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An important aspect of Weyl anomalies is that they encode information on the irreversibility of the
renormalization group flow. We consider, Δb̄ ¼ b̄UV − b̄IR, the difference of the ultraviolet and infrared
value of the □R-term of the Weyl anomaly. The quantity is related to the fourth moment of the trace of the
energy momentum tensor correlator for theories which are conformal at both ends. Subtleties arise for
nonconformal fixed points as might be the case for infrared fixed points with broken chiral symmetry.
Provided that the moment converges, Δb̄ is then automatically positive by unitarity. Written as an integral
over the renormalization scale, flow-independence follows since its integrand is a total derivative.
Furthermore, using a momentum subtraction scheme (MOM) the 4D Zamolodchikov-metric is shown to be
strictly positive beyond perturbation theory and equivalent to the metric of a conformal manifold at both
ends of the flow. In this scheme b̄ðμÞ can be extended outside the fixed point to a monotonically decreasing
function. The ultraviolet finiteness of the fourth moment enables us to define a scheme for the δL ∼ b0R2-
term, for which the R2-anomaly vanishes along the flow. In the MOM- and the R2-scheme, b̄ðμÞ is shown to
satisfy a gradient flow type equation. We verify our findings in free field theories, higher derivative theories
and extendΔb̄ and the Euler flowΔβa for a Caswell-Banks-Zaks fixed point for QCD-like theories to next-
to-next-to leading order using a recent hG2G2i-correlator computation.
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I. INTRODUCTION

It is well known that moments of the correlator of the
trace of the energy momentum tensor (TEMT) provide
information on the flow of Weyl anomalies in theories with
an ultraviolet (UV) and an infrared (IR) conformal fixed
point (FP). For example the 2D Weyl anomaly hTρ

ρiCFT ¼
−ðβc=ð24πÞÞR, where Tρ

ρ is the TEMT, R the Ricci scalar
and βc ¼ 1 for a free scalar field, is probed by the second
moment

Δβ2Dc ¼ βUVc − βIRc ¼ 3π

Z
d2xx2hΘðxÞΘð0Þic ≥ 0 ð1Þ

of the TEMT in flat space Tρ
ρjflat → Θ. This formula is

Cardy’s version [1] of the celebrated c-theorem [2] and
h� � �ic stands for the connected component of the vacuum
expectation value (VEV). Positivity follows reflection
positivity [1] or the positivity of the spectral representation
[3]. In 3D there are no Weyl anomalies on dimensional
grounds but a relation analogous to (1) exists for the
moment of two electromagnetic currents related to the flow
of the parity anomaly [4].
In this work we exploit the finiteness conditions for

2-functions, worked out in a previous paper [5], to obtain
results on 4DWeyl-anomalies. In 4D an analogous relation
to (1) has been proposed in [3,6,7] and indirectly in [8],

Δb̄ ¼ b̄UV − b̄IR ¼ 1

293

Z
d4xx4hΘðxÞΘð0Þic ≥ 0; ð2Þ

where b̄ is the □R-term [7] of the Weyl or conformal
anomaly [9].1,2

hTρ
ρðxÞi ¼

1ffiffiffi
g

p ð−δsðxÞÞ lnZ

¼ −ðβIRa E4 þ βIRb H2 þ βIRc W2Þ
þ 4b̄IR□H þ 4ΛIR; ð3Þ

and H is the commonly used shorthand [10,11]

H ≡ 1

ðd − 1ÞR:

Above δsðxÞ ≡ δ
δsðxÞ under gαβ → e−2sðxÞgαβ, and E4,W2 and

R are the Euler, the Weyl squared and the Ricci scalar. The
superscript IR indicates that all modes have been integrated

*v.prochazka@ed.ac.uk.
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1In this paper the coefficients in front of the geometric
invariants are denoted by β-functions, in (dis)accordance with
[10–12] ([13,14]). The association of the letters a, b and c with
the geometric invariants is variable in the literature. Our notation
follows Shore’s review [12] in this respect.

2The cosmological constant ΛIR may or may not be tuned to
zero by an appropriate UV-counterterm. Note that the para-
metrization hTαβi ¼ gαβΛIR þ � � � is being used. In QCD-like
theories, for example, the cosmological constant receives con-
tributions from the gluon condensate ΛIRðμÞ ¼ βðμÞ=2hG2iμ-
term. This term is essential for d

d ln μ hTρ
ρi ¼ 0 cf. Sec. III C.
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out. The quantities βIRa;b;c are scheme-independent and
determined by the IR-theory. In the case where the IR-
theory is a CFT, βCFTb ¼ 0 [15,16] implies that βCFTa;c ≠ 0 are
to be regarded as the true Weyl anomalies. Turning our
attention to the b̄IR-term, the first thing to notice is that this
term shifts linearly when adding local term to the UV-
action (conventions as in [5])

LUV → LUV þ 1

8
ω0H2; b̄IR → b̄IR −

1

8
ω0: ð4Þ

This is presumably related to regularization dependence
found in explicit computations (e.g., [9,15,17–20]). The
□R-term is therefore sometimes viewed as not being
meaningful. One of the main points of our paper is that
in physical meaningful quantities, such as Δb̄ (2), this
ambiguity has to cancel. For the flow, ω0 is merely to be
seen as the initial condition which does not affect the
difference Δb̄. A valuable result of this paper is that we
show that the □R flow is given by,

Δb̄ ¼ 1

8

Z
∞

−∞
χ
Rχ

θθ ðμ0Þd ln μ0; ð5Þ

an integral over χ
Rχ

θθ , the scale derivative of the renormal-
ized hΘΘiRχ -correlator. In particular we identify a MOM-
type scheme for which

χMOM
θθ ðμÞ ¼ χMOM

AB ðμÞβAðμÞβBðμÞ; χMOM
AB ðμÞ ≥ 0; ð6Þ

with χMOM
AB ðμÞ, the 4D analogue of the Zamolodchikov-

metric, being a positive definite matrix along the flow.
Since χMOM

θθ can be written as a ln μ-derivative it follows
that Δb̄ is flow-independent. The positivity of χMOM

AB allows
us to define a b̄ðμÞMOM outside the FPs as a monotonically
decreasing function. Building on the observation that Δb̄ is
UV-finite for asymptotically-free and asymptotically-safe
flows [5], Δb̄ ≥ 0 follows from the spectral representation.
Furthermore, finiteness allows us to define a scheme
(R2-scheme) for which the R2-anomaly vanishes along
the flow. In this scheme ¯̄b≡ b̄ðμÞMOM

R2 is shown to obey a
gradient flow type equation. Furthermore we provide Δb̄ to
NNLO in QCD-like theories using a recent NNLO com-
putation of the hG2G2i-correlator. The latter also extends to
the Euler flow Δβa since it is proportional to Δb̄ up to
NNLO around the Caswell-Banks-Zaks (CBZ) FP.
The paper is organized as follows. The flow properties of

□R are presented in Sec. II with the MOM- and R2-scheme
for the hΘΘi-correlator and the b-coupling defined in
Secs. II A and II B respectively. The main part consists
of the description of the properties of Δb̄, b̄RðμÞ and the
Zamolodchikov-metric χRAB in Sec. II C followed by a
discussion of the IR- and UV-convergence of the corre-
lator indicating potential limitations. Section II, which can

be considered as the main part of the paper, is summa-
rized in Sec. II E. The explicit scheme change of the
Zamolodchikov-metric from the MOM- to the MS-scheme,
Δb̄ at a CBZ-FP and the renormalisation of G2 in the R2-
scheme are discussed in Secs. III A, III B and III C
respectively. Free field theory computation of scalars and
fermions are presented in Sec. III D and a free higher
derivative computation is deferred to Appendix D. Three
derivations of (2) using anomalous Ward identities (WI), an
anomaly matching argument and an explicit derivation in
QCD-like theories are provided in Appendices A 1, A 2,
and A 3 respectively. The antisymmetric part of the gradient
flow equation is elaborated on in Appendix B. Comments
on different ways of handling the gravity counterterms are
discussed in Appendix C followed by the computation of
□R-flow in a higher derivative theory in Appendix D.
Conventions of the QCD β-function and the CBZ-FP are
specified in Appendix E.

II. THE FLOW OF □R (OR Δb̄)

Before writing the fourth moment (2) in terms of the 4D
Zamolodchikov-metric and showing positivity, monoto-
nicity, and the gradient flow type property, we specify
some definitions, notations and assumptions of this paper.
We work with the conventions of a Euclidean field theory
and assume the operator-part of the TEMT to be of the form
Θ ¼ βQ½OQ� (summation over Q is implied). We refer the
reader our previous work [5] regarding the terminology of
the TEMT Tρ

ρ which splits into an operator, equation of
motion and gravity part. At the exception of the free field
theory examples in Sec. III D dimensionless couplings are
assumed. The bare interaction Lagrangian is parametrized
by L ¼ gQ0 OQ, gQ0 are couplings and ½OQ� ¼ ZQ

POP

denote renormalized (composite) operators defined by
the local quantum action principle (QAP) h½OAðxÞ�i ¼
ð−δAðxÞÞ lnZ where Z and δAðxÞ ≡ δ

δgAðxÞ are the partition

function and the variational derivative of the localized
coupling respectively. Curved space is a tool to expose the
Weyl anomalies (3) at lower-point functions and has no
further physical meaning in this work.
The object of study is the hΘΘi-correlator (Θ ¼ ½Θ�

since it is physical e.g., [21,22])3;

ΓθθðpÞ ¼
Z

d4xeix·phΘðxÞΘð0Þic
¼ C1

θθðpÞp4 þ cThΘi ð7Þ

3The restrictive structure of (7) follows from the flat-space
translational WI

R
d4xeip·xhΘαβðxÞΘγδð0Þic ¼ Pð0Þ

αβγδΓð0Þþ
Pð2Þ
αβγδΓð2Þ þ PðCTÞ

αβγδ hΘi. From the traces of the spin 0 and 2

structures, Pð0Þ
αγαγ ∼ p4 and Pð2Þ

αγαγ ¼ 0 (note PðCTÞ
αγαγ ¼ cT ), one

infers that Γð0ÞðpÞ ∼ C1
θθðpÞ.
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for which C1
θθðpÞ is UV-finite [5] and IR-finite for p > 0

with subtleties for p → 0 for theories spontaneously broken
chiral symmetry to be discussed in Sec. II D 1. The contact
term (CT) cT is of no relevance for the flow itself, the scalar
product is defined as usual a · b≡ aαbα and p≡ ffiffiffiffiffiffiffiffiffiffi

p · p
p

.
Defining

Mð2Þ
θθ ðpÞ ¼ P̂2ΓθθðpÞ

¼ 1

263

Z
d4xeix·px4hΘðxÞΘð0Þic; ð8Þ

with

P̂2 ¼
1

263
ð∂pα

∂pαÞ2; P̂2p4 ¼ 1; ð9Þ

the fourth moment (2) is then proportional to Mð2Þ
θθ ð0Þ. The

bare quantities Mð2Þ
θθ ðpÞ and C1

θθðpÞ satisfy unsubtracted
Källén-Lehmann spectral/dispersion representations of the
form4;

C1
θθðpÞ ¼

Z
∞

0

ds
s2

ρðsÞ
ðsþ p2Þ þ C1

θθð∞Þ; ð10Þ

Mð2Þ
θθ ðpÞ ¼

Z
∞

0

ds
sðs − p2ÞρðsÞ
ðsþ p2Þ5 þMð2Þ

θθ ð∞Þ; ð11Þ

where the spectral function ρðsÞ is of mass dimension
four and defined as a formal sum over a complete set of
spin 0 physical states,

ρðsÞ ¼ ð2πÞ3
X
n

θððpnÞ0Þδðp2
n − sÞjhnðpnÞjΘj0ij2 ≥ 0;

ð12Þ

with pn denoting momenta in Minkowski-space and θðxÞ is
the step-function.
From the representations Eqs. (10), (11) one deduces that

Mð2Þ
θθ ðpÞ − C1

θθðpÞ is a finite p-dependent function for

which Mð2Þ
θθ ð0Þ −Mð2Þ

θθ ð∞Þ ¼ C1
θθð0Þ − C1

θθð∞Þ holds.
Furthermore, using and with Eqs. (7), (8) it follows that

Mð2Þ
θθ ð0Þ ¼ C1

θθð0Þ; Mð2Þ
θθ ð∞Þ ¼ C1

θθð∞Þ: ð13Þ

Together with (2) this implies

Δb̄ ¼ 1

8
Mð2Þ

θθ ð0Þ; ð14Þ

which modifies to Δb̄ ¼ 1
8
ðMð2Þ

θθ ð0Þ −Mð2Þ
θθ ð∞ÞÞ in the case

where there is a finite contribution at infinity. This is for
instance necessary when adding a term (4) to the UV
Lagrangian as discussed towards the end of Sec. II A 1. The
reason for introducing C1

θθðpÞ is that, contrary to

Mð2Þ
θθ ðpÞ, it is monotonic in p allowing us to define a

positive Zamolodchikov-metric in the MOM-scheme

(cf. Sec. II A 1). We stress that Mð2Þ
θθ ð0Þ is a bare, μ-

independent, quantity and in the case where it is IR- and
UV-finite (cf. Sec. II D) it therefore qualifies as a physical
observable. Three different derivations of (2) are given in
Appendices A 1, A 2 and A 3.

A. Generic scheme-definition for the hΘΘi-Correlator
In order to perform a RG-analysis, the bare term in (8) is

written as a sum of a renormalized term and a counterterm,

Mð2Þ
θθ ðgQðp=μ0ÞÞ ¼ Mð2Þ;R

θθ ðp=μ; gQðμ=μ0ÞÞ
þ L1;R

θθ ðgQðμ=μ0ÞÞ: ð15Þ
Above μ0 is some reference scale andMð2Þ;R

θθ ðp=μ;asðμÞÞ¼
Mð2Þ;R

θθ ðp=μ0;μ=μ0;asðμÞÞ but most of the time Mð2Þ
θθ ðpÞ,

Mð2Þ;R
θθ ðp; μÞ and L1;R

θθ ðμÞ are used as shorthands. Since

C1
θθðpÞ −Mð2Þ

θθ ðpÞ is finite one may use the same renorm-
alization prescription for C1

θθ

C1
θθðpÞ ¼ C1;R

θθ ðp; μÞ þ L1;R
θθ ðμÞ; ð16Þ

connecting with the notation in our previous work [5].
Crucially, it is the choice (15) of splitting the bare
correlation function into a nonlocal renormalized part

Mð2Þ;R
θθ and a local part L1;R

θθ (counterterm) which defines
a schemeR and introduces a renormalization scale μ.5 The
anomalous part of the equation above is

χRθθðμÞ ¼
�

d
d ln μ

− 2ϵ

�
Mð2Þ;R

θθ

¼
�

d
d ln μ

− 2ϵ

�
C1;R
θθ ðp; μÞ

¼ −
�

d
d ln μ

− 2ϵ

�
L1;R
θθ ðμÞ; ð17Þ

4The dispersion relation for the correlation function (7) reads
ΓR
θθðpÞ ¼

R
∞
0 ds ρðsÞ

sþp2 þ ωR
4 ðμÞ þ ωR

2 ðμÞp2 þ ω0p4. The con-

stants ωR
2;4ðμÞ take care of the quadratic and quartic divergences

whereas the logarithmic part is convergent and ω0 is therefore a
true constant independent of μ. Eq. (10) and (11) are obtained
from the ones above by using p4C1

θθðpÞ ¼ ΓθθðpÞ − Γθθð0Þ −
p2 d

dp2 Γθθð0Þ and Mð2Þ
θθ ðpÞ ¼ P̂2ΓθθðpÞ.

5In perturbation theory the counterterm is a Laurent series in ϵ
and requires the scale μ. Nonperturbatively the scale p is
identified with μ cf. next section. Moreover, in what follows
R refers to the split (15) and we do not specify the renormaliza-
tion of the couplings and operators, linked by the quantum action
principle, other than assuming a mass-independent scheme.
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the quantity entering (5) and related to the R2-anomaly
[5,10,11] [Eq. (48) of the 3rd reference]. The μ-dependence
arising through the coupling χRθθðμÞ ¼ χRθθðgQðμÞÞ. In both
equations above the ϵ → 0 limit is smooth and we do
therefore not distinguish between a four and d-dimensional
χRθθ and adapt the same attitude to other quantities.

1. Definition of a MOM-scheme for the 2-point function

Below we define a scheme which is most effectively
imposed on C1

θθ rather than Mð2Þ;R
θθ . The renormalization

condition is

C1;MOM
θθ ðp; μÞjp¼μ ¼ 0; ð18Þ

that the renormalized two-point function equals zero at p ¼
μ (recall p≡ ffiffiffiffiffi

p2
p

) which is straightforwardly imple-
mented by

C1
θθðpÞ ¼ ðC1

θθðpÞ − C1
θθðμÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C1;MOM
θθ ðp;μÞ

þ C1
θθðμÞ|fflfflffl{zfflfflffl}

L1;MOM
θθ ðμÞ

: ð19Þ

This is equivalent to the so-called MOM-scheme (and
variations thereof), introduced for lattice Monte-Carlo
simulations [23], where the renormalized momentum space
correlation function is set to its tree-level value for some
momentum configuration set to equal μ. A solution to
Eqs. (17), (18) is given by

C1;MOM
θθ ðp; μÞ ¼

Z
ln μ=μ0

lnp=μ0

χMOM
θθ ðμ0Þd ln μ0; ð20Þ

and therefore

C1
θθðpÞ ¼

Z
ln μ=μ0

lnp=μ0

χMOM
θθ ðμ0Þd ln μ0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C1;MOM
θθ ðp;μÞ

þ
Z

∞

ln μ=μ0

χMOM
θθ ðμ0Þd ln μ0 þ C1

θθð∞Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L1;MOM
θθ ðμÞ

¼
Z

∞

lnp=μ0

χMOM
θθ ðμ0Þd ln μ0 þ C1

θθð∞Þ: ð21Þ

Together with (14) this implies Eq. (5) in the MOM-scheme
and allows us to obtain χMOM

θθ ðμÞ from C1
θθðpÞ as follows

χMOM
θθ ðμÞ ¼ −

d
d lnp

����
p¼μ

C1
θθðpÞ: ð22Þ

Since the Lie derivative with respect to the β-function
vector field commutes with the β-functions themselves
(cf. Sec. II C 3 for more details)

χRθθ ¼ βAβBχRAB ð23Þ

holds. Together with p-independence of the β-functions
this implies in the MOM-scheme

χMOM
AB ðμÞ ¼ −

d
d lnp

����
p¼μ

C1
ABðp; μÞ: ð24Þ

Above

ΓABðp; μÞ ¼
Z

d4xeip·xh½OAðxÞ�½OBð0Þ�ic
¼ p4C1

ABðp; μÞ þ � � � ð25Þ

in analogy with (8) where the μ-dependence comes from
the renormalization of ½OA;B�. Eq. (24) is consistent with the
representation of the Zamolodchikov-metric in conformal
field theories (CFTs) C1

ABðp; μÞ ¼ −χMOM
AB ðμÞ lnðp=μ0Þ þ

const (e.g., [24]) where the coupling space is referred to as a
conformal manifold. The difference is that we consider the
Zamolodchikov-metric flowing between two FPs rather
than in a CFT only. Transformation under scheme changes
for χMOM

θθ and χMOM
AB are discussed in Sec. II C 3. The

formulas of this section allow us to clarify that (14)
invariant under (4) is to be adapted to

Δb̄ ¼ 1

8
ðMð2Þ

θθ ð0Þ −Mð2Þ
θθ ð∞ÞÞ: ð26Þ

In order to see this note that (13) still holds under (4),

Mð2Þ
θθ ðμÞ → Mð2Þ

θθ ðμÞ þ ω0, and that in (26) the arbitrary ω0

simply cancels in the difference on the right-hand
side (RHS).

2. Positivity of the Zamolodchikov-metric
in the MOM-scheme

From the positivity of the spectral function ρðsÞ ≥ 0 and
(10) it follows that C1

θθðpÞ strictly increasing when p
decreases. This in turn with (21) implies that

χMOM
θθ ðμÞ > 0 for μ ≥ 0: ð27Þ

From the spectral representation of C1
AB and (24) it follows

that the Zamolodchikov-metric χMOM
AB itself,

χMOM
AB ðμÞ > 0 for μ ≥ 0; ð28Þ

is also a positive matrix along the flow. In both cases strict
positivity is tied to nontrivial unitary theories. Note that
even if the spectral representation of C1

AB had a logarithmic
divergence then it would vanish under the p-derivative.
In 2D a positive definite Zamolodchikov-metric has been

defined by Osborn [25] through the Weyl consistency
relations and later in [26] via a derivative of a configuration

VLADIMIR PROCHAZKA and ROMAN ZWICKY PHYSICAL REVIEW D 96, 045011 (2017)

045011-4



space cutoff. Our definitions seem more closely related to
the latter than the former. We are not aware of a direct
extension of the definitions in [25,26] to 4D. However, such
a question has been raised in the review [27] without any
detailed analysis.

B. A scheme for which the R2-anomaly (or βb) vanishes
along the flow

The general formalism allows us to define different
schemes for different couplings by splitting the bare
coupling into a renormalized and counterterm part. This
applies in particular to gravity couplings, related to vacuum
graphs,

Lgravity ¼ −ða0E4 þ b0H2 þ c0W2Þ: ð29Þ

Below we define scheme for b0, named R2-scheme, for
which βb ¼ 0 outside the FP and for which b̄ is governed
by a gradient flow type equation. It is noted that this is
a priori possible since βb ¼ 0 for CFTs [15,16] which
define the endpoints of the flow. At the technical level
βb ¼ 0 is established by the remarkable link between
hΘ…Θi-correlators and the gravity terms (29) by the
QAP e.g., [10–12].
We find it helpful to think of b0 as the coupling of the R2-

term similar to the role of the QCD-coupling and the field
strength tensor squared G2. Although the R2-term is not
quantized itself, bðμÞ runs since it mixes with other
dynamical operators, e.g., the G2-term in QCD-like theo-
ries. The key observation is that the UV-finiteness of the
fourth moment [or C1

θθð0Þ] (8) then allows to absorb this
finite part into the renormalization of G2 in which case
βb ¼ 0 along the flow.
In order to make this statement transparent it proves

useful to briefly digress and clarify the effect of the choice
of scheme for a coupling gQ on the conjugate renormalized
composite operator ½OQ�. A choice of scheme R1 is given,
as usual, by a separation of the bare coupling into a
renormalized coupling gQ;R1ðμÞ and counterterm LR1

Q ðμÞ
gQ0 ¼ μd−4ðgQ;R1ðμÞ þ LR1

Q ðμÞÞ: ð30Þ
For clarity let us mention that we have previously sup-
pressed the R1-label when talking about dynamical
couplings. The bare couplings are independent of the
RG-scale, d

d ln μ g
Q
0 ¼ 0, and LR1

Q ðμÞ therefore determines

gQ;R1ðμÞ up to a constant which has to be determined
experimentally. The local QAP defines the renormalized
composite operator by

h½OQðxÞ�R1

R2
i ¼ ð−δgQðxÞÞjg

A¼gA;R1

v¼vR2
lnZ; ð31Þ

where v ¼ a, b, c from (29) and gA are generic couplings.
In principle one may choose different schemes for different

couplings and parameters which leads to a proliferation of
scheme dependences on the left-hand side (LHS).
Returning to our task we define the coupling

b0 ¼ μd−4ðbRb þ LRb
b Þ; ð32Þ

in analogy with (30) and assume a renormalisation scheme
Rχ for the hΘΘi-correlator.6 A double variation of the
metric (gμν → e−2sðxÞgμν) is finite since both the partition
function and the metric are finite. When Fourier trans-
formed and projected on the p4-structure one obtains

Z
ddxeip·xðð−δsðxÞÞð−δsð0ÞÞ lnZÞjp4

¼
Z

ddxeip·xhΘðxÞΘð0Þijp4 þ 8b0 ¼ ½finite�: ð33Þ

This implies the nontrivial, known, relation

LRb
b ¼ −

1

8
L
1;Rχ

θθ þ ½finite�; ð34Þ

quoted for in the MS-scheme in [28]. The difference in
signs in (34) is somewhat unfortunate but imposes itself in
this sector cf. [5] for more detailed remarks.

The observation that the finiteness of L
1;Rχ

θθ implies the

finiteness of LRb
b can be used to define a scheme, which we

call R2-scheme, b0 ¼ μd−4ðbR2 þ LR2

b Þ with

bR
2 ¼ bþ Lb; LR2

b ¼ 0: ð35Þ

This is equivalent to saying that it is not necessary to
renormalize since there are no divergences. In the R2-
scheme we therefore have that

βR
2

b ðμÞ ¼ −
�

d
d ln μ

− 2ϵ

�
LR2

b ¼ 0; μ ≥ 0: ð36Þ

This means that the bR
2

-coupling does not receive RG-
running by other dynamical operators.7 All that remains is
to determine the previously mentioned unknown constant
by experiment. The VEVof the TEMT, hTρ

ρi, is of course
invariant under scheme-changes as illustrated in Sec. III C
for QCD-like theories.

6We comment on other ways of handling the R2-term in the
literature in Appendix C.

7Where the characterization “other” refers to the fact that the
R2-gravity term is not quantized and therefore does not contribute
to the running of the bR

2

-coupling. Whether or not in such a case
a scheme exist where the R2-coupling does not run is beyond the
scope of investigations of this work. This question can be
posed in a well-defined framework, modulo ghosts due to higher
derivatives, since R2-gravity has been shown to be renormali-
zable [29].
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Before continuing towards the flow of □R-term we
digress in discussing whether or not schemes could exist for
which the other Weyl-anomaly (3) vanish along the flow.
An a priori no-go argument is that, unlike the R2-anomaly,
the other anomalies have generically a non-zero flow
difference. We consider two types of gravitational trace
anomalies (cf. [30] for a more refined discussion without
inclusion of □R though):
(1) β-functions terms. For the βa;c-function terms, the

analogous argument as above would require La and
Lc to be finite.
(a) βaE4-term: The counterterm of E4 has been

shown to be finite only when multiplied by ϵ
[31]. This is typical for topological terms since
their nontotal derivative parts are necessarily
evanescent. The local QAP then implies finite-
ness constraints on ϵLx where Lx is the counter-
term associated with the topological invariant.
Since La is not finite we conclude that there does
not exist a scheme where βa can be set to zero
along the flow.

(b) βcW2-term: The W2 term is associated with the
spin 2 part of the hΘρσΘλνi-correlator. The latter
is generically divergent in the relevant structure
contrary to the hΘΘi-correlator. The essential
point is that the TEMT is protected in the UV by
the additional couplings originating from the
dynamical β-functions. For example in QCD-
like theories Θ ∼ βG2 þ � � � whereas Θρσ ¼
1
4
gρσG2 −GραGα

σ þ � � �. In the convergence cri-
terium for asymptotically free theories in [5], this
means that nΘΘ ¼ 2 and nΘρσΘλν

¼ 0 which
satisfies and violates the convergence criteria
in Sec. III.1 of this reference. Hence we
conclude that Lc is not finite when the regulator
is removed and βc can therefore not be set
to zero.

(2) b̄□R-term: Is not a β-function term and therefore
does not derive from (36). Thus the same trick is not
applicable.

C. Properties of Δb̄, b̄Rχ

Rb
ðμÞ and the

Zamolodchikov-metric χ
Rχ

AB

Clarifying the properties of the quantities Δb̄, b̄Rχ

Rb
ðμÞ

and χ
Rχ

AB is linked to understanding their scheme depend-
ences. The following hierarchy or degree of complication
emerges. The global flow Δb̄ (Sec. II C 1) is scheme-
independent. The local flow properties, discussed in Sec. II
C 2, are scheme-dependent. The infinitesimal change along

the flow d
d ln μ b̄

Rχ ¼ 1
8
χ
Rχ

ABβ
AβB (A3) is dependent on the

Rχ-scheme and the local value b̄
Rχ

Rb
ðμÞ is dependent on both

the Rχ- and Rb-scheme.

1. Properties of Δb̄ (global flow)

Let us summarize the various ways in which Δb̄ (14) can
be expressed as an integral using (2), (10) and (21)8

Δb̄ ¼ 1

8
ðMð2Þ

θθ ð0Þ −Mð2Þ
θθ ð∞ÞÞ

¼ 1

293

Z
d4xx4hΘðxÞΘð0Þiω0

c ð37Þ

¼ 1

8

Z
∞

−∞
χRθθðμ0Þd ln μ0 ð38Þ

¼ 1

8

Z
∞

0

ds
ρðsÞ
s3

> 0: ð39Þ

The following properties are immediate
(i) Positivity: Δb̄ > 0 follows from the positivity of the

spectral function ρðsÞ ≥ 0 as well as the positivity of
the Zamolodchikov-metric in the MOM-scheme
(28). Since ΘCFT → 0 and therefore Δb̄jCFT ¼ 0, a
nonzero value measures the departure from confor-
mality. Note that the ΘðxÞΘð0Þ-correlator can be
interpreted as a probe that records a response of a
theory with couplings gAðμ ¼ x−1Þ.

(ii) Scheme-independence of Δb̄ follows from the
scheme-independence of the spectral function ρðsÞ
and the fact that the spectral representation does not
require subtractions. Similarly since Δb̄ can be
expressed in terms of a bare correlation function
(37) the scheme-independence of the latter implies
scheme-independence of Δb̄. Further remarks on
scheme dependence and independence can be found
in Sec. II C 3.

(iii) Flow-independence follows from combing Eqs. (17)
and (A3) into

d
d ln μ

b̄Rχ ¼ 1

8

d
d ln μ

C
1;Rχ

θθ ðp; μÞ; ð40Þ

which shows that the flow of b̄Rχ derives from a
potential and is therefore independent of the flow
itself. More explicitly this equation, when integrated
over d ln μ and particularised to the MOM-scheme,
gives

Δb̄ ¼ 1

8
ðC1;MOM

θθ ðp;∞Þ − C1;MOM
θθ ðp; 0ÞÞ

¼ð19Þ 1
8
ðC1

θθð0Þ − C1
θθð∞ÞÞ

¼ð13Þ 1
8
ðMð2Þ

θθ ð0Þ −Mð2Þ
θθ ð∞ÞÞ; ð41Þ

8Formally hΘðxÞΘð0Þiω0
c ¼ hΘðxÞΘð0Þic − ω0□

2δðxÞ where
hΘðxÞΘð0Þic is evaluated by any regulator respecting the sym-
metries and ω0 ¼ Mð2Þ

θθ ð∞Þ is assumed for definiteness. The
regulator R can be removed smoothly since the moment is UV-
finite.

VLADIMIR PROCHAZKA and ROMAN ZWICKY PHYSICAL REVIEW D 96, 045011 (2017)

045011-6



Eq. (26). Hence this derivation provides an
alternative to the one presented in Sec. II A 1.
Flow-independence only poses itself for two or
more couplings, as illustrated in Fig. 1, and trans-
lates in our case to the question whether (the
difference of) 2-point functions can depend on the
approach in coupling space. Local reversibility of
RG-flows implies that this cannot be the case. If one
assumes for example that the RG-flow can be
linearised around a FP then the limit is automatically
uniform and the flow therefore independent of the
path.
Equivalently flow-independence can be obtained

by rewriting (38) as line integral of a vector VR
B over

coupling space

Δb̄¼1

8

Z
∞

−∞
βAβBχRABd lnμ

0 ¼1

8

Z
g⃗UV

g⃗IR

VR
B dg

B: ð42Þ

Path-independence follows from VR
B being curl-free

which is true if and only if VR
B derives from a

potential VR
B ¼ −∂BfR. Contracted by βB gives

χRθθ ¼ βBVR
B ¼ −βB∂BfR ¼ − d

d ln μ f
R for which

fR ¼ L1;R
θθ is a solution (17). We refer the reader

to Appendix B for related and refined discussion of
these quantities. Note that we have used that L1;R

θθ is
independent of b in writing βB∂BL

1;R
θθ as a total

ln μ-derivative of L1;R
θθ .

It should be added that flow-independence is not
straightforward in the case where the coupling
manifold is topologically nontrivial e.g., not simply
connected. In this case the Stokes like argumentation
(42) breaks down and the correlation functions in
(41) are multivalued. This topic certainly deserves
further study but is beyond the scope of this paper
and we refer the reader to Ref. [32] for recent
discussion on how to count RG-flows.

2. Properties of b̄ðμÞ= b̄Rχ

Rb
ðμÞ outside the

fixed points (local flow)

The extension of b̄ outside the FP is scheme-dependent.
It is dependent on the scheme for the hΘΘi-correlator and
the b-coupling which were discussed in Secs. II A and II B

respectively. Hence generically b̄ðμÞ ¼ b̄
Rχ

Rb
ðμÞ. For extend-

ing the flow integral the preferred scheme is the MOM-
scheme where the Zamolodchikov metric is positive and
properties of monotonicity and gradient flow follow.

(i) Monotonicity: From (21) we may define,

b̄MOM
Rb

ðμÞ ¼ b̄UVRb
−
1

8

Z
∞

ln μ=μ0

χMOM
θθ ðμ0Þd ln μ0; ð43Þ

a flow dependent extension satisfying the boundary
conditions b̄MOM

Rb
ð∞Þ ¼ b̄UVRb

and b̄MOM
Rb

ð0Þ ¼ b̄IRRb
.

Due to the positivity of χMOM
θθ (27) the function

b̄MOM
Rb

ðμÞ is monotonically decreasing along the flow
(with decreasing μ).

(ii) Gradient flow type equation: From the anomalous
WI (A2) the following Eq. (A3) was derived9;

1

8
χ
Rχ

ABβ
AβB ¼ d

d ln μ
b̄Rχ ¼ ðβA∂A þ βRb

b ∂bÞb̄Rχ

Rb
:

ð44Þ

For Rχ ¼ MOM-scheme, (44) would be a gradient

flow type equation if it were not for the βRb
b -term.

Since the latter vanishes in theRb ¼ R2-scheme one
can then obtain a gradient flow equation. For a
compact presentation of the gradient flow formulas
the following notation is introduced

¯̄bðμÞ≡ b̄MOM
R2 ðμÞ; GABðμÞ≡ 1

8
χMOM
AB ðμÞ; ð45Þ

and T ¼ − ln μ, increasing towards the IR, and
shorthand _¼ d

dT. The equation then assumes the
familiar form

_̄̄
b ¼ −βA∂A

¯̄b ¼ −GABβ
AβB < 0: ð46Þ

One then obtains the gradient flow type equation of
the form

∂A
¯̄b ¼ ðGAB þ ~GABÞβB; ð47Þ

FIG. 1. Possible RG-flow trajectories from an UV-FP gAUV; g
B
UV

to an IR-FPs. The trajectories T x;y and T z flow into the IR1- and
IR2-FPs respectively. Hence Δb̄T x

¼ Δb̄T y
≠ Δb̄T z

with the last
statement being the generic case.

9Note that the Rχ scheme-dependence of the Zamolodchikov-
metric and b̄ ought to cancel on the RHS of the second equation.
Equation (44) is equivalent to one of Osborn’s Weyl consistency
relations cf. Eq. (3.10c) in [25] upon identifying χMS

AB → −χaAB
and 4b̄MS → dþ 1

2
UIβ

I .
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where ~GAB ¼ − ~GBA is an antisymmetric part whose
form is discussed in Appendix B. In the case where
the antisymmetric part vanishes, (47) becomes a
proper gradient flow equation and can be inverted to
give βB ¼ GAB∂A

¯̄b where GAB ≡ ðGABÞ−1 is the
inverse matrix which exists since the eigenvalues
of GAB are strictly positive (28). Covariance of
Eq. (47) under couplings scheme change is shown
in the next section. Note that Eq. (47) is though not
covariant under Rb-scheme changes.

3. Transformation of the Zamolodchikov-metric under
scheme changes

The Zamolodchikov-metric has been implicitly defined
through (17) and (23) in an arbitrary scheme Rχ and
explicitly for the MOM-scheme (24). The expression of Δb̄
(37) is obviously scheme independent and so the question
of how the scheme dependence of χMOM

θθ cancels in the
representation (38) is of interest which we aim to clarify in
this section. It is appropriate to distinguish between the

scheme dependence due to renormalization condition (18),
denoted by Rχ, and a redefinition of the gQ-scheme of the
dynamical couplings (30) which we have ignored for most
part of the paper. It is worthwhile to emphasise that the
transformations have a geometric interpretation in the space
of couplings in that theRχ-transformation is governed by a
Lie derivative on a 2-tensor (infinitesimal change of a
tensor along a flow) and the gQ-transformation corresponds
to a coordinate change (generalized rotation).
(1) Changing the renormalization from Rχ1 to Rχ2

corresponds to

M
Rχ2
AB ¼ M

Rχ1
AB þ ωAB; L

1;Rχ2
AB ¼ L

1;Rχ1
AB − ωAB;

ð48Þ

where ωAB is finite, local and μ-dependent. The split
MABðp; μÞ ¼ MR

ABðp; μÞ þ L1;R
AB ðμÞ is defined in

analogy to (15) with regards to the hOAOBi-corre-
lator (25). With (17) and (23) this results in

δχθθ ¼ χ
Rχ2
θθ − χ

Rχ1
θθ ¼ Lβω ¼ βQ∂Qω ¼ d

d ln μ
ω;

δχAB ¼ χ
Rχ2
AB − χ

Rχ1
AB ¼ LβωAB ¼ βQ∂QωAB þ fð∂Bβ

QÞωAQ þ A ↔ Bg; ð49Þ

where the abbreviation ω ¼ βAβBωAB was used and Lβ

denotes the Lie derivative with respect to the vector field
βA. Hence (38) is manifestly invariant under the scheme
change (48) provided ω vanishes at both the UV and IR
boundary. Under such circumstances a scheme change
might be regarded as being cohomologically trivial. In-
cidentally (49) also clarifies that the Zamolodchikov metric
for a scheme, other than MOM-scheme, is defined as
follows10

χRAB ¼ −LβL
1;R
AB ðμÞ

¼ −ðβQ∂QL
1;R
AB ðμÞ þ fð∂Aβ

QÞL1;R
QB ðμÞ þ A ↔ BgÞ:

ð50Þ

It is noteworthy that this does not correspond to a total
derivative with respect to ln μ.
(2) Independence under a change in the coupling con-

stant scheme follows from the β-function as well as

χMOM
AB transforming as tensors. Going from the
scheme gP → g0P results in

β0P ¼ δg0P

δgA
βA; χ0PQ ¼ δgA

δg0P
δgB

δg0Q
χMOM
AB ; ð51Þ

where the first equation results from the chain rule
and so does the second since χMOM

AB is derived from

h½OAðxÞ�½OBð0Þ�i0c ¼ −δ0AðxÞÞð−δ0Bð0ÞÞ lnZ

¼ δgP

δg0A
δgQ

δg0B
ð−δPðxÞÞð−δQð0ÞÞ lnZ

¼ δgP

δg0A
δgQ

δg0B
h½OPðxÞ�½OQð0Þ�ic;

ð52Þ
where the prime denotes the change of the coupling
scheme and δ0AðxÞ ¼ δ=δg0AðxÞ. Clearly β0Pβ0Qχ0PQ ¼
βAβBχAB which shows the scheme independence.

D. UV and IR convergence the Δb̄-integral
representation

For Eqs. (2), (39), (38) being a valid way to compute Δb̄
the integrals need to be finite. We shall see that (39) is not
finite in the spontaneously broken phase which implies that
either Δb̄ diverges or that the formalism needs to be

10Equation (50) can either be derived by straightforward
computation or one may use that on a scalar, with no explicit
μ-dependence, d

d ln μ ¼ βC∂C ¼ Lβ and that the Lie derivative
along a vector field acts trivially on itself. The reason that the
general definition is more involved, than the MOM-scheme, (24)
is that the μ-, unlike the p-, derivative does not commute with the
β-functions.
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adapted. Before investigating the representation (39) it is
instructive to considerΔb̄ ∼

R
d4xx4hΘðxÞΘð0Þic (2). First,

hΘi is well-defined since hTρ
ρi is scale independent and

differs from hΘi by the finite Weyl-anomalies vanishing in
flat space. Hence it is the correlation of the twoΘ-operators
which is subject to potential divergences in the UV (x → 0)
as well as the IR (for x → ∞).
The technical discussion parallels the one in [33] with a

slightly more refined discussion on the subtle case of the
chirally broken phase in Sec. II D 1. In order to analyse
the UV- and IR-convergence one needs to investigate the
behavior of the spectral function close to the FP. In the
case where the scaling dimension (i.e., classical plus
anomalous dimension) of the most relevant operator is
Δ the spectral density (12) behaves like ρðsÞ ∼ sΔ−2 and
from (39)

Δb̄ ∼
Z

∞

0

ds
s
sΔ−4: ð53Þ

It is understood that the identity operator (i.e., the
cosmological constant term), for which Δ ¼ 0, is sub-
tracted by an appropriate UV-counterterm as other-
wise ρðsÞ ∼ s−2.
It is useful to distinguish the cases of a nontrivial and a

trivial FP. [i.e., asymptotically safe (AS) and asymptotically
free (AF)]. The case where there is spontaneous breaking of
chiral symmetry is subtle cf. Sec. II D 1. For the AS-case
ΔUV > 4 and ΔIR < 4 in which case the dispersion repre-
sentation (53) converges both in the UVand the IR. For the
AF-case Δ ¼ 4 (53) is potentially both divergent in the IR
and UV requiring a refined discussion taking into account
the logarithmic behavior. In our previous paper [5] it was
shown that AF-free theories, including the multiple cou-
pling case, converges in the UV. In perturbation theory this
can be seen by resumming the logarithms order by order.
An IR-AF theory behaves in the same way with s → s−1

which leads to the same integral as in the UV [33] and is
therefore convergent.
In conclusion in all cases where the theory is a CFT in

the IR and UV the integral representations (39), (38), and
(2) are finite and do hold. Potential problems with the
formulas occur when the theory is not a CFT in either the
UV or IR. This is not surprising since for the IR effective
action derivation of (2) (cf. Appendix A 2), conformality at
the FPs is an assumption. The cases where the FPs are not
conformal include the free massive nonconformally
coupled scalar and the free massive vector boson
(cf. Sec. III D), as well as the chirally broken case which
might belong to the former type in the IR. A few short
comments on extending the framework to include dimen-
sionful couplings. Generally dimensionful couplings
should not worsen the UV-convergence. For example
applying the fourth moment projector P̂2 to the fermion
correlator m2hq̄qq̄qi, in Appendix B in [5], the p → ∞
limit exists ensuring UV-finiteness. The convergence in the

IR is less obvious but if the dimensionful parameter is a
mass the latter can act as an IR cutoff and is therefore
expected to improve the IR-behavior.

1. Spontaneous broken chiral symmetry in the infrared

The case of spontaneously broken chiral symmetry (e.g.,
QCD) is more cumbersome when viewed from standard
chiral perturbation theory. The π Goldstone bosons are free
scalars in the far IR and the operator-part of the TEMT
contains a term Θ ¼ − 1

2
□π2 þ � � � at the classical level

(e.g., [34]). This EMT cannot undergo the improvement
proposed in [35] which removes the term above, since the
improvement term is incompatible with chiral symmetry
[33,34,36,37]. This is reflected in the generally accepted
view that chiral symmetry and conformal symmetry are
incompatible with each other.
Adapting the view that chiral symmetry is not compat-

ible with conformal symmetries may lead to problems since
in this case βIRb ≠ 0 and the Δb̄ formulas might need to be
reconsidered. The most concrete way is to approach the
problem by computation. In the limit of free pions the
hΘðxÞΘð0Þi → 1

4
h□π2ðxÞ□π2ð0Þi correlator corresponds

to a bubble graph which contributes a term of the form
ΓθθðpÞ ∼ p4 lnð4m2

π þ p2Þ þ � � � to the TEMT-correlator
where a quark mass mq (m2

π ∼mqΛQCD) was introduced
as an IR-regulator. (cf., the closely related discussion in and

around Eq. (2.26) in [33]). This leads to Mð2Þ
θθ ð0Þ ∼

lnð4m2
πÞ þ � � � which diverges in the chiral limit mq → 0.

Unlike in the UV-case it does not seem possible that this
behavior is improved by resumming interactions since
corrections necessarily come with additional powers of
p2=f2π where fπ is the pion decay constant. A series of the
form lnð4m2

π þ p2ÞPn≥0xnðp2=f2πÞnðlnð4m2
π þ p2ÞÞan

with an ≤ n does not resume to an expression which is
finite in the limit p2, m2

π → 0. This is the case since each
coefficient n ≥ 1 vanishes in this limit and the non-zero x0-
term gives rise to a divergence.11 Hence if Θ → − 1

2
□π2 is

the correct prescription for a chirally broken theory then

11In principle ΓθθðpÞ ∼ p4 lnð4m2
π þ p2Þ þ � � �. might also

affect the formula for Δβa when expressed as a dispersion
relation of the four-dilaton scattering amplitude [13,38]. Note
that the four dilaton scattering amplitude contains a term propor-
tional to ΓθθðpÞ, where two dilatons couple to the same TEMTon
each side, e.g., [33,39] Eq. (3.7) in the first reference. This term
does not vanish when the individual dilatons are put on shell since
the p2 variable corresponds to the sum of two dilaton momenta
p2 ¼ ðp1 þ p2Þ2. Whether or not such a divergence is cancelled
by other terms deserves some further study. Clearly it is at most
the formula and not the a-theorem itself which is troubled by the
chiral phase. Due to the topological nature of the Euler term βa is
well-defined at each end. Therefore one may introduce a mass for
the quarks and compute Δβa via a two-step process Δβa ¼
Δβajmq≠0 − ΔβajN2

f−1 free scalars in order to take into account the

N2
f − 1 free massless Goldstone bosons.
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this implies that Δb̄ diverges or that the formula (39) has to
be amended. Whether or not this prescription is really
correct is not known to our knowledge in the sense of being
verified by experiment.
Hence the caveat to the reasoning above is that we do not

know for sure whether the chirally broken phase is a CFT in
the IR or not. The degrees of freedom of an effective theory
are not always necessarily clear a priori or simply a
working assumption justified a posteriori by their success.
Low energy QCD is described by an effective theory of
pions, known as chiral perturbation theory (χPT), which is
extremely successful in many domains but whether or not
IR conformality per se has been tested is unclear. For
example it has been advocated [39] that to describe three-
flavor χPT3 it might be advantageous to supplement χPT
with an additional pseudo-Goldstone (dilaton) resulting
from the spontaneous (anomalous) breaking of scale
invariance. The effective theory is known as χPTσ [39]
and it is currently unclear whether or not this is a valid
description in the sense of improved convergence over
χPT3. The EMT undergoes an improvement in the dilaton
field, which is not constrained by chiral symmetry break-
ing, and seems to eliminate some of the dangerous kinetic
terms (cf. Eq. (3.7) in [40]) discussed above. The remaining
kinetic terms are absent in the case where the low energy
constants c1;2ðμÞ → 1 for mq, μ → 0 which is the chiral-
scale limit advocated in [40]. In summary in χPTσ the EMT
can be improved in the dilaton sector which in principle
allows for the elimination of the previously discussed and
dangerous□π2-term. It would be interesting to compute (2)
nonperturbatively on the lattice and to check whether or not
a chiral logarithm of the form lnm2

π ∼ lnmq is present.

E. Section summary

Since this section is the heart-piece of this work we
summarize before continuing the paper. The integral
representations Eqs. (2), (39), (38) are well-defined when
the theory is conformal in the IR and UV. The latter might
not be the case for the chirially broken IR-phase (cf.,
Sec. II D 1) and the free field theories of the nonconfor-
mally coupled scalar and vector particle (cf., Sec. III D).
For the latter two cases the operator-part of TEMT, which
excludes equation of motion terms, reads Θ ¼ − 1

2
□ϕ2 and

Θ ¼ − 1
2
□A2

ν which are only scale but not conformal
invariant and the Δb̄-integral (2) diverges in the IR and
UV respectively. The IR and UV divergences of the free
field correlators also seem to be the underlying reason why
these cases are found to be regularization dependent in
actual calculation [15,17–20] as documented in the classic
textbook of Birrell and Davies [9]. In summary if (37) is
well-defined then positivity and scheme-independence of
the spectral function imply the global properties Δb̄ ≥ 0

and Δb̄ scheme-independence. Flow-independence
follows from the fact that the integrand of (38) can be

written as a total ln μ derivative (17) (with ϵ → 0-limit
implied). The extension of b̄ðμÞ outside the FP is scheme-
dependent. In the MOM-scheme (cf. Sec. II A 1) for the
hΘΘi-correlator, positivity of the Zamolodchikov-metric,
as derived in Sec. II A 2, allows us to extend the b̄ðμÞ as a
monotonically decreasing function (43) and in the R2-
scheme (cf. Sec. II B) for the b0R2-term, b̄ðμÞ is shown to
satisfy a gradient flow type Eq. (46).

III. EXAMPLES IN QCD-LIKE AND FREE
FIELD THEORIES

Below details on renormalization are illustrated in
Secs. III A and III C for QCD-like theories and examples
are given for a CBZ-FP and free field theories in Secs. III B
and III D respectively. Other examples, such as the OðNÞ
sigma model in the large N limit, can be found in the earlier
work [6]. This reference also discusses examples in
d ¼ 4 − ϵ and d ¼ 3 dimensions which are not directly
related to our work since we strictly adapt d ¼ 4 in
association with the □R-flow.

A. Zamolodchikov-Metric in the MOM- and
MS-Scheme

In this section we exemplify the Zamolodchikov-metric
in QCD-like theories in the MOM-scheme and the MS. The
result can be extracted to NNLO using a recent computa-
tion of field-strength correlator in [41]. The convention for
the QCD coupling and the logarithmic β-function are given
in Appendix A 3. With these definitions the operator-part of
the TEMT reads Θ ¼ β

2
½G2� and therefore χθθ ¼ 1

4
β2χgg.

The MOM-metric is obtained by using (22) and iden-
tifying C1

ggðasðpÞÞ ¼ 16CGG
0 in [Eq 4.18] [41]

χMOM
gg ¼ −

d
d lnp

����
p¼μ

C1
ggðasðpÞÞ

¼ ng
2π2

�
1þ as

�
73

3
CA −

28

3
NFTF

��
þOða2sÞ;

ð54Þ

with as ≡ g2=ð4πÞ2 and the standard group theoretic
symbols are specified in Appendix A 3. In principle we
could quote Oða2sÞ but refrain from doing so since we
believe that there is no further insight to be gained from it.
The MS-metric is obtained by using (17) and identifying

L1;MS
gg ¼ 16Z0 in [Eq 4.18] [41] (L1;MS

gg ¼r1ð1Þgg ϵ−1þOðϵ−2Þ)

χMS
gg ¼ −

�
d

d ln μ
− 2ϵ

�
L1;MS
gg ¼ 2∂asðasr1ð1Þgg Þ

¼ ng
2π2

�
1þ 2as

�
17

2
CA −

10

3
NFTF

��
þOða2sÞ:

ð55Þ
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A few remarks are in order. First, the LO expression is the
same in both schemes and positive in accordance with
positivity in CFTs. The OðasÞ coefficient differs but in the
absence of the knowledge of the higher terms no firm
conclusions can be drawn on positivity. Nevertheless it is
instructive to see for what number of flavors the sign of the
second term changes. If we fix Nc ¼ 3 then the critical
number is Nc

FjMOM ≃ 15.6 and Nc
FjMS ≃ 5.1 in the MOM-

and MS-scheme respectively. This indicates that the MOM-
scheme is more likely to be positive than the MS-scheme.
In factNc

FjMOM ≃ 15.6 is very close to a CBZ-FP where the
critical coupling is very small and positivity can be
expected to hold for the first few coefficients of χMOM

gg .
The difference between the MOM- andMS-metric atOðasÞ
is due to the OðasÞ=ϵ2-term in the bare term. Hence the
single logarithm ϵ lnðp2Þ, relevant to the definition of the
metric, needs to be complemented with an additionalOðϵÞ-
term which cannot be deduced without further computation
in order to obtain a finite result. Yet since the OðasÞ=ϵ2-
term equals −β0Oða0sÞ=ϵ-term, the difference between the
two metrics has to be proportional to β0 which is easily
verified

χMOM
gg − χMS

gg ¼ ng
2π2

2β0as þOða2sÞ: ð56Þ

Note, the β0-coefficient is consistent with the generic
formula for a scheme change (49).

B. Caswell-Banks-Zaks fixed point

The CBZ-FP [42,43] is a perturbative IR-FP which is
analytically tractable and therefore often serves to illustrate
conformal window studies explicitly. The CBZ-FP in
QCD-like theories (cf. Apendix A 3 for the conventions)
is found by tuning Nc and Nf in some quark representation
such that βðaIRs Þ ¼ 0 with β approximated by some low
order in perturbation theory and crucially aIRs being small.
This amounts to keeping the parameter κ ¼ − 3

2
β0
Nc

≪ 1

small and introducing the following power counting
as ∼OðκÞ and β ∼Oðκ2Þ.
Since Δb̄ is determined from the 2-point function we

may use the recent NNLO computation of the hG2G2i-
correlator [41] (Θ ¼ β=2½G2� in QCD-like theories) to
obtain Δb̄ and βa to NNLO which is Oðκ4Þ. Concretely
Δb̄ is obtained from (38)

Δb̄ ¼ 1

8

Z
∞

−∞
χMS
gg

�
β

2

�
2

d ln μ0

¼ 1

32

Z
aIRs

0

∂u

�
β

u

�
ur1ð1Þgg ðuÞdu; ð57Þ

where to deduce the second equality, (55) and integration

by parts were used. The first pole residue r1ð1Þgg , known from

[44], is quoted in [5] [Sec. III.4.2.] in the notation used
here. Using the formula above we get

Δb̄ ¼ −β1r
1ð1;0Þ
gg

64
ðaIRs Þ2

−
1

96
ð2β2r1ð1;0Þgg þ β1r

1ð1;1Þ
gg ÞðaIRs Þ3

−
1

64

�
3

2
β3r

1ð1;0Þ
gg þ β2r

1ð1;1Þ
gg þ 1

2
β1r

1ð1;2Þ
gg

�
ðaIRs Þ4

þOða5sÞ: ð58Þ

Solving βðasIRÞ ¼ 0 up to the fourth order gives

aIRs ¼−
β0
β1

�
1þβ0β2

β21
þβ20

ð2β22−β1β3Þ
β41

�
þOðβ40Þ: ð59Þ

Inserting this expression into (58) and using (E4) the final
result of this section reads

Δb̄ ¼ 1

7200π2
N2

cκ
2

�
1þ 2

�
7

25

�
2

κ þ 53 × 4231

33 × 254
κ2
�

þOðκ5Þ: ð60Þ

Note that LO and NLO expression agrees with Ref. [10].
The Oðκ4Þ term is new and it is observed that the factor of
ζ3 has dropped from the final expression. With the knowl-

edge of the four loop expression r1ð1;3Þgg one could easily
extend this expression to Oðκ5Þ by using the evaluation of
the β-function to five loops [45]. It is noted that since κ ¼
−3=2β0=Nc > 0 in the conformal window the above
expression is manifestly positive in accordance with (2).
Effectively (60) corresponds to Euler flow difference
Δβa=2 since it can be shown that in QCD-like theories
Δβa ¼ 2Δb̄þOðκ6Þ [31].12

C. The R2-scheme in QCD-like theories and the
renormalization of G2

It is instructive to consider the case of a QCD-like theory
to understand what happens in this R2-scheme. From the
work of Hathrell [11], related to QED but sufficient for our
purposes, the relevant part of the TEMT reads

hTρ
ρi ¼

1

4
ðd − 4ÞhG2i − ðd − 4Þb0H2 þ � � � ; ð61Þ

in terms of bare quantities. The relation of the latter to the
renormalized finite quantities is as follows

12It is presumably possible to obtain the Zamolodchikov-
metric for the βa-flow, χ

g
gg ∼ Ggg (notation as in [10,38] on the

LHS and RHS respectively) in QCD-like theories from Eq. (2.20)
in [38]. For a one coupling theory the antisymmetric Sgg ¼ 0,
χMS
gg ¼ −χagg ∼Agg is known to NNLO and the knowledge of

χbggg ∼ Bggg to NLO seems sufficient to get χggg at NNLO.
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1

4
ðd − 4ÞhG2i ¼ β̂

2
h½G2�iMS

þ ðd − 4Þμd−4
�
LMS
b −

βMS
b

d − 4

�
H2 þ � � � ;

ð62Þ

where b0 ¼ μd−4ðbMS þ LMS
b Þ and the MS-scheme depend-

ence has been labeled. In both equations the dots stand for
terms which are not essential for our discussion. Note that
when hTρ

ρi is expressed in terms of renormalized quantities
the Lb-term cancels and the ðd − 4ÞbH2 vanishes in the
ϵ → 0 limit and hTρ

ρi ¼ β=2h½G2�iMS − βMS
b H2 þ � � �.

Thus the question is what happens to this picture in the
R2-scheme. Taking the definition into account (35) we see
that the equations above change to

1

4
ðd − 4ÞhG2i ¼ β̂

2
h½G2�iR2 þ � � � ; ð63Þ

with b0 ¼ μd−4bR
2

. When inserted in (61) this gives the
same scheme-independent VEV of the TEMT

hTρ
ρi ¼

β

2
h½G2�iMS − βMS

b H2 þ � � � ¼ β

2
h½G2�iR2 þ � � � ;

ð64Þ

when expressed in terms of renormalized quantities in the
ϵ → 0 limit. The above reasoning can be restated as
β̂ðh½G2�iMS − h½G2�iR2Þ ¼ 2ðβMS

b − βR
2

b ÞH2 ¼ 2βMS
b H2

valid up to terms previously denoted by dots.

D. Δb̄ in free field theory

Free field theory flows are instructive and relevant since
they describe the transition from an asymptotically free
theory to the chiral broken phase of free massless goldstone
bosons [46]. A higher derivative massive free field theory
computation is deferred to Appendix D. Concretely we
think of a massive free field of spin s consisting of (2sþ 1)
degrees of freedom in the UV which decouple in the IR.
Within this setup (2), or the adaption

Δb̄ ¼ 1

8
P̂2jp¼0

Z
d4xeix·phΘðxÞΘð0Þic; ð65Þ

with P̂2 defined in (9), can be considered as an efficient
□R-anomaly calculator provided (cf. Sec. II E) that the
integral is convergent in the IR and the UV. For this to be
the case conformality ought to be broken by soft terms only.
This is the case for the free massive conformally coupled
scalar and fermion for which the operator-part of the TEMT
are Θ ¼ m2ϕ2 and Θ ¼ mq̄q (Dirac fermion) respectively.

Using the formula (65) we get

Δb̄ð0;0Þ ¼
1

8
m4B00

0ð0;m2Þ¼1½unit�;

Δb̄ð1
2
;0Þ⊕ð0;1

2
Þ ¼−

1

8
m2ð2m2B00

0ð0;m2ÞþB0
0ð0;m2ÞÞ¼6½unit�;

ð66Þ

where [unit] is a normalization factor

½unit� ¼ 1

3840π2
; ð67Þ

(2880 ¼ 3=4 · 3840 converting to the conventions of [9])
and

B0ðp2; m2Þ ¼ ΓðϵÞ
ð4πÞ2

Z
1

0

dxðm2 þ xð1 − xÞp2Þ−ϵ; ð68Þ

is the bubble-integral for equal mass scalars with primes
denoting derivatives with respect to p2 and Γ is the Euler
function. It is readily seen that (66) agrees with the results
in the literature [9] (cf., Table 1 of chapter 6.3) by taking
into account the conversion cj½9� ¼ 4=3Δb̄ and the factor
two for Dirac versus Weyl fermions. The convergence of
the integral presumably is in 1-to-1 correspondence with
scheme-independence of direct computation using a regu-
larization method to derive (3). For example the ζ- [47] and
dimensional-regularization [17] yield the same result. This
contrasts the case of the free nonconformally coupled scalar
and the vector particle for which those methods yield
different results. This is reflected here in that the for-
mula (65) is IR and UV divergent for the nonconformally
coupled scalar Θ ¼ − 1

2
□ϕ2 þm2ϕ2 and the vector par-

ticle. This issue clearly deserves further study in view of the
remarks at the beginning of this section. An interesting
aspect is that the scalar to Dirac fermion ration is 6 for the
Δb̄ but 11 for Δβa and might therefore give rise to tighter
bounds.

IV. SUMMARY AND OUTLOOK

Amongst the Weyl-anomaly contributions (3) the b̄□R-
term has received considerably less attention as compared
to the Weyl and the Euler term, presumably because it is
ambiguous b̄ → b̄ − 1

8
ω0 under L → Lþ ðω0=72ÞR2 (4).

Our starting point was the observation that whereas such an
ambiguity is present in each theory it disappears in the flow,
Δb̄≡ b̄UV − b̄IR, since the IR and UV ambiguity are
identical. On the technical level the crucial ingredient is
the UV-finiteness property of the hΘΘi-correlator, dis-
cussed in our previous work [5], allowing us to identify Δb̄
with a bare and therefore RG-scale invariant correlator (37).
The quantity Δb̄ describes the global flow properties,
cf. Sec. II C 1, which include scheme-independence and
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positivity Δb̄ > 0 which are most clearly seen from the
spectral representation (39) as previously observed [7]. The
integral representation of Δb̄ follows from an anomalous
Ward identity (A2)

Δb̄ ¼ 1

8

Z
∞

−∞
ðχRABβAβBÞðμ0Þd ln μ0

¼ 1

8

Z
∞

−∞

d
d ln μ0

C1;R
θθ ðp; μ0Þd ln μ0: ð69Þ

The integrand being a total derivative implies flow-inde-
pendence of Δb̄ which is one of the main results of this
work. The quantity χRAB is the 4D analogue of the

Zamolodchikov-metric and independence with respect to
the hOAOBiR-scheme is ensured by the local quantum
action principle cf. Sec. II C 3.
The key point in discussing the local flow properties

(cf. Sec. II C 2) is the discussion of scheme-dependences
since flows, in general, are known to be scheme-dependent
outside fixed points. The definition of the Zamolodchikov-
metric χ

Rχ

AB (2-form) in the MOM-scheme (24) is
considerably simpler than the generic Lie derivative
definition (50). For the former positivity χMOM

AB ðμÞ ≥ 0

is shown to hold nonperturbatively using a spectral
representation. This suffices to define a quantity
( · ¼ − d

d ln μ)

b̄MOM
Rb

ðμÞ ¼ b̄UVRb
−
1

8

Z
∞

ln μ=μ0

ðχMOM
AB βAβBÞðμ0Þd ln μ0; _̄b

MOM
Rb

< 0; ð70Þ

which is monotonically decreasing along the flow (43)
whereRb is the scheme-prescription of the b0R2-term (32).
Moreover the UV-finiteness [5] allows us to define a
scheme, referred to as the R2-scheme, for which the R2-
anomaly vanishes along the entire flow βR

2

b ¼ 0. In these
particular schemes, b̄MOM

Rb
ðμÞ obeys a gradient flow type

Eq. (46), (47) which in the notation here reads

_̄b
MOM
R2 ðμÞ ¼ −

1

8
χMOM
AB βAβB < 0: ð71Þ

Furthermore in Sec. III B we extendΔb̄ for Caswell-Banks-
Zaks fixed point to NNLO using a recent computation of
the hG2G2i-correlator. This corresponds to fourth order in
the Caswell-Banks-Zaks coupling and constitutes also an
extension of the Euler flow Δβa (a-theorem) to the same
order since Δβa ¼ 2Δb̄ up to the sixth order [31].
It is noteworthy that, due to topological protection, βa is

well-defined at both the UV- and IR-CFT. As discussed
above such a term is also irrelevant for Δb̄ but requires an
adaptation of the moment formula (2) to (37).13

Generally the Δb̄-integral representations (37)–(38) are
correct when conformality is broken by soft terms only,
e.g., Θ ¼ m2ϕ2 and Θ ¼ mq̄q, in which case the integrals
converge in the IR and UV and (37) can be regarded as a
□R-anomaly calculator. UV-convergence is ensured for
asymptotically safe and asymptotically free theories [5].
Free field theories are a class on their own, coherent with

our finding that convergent correlation functions diverge at
fixed order in perturbation theory. Since propagators of
massive fields ΦðsÞ of spin s contain terms scaling like
ðk2Þs−1, the representation in (37) diverges in the UV for
conformally coupled fields of spin 1 and higher.14 UV-
convergent cases include the previously quoted free spin 0
(conformally coupled) and spin 1=2 particles for which we
find results (cf. Sec. III D) in accordance with direct □R-
computations [9]. Nonconformal couplings of the typeΘ ¼
− 1

2
□ϕ2 þmϕ2 worsen the situation and already lead to

UV-divergences in (37) for spin 0 fields. IR-divergences
occur for nonconformally coupled spin 0 fields Δb̄ ∼
lnðmϕÞ (cf., the discussion in Sec. II D 1).
The problems of a free spin 1 particle might be cured by

using a gauge invariant formulation, e.g., providing mass to
the spin 1 field via a Higgs-mechanism as mentioned
elsewhere [6]. The nonconformally coupled scalar is
relevant since it is associated with the Goldstone boson
of a spontaneously broken chiral symmetry. The IR-
divergence does not appear to resume to a finite expression
cf., Sec. II D 1. Since chiral symmetry and conformal
symmetry are regarded as excluding each other, removing
the □π2-term, with π denoting the Goldstone bosons, by
the usual improvement [35] seems prohibited. If the
prescription Θ → − 1

2
□π2 is correct then Δβa, the flow

of the Euler term, still seems well-defined since its
topological nature permits to bypass the problem in an
efficient manner cf. footnote 11 What happens for the flow
of□R is less clear. It might either indicate that the flow Δb̄
diverges or that the formulas need to be amended. It is
possible that this situation may change should there exist a
phase where scale symmetry is spontaneously broken

13One may distinguish a total of four scheme choices: the
dynamical couplings gQ, the b-coupling (Rb-scheme), the choice
of the 2-point function for the dynamical operators (Rχ-scheme)
and ω0R2-term (4). Other than in Sec. II C 3 the scheme of the
dynamical couplings have not been considered. The Rb-scheme
and the ω0R2-term are related in that b0 ¼ μðd−4ÞðbRbðμÞ þ
LRb
b ðμÞ þ ω0Þ where ω0 is μ-independent cf. Appendix C for

further remarks.

14This seems linked to the scheme-dependence found for direct
evaluation of the spin 1 term via (3) cf. [9].
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(Goldstone-Nambu realization) and the pion degrees of
freedom are supplemented by a dilaton in which case
improvement might be possible. Clearly the question of IR-
divergencies of the chirally broken phase deserves further
study.15 The resolution for the□R-flow has the potential to
render it more predictive for theories with broken chiral
symmetry, e.g., a bound on the conformal window which
differs from the one of the a-theorem.
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APPENDIX A: DERIVIATIONS
OF Δb̄ ∼

R
d4xx4hΘðxÞΘð0Þic

In this Appendix we derive the fourth moment formula
for Δb̄ (2) using anomalous WIs, the (Weyl) anomaly

matching procedure by Komargodski and Schwimmer
[13,48] and indirectly by veryfing (5) for QCD-like theories
using result by Hathrell [11] on the renormalization of the
field strength tensor in curved space in Secs. A 1, A 2,
and A 3 respectively. We stress that the derivations of in
Sec. A 1 and A 2 are general and do not rely on the specific
interplay of σ and b in QCD-like theories.

1. The fourth moment and Δb̄ from an anomalous
Ward identity

Anomalous WIs can be obtained by applying operator
combinations of the form D�ðx;μÞ≡−ðδsðxÞ�βAδAðxÞðμÞÞ
to the partition function. A single application gives

D−ðx; μÞ lnZ ¼ ffiffiffi
g

p ðhTρ
ρðxÞiR − βAh½OAðxÞ�iRÞ

¼ 4b̄R
ffiffiffi
g

p
□H þ � � � ; ðA1Þ

where the dots stand for terms which cancel from the final
expression. The quantity g denotes the determinant of the
metric gαβ. Note, the μ-dependence of b̄ is balanced on
the LHS by the second term. The WIs are anomalous in the
sense that they display the Weyl anomaly on the RHS of
(A1). Applying a second D-operator leads to

Dþð0; μÞD−ðx; μÞ lnZjgαβ→δαδ
¼ ðhTρ

ρðxÞTλ
λð0ÞiRc − βAβBh½OAðxÞ�½OBð0Þ�iRc Þ

þ ð2hTρ
ρðxÞiR − βBð∂Bβ

AÞh½OAðxÞ�iRÞδðxÞ
¼ −8b̄R□2δðxÞ; ðA2Þ

where the vanishing of the commutator, ½δsðxÞ; βAδAð0Þ� ¼ 0,
was used. The anomalous WI (A2) corresponds to
Eq. (5.21) in [12] (in Minkowski space). With regard to
the notation [12,25], the identification 4b̄RðμÞ≡4ðσRðμÞ−
bRðμÞÞ¼ ~dðμÞ≡dþ1

2
βQUQðμÞ and 4b̄IR ¼ d, gives a con-

sistent picture. Note that by combining different anomalous
WIs someWeyl consistency conditions arise [12]. This is of
little surprise since the commutator above encodes the
essence of the Weyl consistency relations.
Applying

R
d4xx4 to (A2) and differentiating with

respect to the scale d
d ln μ one obtains

d
d ln μ

b̄R ¼ 1

8
χRABβ

AβB; ðA3Þ

upon using (17), (23) and Θ ¼ βA½OA�. Above we have
directly assumed the ϵ → 0 limit and crucially used the fact

that d
d ln μM

ð2Þ;R
ss ðp; μÞ ¼ 0, the renormalized counterpart of

the hTρ
ρðxÞTλ

λð0ÞiRc -correlation function, is scale indepen-
dent. This is the case because the counterterm b0 in (29) is
scale independent. Combining Eqs. (17) and (A3) one

obtains Eq. (26), Δb̄ ¼ 1
8
ðMð2Þ

θθ ð0Þ −Mð2Þ
θθ ð∞ÞÞ, with more

detail shown in Sec. II C 1, which is equivalent to (2) and
completes the task of this Appendix.

2. The fourth moment and Δb̄ à la
Komargodski and Schwimmer

The fourth moment formula for Δb̄ (2) is derived here in
close analogy to the second moment formula for β2Dc in [48]
building on the anomaly matching procedure in [13]. The
derivation proceeds by matching the term b̄IR in the IR
effective action

lnZ ¼ −b̄IR
Z

d4x
ffiffiffi
g

p
H2 þ � � � ; ðA4Þ

with the path integral expression. Above the dots stand for
nonlocal andWeyl-invariant contributions. The local part of
(A4) is dictated by the IR trace anomaly (3). The

15So does a systematic study of dimensionful couplings, e.g.,
[38] for local RG-formulations, beyond the remarks in Sec. II D.
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correctness of (A4) follows from a Weyl-variation gμν →
e−2sðxÞgμν for which hTρ

ρi¼ð−δsðxÞÞlnZ and ð−δsðxÞÞH2 ¼
4□H. In what follows it is convenient to assume a
conformally flat background gμν ¼ e−2sðxÞδμν for which

lnZ ¼ −4b̄IR
Z

d4xð□sÞ2 þOðs3Þ: ðA5Þ

One might wonder whether the presence of W2 and E4

would interfere in this picture. This is not the case since for
conformally flat background W2 vanishes and E4 does not
contain a quadratic term in sðxÞ. In passing we remark that
this fact is at the heart of the difficulty of establishing the
4D a-theorem (Δβa ≥ 0).
On the other hand lnZ written as the Euclidean path

integral over dynamical fields ϕi reads

Z ¼
�Z

Dϕie
−Sdynðϕi;gμνÞþb0

R
d4x

ffiffi
g

p
H2

�

¼
�Z

Dϕie
−Sdynðϕi;sÞþ4b0

R
d4xð□sÞ2þOðs3Þ

�
; ðA6Þ

where the conformally flat metric was assumed in the
second equality and b0 is the bare gravitational counterterm
with conventions specified in (29). Note that these con-
ventions imply a somewhat unfortunate sign of the initial
condition b0 ¼ −b̄UV.16 The quantity b̄IR is found by
performing a derivative expansion of the quantum part
of the path integral in order to match the ð□sÞ2-term in
(A5). Concretely

ln
Z

Dϕie−Sdynðϕi;sÞ ¼ lnZ0 −
Z

d4xsðxÞhΘðxÞi

þ 1

2

ZZ
d4xd4ysðxÞsðyÞhΘðxÞΘðyÞi

þOðs3Þ; ðA7Þ

where here h…i refers to the flat-space VEV. The TEMT
correlators appear in the expansion since sðxÞ is the source
term for the latter. The four derivative term (A5) is matched
by Taylor expanding the double integral term in (A7) to
fourth order

sðyÞ ¼ sðxÞ þ � � � þ 1

4!
ðx − yÞμðx − yÞνðx − yÞρðx − yÞσ∂μ∂ν∂ρ∂σsðxÞ þOð∂5Þ: ðA8Þ

Using the Euclidean rotational symmetry the following replacement

ðx − yÞμðx − yÞνðx − yÞρðx − yÞσ → 1

24
ðx − yÞ4ðδμνδρσ þ δμρδνσ þ δμσδρνÞ; ðA9Þ

is valid under the integral. Changing the integration variable to y ¼ zþ x one gets

1

2

ZZ
d4xd4ysðxÞsðyÞhΘðxÞΘðyÞic ¼

1

2

Z
d4xsðxÞ2

Z
d4zhΘðzÞΘð0Þic þ � � �

þ 1

327

Z
d4xð□sðxÞÞ2

Z
d4zz4hΘðzÞΘð0Þic: ðA10Þ

Substituting (A7) in (A6) and using the derivative expansion (A10) leads to

−b̄IR ¼ lnZj
4
R
ð□sÞ2 ¼ b0 þ

1

329

Z
d4zz4hΘðzÞΘð0Þic; ðA11Þ

and

Δb̄ ¼ b̄UV − b̄IR ¼ 1

293

Z
d4xx4hΘðxÞΘð0Þic ≥ 0; ðA12Þ

then follows by using the initial condition b0 ¼ −b̄UV in the above equation. It is important to note that this derivation
implicitly relies on the theories being conformal in the UVand IR since βCFTb ¼ 0 and so the b̄ and βb do not interfere in the
Weyl anomaly (3) when reduced to a conformally flat background.

16It is instructive to underlay this statement in the language of the QCD-like example of Sec. A 3. Using d ¼ 4, the following lengthy
chain applies of equations b0 ¼ bUV þ LUV

b ¼ bUV ¼ −ðσUV − bUVÞ ¼ −b̄UV, when taking into account that LUV
b ¼ 0 and σUV ¼ 0.
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Adding a term δL ∼ ω0R2 (4), resulting in b0 → b0 þ
1
8
ω0 does not affect (A12) since it is present in both the UV

and IR term b̄UV ¼ −b0 of b̄IR ¼ −b0 þ 1
8
C1
θθð0Þ. Stated

more simply b0 is only an initial value which does not affect
the difference accumulated in the flow. A more serious
issue is the question as to whether the fourth moment
converges in the UVand IR which is discussed in Sec. II D.

3. The fourth moment and Δb̄ à la Hathrell
in QCD-like theories

In this section we rederive the formula (5) in QCD-like
theories by direct use of the expressions for βMS

b & L1;MS
θθ ,

the local QAP and results on the renormalization of G2 in
the external gravitational field. The link between the gravity
counterterms (29) and hΘ…Θi-correlators is given by the
QAP and establishes LMS

b ¼ − 1
8
L1;MS
θθ (34) which consists

in our first step. The relation between b and b̄ is as follows

b̄ðμÞ ¼ σðμÞ − bðμÞ; σUV ¼ 0 ðA13Þ

where σðμÞ ¼ σðasðμÞÞ is a quantity related to the renorm-
alization of G2 in a curved background [11].17 In some
more detail the bare b0 in the Lagrangian (29) [with ϵ → 0
allowed by finiteness of Lb (34)] is

b0 ≡ bUV ¼ bðμÞ þ LbðμÞ; ðA14Þ

where we remind the reader that the μ-dependence arises
from asðμÞ. From the explicit expression of L1;MS

θθ given in
Sec. III. 1 of [5], it is observed that (ϵ → 0 implied)

LMS
b ðμÞ ¼ −

1

32

Z
as

0

∂u

�
β

u

�
u

�
1 −

u
as

�
r1ð1Þgg ðuÞdu

¼ βMS
b

2β
−

1

32

Z
as

0

∂u

�
β

u

�
ur1ð1Þgg ðuÞdu

¼ −σMS −
1

32

Z
as

0

∂u

�
β

u

�
ur1ð1Þgg ðuÞdu; ðA15Þ

where in the last line the formula σ ¼ −βb=ð2βÞ [11] was
used along with the formula for βb

18

βMS
b ¼ −

�
d

d ln μ
− 2ϵ

�
LMS
b

¼ 1

16

βðasÞ
as

Z
as

0

∂u

�
βðuÞ
u

�
u2r1ð1Þgg ðuÞdu: ðA16Þ

Taking the IR limit (as → asIR) in (A15) we get

LMS
b ðaIRs Þ ¼ −σIR;MS −

1

32

Z
as IR

0

∂u

�
β

u

�
ur1ð1Þgg ðuÞdu:

ðA17Þ

Further using LbðaIRs Þ ¼ bUV − bIR (A14) and taking into
account σUV ¼ 0 one arrives at

Δb̄ ¼ 1

32

Z
asIR

0

∂u

�
β

u

�
ur1ð1Þgg ðuÞdu; ðA18Þ

in agreement with (57). Since the latter is equivalent to the
fourth moment (37) the task of this section is completed.

APPENDIX B: ON THE ASYMMETRIC PART TO
THE GRADIENT FLOW EQUATION (47)

The goal of this Appendix is to discuss the antisymmetric
part ~GAB in (47). Clearly such a term does not affect global
results since it vanishes when contracted by βAβB in (46).
The possibility of such a term can be inferred directly

from the definition χRAB ¼ −LβL
1;R
AB (50), related to GAB as

in (45). It is straightforward to obtain

βAχRAB ¼ −∂BfR − βA ~χRAB; ðB1Þ

where

fR ¼ L1;R
θθ ¼ βAβBL1;R

AB ; ~χRAB ¼ ∂ ½AFR
B�; ðB2Þ

with FR
B ¼ βCL1;R

CB and the square bracket denoting anti-
symmetrization in the indices A and B as usual. Now

∂AFR
B ¼ ∂Aβ

CL1;R
BC þ βC∂AL

1;R
BC

¼ γCAL
1;R
BC þ βC∂AL

1;R
BC ; ðB3Þ

whose antisymmetric part is not obviously vanishing.
Hence at this formal level the vanishing of ~GAB ¼ 1

8
~χRAB ¼

1
8
∂ ½AFR

B� cannot be concluded and ~GAB has therefore to be
included in (47). The antisymmetric part is the reason why
Eq. (47) is referred to as gradient flow type rather than
gradient flow only.
An interesting question is as to whether ~χRAB is finite or

not. Equation (B1) implies so since βAχRAB and ∂BfR are
both finite. The former is finite since χRAB is an anomalous
dimension of the hOAOBi-correlator and ∂BfR is the
derivative of the finite quantity fR ¼ L1;R

θθ [5]. In
Eq. (B1) an evanescent term proportional to 2ϵβALAB
was omitted which comes from the d-dimensional relation
χRAB ¼ ð2ϵ − LβÞL1;R

AB e.g., (17). Such a term can though
safely be neglected since it is finite even in the free field
theory limit. On a final note, the relation to Osborn’s

17The quarks and gluons that are integrated out in an external
gravitational field lead to a curvature term □R which when
divergent needs to be subtracted.

18From (A16) one infers that βMS
b ¼ Oða3sÞ since r1ð1Þgg ¼

Oða0sÞ and that the R2-anomaly-term is absent for theories with
β ¼ −β0as which is the case for N ¼ 1 supersymmetric Yang-
Mills theory.
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formalism is that ∂ ½AFB� ∼ ∂ ½AUB� in the notation used in

the Weyl consistency paper [25] and the formula FR
B ¼

βCL1;R
CB resembles the one given in Eq. (2.17) in [49] in the

2D case.

APPENDIX C: DIFFERENT WAYS
OF HANDLING THE GRAVITY

COUNTERTERMS

The gravity counterterms Lgravity ¼ −ða0E4 þ b0H2 þ
c0W2Þ (29) are not always treated uniformly in the
literature. We first describe the two different ways and
then show that they give rise to equivalent RG equation for
the VEV of the TEMT.19

(1) The authors of Refs. [11,28,50] and ourselves
(cf. Sec. II B) impose d

d ln μ v0 ¼ 0 for v ¼ a, b, c
therefore treating the coefficients of the gravity

terms like regular couplings. This leads to
d

d ln μ hTρ
ρi ¼ 0 for the generally accepted definition

of hTρ
ρi (3).

(2) Jack and Osborn decide not to treat v0 as couplings
but as pure counterterms (choosing the MS-scheme
in particular), which translates in our notation to
v0 ¼ μðd−4ÞLv. This then obviously leads to
d

d ln μ hTρ
ρi ≠ 0.

Hence one might wonder whether these two ways of
dealing with the gravity counterterms are reconcilable. In
fact, as Jack and Osborn remark, below Eq. (2.8) [10], these
two ways are equivalent. Let us see how this works,
assuming that the a0 and the c0 terms are not present
which simplifies the presentation. In our way (item 1) the
RG equation for the VEV of the TEMT is homogeneous
and reads

d
d ln μ

hTρ
ρi ¼

� ∂
∂ ln μþ βA∂A þ βb∂b

�
hTρ

ρijb0¼μðd−4ÞðbþLbÞ ¼ 0: ðC1Þ

If treated à la Jack and Osborn (item 2) the RG equation is inhomogeneous

d
d ln μ

hTρ
ρi ¼

� ∂
∂ ln μþ βA∂A

�
hTρ

ρijb0¼μðd−4ÞLb
¼ 4βb□H þ � � � ; ðC2Þ

where βb ¼ d
d ln μLb was used. Note that the ∂ ln μ-terms

vanish in mass-independent schemes as assumed in this
work. Now (C1) is seen to be equivalent upon noticing that
hTρ

ρi ¼ 4b̄□H þ � � � and using that ∂bb̄ ¼ −1. At last we
would like to state that it is our understanding that in both
formalisms one can add an arbitrary (μ-independent)
constant to b0 → b0 þ μd−4 1

8
ω0. This constant term is

related to the famous □R-ambiguity in the trace anomaly
[9,15,17–20] which arises in tree-level computations in
form of scheme-ambiguities. Note that if ω0 was μ-
dependent then one would deduce different conclusions
from the RG-equations. Let us note at last that the μ-
independence of hTρ

ρi might be of importance for the
possibility of defining the gluon condensate as the deriva-
tive of the cosmological constant term with respect to the
renormalized coupling h½G2�iR ¼ −2∂ ln gRΛIR [51,52].

APPENDIX D: FLOW-INDEPENDENCE OF A
HIGHER DERIVATIVE FREE THEORY

In Ref. [53] the higher derivative theory, of the Lee-Wick
type [54], was considered

Lhd ¼
1

2

�
ð∂ϕÞ2 þm2ϕ2 þ ð□ϕÞ2

M2

�
: ðD1Þ

It was found that the □R-flow is dependent on the ratio
m=M and therefore not flow-independent [53]. The ratio of
masses defines different trajectories in the coupling space,
e.g., Fig. 1 for an illustration. Below we present a
conformally coupled extension of this model which leads
to a flow-independent result in accordance with our
findings in Sec. II C 1 (for dimensionless couplings). In
summary (D1) can be written in terms of two free massive
fields one of them with negative norm. This is of no major
concern since Lee-Wick field theories are known to be
unitary in all examples at least at the one-loop level. The
standard conformal Rϕ2-improvement is applied to each
field separately. The □R-flow is then given by just twice
the value for the free scalar field (66) which is in particular
mass-independent.
The solution of the eom of (D1) shows that the 2-point

function propagates two degrees of freedom [m2
1;2 ¼

ðM2=2Þð1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=M2

p
Þ]Z

d4xeix·phϕðxÞϕð0Þi ¼ M2

ðp2 þm2
1Þðp2 þm2

2Þ

¼ M2

m2
2 −m2

1

�
1

p2 þm2
1

−
1

p2 þm2
2

�
:

ðD2Þ
19This is our interpretation on the topic which emerged from

illuminating exchange with Hugh Osborn.
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These two degrees of freedom can be made explicit
at the Lagrangian level by introducing an auxiliary field
χ02 [55]

Laux ¼
1

2
ðð∂ϕÞ2 þm2ϕ2 −M2ðχ02Þ2 þ 2χ02□ϕÞ: ðD3Þ

Upon using the eom χ02 ¼ ð□=M2Þϕ of (D3), one recovers
(D1). An even more convenient form is obtained by
substituting ϕ ¼ χ01 þ χ02

L12 ¼
1

2
ðð∂χ01Þ2 − ð∂χ02Þ2 þm2ðχ01 þ χ02Þ2 −M2ðχ02Þ2Þ

¼ 1

2
ðð∂χ1Þ2 − ð∂χ2Þ2 þm2

1χ
2
1 −m2

2χ
2
2ÞÞ: ðD4Þ

In the second line we have passed to the mass eigenstates,
m2

1;2 quoted above, by a hyperbolic rotation conserving the
kinematic structure. It is apparent that χ1 and χ2 correspond
to free massive positive and a negative normed states
respectively. The two scalar fields can be conformally
coupled by the standard technique (η ¼ 1

6
) [35]

Lconf
12 ¼ 1

2
ðð∂χ1Þ2 − ð∂χ2Þ2þm2

1χ
2
1−m2

2χ
2
2þ ηRðχ21 − χ22ÞÞ:

ðD5Þ

Conformality can be made manifest for a conformally flat
metric gαβ ¼ e−2sðxÞδαβ introducing the Weyl-invariant
fields χ̄1;2 ¼ e−sχ1;2. The function sðxÞ conveniently act
as a source for the TEMT. The action Sconf12 ½s� ¼R
d4x

ffiffiffi
g

p
Lconf
12 assumes the form (Δη≡ ðη − 1

6
Þ)

Sconf12 ½s� ¼ 1

2

Z
d4xðð∂χ̄1Þ2 − ð∂χ̄2Þ2

þ m̄2
1χ̄

2
1 − m̄2

2χ̄
2
2 þ ΔηR̄ðχ̄21 − χ̄22ÞÞ; ðD6Þ

where
ffiffiffi
g

p ¼ e−4s has been absorbed into m̄1;2 ¼ e−sm1;2,
R̄ ¼ 6ð□s − ð∂sÞ2Þ and here and below ð∂χÞ2 ¼
δαβ∂αχ∂βχ is understood to be contracted with the flat
metric. Crucially, the action (D6) is manifestly conformally
invariant for η ¼ 1

6
up to the mass terms which break the

symmetry softly. The TEMT then follows from

hΘðxÞi¼ð−δ̄sðxÞÞjs¼0 lnZ¼m2
1χ

2
1−m2

2χ
2
2þOðΔηÞ; ðD7Þ

where δ̄sðxÞ indicates that χ̄1;2 but not m̄1;2 are kept fixed.
This is the TEMTof two free massive fields for whichΔb̄ is
then simply twice the result of a free field (66)

Δb̄jLhd
¼ 2Δb̄ð0;0Þ ¼ 2½unit�: ðD8Þ

It is interesting to note that the negative norm state gives a
positive contribution to the□R-flow. This is intimately tied
to the fact that Lee-Wick theories are unitary (at least at
one-loop). Most importantly we find, contrary to [53], that
this model is independent of the mass ratio and therefore
flow-independent.
At last it might be instructive to give the conformally

coupled higher derivative version of the action (D6) by
performing the previous steps backwards

Sconfhd ½s� ¼ 1

2

Z
d4x

�
ð∂ϕ̄Þ2 þ m̄2ϕ̄2 þ ð□ϕ̄Þ2

M̄2

þ ΔηR̄
�
ϕ̄2

�
1þ ΔηR̄

M̄2

�
−
2ϕ̄□ϕ̄

M̄2

��
; ðD9Þ

where M̄2 ¼ m̄2
1 þ m̄2

2 was used. The corresponding higher
derivative TEMT assumes the form

hΘðxÞi ¼ ð−δ̄sðxÞÞjs¼0 lnZhd ¼ m2ϕ2 −
ð□ϕÞ2
M2

þOðΔηÞ;
ðD10Þ

which one would naively expect from an improved
version of (D1). Equation (D10) differs from the expression
given in [53]. We have checked by explicit compu-
tation that (D10) [or (D9)] with (2) give the same result
as in (D8).

APPENDIX E: CONVENTION FOR THE
QCD-LIKE β-FUNCTION

In this work the bare β-function β̂ of DR are defined by

β̂ ¼ d ln g
d ln μ

¼ ðd − 4Þ
2

þ β ¼ −ϵþ β: ðE1Þ

The logarithmic β-function (E1) is convenient for QCD and
is to do with the unusual appearance in the Langrangian
L ¼ 1

4g2
0

G2. For multiple couplings L ¼ gQ0 OQ the linear

β-function guarantees that βA ¼ d
d ln μ g

A transforms like a
vector in coupling space. We parametrize

β ¼ −β0as − β1as2 − β2as3 − β3as4…;

as ¼
αs
4π

¼ g2

ð4πÞ2 ðE2Þ

where β0−3 in MS-scheme can be found in Ref. [56].
The first two coefficients, which are universal in mass-
independent scheme, read
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β0 ¼
�
11

3
CA −

4

3
NFTF

�
;

β1 ¼
�
34

3
C2
A −

20

3
NcNFTF − 4CFTFNF

�
;

where CF, CA are quadratic Casimir operators of the
fundamental (quark) and adjoint (gluons) representations,
NF the number of quarks and tr½TaTb� ¼ TFδ

ab is a Lie
algebra normalization factor of the fundamental represen-
tation. These factors are given by

CA ¼ Nc; CF ¼ N2
c − 1

2Nc
; TF ¼ 1

2
; ðE3Þ

for an SUðNcÞ gauge group.

1. The Caswell-Banks-Zaks fixed point

The CBZ-FP [42,43] corresponds to a large Nc, Nf limit
with Nf ¼ 11

2
Nc − κNc and κ ≪ 1. The Oðκ4Þ calculation

in Sec. III B corresponds to

β0 ¼ −
2

3
κNc; β1 ¼ −

�
25

2
−
13

3
κ

�
N2

c;

β2 ¼ −
�
701

12
−
53

6
κ

�
N3

c; β3 ¼
�
14731

144
þ 275ζ3

�
N4

c;

ðE4Þ

where β3 was given in [56].
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