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We investigate the properties of triply periodic Skyrme crystals in the generalized Skyrme model
L6 þ L4 þ L2 þ L0 with higher-derivative terms up to sixth order. Three different symmetry breaking
potential terms L0 are considered, the generalized pion mass term, double-vacuum potential, and mixed
potential. Various scenarios of phase transitions from the low-density phase to the high-density phase are
examined for different choices of the parameters of the model. In particular, we investigated limiting
behavior of the Skyrme crystals in the truncated submodel without the Skyrme term L4 and/or without the
L2 term. We show that the Skyrme crystal may exist in the pure L4 and L6 models and investigated the
phase structure of these solutions. Considering the near-Bogomolny-Prasad-Sommerfeld submodel, we
found that there are indications of the phase transition from a low-density quasi-liquid phase to the high-
density symmetric phase of the Skyrmionic matter.
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I. INTRODUCTION

In 1961 Skyrme proposed a simple version of the
nonlinear sigma model [1], which can be considered as
an effective low-energy theory of pions. It was suggested
to consider baryons as topological solitons, with identi-
fication of the baryon number and the topological charge
B of the field configuration. In this picture, the pions
correspond to the linearized fluctuations of the baryon
field; the potential term is necessary to give a mass to
these fluctuations.
The Skyrme model has received much attention during

the last few decades. There is a variety of soliton solutions
constructed numerically [2–4]. While the simplest con-
figuration of degree B ¼ 1 is spherically symmetric, the
Skyrmions of higher topological degrees possess much
more complicated symmetries: they are symmetric with
respect to the dihedral group Dn, the extended dihedral
groups Dnh or Dnd, or even the icosahedral group Ih [4].
Certainly, there is a similarity with symmetries of crystals
and fullerenes. Indeed, one can arrange the Skyrmions in
a crystalline structure that is periodic in all three space
dimensions [5–8].
A feature of the usual Skyrme model is that the soliton

solutions do not saturate the topological bound; the
binding energy is relatively high. This observation does
not agree with experimentally known low binding ener-
gies of physical nuclei; the difference is more than an
order of magnitude. It was also observed that the energies
of the configurations of higher degrees slowly approach
the topological bound as B increases; see, e.g., [9]. Other
important observations was that the increase of the pion
mass may strongly affect the structure of the multi-
Skyrmion configurations [10].

Recently a few modifications of the Skyrme model were
proposed to improve its phenomenological predictions
and construct weakly bounded multisoliton configurations

]11–14 ]. Two possible directions there are related with a
generalization of the original Skyrme model by inclusion
into Lagrangian some additional terms which are higher
order in derivatives [11,15–17], or by a nonstandard choice
of the potential term, which would decrease the attractive
force between the Skyrmions [13,14,18]. In the first case
there is a possibility to truncate the model to the so-called
Bogomolny-Prasad-Sommerfeld (BPS) submodel [19],
which is invariant under volume preserving diffeomor-
phisms [11,20]. Multisoliton solutions of this reduced
model exactly saturate the topological bound; they may
interact only elastically and the configuration in some sense
resembles the system of liquid drops. In the second case,
the repulsive part of the potential separates the constituents
of the multi-Skyrmion configuration which resembles a
loosely bound collection of almost isolated spherically
symmetric unit charge solitons.
In this paper, we will study the Skyrmion crystals in

the generalized model with sextic term and with various
choices of the potential. In particular, we investigate what
happens to the Skyrme crystal as the system deforms away
from the standard Skyrme model. The parameters we vary
are the coefficients at all terms of the extended model, so
both the usual Skyrme model and its self-dual truncation
are the limiting cases. As we shall see, there are indications
of phase transition from a low-density quasi-liquid phase to
the high-density symmetric phase of Skyrmionic matter in
the reduced almost self-dual model.
The paper is organized as follows: in the next two

sections we discuss the construction and the symmetries of
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the generalized Skyrme crystal. The numerical results for
the three different symmetry breaking potential terms,
which include the generalized pion mass term, double-
vacuum potential, and mixed potential, are presented in
Sec. IV. Here we also compare the results to the usual
pattern of phase transitions in the conventional Skyrme
model and describe a numerical scheme we implement to
find the energy minimizers. The Skyrme crystals in the
submodels of the general model are discussed in Sec. V.
We give our conclusions, remarks, and possible future
directions of development in the final section.

II. GENERALIZED SKYRME MODEL

The general Skyrme model is a Poincaré invariant,
nonlinear sigma model field theory. The most general
allowed form of it, restricted by the condition that the
corresponding Hamiltonian must be quadratic in time
derivatives, is

L0246 ¼ L2 þ L4 þ L6 þ L0; ð1Þ

where L0 ¼ m2
πV is a potential term with parameter m2

π

[21]. The usual structure of the Skyrme model is given by
the two terms

L2 ¼
a
2
TrðLμLμÞ; L4 ¼

b
4
Trð½Lμ; Lν�½Lμ; Lν�Þ; ð2Þ

where a and b are non-negative coupling constants and

Lμ ¼ U†∂μU ð3Þ

is the suð2Þ-valued left-invariant current, associated with
the SU(2)-valued scalar field U ¼ σ · Iþ iπ · τ. It can be
represented in terms of the quartet of scalar fields n ¼
ðσ; πÞ restricted to the surface of the unit sphere S3,
n2 ¼ σ2 þ π · π ¼ 1.
The field of the model is required to satisfy the boundary

condition UðxÞ → I as x → ∞; thus, the field is a map
U∶S3 ↦ S3 labeled by the topological invariant B ¼
π3ðS3Þ. Explicitly, the winding number of the field con-
figuration is given by

B ¼ 1

24π2

Z
d3xεijktr½ðU†∂iUÞðU†∂jUÞðU†∂kUÞ�

¼ 1

24π2

Z
d3xεijktr½LiLjLk�

¼ −
1

12π2

Z
d3xεabcdεijkna∂inb∂jnc∂knd: ð4Þ

The corresponding topological current is

Bμ ¼ 1

24π2
εμνρσTrðLνLρLσÞ: ð5Þ

Thus, the model (1) includes a sextic term

L6 ¼ 4π4cBμBμ; ð6Þ

where c is another non-negative coupling constant. Note
that the usual rescaling of the spatial coordinates x →

ffiffi
a
b

p
x

allows us to set two of the coupling constants to unity.
However, in order to study qualitative properties of the
solutions numerically, it will be more convenient to keep all
four parameters of the model (1).
The choice of the symmetry breaking potential terms L0

is important in our discussion. Since we are interested in the
study of limiting transition to the self-dual L0 þ L6 crystal,
we considered three related potentials [22], the generalized
pion mass potential

V ¼
�
Tr

�
I −U
2

��
α

; ð7Þ

the double-vacuum potential

V ¼
�
Tr

�
Iþ U
2

�
Tr

�
I −U
2

��
α

ð8Þ

and mixed potential

V ¼ Tr
�
Iþ U
2

��
Tr
�
I −U
2

��
α

: ð9Þ

Here α is a positive constant which defines the type of
asymptotic decay of the field. As α ¼ 1, the potential (7) is
reduced to the usual pion mass potential; setting α ¼ 2
corresponds to the massless potential considered in [13].
The potential (8) corresponds to the so-called “new”
potential in the planar Skyrme model [23]; in the limiting
case of the self-dual Skyrme submodel it yields the shell-
like solutions [22].
Thus, the stress-energy tensor of the general model (1) is

given by

Tμν ¼ aTr

�
LμLν −

1

2
ημνLρLρ

�

þ bTr

�
½Lμ; Lρ�½Lν; Lρ� − 1

4
ημν½Lρ; Lσ�½Lρ; Lσ�

�

þ 8π4c

�
BμBν −

1

2
ημνBρBρ

�
− ημνm2

πV; ð10Þ

where ημν ¼ diagð−1; 1; 1; 1Þ is the usual Minkowski
metric. Then, the static energy functional is defined by
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E¼
Z

T00d3x

¼
Z

fa∂in·∂inþ2bðð∂in·∂inÞ2−ð∂in·∂jnÞð∂in·∂jnÞÞ

þcðεabcd∂1na∂2nb∂3ncndÞ2þm2
πVgd3x: ð11Þ

The energies of the Skyrmions satisfy the topological
bound

E ≥ E1jBj: ð12Þ
Setting the parameters of the model as a ¼ 1, b ¼ 1,
c ¼ mπ ¼ 0, we obtain E1 ¼ 24π2. However, on the R3

space this bound cannot be saturated; the energy of the static
unit charge Skyrmion in the usual Skyrme model without
both the sextic term and the potential is 1.23E1. On the other
hand, the truncation of the general model (1) to the self-dual
submodel with a ¼ b ¼ 0 allows us to attain an equality in a
similar topological bound for that system [11,20].
It is convenient to set the energy unit as the mass of the

static Skyrmion in the usual Skyrme model without the
sextic term and the potential. Thus, it will be convenient for
our purposes to normalize the energy by factor 1=24π2.

III. GENERALIZED SKYRME CRYSTALS

It was noticed that the topological bound (12) can be
approximately saturated by the special arrangement of the
Skyrmions in an infinite, triple periodic in a space con-
figuration, the Skyrme crystal [5–8]. This configuration,
which can be considered as a model of dense nuclear
matter, can be constructed by imposing periodic boundary
conditions on the Skyrme field in three spatial dimensions
and taking into account that the symmetry generators must
combine both the spatial and internal rotations of the
Skyrmions. Indeed, the field of the single Skyrmion can
be approximated by the triplet of orthogonal dipoles and
the character of the interaction between the Skyrmions
depends on their relative orientation; there are attractive and
repulsive channels in the interaction of two solitons.
Let us consider a cubic cell of size L, where at the point

with spatial coordinates ðx; y; zÞ the Skyrme field is given
by the quartet ðσ; π1; π2; π3Þ. The cell is a building block
of the cubic lattice with period L in all directions. The
simplest, low-density case of symmetry of Skyrme crystal
was considered by Klebanov [5]. This configuration
corresponds to the attractive channel of interaction between
the six nearest neighbors; twelve second nearest are in
orientation of the repulsive channel. This crystal has com-
bined symmetry generated by

(i) the spatial translation by L along the x axis com-
bined with a rotation by π around the twofold axis in
isospin:

ðx; y; zÞ → ðxþ L; y; zÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1; π2;−π3Þ; ð13Þ

(ii) the spatial reflection in coordinate space combined
with internal reflection of n:

ðx; y; zÞ → ð−x; y; zÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1; π2; π3Þ; ð14Þ

(iii) simultaneous spatial and isospin rotations around a
threefold axis:

ðx; y; zÞ → ðz; x; yÞ;
ðσ; π1; π2; π3Þ → ðσ; π3; π1; π2Þ: ð15Þ

However, such a simple cubic crystal is not a lowest
energy configuration for a given value of the lattice period
L. A more detailed analysis reveals that in the usual Skyrme
model without the sextic term L6, there are three different
phases of the Skyrme crystal with different symmetries.
The body-centered cubic (bcc) lattice of half-Skyrmions

[6] corresponds to the higher density. This crystal has
symmetries (13), (14), and (15), as well as additional
symmetry with respect to a rotation by π around an axis
going through the points ð0; L

4
; L
2
Þ and ðL

2
; L
4
; 0Þ in coor-

dinate space, and an O(4) chiral rotation of the field n:

ðx; y; zÞ →
�
L
2
− z;

L
2
− y;

L
2
− x

�
;

ðσ; π1; π2; π3Þ → ð−σ; π2; π1; π3Þ: ð16Þ

The face-centered cubic (fcc) lattice of Skyrmions [7,8]
corresponds to the lower density phase. Here the Skyrmions
are placed on the vertices of a cube and more Skyrmions are
placed on the center of the faces. There are twelve nearest
neighbors in the attractive channel in such a configuration.
Its symmetry transformations include both the transforma-
tions (14), (15), and a rotation around a fourfold axis in
space, combined with the internal SO(3) rotation of the pion
field:

ðx; y; zÞ → ðx; z;−yÞ; ðσ; π1; π2; π3Þ → ðσ; π1; π3;−π2Þ
ð17Þ

as well as a translation from the corner of a cube to the
center of a face combined with an SO(3), isospin rotation
acting on π:

ðx; y; zÞ → ðxþ L; yþ L; zÞ;
ðσ; π1; π2; π3Þ → ðσ;−π1;−π2; π3Þ: ð18Þ

However, the global minimum of energy of the Skyrme
crystal corresponds to the medium-density simple cubic
(sc) lattice of half-Skyrmions [8]. This phase is charac-
terized by a spatial translation combined with an SO(4)
chiral rotation by π in the σ; π1 plane:
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ðx; y; zÞ → ðxþ L; y; zÞ;
ðσ; π1; π2; π3Þ → ð−σ;−π1; π2; π3Þ; ð19Þ

which replaces the transformation (18); however the trans-
formations (14), (15) and (17) are also symmetries of this
phase. The minimal energy of the usual Skyrme crystal in
the L2 þ L4 model is of E ¼ 1.036 at L ¼ 4.71 in the
rescaled units of energy and length.
Note that since the symmetry group of the low-density

phase is a subgroup of the symmetry group of a medium-
density phase, the phase transition between the fcc and
medium density sc phases should be of the second order.
Similarly, the transition between the Klebanov sc low-
density phase of single Skyrmions and the bcc high-density
phase is of second order while the transition from the low-
density sc or fcc phases to the bcc lattice is of the first order.
In order to understand the situation better, let us consider

a single Skyrmion placed at (0, 0, 0), where πi ¼ 0 and
σ ¼ −1. The restriction of the reflection symmetry (14)
together with the translational invariance (13) means that
σ ¼ 0 on any surface ð�L;�L;�LÞ. A cube of side length
L bounded by these surfaces contains a half-Skyrmion with
σ < 0. The symmetry restriction (19) also means that σ ¼ 1
at the point ðL; 0; 0Þ where the second half-Skyrmion with
σ > 0 is located. Each of the cubes has topological charge
1=2. The Skyrme crystal in the high-density phase can be
viewed as a construction built from these cubes of two
types with Skyrmions appropriately internally rotated; thus,
this is a system of half-Skyrmions arranged on a simple
cubic lattice.
Our goal now is to study the pattern of phase transition in

the general Skyrme crystal (1). Note that direct minimiza-
tion of the corresponding energy functional needs a large
amount of computational power; thus, to simulate the
crystal numerically, we follow the approach of Ref. [8].
We expand the unnormalized Skyrme field n̄ in a Fourier
series possessing required symmetries and then minimize
the energy with respect to the coefficients of the expansion.
The normalized Skyrme field then can be recovered as

n ¼ n̄
∥n̄∥

:

Since the general Skyrme model (1) may have different
symmetries, we will look for solutions possessing only
general symmetries of the crystal (13)–(15). For such
configurations the Fourier expansion will take the form

σ̄ ¼
X
a;b;c

βabc cos

�
aπx
L

�
cos

�
bπy
L

�
cos

�
cπz
L

�
;

π1 ¼
X
a;b;c

αabc sin

�
aπx
L

�
cos

�
bπy
L

�
cos

�
cπz
L

�
ð20Þ

and similarly for the components π2 and π3 which can be
obtained from π1 by using the transformations (15) and
(17). Here we will take βabc ¼ βbca ¼ βcab.

IV. NUMERICAL RESULTS

In our numerical analysis, we minimize the static energy
functional (11) with respect to the coefficients of the
Fourier expansion (20) using the numerical optimization
algorithm SNOPT [24]; the relative errors are lower than
10−6. A typical number of terms in the general Fourier
expansion, which is necessary to obtain a solution, is about
40. To verify the results in some cases we extend it up to
100. As a consistency check we also verify numerically the
results reported in Refs. [5–8] for the usual Skyrme model
without potential.
First, we consider crystals in the general Skyrme model

(1) with different choices of the potentials, (7), (8), and (9),
and investigate the effect of the presence of the sextic term.
We fix the parameters of the model as a ¼ b ¼ mπ ¼ 1 and
study dependency of the normalized energy E=B of the
Skyrme crystal versus the volume of the unit cell V=B for
different potentials in the cases of the usual c ¼ 0 submodel
and c ¼ 1 general model. In our consideration we fix α ¼ 1
for the potentials (7) and (8) and take α ¼ 2 for the mixed
potential (9).
First, we consider in detail the dependency of the

normalized energy of the crystal E=B on the volume of
the unit cell. Numerical evaluation shows that in all cases
these functions have a minimum at some value of the
volume; see Fig. 1. The energy rapidly grows as the volume
of the cell tends to zero and, as the volume increases, it
slowly approaches the energy of the single isolated B ¼ 1
Skyrmion in the corresponding model. As expected, the
deepest minimum of the energy corresponds to the case
of the Skyrme model without the potential; the highest
minimum corresponds to the model with the usual pion

FIG. 1. Normalized energy E=B versus volume per topological
charge V=B for Skyrme crystals in the general model with
potentials (7), (8), and (9) for c ¼ 0 (solid lines) and c ¼ 1
(dashed lines).

I. PERAPECHKA and YA. SHNIR PHYSICAL REVIEW D 96, 045013 (2017)

045013-4



mass potential. The position of the minimum also depends
on the type of the potential, we found that the lowest
density minimum corresponds to the model without the
potential, as seen in the Fig. 1. Evidently, the highest
density minimum corresponds to the model with the
double-vacuum potential (8).
Our results show that the inclusion of the sextic term

always increases the energy of the crystal. Indeed, this term
effectively corresponds to repulsion, it also slightly shifts
the position of the minima of the energy toward lower
values of density. On the other hand, inclusion of the

potential of any type yields the opposite effect: shifting
the position of the corresponding minima towards higher
density, the corresponding value of the minimal energy
slightly increases.
As expected, we found that the structure of the solutions

depends both on the type of the potentials and on the
density of the configurations. Recall that there are three
phases of the Skyrme crystal: the bcc lattice of half-
Skyrmions with symmetries (13)–(16), which is typical
for the high densities; the sc lattice of half-Skyrmions
with symmetries (14), (15), (17), and (19), which exist at

FIG. 2. Level sets of the σ component of the Skyrme field (left panel) and the topological charge density B0 (right panel) for the bcc
Skyrmion lattice in the model (11) with a ¼ 1=2, b ¼ 1=4, c ¼ 1, mπ ¼ 1, and the pion mass potential.

FIG. 3. Level sets of the σ component of the Skyrme field (left panel) and the topological charge density B0 (right panel) for the sc
half-Skyrmion lattice in the model (11) with a ¼ 1=2, b ¼ 1=4, c ¼ 1, mπ ¼ 1, and pion mass potential.
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medium values of the density; and the fcc lattice of
Skyrmions with symmetries (14), (15), (17), and (18),
which is typical for low densities. In Figs. 2, 3, and 4 we
display the typical patterns of the level sets of the σ
component of the Skyrme field and the topological charge
densities for these three types of the Skyrme crystal.
Note that in the sextic model the situation can be

different; also the structure of the minimal energy con-
figuration depends on the presence and on the particular
type of the potential term. We have found that, in the
absence of the potential of any type, the Skyrme crystal
may exist in all three phases mentioned above. Thus, as the
density of the crystal increases, two consequent phase
transitions occur, one of which is of the first order and
another one is of the second order. The presence of the
potential term affects the phases of the Skyrme crystal in
different ways depending on the explicit form of the
potential.
First, we observe that the potential of any type always

decreases the critical value of the volume of the unit cell, at
which the transition from the sc lattice to the fcc lattice
occurs. However, it almost does not affect the critical value
of the density at which the second phase transitions from
the fcc lattice, or at which the bcc lattice to the high-density
sc phase of half-Skyrmion lattice occurs.
Second, we have found that in the case of the usual pion

mass potential (7) the sc phase of the Skyrme crystal does
not exists as a global minimum for any values of the
density; thus, in this case in the model with or without
the sextic term, there is only one phase transition between
the bcc-lattice and the fcc-lattice phases.
Third, we observe that in the general model with the

double-vacuum potential (8) all three phases of the Skyrme

crystal may exist. In a contrast, in the general model (1)
with the mixed potential (9), all these phases exist only in
the c ¼ 0 submodel without the sextic term. However,
similar to the model with the usual pion mass term, there
are only two phases of the Skyrme crystal in the general
case c ≠ 0, the bcc and the fcc lattices.
In all cases, the inclusion of the sextic term always

increases the critical value of the density, at which the
corresponding phase transitions occur. In Fig. 5, we
represent the results of the numerical analysis of the

FIG. 4. Level sets of the σ component of the Skyrme field (left panel) and the topological charge density B0 (right panel) for the fcc
Skyrmion lattice in the model (11) with a ¼ 1=2, b ¼ 1=4, c ¼ 1, mπ ¼ 1, and the pion mass potential.

FIG. 5. Critical value of the size of the unit cell Lpt, at which
the corresponding phase transition occurs, as functions of the
coupling constant c for all phase transitions in the general Skyrme
crystal at a ¼ b ¼ 1, mπ ¼ 1, and various choices of the
potentials.
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dependencies of the critical value of the size of the unit cell
Lpt, for which the corresponding phase transition is taking
place, on the increase of the coupling constant c.

V. SKYRME CRYSTALS IN THE SUBMODELS
OF THE GENERAL SKYRME MODEL

In this section we study the properties of Skyrmion
crystals in various submodels of the general L0246 model
with higher-derivative terms (1). Here we make use of the
abbreviated notations Lijk to label submodels of different
types. Thus, in the previous section we discussed the usual
massless Skyrme model L24, the Skyrme model with
potential L024, and the submodel L246, which corresponds
to the generalized theory (1) without potential.
It is known that the submodel L06, where the usual

Skyrme term is replaced with a sextic term proportional to
the square of the topological current, supports self-dual
solutions [11,20]. Further, the structure of the solutions
strongly depends on the explicit form of the potential
[13,22]. In particular, for the generalized pion mass
potential (7) with α < 3, the self-dual solutions are com-
pactons with nonanalytic behavior on the boundary of the
support. Analogously, the submodel L046 with the usual
pion mass potential also supports compacton solutions.
For the sake of simplicity we further restrict our con-

sideration to the family of models with the usual pion mass
potential:

V ¼ Tr

�
I − U
2

�
: ð21Þ

With this particular choice of the potential (21), the
solutions of the self-dual L06 submodel are spherically
symmetric compactons [11,20]:

σ ¼
(
r2
�

m2
π

2jBj ffiffi
c

p
�1

3 − 1 r ∈
h
0; rcr ¼

ffiffiffi
2

p �
2jBj ffiffi

c
p

m2
π

�1
3

i
;

0 r ≥ rcr
ð22Þ

with the energy

E ¼ 128π
ffiffiffiffiffi
2c

p
m2

π

15
jBj: ð23Þ

Thus, the solitons of the L06 submodel at zero temperature
behave like an incompressible system of noninteracting
liquid droplets. Further, there is no crystal of any type in
this submodel. Indeed, the size of the compacton rcr ∼ jBj13.
Therefore, the energy density distribution does not depend
on the distribution of the topological charge in the droplets.
The total topological charge of the system of noninteracting
compactons is equally distributed among the available
volume; as the size of the cell is decreasing, the droplets

merge to decrease the energy. Finally, they form a single

incompressible sphere with radius
ffiffiffi
2

p ð2jBj
ffiffi
c

p
m2

π
Þ13 within

which all the topological charge jBj is concentrated.
The Skyrme crystals in the submodels L26, L4, and L46

can be considered without the potential term since its effect
is not very significant in these cases. In Fig. 6 we display
dependencies of the normalized energy E=B on the volume
of the unit cell for these crystals (cf Fig. 1). Numerical
evaluation shows that for the submodel L26 without the
Skyrme term, this dependency is qualitatively the same. As
in the general model, the energy per cell infinitely increases
as the cell volume is decreasing to zero and it tends to the
energy of the single unit charge soliton as the volume
increases. The value of the minimum of the energy is,
however, lower than in the full model. It corresponds to the
higher value of density; see Fig. 6. Indeed, it was shown by
Adam and Wereszczynski [25] that for the L26 submodel
the new energy bound is

E ≥
a
3c

jBj ð24Þ
where E is the normalized energy per unit cell. In our case
we set a ¼ c ¼ 1, thus it yields the bound E

B ≥ 1
3
, while our

numerical simulations give the value of the minimal energy
Emin ∼ 0.355jBj at the lattice size L0 ¼ 2.37. Thus, the
minimum of the energy is just 1.5% above the correspond-
ing energy bound for the L26 submodel [25].
Similar to the case of the usual Skyrme model, the

minimal energy configuration corresponds to the same sc
lattice of half-Skyrmions. Further, the phase structure of the
Skyrme crystal in this submodel also possesses the phases
we observed in the full model; thus, we may conclude that
the minimal energy crystals in the L26 and L246 submodels
are quite similar for all range of values of the density.

FIG. 6. Normalized energy E=B versus volume per topological
charge V=B for Skyrme crystals in the general model with pion
mass potential (21) and for various submodels.
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The pattern we observed in the case of L46 submodel is
quite different from what we discussed above. First, the
dependency of the normalized energy on the volume of the
unit cell does not possess a minimum. It monotonically
decreases from infinity, in the limit of zero volume, to
zero, as L → ∞; see Fig. 6. Indeed, there is no usual
kinetic term in such a model; a stable soliton solution
cannot exist on R3. However, imposing the boundary
condition of triple periodicity in a crystal effectively sets
the theory on a torus T3. It also provides a natural scale
parameter of the model, the lattice period L; hence, the

solitons may be bounded in the Skyrme crystal. Further, it
is even possible to truncate the model to the pure Skyrme
L4 or even L6 crystals. Our numerical computations show
that the normalized energy of the L4 crystal qualitatively
depends on the volume of the unit cell in the same way, as
in the L46 submodel; see Fig. 6.
The second feature of the Skyrme crystals in L4 and L46

submodels above is that there we do not observe the fcc-
lattice phase. Thus, there is only one phase transition from
the bcc lattice to the sc lattice of half-Skyrmions. As in the
case of the full model, the presence of the sextic term yields

FIG. 7. Level sets of the topological charge density B0 for the Skyrme crystal in the pure L4 submodel (left upper panel), in the L26

submodel (right upper panel), in the L46 submodel (left lower panel), and in the pure L6 submodel (right lower panel) at L ¼ 1.
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some minor increase of the energy of the crystal, as well as
the values of the volume of the cell, at which the normalized
energy has a minimum, or the phase transition occurs.
The peculiarity of the L6 crystal is that the corresponding

term is strongly repulsive; the value of the density should be
rather high to stabilize the configuration. Numerical sim-
ulations indicate that this crystal may exist only in the bcc
phase. Similar to the limiting behavior of the Skyrme
crystal in the L26 submodel, in the limit of zero volume the
normalized energy of the L6 crystal diverges, as it is seen
in Fig. 6.

For comparison we display the distribution of the
topological charge density in the L4, L26, L46, and L6

submodels at the same value of the lattice size L ¼ 1 in
Fig. 7. In all cases, the Skyrme crystal is in the bcc phase, so
the patterns we observe are similar.

A. Skyrme crystals in near-self-dual model

Let us now discuss how the structure and properties of
the Skyrme crystal change as the full model approaches the
self-duality limit. We consider the model (1) with the pion
mass potential (21) fixing the parameters c ¼ mπ ¼ 1 and
gradually decrease the other two coupling constants. It is
convenient for our purposes to set a ¼ b ¼ λ, λ ∈ ½0; 1�.
Our numerical simulations show that, as expected, the

decreasing of these parameters yields a significant decrease
of the value of the energy per unit cell; see Fig. 8. We
observe that the minimal energy of the configuration
decreases almost linearly from the value Emin ¼ 1.396 at
λ ¼ 1 to the minimal value Emin ¼ 0.161 at λ ¼ 0.
The second observation is that the critical value of the

lattice spacing, at which the phase transition from the bcc
lattice of half-Skyrmions to the fcc lattice of Skyrmions
occurs, swiftly increases, as the system approaches the self-
duality limit. Also at the critical value of parameter λ ≈ 0.4,
the new third phase appears. In this phase the Skyrme
crystal is transformed into the Klebanov’s sc lattice. Recall
that the generators of symmetry of this phase are (13)–(15)
and the transition between the Klebanov’s sc low-density
phase of single Skyrmions and the bcc high-density phase
of the Skyrme crystal is of second order. In Fig. 9, which
supplements Figs. 2–4, we display the spatial distribution
of the σ component of the Skyrme field and the topological

FIG. 8. Normalized energy E=B versus volume per topological
charge V=B for Skyrme crystals in the near-BPS model for a set
of different decreasing values of a ¼ b.

FIG. 9. Level sets of the σ component of the Skyrme field (left panel) and the topological charge density B0 (right panel) for the sc
Skyrmion lattice in the general L0246 model with a ¼ b ¼ 0.1, c ¼ 1, mπ ¼ 1, and the pion mass potential.
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charge density B0 for such a simple cubic lattice of
Skyrmions at λ ¼ 0.1.
Further, as the value of the parameter λ continues to

decrease, the contributions to the total energy functional
(11), which come from the L2 þ L4 terms and from the
L0 þ L6 terms, become of the same order. Then the phase
transition from the sc lattice of Skyrmions to the fcc lattice is
no longer observed and only two phases of the Skyrme
crystal remain. The fcc-lattice phase disappears at λ ≈ 0.3.
With the further decrease of λ, the point of transition from the
bcc lattice to the simple sc lattice of Skyrmions shifts
towards lower values of the density, approaching the limiting
value 8r3cr. At this point rcr is just the radius of the
compacton (22). At the same time, the normalized energy
per cell approaches the value of the energy of a single
compacton (23). Considering the near-BPS submodel, we
found that there are indications of the phase transition from a
low-density quasi-liquid phase to the high-density symmet-
ric phase of the Skyrmionic matter. Finally, the solitons
become localized on a compact support and the system does
not represent a crystal anymore. Instead it can be treated as
an incompressible fluid on the torus T3.

VI. CONCLUSIONS

We have investigated the properties of the Skyrme
crystals in the general Skyrme model with the higher-
derivative sextic term being the topological current squared.
This model possesses various limiting cases, among which
are the usual Skyrme model with or without the pion mass
term and the self-dual L06 submodel. Investigating the
pattern of phase transition in these crystalline systems we
found that, depending on the density of the configuration,
the general Skyrme crystal with minimal energy may exist
in four different phases, which correspond to the low-
density sc lattice of Skyrmions (Klebanov’s crystal), bcc
lattice of half-Skyrmions, the fcc lattice of Skyrmions, and
the high-density phase of the sc lattice of half-Skyrmions.
The phase transition between the phases of the fcc lattice of
Skyrmions and the sc lattice of half-Skyrmions is of the
second order. Also the transition between the Klebanov’s
phase of the sc lattice of single Skyrmions and the bcc
lattice is of second order whereas the transition from the
phase of the fcc lattice of Skyrmions to the bcc lattice half-
Skyrmions is of first order.
We found that the addition of the repulsive sextic term to

the usual Skyrme model always increases the energy of the

crystal shifting the minima of the total energy toward lower
values of density. In the presence of the potential term, the
generalized minimal energy Skyrme crystal may exist in
four phases mentioned above; the Klebanov’s phase
appears in the model with the pion mass potential as the
contributions of the L2 and the L4 terms becomes less
significant than the energy of the strongly repulsive term L6

and the potential L0. Further, the structure of the Skyrme
crystal depends also on the type of the potential of the
model, which, depending on the values of the parameters of
the model, may eliminate some of these phase transitions.
We also considered crystalline structures in the sub-

models of the general Skyrme model. The most interesting
finding is that the Skyrme crystal may exist in the pure L4

and L6 models. The pattern of the phase transitions in the
first of these submodels, as well as in the similar L46

submodel, is restricted to just one transition from the bcc
lattice to the high-density phase of the sc lattice of half-
Skyrmions and the normalized energy monotonically
decreases as the lattice spacing increases. We also verified
that the energy of the Skyrme crystals in the L26 submodel
attains an absolute minimum at some critical value of the
lattice spacing. This minimum is just 1.5% above the
corresponding energy bound for this submodel [25,26].
Considering the near-BPS submodel, we found that there

are indications of the phase transition from a low-density
quasi-liquid phase to the high-density symmetric phase of
the Skyrmionic matter.
As a direction for future work, it would be interesting to

study the generalized Skyrme crystals at finite temperature;
the pattern of phase transitions in this case can be very
different. It might be also interesting to consider general-
ized Skyrme lattices with hexagonal symmetry, considered
by Battye and Sutcliffe in the usual Skyrme model [27].
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