To illustrate these, let us consider the group SU(2) as
an example. One can label representations by their spin
J. Their dimensions are given by d; =2j+ 1. Since
characters are invariant under the group transformation,
one can always choose a basis such that R(g) becomes a
rotation along the “z”-axis. Then it is clear that a
number of parameters for each character is given by
the dimension of its Cartan subalgebra. More explicitly,
characters for spin-j representations of the SU(2) are
given by

14(0) = 2c0s2 <Rg%><9> - [0 O]) (B2)

cosd —sind O
210)=1+2cos0| RV (@) = | sin® cos® 0] |,
0 0o 1
(B3)
. I sin(j41)0
(@) =T iJ.0] — sz):iz‘ B4
)(]( ) jr[e ] n;je sin%’ ( )

For the SU(2), the fact that the product of characters
can be expressed as the sum of characters is equivalent
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to a familiar Clebsch-Gordan expansion in quantum
mechanics:

Jith
2O, (0) = > x,(0). (B5)
j=lir=pal
For example,
0 14 cosf
x1(0)x(6) = 400525 =4x—0 = 20(0) +x1(0).

(B6)

The property that different representations are orthogo-
nal is expressed as

/ [dglx;(9)x;(g) = 5. (B7)

This can be seen as follows. For the SU(2), due to its
pseudoreality, x;(g) = x;(g). Using (BS5), above inte-
grand can be expressed as a sum over different repre-
sentations of characters. From the invariance of the
measure, Vh € G, [dg| = d[(hg)] = d[(gh)], it is clear
that only the singlet representation gives nonzero value

after the integral. We take [[dg] =1 as the normaliza-
tion condition.

APPENDIX C: TENSOR PRODUCT
DECOMPOSITION OF THE
WAVE FUNCTION

In this appendix, we discuss the decomposition of the
wave function given in Sec. IV C as

Y(p.U) = [0y Up 1061 1051 Uy o1 00)
=[(¢'p)(dTp),

where ¢ = ¢, and ¢ = U, ;19,1 We regard ¢ and ¢ as
objects in inside and outside regions, respectively. Since
there are 2 sets of “fundamental ® antifundamental”
matters in the inside, one can decompose it into 2 sets
of “adjoint @ singlet” as

(C1)

N 1
(¢'9)(¢'9) = Tr(XY) + 5 (@'0)(¢'9).  (C2)
where we define “adjoint matters” by
X4, = T a 1 54 ( + )
b= Pp@ NO? Q@)
a — 4t 1a 1 a T
b=t 50 (@' P). (C3)

In this notation, we can rewrite our wave function as
follows.
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1 2
¥0.0) = |5 0P @OP 4 TN @0

T [Tr(XY)]Z} . (C4)

The first term belongs to the singlet sector, which comes
from “singlet ® singlet”, while the second term to the
adjoint sector from ‘“singlet @ adjoint”. The third term
corresponds to “adjoint @ adjoint”, and we therefore need
to further decompose this term into irreducible representa-
tions. For SU(N), the tensor product decomposition of
adjoint @ adjoint is

N_1@N2—-1
=1& (Nz_l)s ® (Nz_l)a
ED%NZ(N—I)(N+3) @%NZ(N+ 1)(N-3)
EB%(NZ—I)(NZ—4)GD%(NZ—I)(NZ—4), (C5)

where AN>(N—1)(N+3) and {N*(N+1)(N-3) are
totally symmetric and antisymmetric traceless combination
for original indices, respectively, while two adjoint repre-
sentations, (N> — 1), and (N?> — 1), comes from these “s”
ymmetric and “a” ntisymmetric representations by the
partial trace. Finally 1 (N> — 1)(N? — 4) and its conjugates
are mixed symmetric and traceless. See Fig. 7. In SU(2)

|
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| | | [ ]

-] =1@2|-| @ N-1
@ @ 57] N_1
FIG. 7. Young diagrams for the tensor decomposition (C5).

and SU(3), some of these representations are absent but our
final result is true for these special cases.

1. Tensor product decomposition for components

As a first step, we decompose X“,X'; into irreducible
combinations. We follow the standard procedure in the
representation theory of SU(N). Namely, we first symme-
trize and antisymmetrize X“, X’ j» and then remove the trace
of these combinations. We continue this manipulation until
we obtain the trivial representation. From now on we
assume N > 4." The final result becomes

) ) . ) 1 ai 1 ai
XX = (1), + (N = 1), + (N2 = 1,)%,; + <ZN2(N -1)(N+ 3)) + <ZN2(N +1)(N- 3)> . (co)
bj bj
where
ai 1 2 a  Si 1 a  Si
2 lai_ 1 i 2\a a 2\i 2\a si 2\i sa 2T 2 a Si a  Si
(N*—1y) bj*m[éb(x )4+ 00X, + (X7)9,0' + (X7)';0 TN r(X?)(89;6', +88';)],  (C8)
) 1 . . . . 2 . .
(N> —1,)9,, = 2N=2) [6(X2); 4+ 695(X?)7, = (X2)*, 6" — (Xz)’j5ab—NTT(X2>(5aj5’b —-8%48';)],  (C9)
1 5 ai
“N(N-1)(N+3)
1 . . 1 . ) ) )
— E |:Xathj +Xanlb _N—H(élb(xz)aj + 5aj(X2)zh + (Xz)ah&j + (Xz)ljéab)
1 . )
— _Tr(X?)(8%8; +65,)], C10

" Although intermediate steps cannot be applied directly to N = 2, 3, our final result is valid even in these cases.
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G N2(N 4+ 1)(N — 3)) “ibj

1 . . 1 . . . .
— 5 |:Xalej _ Xanlb _ m (51b(X2)aj _ 51j<X2>ab + (X2)1b5aj _ (XZ)zj(sab)
1 . )
— _Tr(X?)(6%6, — %8 )|. Cl1
+(N_ 1)(N—2) r( )( jYb b j) ( )

One can obtain the same decomposition for Y%, Y? jjustreplacing X to Y. There are no contributions from the last 2 terms of
(CS). This is simply because our wave function is “real.”

2. Decomposition for [Tr(XY)]?

By using previous results, we can decompose adjoint ® adjoint into irreducible representations. Since the contraction
with different representations vanish, one can decompose [Tr(XY)]? as follows.

[Tr(XY)]> = [Tr(XY)P|y + [Tr(XY)Pney, + [Tr(XY)P|ne

+[Tr(XY) Pl x-1yv+3) + [TEXY) P line 1) (8-3)- (C12)
where
[Tr(XY)]?|, = N 1TrXZTrYZ, (C13)
XY Pl = g (TP = (0 (107 (c14)
XYl 1, = 3y [THOPY?) = (1) (101 (c1s)

[Te(XY)[ixe(n-1)(8-13)

{Tr(XY)Tr(XY) + Tr(XYXY) - i !

(N+1)(N+2)

= 5 Tr(X?Y?) + TrXZTrYZ] , (C16)

| =

[Tr(XY)]? |§N2(N+1) (N-3)

[Tr(XY)Tr(XY) — Tr(XYXY) —

Tr(X?Y?) +

N2 NoDN=2) TerTrYZ]

o NI=

(C17)

Each symbol |g denotes the projection into each irreducible representation R. A reason why the last vanishes is the same as
the case of two mesons at the same position with the same direction, which do not have the totally antisymmetric
combination.

Explicitly we have

s = 10| (1-2)00) + 3 oalo'o)] (c18)
(XY)%, = (@' $)b0" — 3 A DB + o B D) + 155 (0"0) (). (c19)
TrX? = <1 - %) (pT0)?, (C20)
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THXY) = (0 9)(#'0) ~ 3 (0 0) ') (c21)
0er) = (@D ) GO + 55 N30 @)L (c22)
TXYXY) = (0102010 T L ) B0 0B D) + s N -2 (C23)
Tr(X2Y?) — % (Ter)(TrYz)} <NT_2)2(¢T¢) (¢ ) Te(XY). (C24)
3. Summary
To summarize, the final results are explicitly given as
Y(p. U) = V1(0. U) + ¥ne_1 (0, U) + ¥ine vy np3) (@, U), (C25)
where
Wil U) = 5 00D+ VP = s (ol o ) (20

Pne_i(o.U) = % (@' @) (@' $)Tr(XY) + [Tr(XY)Plxey, + [Tr(XY)[ya,

4
N+2

N

1
= —( Z¢b)(fpz+1(pb+l) [((PZUb,bH(PbH)((ﬂZH UZ,M%) Y ((ﬂz(Pb)((PZH(PbH)} > (C27)

T%NZ(N—I)(N+3) (¢, U) = [Tr(XY)]? |%N2(N—l)(N+3)

= (@ZUh,bJrlQ”thl)2(¢;+1U;h+1(pb)2
2
N +2

Note that this result also holds for the N = 2 case.

APPENDIX D: FEYNMAN DIAGRAMS FOR
TRANSFER MATRIX IN THE HPE

The hopping parameter expansions (HPE) for the
transfer matrix can be evaluated efficiently using
Feynman diagrams. We consider the SU(N) gauge
theory with fundamental scalar fields in 2-dimensional
lattice space-time, where the horizontal direction corre-
sponds to the spatial direction while the vertical direc-
tion corresponds to the Euclidean time direction,
respectively.

The transfer matrix is defined in Sec. VI. As is clear
from the expression, it represents a transition from a
“current state” (which we denote as Y& = {¢,V}) to a
“future state” (which we denote as W4 = {¢,U}) by

. 1
———— (s 0) (@) 1 Pp11) |:2(§0J}2Ub.b+1§0b+l)((/7};+1 U 1) = (¢Z§0b)(¢’2+1€0b+1):| :

N+1
(C28)

unit time shift. As mentioned, we take the temporal
gauge, therefore all gauge link variables along the time
direction are set to unity.

1. Diagrams

a. States
The gauge invariant “quark-antiquark” states |n,m)
labeled by site positions (n, m) are defined as
(¥4, n) = @i,
(¥4[n,m) = oaU,p s (n < m),
(¥ 0. m) = @aUnon@(n > m), (D1)

where
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Un—»m = Un,n+1Un+1,n+2 T Um—l,m' (D2)

These states can be represented graphically as

(UBn,n) = ce | (UBn,n+1)= o—e

n+1

PHYSICAL REVIEW D 96, 045020 (2017)

for the “future” states. Here a matter field is represented as a
white or black circle for ¢ or ¢ respectively, while a
(spatial) gauge field is a line with direction. Current fields
are on the bottom and future fields are on the top such that
the (Euclidean) time goes upward.

The ground state |0) is represented as an empty diagram.

(D3)
b. Transfer matrix
for the “current” states, and o 15
The transfer matrix 7" is given by
o® &0 .
) ) (PAT|WE) = To(U. V)T (0. $)TH().  (DS)
(Uhn, n) = o (Vn+2,n) =
" 2 Using hopping parameter K, we can represent Ty(P5),
(D4) Ty, (U, V) as
|
N1
2\ B
T2(08) = T (exp [~¢hon + K {6lVadni + 01 Vien }])
n=0
N1
:HAneXp[K{OH + HOH, (D6)
n n+l n n+l
n=0
= A o@ @O
> 5 (e on)
n=0 hp,=0
2. Evaluating the transfer matrix in HPE
N1 In this subsection, we explicitly evaluate the action of the
fer matrix to some states. At the O(K?) in the HPE
T _ oxp [ K T + trans 1 X
m (%, ¢) liIO p[ (('0”¢n + ¢n90n)] generic matrix elements are given by (WA|T|a) where
;_ . |a) = {]0), |n,m)}. In other words, the ground state |0)
- g i mix with at most a single meson state, and one can neglect
- H exp | K " + et (D7) multimeson states at this order."”
n=0 By inserting the completeness relation, we get
Nl—l [e’e] Kvn g i Un,
=11 > (o+e) - (W[Tla) = [ e T (9. (D8)
n=0 v,=0 Un' " "

In the last line of both equations, we expand them in the
power series of K (HPE). Here we define A,, = e~ and
A =1]][,A,, which give damping factors under the ¢
integral for normalization. 6

Ignoring the difference between a meson and its
Hermitian conjugation, we have two types of diagrams,
horizontal pairs and vertical pairs. Notice that vertical lines
have no direction, due to the temporal gauge we take.
Vertical lines are simply connecting color degrees of free-
dom on both ends in the (anti-)fundamental representation.

“In this appendix, we use rescaled 7 which is used after
Sec. VIC. Therefore c; does not appear here.

16 . .
'We here ignore irrelevant constants such as powers of z’s.

We thus get (W4|T|a) at O(K*) order from the follow-
ing rules,
(1) Start from the diagram representing (¥ |a).
(2) Expand T and T, in terms of K and pick up all allowed
terms, i.e., terms which satisfy >, (h,+v,) <s, where
h,, and v, are numbers of horizontal and vertical
pairs, respectively. Then act these terms on the
above (WZ|a) (graphically putting corresponding
diagrams), and integrate ¢ (=current matter fields)
in the total diagrams.
(3) Finally act T; on the diagrams, and integrate V
(=current link variables).

"The multimeson states are important once we take into
account higher order corrections in the HPE.
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We have several comments for integrals of matters and link where a,b,c,d =1,2,...N are color index'® Non-
variables. zero contributions can be obtained if and only if the
(i) The integration of ¢ can be done by using corre- integrand contains same number of O and @ at each
lation functions for scalar fields such as site at the bottom (current). In addition we see that

the number of g and f must be globally equal and

( ¢1‘) bY = 50" the total number of vertical pairs must be even.
nja'¥m nm a’ .o . . . . .
) ; + (i1) In the diagrammatic representation, the integration
(@ndm) = (@n)a(Pm)y) =0, by ¢ at the bottom (current) connects a line attaching
¥ b iVl =0 545 S to a white circle with a line attaching to a black circle
((@n.)atbn, (P ) e} “d Lb"‘“"b et at the same site, and then remove these circles. For
+ 0 a6 c'5na,n,,5n(;.nh7 (Dg) example,

T ac ., X o1

If a closed loop or a shrunk point without links appear after the integral, a factor N must be attached as

®e——O

o—e — ’:j =N, 8 3 N. (D11)
We can explicitly check the above rules using (D9).
(iii) As explained in Sec. VI, T; can be expanded in terms of characters as
s, =0
To(U.V) =[] D dr 3755 (Uni Vi ). (D12)
1—0 R j'1 (ﬁ)

With the orthogonality condition (6.21), one can easily perform the gauge field integration on each link. For
example, if T¢(U,V) acts on gauge fields (V,,.3)*, and V’s are integrated, we can represent this procedure
graphically as

/ (Mo Vi) Ta (U, V) (Vi)

dp A
=1II,— dV, Tr a——b
§=0,1,2 ntsntlts )\1 n+s n+l+s n+s n+l+s

C d

3 i D13

(2N s [ Ve o
)\1 s=0,1, n+s,n+1+s nts nilis

a—r—)
- )\1 n n+3
We see in this case that T; plays a role of uplifting gauge fields with the factor Ag/A; for each link.

""We take the irrelevant multiplicative constant of T, to normalize the first equation.
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(iv) More generally, acting on links which belong to the irreducible representation R, 7'; uplifts gauge fields with the
factor Ag/2;.

(v) For more complicated links which do not belong to one irreducible representation such as a product of links in some
representations, we should decompose them into irreducible representations before the integration. For example,
Ve, Vi which belongs to fundamental x antifundamental representations, can be decomposed into singlet and
adjoint part as

1 1
va,vid, = <N5a65db> + <V“bVT"C —Né“cédb) (D14)
We can visualize this as
c——( 1
a —— — _5‘10 5db + (a,c) (b, d) (D15)

N 9

where the doubled line without direction represents the gauge field in the adjoint representation. Each pair (a, ¢) or
(b, d) correspond to an index of the adjoint representation of the gauge field, whose dimension is N> — 1.
(vi) With matter fields, we can represent the decomposition (C2) as:

1
O—>—0:N8 & + 0—0 (D16)

where squares correspond to the adjoint parts of the matter field. This leads to the following relation we will

use later.
oce Oe
1
/dVTG(U, V) M —/dVTG(U, V) + L

N
(D17)
oce Oe ——
1 AAdj
N A1
3. Some examples
a. (WA|T|n.n) at O(K3)
We derive the explicit form of (¥4|T|n, n) at O(K?). We start from the diagram oe.
At K° order we only have
(UA|T|n, n) |go = /danAé‘ﬁ =0 =N, (D18)
n

where we denote color indices explicitly. We thus obtain
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)0 = NIO). (D19)

At K', from the comment we gave before, the acting pair must be horizontal. However one horizontal pair cannot make
even number matter fields on each site, so there are no contribution at this order.

At K? order, next, we can consider two vertical pairs or two horizontal pairs. In both cases two pairs must share the same
link as

KQ

a c b c
VAT 2 aEc H

m#n

b
N Z( .szsaz:az;)

n+l1 n—1 m#n—1n moml
aO@c bO®C
- / AVTo(U, V) | (80 + 6%,0%,) + 300"
n ey m
(D20)
h——<——o=c a——<—-3)
+ (640" 4 6%6°4)0% o+ 5% (0°0% + 607 R
a b e +2
+ Y 6%8%8% e
m#n—1n
o® o®
=(1+N) +NZ +2N(1+ N) + N* (N, - 2).
m#n
We finally obtain
Tln.n)|x2 = K*N(NN; +2)[0) + K?|n.n) + KN > _|m. m). (D21)

At O(K?) order, there are three horizontal or vertical pairs. Only the “U” shape diagram, consisting of two vertical and
one horizontal pairs, are allowed, since other cases lead to an odd number of scalar fields on some site. Employing rules
(D10) and (D11) and taking care for the direction, we have
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K3 = | dVIg(U,V)dpA n n+1+ n o ntl

+n—1 n+ n—1 n
+ ) S"‘;ﬁ;ﬁg'“ Q

m m+1

m#n,n—1
(D22)
- [ty | 3 |
+N Z ;LWL * m  m+l
m#n—1,n
o——e ®e——=0O
AR
B ()\_1) ;(N_Hsm,nl * 6m7n> m m+1 * m m+1
As a result, we obtain
T|n, n)|g —K3<i£>(n,n+ D+ |n+1,n)+|n—1,n)+|n,n-1))
1
A
3ar( 2F —
+K N</11>§m:(|m,m + 1) + |[m,m —1)). (D23)

b. The detail for the calculation of (7.48)
Here we show the derivation of (7.48), coefficient of |i,i)|i + 1,i+ 1) term at K order. All we have to consider is
T6|Gy) = T¢|0) and T4|AGZ+> => ,T4ln,n). A
First let us consider 74|0). We have six mesonlike pairs in 7', which act on |0). The four of them must be devoted to

construct the future state |i, i)|i + 1,7 + 1) and the other two must be conjugated with each other in the horizontal direction.
So we have following patterns of configurations to integrate:
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01,11 O PO

-1 i il i i+l j

where j #i—1,i,i+ 1. For the first configuration, the integration can be done as

r o Oe
/dVTG(U, V)dgbAM/dVTG(U; V) [(N+2) +m

B ce e
) (D25)
:/dVTG(U, V) [(N+2+ N> + L
© -OO ——
1 Aadi
=(N +2+ — Zadj

where we use (D17). For the other configurations, we have

/dVTG(U,V)d¢A ?1:§H z@ * zH i1 42

+ Y HH 92:3 o

J#Aj—1,5.J+1

ce e

—(2+ NN, — N)

For 7,3 ,|n, n), all of pairs in T should be used to make |i, i)|i + 1)|i + 1). So we have

o b ZM

J#LI+1 (D27)
ce o®

— (NN, +2)

Combining all results, the coefficient of |i,i)|i + 1,i+ 1) becomes 2NN; + 6 + 1.
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APPENDIX E: O(Kz) EIGENSTATES AND EIGENVALUES OF T

In this appendix, we derive eigenvalues and their eigenfunctions of the transfer matrix 7" at O(K?), where |0) and |n, m)
with |[n — m| < 2 mix with each other. First, we classify these eigenstates depending on the value of f, (zero or nonzero) as

Gk = £ol0) + D _anln,n) + > bylnn+ 1)+ cylnn—1)+ dinn+2)+> e,ln,n-2),
|E)g = Zan|n,n> + an|n, n+1)+ ch|n,n -1)+ Zd,, n,n+2)+ Ze”

n,n—2), (El)

which correspond to f, # 0 case and f, = O case, respectively. Here |G)’s should include |0) while |E)’s denote the
complement of |G)’s."

All relevant eigenvalues and eigenfunctions are obtained as follows.

(i) States |G*) g with eigenvalues G are given by

K2

G5 =0 *1n, 1), where at = , E2
6= 0) + Sl where = (E2)
1 1
Gt = 5 {1+ K*(1+2NN,)} + > \/1 —2(1=2NN;)K*+ {1 +4N(NN, + 2)N,}K*. (E3)
(ii) State |G¢)y with the eigenvalue G4 is given by
K
|G*) g = K|0) + > nn) + > _(bS|n.n+ 1) + cSln.n— 1)), (E4)
f - (1 + NNf) n n
X A
G = K? <f> (ES)
where coefficients »$ and ¢¢ must satisfy
1 N 1 /2 N
SO (bG + c9) = ———ﬁ—"’+1<2[— <—F> “Ny=(NNy+2) | (E6)
e N Z—(14NN,) N\ T=(1+NNy)
(iii) State |G%); with the eigenvalue G¥ is given by
K g D+ :
|G) i = K7|0) + [n.n) + ) (dyln.n+2)+e/|n.n-2)) (E7)
(%)2_(1+NNL’) n n
. 2p\?
Gl = K? (E) , (ES)

G for |G) means that it contains the strong coupling ground state |0), while E for |E) represents the lattice excited states. Their
subscript K denotes that the state depends on K.
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where coefficients d§ and e must satisfy

_ N¢
Do+ ) =~ Ty
1 [Ag\2
ey () -
(NN, +2) (ﬁ—')z ~a +NN,;)]
(E9)

(iv) State |E“)g with the eigenvalue E% is given by
|E9) = Zaﬂn,n) where Zaf =0, (E10)
E% = K2, (E11)

(v) State |E*¢)y, which gives the eigenvalues E%,
defined as

PHYSICAL REVIEW D 96, 045020 (2017)

|EV) = (bE[n.n+ 1)+ cEln.n 1)),
where Z(bf +cE) =0, (E12)
bc 2 /1F
gy = k2 (). (E13)
1

(vi) State |E%), with the eigenvalue E% is given by

|[Ede) =" "(d¥|n.n+2) + el|n.n—2)),
where Y "(d} + e}) =0, (E14)
2
E¥ = K? <@) : (E15)
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