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We canonically quantizeOðDþ 2Þ nonlinear sigmamodels (NLSMs)with a theta termon arbitrary smooth,
closed, connected, oriented D-dimensional spatial manifolds M, with the goal of proving the suitability of
these models for describing symmetry-protected topological (SPT) phases of bosons inD spatial dimensions.
We show that in the disordered phase of the NLSM, and when the coefficient θ of the theta term is an integer
multiple of 2π, the theory onM has a unique ground state and a finite energy gap to all excitations. We also
construct the ground state wave functional of the NLSM in this parameter regime, and we show that it is
independent of the metric onM and given by the exponential of aWess-Zumino term for the NLSM field, in
agreement with previous results on flat space. Our results show that the NLSM in the disordered phase and at
θ ¼ 2πk, k ∈ Z, has a symmetry-preserving ground state but no topological order (i.e., no topology-dependent
ground state degeneracy),making it an idealmodel for describing SPTphases of bosons. Thus, ourwork places
previous results on SPT phases derived using NLSMs on solid theoretical ground. To canonically quantize the
NLSM onM, we use Dirac’s method for the quantization of systems with second class constraints, suitably
modified to account for the curvature of space. In a series of four Appendixes, we provide the technical
background needed to follow the discussion in the main sections of the paper.
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I. INTRODUCTION

Nonlinear sigma models (NLSMs), quantum field theories
inwhich the field is amap fromspacetime to a targetmanifold
T , have a long history of study in both high-energy and
condensed matter physics [1–13]. The earliest example of
such a model was introduced in Ref. [1] by Gell-Mann and
Lévy and applied to the theory of β-decay. Some time later,
these models were brought to the attention of condensed
matter physicists when, for example, Haldane showed that
the Oð3Þ NLSM with a theta term and coefficient (“theta
angle”) θ ¼ 2πS described the continuum limit of a spin-S
Heisenberg chain in one spatial dimension [8]. The theta
term is a particular topological term that can be added to the
NLSM action when the dimension of the target manifold T
is the same as the dimension of spacetime. Very recently,
interest in NLSMswith a theta term has experienced a revival
due to the proposal, formalized in Ref. [14], that the
disordered phase of an OðDþ 2Þ NLSM with a theta term
and θ ¼ 2πk, k ∈ Z, can describe (a subset of) symmetry-
protected topological (SPT) phases of bosons in D spatial
dimensions (for general references on SPT phases, we
refer the reader to Refs. [15–20]). The work of many authors
has provided a trove of evidence supporting this proposal
[21–31]. However, despite the many successes of the NLSM
description, several outstanding issues still require clarifica-
tion. Inparticular, theground state of theOðDþ 2ÞNLSM, in
the parameter regime relevant for the description of SPT

phases, has only been studied on flat space [26]. A thorough
study of the ground state (or states) of this theory, as well as
the energy gap to the first excited states, should be carried out
on arbitrary curved spatial manifolds (with various topol-
ogies) in order to establish the suitability of the OðDþ 2Þ
NLSM with a theta term (in the disordered phase and at
θ ¼ 2πk, k ∈ Z) as a model of bosonic SPT phases. For
example, it is important to check that the model has a unique
ground state no matter the underlying spatial manifold, as
befits a system without topological order. It is the purpose of
this paper to provide such a study.
Let us begin by providing the setup for the description

of bosonic SPT phases in D spatial dimensions using
OðDþ 2Þ NLSMs [14]. The target manifold of the
OðDþ 2Þ NLSM is T ¼ SDþ1, the unit (Dþ 1)-sphere,
and the NLSM field is a (Dþ 2)-component unit vector
field n with components na, a ¼ 1;…; Dþ 2. If the SPT
phase is protected by a symmetry group G, then the
symmetry transformation information is naturally encoded
in the NLSM description of that phase via a homomor-
phism σ∶G → SOðDþ 2Þ, which assigns to each group
element g ∈ G an SOðDþ 2Þmatrix σðgÞwhich rotates the
NLSM field n.1 The reason for mapping G into SOðDþ 2Þ

*lapa2@illinois.edu

1For symmetries which also have a nontrivial action on
spacetime, for example time-reversal symmetry, the homomor-
phism instead takes the form σ∶G → OðDþ 2Þ. In other words,
for symmetries with a nontrivial action on spacetime, one must
allow for the possibility of orientation-reversing transformations
on the target space of the NLSM.
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is that the OðDþ 2Þ NLSM with a theta term has an
SOðDþ 2Þ global symmetry, and so embedding G inside
SOðDþ 2Þ immediately guarantees the invariance of the
NLSM description of the SPT phase under the action of G,
at least at the classical level. At the quantum level, the
symmetry is expected to be unbroken only in the disordered
phase of the NLSM, which is the phase of interest for the
description of SPT phases. For a given group G, many
distinct homomorphisms σ are possible, and the different
possibilities (modulo a notion of “independent NLSMs”
explained in Ref. [14]) correspond to different SPT phases
with the symmetry of the group G.
TheNLSMdescription has been shown to capturemany of

thephysical properties of bosonic SPTphases. For example, it
can predict the structure of the ground state wave functional
[26,32] and the braiding statistics of point and looplike
excitations in gauged SPT phases [22]. In addition, in
Ref. [27], an explicit connection was made between the
NLSM classification of SPT phases of Refs. [14,21] and the
group cohomology classification of bosonic SPT phases of
Ref. [19]. Very recently, the present authors demonstrated
how the NLSM description of bosonic SPT phases can be
combined with the theory of gauged Wess-Zumino actions
to compute the topological electromagnetic response of
some bosonic SPT phases in all dimensions [31].
All of these works strongly support the idea that the

OðDþ 2Þ NLSM in its disordered phase, with a theta term
and θ ¼ 2πk, k ∈ Z, and a suitable symmetry assignment
σ∶G → SOðDþ 2Þ, can describe nontrivial SPT phases
with symmetry group G. However, several of the defining
properties of an SPT phase are based on the behavior of the
SPT phase when it is placed on (closed) spatial manifolds
M of arbitrary topology, and the NLSM description of SPT
phases has not yet been tested in this setting. To be precise,
letM be an arbitrary smooth, closed,2 connected, oriented,
D-dimensional manifold. We also equip M with a
Riemannian metric. In this paper, we prove the following
three properties of the OðDþ 2Þ NLSM when formulated
on spatial manifolds M of this kind:
(1) The ground state of the OðDþ 2Þ NLSM in the

disordered phase and at θ ¼ 2πk, k ∈ Z, on M is
unique.

(2) The ground state wave functional of the NLSM on
M is independent of the metric on M and is
proportional to the exponential of a suitably defined
Wess-Zumino term3 for the NLSM field n, just as in
the case on flat space [26].

(3) There is a finite energy gap between the ground state
and the first excited state of theOðDþ 2ÞNLSM (in
the disordered phase and at θ ¼ 2πk, k ∈ Z) on M.

These three properties together imply that the OðDþ 2Þ
NLSM in the disordered phase and at θ ¼ 2πk, k ∈ Z,
represents a system with SPT order but not topological
order (no topology-dependent ground state degeneracy). In
particular, the fact that the ground state wave functional
involves a Wess-Zumino (WZ) term for n implies that the
ground state is invariant under the action of the group G
which protects the SPT phase. This is equivalent to the
statement that the ground state does not spontaneously
break the symmetry of the group G, which is a crucial
property of an SPT phase (see, for example, the discussion
in the introduction of Ref. [18]).
In order to prove these statements, we canonically

quantize the OðDþ 2Þ NLSM with a theta term on
(Dþ 1)-dimensional spacetimes of the form M ×R,
where M is a D-dimensional spatial manifold and R
represents time. As stated above, we assume that the spatial
manifold M is smooth, closed, connected, and oriented,
and we equipM with a Riemannian metric. The canonical
quantization of the OðNÞ NLSM on flat space and for
various N, in various dimensions and with various topo-
logical terms has been considered previously in
Refs. [7,34–38]. In particular, Ref. [37] considered the
Oð3ÞNLSMwith a theta term in one spatial dimension, and
Refs. [36,38] considered the Oð3Þ NLSM with Hopf term
in two spatial dimensions. To carry out the quantization,
these references used Dirac’s method [39,40] for the
quantization of systems with second class constraints,
and we follow the same route in this paper (with suitable
modifications to account for the curvature of the spaceM).
This formalism is necessary to handle the constraint that
the NLSM field n be a unit vector field, which is equivalent
to the statement that the target space T of the OðDþ 2Þ
NLSM is the unit sphere SDþ1. After the quantization, we
study this theory in its disordered limit, and in that limit,
we prove the three properties of this model which are
stated above.
This paper is organized as follows. In Sec. II, we

introduce the NLSM with a theta term and discuss the
canonical quantization of this model on flat space. In
Sec. III, we compute the ground state wave functional and
the energy gap of the NLSM in the disordered phase at
θ ¼ 2πk, k ∈ Z on flat space. In Sec. IV, we quantize the
NLSM on curved spaces M and then compute the ground
state wave functional and the energy gap as well as prove
the uniqueness of the ground state of the theory on M.
Section V presents our conclusions. The paper also
includes several Appendixes containing additional back-
ground material necessary for the discussion in the main
sections of the paper. In Appendix A, we review the
solution of the quantum mechanics problem of a particle
constrained to the surface of a sphere SN−1, equivalent
to the OðnÞ NLSM in one spacetime dimension. In
Appendix B, we explain the need for regularization of
the NLSM Hamiltonian, and we also discuss an alternative

2A closed manifold is a compact manifold without boundary.
3For the case of the Oð3Þ NLSM on flat (1þ 1)-dimensional

spacetime, the WZ form of the ground state wave functional was
originally derived in Ref. [33].
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regularization scheme from the one used in Sec. III. In
Appendix C, we review the symplectic geometry approach
to the Hamiltonian mechanics of a continuum field theory.
Finally, in Appendix D, we explain a simple example of
an intrinsic construction of a Wess-Zumino term for the
NLSM field on M which does not require the use of a
higher-dimensional manifold B which has M as its
boundary.

II. NONLINEAR SIGMA MODELS,
HAMILTONIAN FORMALISM, AND

CANONICAL QUANTIZATION

In this section, we introduce the NLSM with a theta term
and discuss its canonical quantization on flat space RD

using Dirac’s method for quantization in the presence
of constraints. We show in some detail that this system
possesses only two second class constraints, regardless of
the value of the coefficient θ of the theta term. We then
compute the classical Dirac brackets for the NLSM using
the two second class constraints. Finally, following Dirac’s
prescription, we obtain the commutation relations for the
quantum theory from the Dirac brackets in the same way
in which one obtains the commutation relations from the
Poisson brackets of an unconstrained classical theory.
We also discuss a functional Schrödinger representation
of these commutation relations, previously used in a field
theory context in Ref. [38], which we use throughout the
paper for concrete calculations.

A. NLSM and the theta term

The OðnÞ NLSM in Dþ 1 spacetime dimensions is a
theory of an N-component vector field n with components
na, a ¼ 1;…; N, subject to the constraint n · n ¼ nana ¼ 1
(so n is a unit vector field). The action for the NLSM takes
the form

S½n� ¼
Z

dDþ1x
1

2f
ð∂μnaÞð∂μnaÞ; ð2:1Þ

where xμ, μ ¼ 0;…; D, (x0 ¼ t) are the spacetime coor-
dinates, dDþ1x ¼ dx0 � � � dxD, and we sum over all indices
(latin or greek) which appear once as a superscript and once
as a subscript. Also, we use the notation ∂μ ≡ ∂

∂xμ. Latin
indices are raised and lowered using the metric δab and its
inverse δab, while greek indices are raised and lowered
using the “mostly minus” Minkowski metric ημν [i.e., as a
matrix η ¼ diagð1;−1;…;−1Þ] and its inverse ημν. We use
units in which c ¼ ℏ ¼ 1. In this section of the paper, we
work on flat, (Dþ 1)-dimensional Minkowksi spacetime,
denoted by RD;1. Finally, the quantity f is a positive
coupling constant with units of ðlengthÞD−1 (so that the
bare NLSM field is dimensionless). For D > 1, the model
is in an ordered phase for small f and a disordered phase

for large f.4 For D ¼ 1, there is no ordered phase, and the
renormalization group flow at any scale is always toward
the disordered phase [6].
The target manifold T of the OðnÞ NLSM is the unit

sphere SN−1, and in the special case that N ¼ Dþ 2, the
dimension of the target manifold is the same as the
dimension of spacetime. For this particular value of N,
there is an interesting topological term, called the theta
term, which can be added to the action for the NLSM. This
topological term is simply the pullback to spacetime of
the volume form on SDþ1 via the map n∶RD;1 → SDþ1. We
now explain this in more detail.
Let ωDþ1 be the volume form on SDþ1 (with the radius of

the sphere set to 1). If the sphere is parametrized by the
coordinates na, a ¼ 1;…; Dþ 2, subject to the constraint
nana ¼ 1, then the volume form in these coordinates is

ωDþ1 ¼
XDþ2

a¼1

ð−1Þa−1nadn1 ∧ � � � ∧ dna ∧ � � � ∧ dnDþ2;

ð2:2Þ

where the overline means to omit that term from the
wedge product. In what follows, we also use the notation

ADþ1 ≡ Area½SDþ1� ¼ 2π
Dþ2
2

ΓðDþ2
2
Þ for the area of SDþ1 (so

A1 ¼ 2π, A2 ¼ 4π, etc.). With this notation, the theta term
can be written compactly as

Sθ½n� ¼
1

ADþ1

Z
RD;1

n�ωDþ1; ð2:3Þ

where n�ωDþ1 denotes the pullback to spacetime of the
formωDþ1 via the map n∶RD;1 → SDþ1. In coordinates, the
theta term can be written as

Sθ½n� ¼
1

ADþ1

Z
dDþ1xϵa1���aDþ2

na1∂tna2∂1na3 � � � ∂DnaDþ2 :

ð2:4Þ

The full action for the NLSM with a theta term takes the
form

S½n� ¼
Z

dDþ1x
1

2f
ð∂μnaÞð∂μnaÞ − θSθ½n�; ð2:5Þ

4For D > 1, the coupling constant f has units, so the
magnitude of the coupling constant can only be established with
respect to a reference scale f�. Such an f� is naturally provided
by the location of the zero of the beta function βðfÞ of the
coupling constant f for D > 1 (Ref. [6] showed that there is no
zero in D ¼ 1). The value f ¼ f� is the point at which the
renormalization group flow of f crosses over from a flow toward
the ordered phase to a flow toward the disordered phase at low
energies.
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where the dimensionless parameter θ is the theta angle
discussed in Sec. I. The Lagrangian which follows from
this action is

L ¼ 1

2f
ð∂μnaÞð∂μnaÞ þ

θ

ADþ1

Bað∂tnaÞ; ð2:6Þ

where we introduced

Ba ¼ ϵaa1���aDþ1
na1∂1na2 � � � ∂DnaDþ1 : ð2:7Þ

At this point, we are now in a position to proceed with the
canonical quantization of this system.

B. Quantization of constrained systems

Due to the constraint nana ¼ 1 on the NLSM field, the
canonical quantization of the NLSM requires Dirac’s
theory of constrained Hamiltonian systems and the use
of Dirac brackets in particular [39]. Let us briefly sketch,
following Ref. [40], the steps involved in the quantization
of a constrained system. We first recall some basic
definitions. A constraint ϕ is a function on phase space
which is to be set equal to zero. Two functions f and g on
phase space are strongly equivalent if they are equal
throughout phase space. This is just the ordinary equality
of functions, f ¼ g. Two functions f and g are called
weakly equivalent if they become equal when all con-
straints ϕ are set to zero. Weak equivalence of two
functions f and g is denoted by f ≈ g.5

The first step in the quantization of a constrained system
is to find all of the constraints. This step involves the
construction of a modified Hamiltonian ~H such that the time
derivative of any constraint ϕ, as given by the modified
Hamiltonian, weakly vanishes. In other words, we have
d
dtϕ ¼ fϕ; ~Hg ≈ 0, where f·; ·g denotes the ordinary
Poisson bracket. This is a consistency condition on the time
evolution of the dynamical system, as constraints should not
change with time. In general, the modified Hamiltonian ~H is
distinct from the original Hamiltonian H obtained from the
Lagrangian via a Legendre transformation.
The next step in the quantization is to isolate the second

class constraints and then use these constraints to construct
the Dirac bracket. Recall that the second class constraints
are those constraints which have nonvanishing Poisson
brackets with each other. Let ψ IðxÞ, I ¼ 1;…; Nc, denote
the second class constraints in our system,6 and define the
functions MIJðx; yÞ by

MIJðx; yÞ ¼ fψ IðxÞ;ψJðyÞg: ð2:8Þ

The functions MIJðx; yÞ should be viewed as the compo-
nents of a matrix M with discrete indices I, J and
continuous spatial indices ðx; yÞ. In terms of this matrix,
the Dirac bracket for two functions fðxÞ and gðyÞ on phase
space is given by

ffðxÞ; gðyÞgD ¼ ffðxÞ; gðyÞg

−
XNc

I;J¼1

Z
dDzdDz0ffðxÞ;ψ IðzÞg

×M−1
IJ ðz; z0ÞfψJðz0Þ; gðyÞg; ð2:9Þ

where the functions M−1
IJ ðx; yÞ are the components of the

inverse matrix to M in the sense that

XNc

J¼1

Z
dDyMIJðx; yÞM−1

JKðy; zÞ ¼ δIKδ
ðDÞðx − zÞ: ð2:10Þ

Finally, the equal-time commutators in the quantized
theory are obtained from the classical Dirac brackets
according to the rule

ffðxÞ; gðyÞgD → −i½f̂ðxÞ; ĝðyÞ�; ð2:11Þ

where f̂ðxÞ is the operator in the quantum theory corre-
sponding to the classical function fðxÞ. The quantum theory
is then defined by the operator Ĥ corresponding to the
original Hamiltonian H obtained from the Legendre trans-
formation of the Lagrangian (not the modified Hamiltonian
~H discussed above), combined with the equal-time commu-
tators obtained from the classical Dirac brackets.7

C. Canonical quantization of the OðD+ 2Þ NLSM
with a theta term

We now carry out the program outlined in the last section
for the NLSM with a theta term. To start, the momentum
conjugate to na is

πa ≡ ∂L
∂ð∂tnaÞ

¼ 1

f
ð∂tnaÞ þ

θ

ADþ1

Ba; ð2:12Þ

and the Hamiltonian obtained from the Lagrangian via the
Legendre transformation H ¼ R

dDxðπa∂tna − LÞ is

H¼
Z

dDx

�
f
2

�
πa−

θ

ADþ1

Ba

�
2

þ 1

2f
ð∇naÞ2

�
; ð2:13Þ

5In this paper, the symbol “≈” is only used to denote weak
equivalence.

6In a field theory, the constraints are usually functions of the
position x in space.

7By construction, in the quantum theory defined in this way,

one has ½ ~̂H; Ô� ≈ ½Ĥ; Ô� for any operator Ô. Thus, the operator Ĥ
corresponding to the original Hamiltonian may be used in the

quantum theory instead of the operator ~̂H corresponding to the
modified Hamiltonian.
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where x ¼ ðx1;…; xDÞ is the vector of spatial coordinates,
dDx ¼ Q

D
j¼1 dx

j, ∇ is the spatial gradient, ð∇naÞ2≡
ð∇naÞ · ð∇naÞ, etc. For this system, the Poisson bracket
of any two functionals F1 and F2 of the fields naðxÞ and
their conjugate momenta πaðxÞ is given by

fF1; F2g ¼
Z

dDx

�
δF1

δnaðxÞ
δF2

δπaðxÞ
−

δF1

δπaðxÞ
δF2

δnaðxÞ
�
;

ð2:14Þ

where δ
δnaðxÞ is a functional derivative.

We now move on to the problem of finding all of the
constraints for this system. To begin with, we have only the
single constraint

ψ1ðxÞ ¼ naðxÞnaðxÞ − 1: ð2:15Þ

Setting ψ1ðxÞ ¼ 0 enforces the condition that n is a unit
vector field. Following Dirac’s procedure, we now use this
constraint to construct a modified Hamiltonian ~H such that
fψ1ðxÞ; ~Hg ≈ 0. As a first attempt toward the construction
of ~H, we define the modified Hamiltonian H0 by

H0 ¼ H þ
Z

dDyu1ðyÞψ1ðyÞ; ð2:16Þ

where u1ðxÞ is an as yet undetermined function. Note that
H0 ≈H since the constraint weakly vanishes, ψ1ðxÞ ≈ 0.
Using the product rule for the Poisson bracket, we find that

fψ1ðxÞ; H0g ¼ fψ1ðxÞ; Hg þ
Z

dDyðfψ1ðxÞ; u1ðyÞgψ1ðyÞ

þ u1ðyÞfψ1ðxÞ;ψ1ðyÞgÞ: ð2:17Þ

A short computation shows that fψ1ðxÞ;ψ1ðyÞg ¼ 0. Then,
since the constraint ψ1ðyÞ is weakly equivalent to zero,
we find that

fψ1ðxÞ; H0g ≈ fψ1ðxÞ; Hg: ð2:18Þ

Finally, due to the identity naðxÞBaðxÞ ¼ 0, we have
fψ1ðxÞ; Hg ¼ 2fnaðxÞπaðxÞ for any value of θ. This
means that

fψ1ðxÞ; H0g ≈ 2fnaðxÞπaðxÞ; ð2:19Þ

and so we find a second constraint,

ψ2ðxÞ ¼ naðxÞπaðxÞ; ð2:20Þ

which must also be set to zero for consistent time evolution
of this system.
We now make a further modification to the Hamiltonian

and define

H00 ¼ H þ
X2
I¼1

Z
dDyuIðyÞψ IðyÞ; ð2:21Þ

where we introduced a second undetermined function
u2ðyÞ and investigate the conditions under which
fψ2ðxÞ; H00g ≈ 0. After some algebra, we find that

fψ2ðxÞ; H00g ≈ fψ2ðxÞ; Hg þ
Z

dDyu1ðyÞfψ2ðxÞ;ψ1ðyÞg:

ð2:22Þ

At this point, it is possible that, depending on the form of
fψ2ðxÞ;ψ1ðyÞg, the equation

fψ2ðxÞ; Hg þ
Z

dDyu1ðyÞfψ2ðxÞ;ψ1ðyÞg ¼ 0 ð2:23Þ

can be solved to yield a function u1ðxÞ such that
fψ2ðxÞ; H00g ≈ 0. Below, we show that this is indeed the
case. This means that the constraints ψ1 and ψ2 account for
all of the constraints in this problem, and it also means that
the additional function u2ðxÞ is not needed for the con-
struction of the modified Hamiltonian. Therefore, we can
set u2ðxÞ ¼ 0 at this point. However, we note here that the
fact that u2ðxÞ can be set to zero is specific to this particular
problem. It is easy to imagine a scenario in which the
function u2ðxÞ would not be zero, for example, if the
Poisson bracket of ψ1 and ψ2 were to vanish; then,
requiring fψ2ðxÞ; H00g ≈ 0 would yield a new constraint
ψ3ðxÞ ¼ fψ2ðxÞ; Hg. If that were the case, then it is very
likely that we would need a nonzero u2ðxÞ to construct a
final modified Hamiltonian ~H such that fψ3ðxÞ; ~Hg ≈ 0.
However, for the problem considered here, we can safely
set u2ðxÞ ¼ 0, and so we find that the final modified
Hamiltonian is given by

~H ¼ H þ
Z

dDyu1ðyÞψ1ðyÞ; ð2:24Þ

where u1ðxÞ solves Eq. (2.23). Finally, we note that for the
purposes of the quantization we do not need to know the
exact form of ~H. This is fortunate because the Poisson
bracket fψ2ðxÞ; Hg is fairly complicated in the case that the
parameter θ is nonzero.
Now that we know all of the constraints in the problem,

we can look at their Poisson brackets with each other. For
this system, we find that the function MIJðx; yÞ defined in
Eq. (2.8) has the explicit form

MIJðx; yÞ ¼ 2iðσyÞIJr2ðxÞδðDÞðx − yÞ; ð2:25Þ

where ðσyÞIJ is the ðI; JÞ element of the second Pauli matrix
σy and where we defined the radial coordinate
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r2ðxÞ ¼ naðxÞnaðxÞ: ð2:26Þ

In terms of r2ðxÞ, the first second class constraint in the
NLSM problem reads as ψ1ðxÞ ¼ r2ðxÞ − 1. The inverse
of MIJðx; yÞ is

M−1
IJ ðx; yÞ ¼ −

i
2
ðσyÞIJ

1

r2ðxÞ δ
ðDÞðx − yÞ: ð2:27Þ

The fact that the inverse exists means that Eq. (2.23) can
indeed be solved for the function u1ðxÞ, as we claimed
above.
We can now use the components M−1

IJ ðx; yÞ from
Eq. (2.27) to construct the classical Dirac brackets for this
theory [see Eq. (2.9) for the definition of the Dirac bracket].
To quantize the theory, we then replace all functions fðxÞ
with operators f̂ðxÞ and replace the Dirac brackets with
commutators as shown in Eq. (2.11). After following these
steps, we find that the equal-time commutation relations for
the OðDþ 2Þ NLSM with a theta term, for any value of θ,
are given by

½n̂aðxÞ; n̂bðyÞ� ¼ 0 ð2:28aÞ

½n̂aðxÞ; π̂bðyÞ� ¼ i

�
δab −

n̂aðxÞn̂bðyÞ
r̂2ðxÞ

�
δðDÞðx − yÞ

ð2:28bÞ

½π̂aðxÞ; π̂bðyÞ� ¼
i

r̂2ðxÞ ðπ̂aðxÞn̂bðyÞ − π̂bðyÞn̂aðxÞÞ

× δðDÞðx − yÞ: ð2:28cÞ

At this point, we note that by construction r̂2ðxÞ commutes
with π̂aðyÞ (in fact, it commutes with any operator on the
Hilbert space). Therefore, r̂2ðxÞ is in the center of the algebra
defined by the commutation relations in Eqs. (2.28), and it is
consistent to plug in the constraint r̂2ðxÞ ¼ 1. An explicit
discussion about this point can be found in Ref. [41] in the
context of the quantummechanical problem of a free particle
constrained to move on the surface of a sphere. The fact
that r̂2ðxÞ commutes with any operator on the Hilbert space
simply follows from the fact that the Dirac bracket of any
functional F on phase space with a constraint ψ IðxÞ is
strongly equal to zero, fF;ψ IðxÞgD ¼ 0. From now on, we
work with the commutation relations obtained after this
substitution. These have the form

½n̂aðxÞ; n̂bðyÞ� ¼ 0 ð2:29aÞ

½n̂aðxÞ; π̂bðyÞ� ¼ iðδab − n̂aðxÞn̂bðyÞÞδðDÞðx − yÞ ð2:29bÞ

½π̂aðxÞ; π̂bðyÞ� ¼ iðπ̂aðxÞn̂bðyÞ − π̂bðyÞn̂aðxÞÞδðDÞðx − yÞ;
ð2:29cÞ

and they have appeared in several papers on the canonical
quantization of the OðNÞ NLSM [34–38]. However, we
emphasize that we have explicitly shown here that these
commutators are valid for the NLSM with a theta term for
any value of the parameter θ. We also note that there is an
operator ordering ambiguity in the commutation relation
for two momenta; however, we can say that the two terms
on the right-hand side of Eq. (2.29c) should have the same
ordering, so that the commutator has the important property
that ½πaðxÞ; πbðyÞ� ¼ −½πbðyÞ; πaðxÞ�.
To make progress in analyzing the NLSM, we employ a

functional Schrödinger representation of the commutation
relations of Eqs. (2.29) in which n̂aðxÞ acts as multiplica-
tion by the function naðxÞ and π̂aðxÞ is given in terms of a
functional derivative with respect to naðxÞ as

π̂aðxÞ ¼ −iðδab − naðxÞnbðxÞÞ
δ

δnbðxÞ : ð2:30Þ

This choice reproduces all of the commutators shown in
Eqs. (2.29) (with the operator ordering indicated there).
This Schrödinger representation was used previously in
Ref. [38] to construct soliton operators in the Oð3Þ NLSM
with Hopf term in three spacetime dimensions. It has also
been used in the study of theOðNÞNLSM in one spacetime
dimension [41–49], which is equivalent to the quantum
mechanics problem of a free particle in RN confined to
the surface of the sphere SN−1. In Appendix A, we review
the solution of this quantum mechanical model using this
Schrödinger representation. We use the results of
Appendix A in Secs. III and IV to study the energy gap
in the OðDþ 2Þ NLSM in the limit of infinitely large
coupling f on flat and curved space, respectively.

III. GROUND STATE WAVE FUNCTIONAL
AND THE ENERGY GAP ON FLAT SPACE

In this section, we study the OðDþ 2Þ NLSM with a
theta term in the disordered (f → ∞) phase with
θ ¼ 2πk, k ∈ Z, on flat space RD. We give an alternative
derivation, within the canonical formalism, of the result
of Ref. [26] for the ground state wave functional of the
NLSM at these parameter values. Finally, we use a
lattice regularization of the NLSM to prove the unique-
ness of the ground state and the existence of an energy
gap in the disordered phase of the model at θ ¼ 2πk.
This section should be viewed as a warm-up for Sec. IV
in which we discuss the ground state wave functional
and the energy gap of the NLSM on an arbitrary spatial
manifold M.

A. Ground state wave functional
at large f and θ= 2πk, k ∈ Z

We first discuss the construction of the ground state wave
functional. As discussed above, we consider the disordered
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phase of the model in which f → ∞. In this limit, the
Hamiltonian operator is approximately given by

Ĥ ¼ f
2

Z
dDx

�
π̂a −

θ

ADþ1

B̂a

�
2

; ð3:1Þ

where we ignore terms proportional to 1
f. Since the

Hamiltonian in this limit is expressed as an integral over
space of the square of a local operator, the lowest possible
energy of any eigenstate is zero. This means that the ground
state wave functional of the NLSM in this limit is
determined only by the property that it is annihilated by
the operators

D̂ðθÞ
a ¼ π̂a −

θ

ADþ1

B̂a; a ¼ 1;…; Dþ 2: ð3:2Þ

On the other hand, because of the specific form of the
operator π̂aðxÞ in the Schrödinger representation Eq. (2.30)
used in this paper, the Hamiltonian needs to be regularized
in some way before any excited states can be constructed.
We discuss the need for regularization of the Hamiltonian
in more detail in Appendix B. For now, however, we are
only interested in the construction of the ground state wave
functional, and so we can delay the issue of regularization
of the Hamiltonian until the next subsection.
To start, consider the case where θ ¼ 0. Since π̂a is

proportional to a functional derivative with respect to na,
and since the energy is bounded below by zero, we can see
that the ground state wave functional is just a constant,
Ψθ¼0½n� ¼ 1. A general state jΨi in the Hilbert space of the
NLSM can be expanded in the “position basis” fjnig,
which contains a state jni for every possible configuration
of the NLSM field on the space RD. The field operator
n̂aðxÞ is diagonal in this basis, n̂aðxÞjni ¼ naðxÞjni, where
naðxÞ is the function corresponding to the particular state
jni. For a more precise formulation, we should restrict the
set fjnig to include only those field configurations on RD

with finite (classical) potential energy. This restriction
implies a choice of boundary condition on the field
configurations at spatial infinity; for example, we could
choose nðxÞ → n0, a particular constant field configura-
tion, as jxj → ∞.
A general state in this basis takes the form

jΨi ∝
Z

½Dn�Ψ½n�jni; ð3:3Þ

whereΨ½n� is the wave functional (i.e., the amplitude of the
basis state jni in the full state jΨi) and the integration is
over all possible configurations of the field n at every point
in space (possibly subject to a boundary condition at spatial
infinity ensuring finite energy). We define the measure
½Dn� to be the product over all points x in space of the
volume form ωDþ1 on the sphere SDþ1. Since the ground

state wave functional of the NLSM at θ ¼ 0 is just
Ψθ¼0½n� ¼ 1, it follows that the state vector for the ground
state is just an equal weight superposition of all basis states,

jΨθ¼0i ∝
Z

½Dn�jni: ð3:4Þ

This state can be thought of as a continuum analog of a
trivial paramagnetic state.
Next, we look at the ground state for nonzero θ in the

particular case that θ is an integer multiple of 2π. In this
case, it is possible to remove the term θ

ADþ1
B̂a from the

operator D̂ðθÞ
a via a well-defined unitary transformation,

which means that the ground state in this case can be
obtained by multiplying the ground state at θ ¼ 0 by a
unitary operator. As we discussed in Sec. I, the case
θ ¼ 2πk, k ∈ Z, is also interesting from a physical point
of view because for these values of θ the OðDþ 2Þ NLSM
has been shown to capture many of the physical properties of
SPT phases of bosons in D spatial dimensions [14,21–31].
The ground state wave functional at θ ¼ 2πk can be

constructed using a WZ term for the NLSM field n.
Recall now that we are working in (Dþ 1)-dimensional
Minkowski spacetime RD;1, so that the physical space is
just RD. The WZ term is written as an integral over the
extended space B ¼ ½0; 1� ×RD, where RD represents the
original D-dimensional space, and [0, 1] is an auxiliary
direction of space used in the construction of the WZ term.
We use the notation ~naðx; sÞ to denote the extension of the
NLSM field naðxÞ into the extra direction, where x ∈ RD

and s ∈ ½0; 1�. Typically, one chooses boundary conditions
in the auxiliary direction so that ~naðx; 0Þ ¼ δaDþ2 (i.e., a
trivial configuration) and ~naðx; 1Þ ¼ naðxÞ, so that the
physical space sits at s ¼ 1.
We now show that for θ ¼ 2πk, k ∈ Z, the ground state

wave functional is

Ψθ¼2πk½n� ¼ e−ikSWZ½n�; ð3:5Þ

where SWZ½n� is the WZ term,

SWZ½n� ¼
2π

ADþ1

Z
B
~n�ωDþ1

¼ 2π

ADþ1

Z
1

0

ds

×
Z

dDxϵa1���aDþ2
~na1∂s ~na2∂1 ~na3 � � � ∂D ~naDþ2 :

ð3:6Þ

The WZ term involves the pullback of the volume form
ωDþ1 on SDþ1 to the extended space B via the map
~n∶B → SDþ1. To prove Eq. (3.5), we first recall the formula
for the variation of the WZ term,
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δSWZ½n�¼−
2π

ADþ1

Z
dDxϵa1���aDþ2

δna1na2∂1na3 �� �∂DnaDþ2 ;

ð3:7Þ

which is an integral only over the physical space RD (in the
case that we can neglect terms coming from the boundary
of physical space). Then, we have

δ

δnaðxÞΨθ¼2πk½n�

¼ i
2πk
ADþ1

ðϵaa2���aDþ2
na2∂1na3 � � � ∂DnaDþ2ÞΨθ¼2πk½n�

¼ i
θ

ADþ1

BaðxÞΨθ¼2πk½n�: ð3:8Þ

Then, using π̂aðxÞ ¼ −iðδab − naðxÞnbðxÞÞ δ
δnbðxÞ and

the fact that nbBb ¼ 0, we find that

D̂ðθ¼2πkÞ
a Ψθ¼2πk½n� ¼ 0; ð3:9Þ

which completes the proof. The state vector for the ground
state at θ ¼ 2πk then takes the form

jΨθ¼2πki ∝
Z

½Dn�e−ikSWZ½n�jni: ð3:10Þ

Thus, we have succeeding in rederiving the result of
Ref. [26] for the ground state wave functional of this
system within the canonical formalism.
The relationship between the ground state wave func-

tionals at θ ¼ 0 and θ ¼ 2πk can be understood in terms of
a unitary transformation of the Hamiltonian by the operator

ÛðkÞ ¼ e−ikSWZ½n̂�: ð3:11Þ

In the Schrödinger representation, and using a suitable test
functional, one can show that

ÛðkÞ;†D̂ðθ¼2πkÞ
a ÛðkÞ ¼ D̂ðθ¼0Þ

a ¼ π̂a; ð3:12Þ

which means that

ÛðkÞ;†Ĥðθ¼2πkÞÛ
ðkÞ ¼ Ĥðθ¼0Þ ð3:13Þ

and that

jΨθ¼2πki ¼ ÛðkÞjΨθ¼0i: ð3:14Þ

Note also that since ÛðkÞ commutes with the potential energy
term 1

2f ð∇naÞ2 Eq. (3.13) holds for the full Hamiltonian of
Eq. (2.13) (i.e., not just in the large f limit). In fact, for any
values of f and θ, the full Hamiltonian obeys the relation

Ûð1Þ;†ĤðθÞÛ
ð1Þ ¼ Ĥðθ−2πÞ; ð3:15Þ

which shows that the spectrum of theOðDþ 2ÞNLSMwith
a theta term is 2π periodic in the value of the parameter θ.
This is a crucial result since it will let us simultaneously
study the energy spectra for any values of θ related by a
2π shift.
We see that the theta angle of the NLSM enters into the

Hamiltonian of Eq. (2.13) as something like a gauge field,

and the derivative operator D̂ðθÞ
a looks like a covariant

derivative. In the case that θ ¼ 2πk, k ∈ Z, we can interpret
the phase of the ground state wave functional as being
obtained from a gauge transformation which removes the

“gauge field” term θ
ADþ1

B̂a from D̂ðθÞ
a at the expense of an

additional phase in the wave functional. This gauge trans-
formation, however, can only be performed when θ is an
integer multiple of 2π. This is because the exponential
e−ikSWZ½n� of the WZ term, which involves an extension of
the field na into an auxiliary direction, is only well-defined
(i.e., independent of the extension) when k is an integer
[50]. To be precise, we note here that to apply the argument
of Ref. [50] on the quantization of k we must replace flat
space RD with a D-dimensional sphere so that space is a
compact manifold (the radius of the sphere can be taken to
be very large so that the curvature is nearly zero). The
original infinite space RD is then obtained in the limit that
the radius of the D-sphere goes to infinity. We now move
on to a discussion of the uniqueness of the ground state and
the calculation of the energy gap in the NLSM at θ ¼ 2πk
and f → ∞.

B. Uniqueness of the ground state and the energy
gap at large f and θ = 2πk, k ∈ Z

In the previous subsection, we showed that the NLSM
Hamiltonians at θ ¼ 2πk and θ ¼ 0 are related by a unitary
transformation, which means that the energy spectrum in
this model at θ ¼ 2πk is identical to the spectrum at θ ¼ 0.
In the context of applications to SPT phases, one of the
most important properties of the NLSM at large f that we
would like to verify is the uniqueness of the ground state
and the existence of an energy gap between the ground state
and all of the excited states. In this subsection, we use a
lattice regularization of the NLSM at large f to prove the
uniqueness of the ground state and the existence of an
energy gap at θ ¼ 0. Since the NLSM Hamiltonian at θ ¼
2πk is related to the Hamiltonian at θ ¼ 0 by a unitary
transformation, the uniqueness of the ground state and the
existence of an energy gap at θ ¼ 2πk follow immediately
from this result at θ ¼ 0. In Appendix B, we also present
an alternative regularization procedure for the NLSM
Hamiltonian in the disordered limit, and we show that this
alternative procedure gives a result for the energy gap
which is consistent with the result derived in this section
using a lattice regularization. Therefore, we expect that our
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result for the energy gap of the OðDþ 2Þ NLSM in its
disordered limit is independent of the specific details of the
regularization scheme used in the calculation.
To start, we consider a hypercubic lattice with spacing

a and coordinates which are vectors with integer entries
and denoted by boldface latin letters j;k, etc. The
continuum coordinate x is given in terms of the lattice
coordinate j by x ¼ aj. In the lattice regularization, the
Dirac delta function is represented by δðDÞðx − yÞ → 1

aD δjk
if x ¼ aj and y ¼ ak. If we define lattice operators n̂aj
and π̂a;j by

n̂aðajÞ ¼ n̂aj ð3:16aÞ

π̂aðajÞ ¼
1

aD
π̂a;j; ð3:16bÞ

where n̂aðajÞ and π̂aðajÞ are the continuum field operators
at x ¼ aj, then the NLSM commutation relations of
Eqs. (2.29) become

½n̂aj ; n̂bk� ¼ 0 ð3:17aÞ

½n̂aj ; π̂b;k� ¼ iðδab − n̂aj n̂b;kÞδjk ð3:17bÞ

½π̂a;j; π̂b;k� ¼ iðπ̂a;jn̂b;k − π̂b;kn̂a;jÞδjk: ð3:17cÞ

The integration over space becomes
R
dDx → aD

P
j, and

so the regularized Hamiltonian at large f and θ ¼ 0 takes
the form

ĤðaÞ ¼ f
2aD

X
j

π̂a;jπ̂
a
j: ð3:18Þ

Here, we have written ĤðaÞ to indicate the explicit
dependence of the Hamiltonian on the cutoff a.
The regularized Hamiltonian Eq. (3.18) is a sum of many

identical Hamiltonians for an OðNÞ NLSM in one space-
time dimension, with N ¼ Dþ 2. In Appendix A, we
review the solution of this quantum mechanics problem
using Dirac’s formalism for quantizing constrained sys-
tems. Using the results from Appendix A, we can rewrite
the Hamiltonian as

ĤðaÞ ¼ f
2aD

X
j

Ĉj; ð3:19Þ

where Ĉj is the quadratic Casimir of soðDþ 2Þ formed
from the conserved charge operators in the OðDþ 2Þ
NLSM on site j. We immediately deduce that the unique
ground state of this system is the state with

Ĉj ¼ 0; ∀ j; ð3:20Þ

i.e., the state which is the tensor product of the trivial
representation of SOðDþ 2Þ on all sites j. The energy gap,
which is equal to the energy of the first excited state, is
(“m” stands for mass)

mðaÞ ¼ f
2aD

ðDþ 1Þ: ð3:21Þ

This energy corresponds to the case that one site in the
lattice is excited to a state in the fundamental representation
of SOðDþ 2Þ. In the theory at large f, the first excited state
is highly degenerate, but this degeneracy will be broken
by the inclusion of a small kinetic energy term (with
coefficient 1

f), which will cause the energies of all degen-
erate states in the first excited state manifold to disperse.
We see that for a fixed bare coupling constant f the

energy gap mðaÞ goes to infinity as we take the continuum
limit a → 0. On the other hand, it is more physical to make
the coupling constant cutoff dependent, f → fðaÞ, and
demand that fðaÞ depend on the cutoff a in such a way as to
make the mass gap mðaÞ independent of the cutoff a used
to define the theory. Following the procedure of Ref. [6],

we demand that dmðaÞ
da ¼ 0, which yields the renormalization

group equation for fðaÞ in the regime of large f,

a
dfðaÞ
da

¼ DfðaÞ: ð3:22Þ

We find that fðaÞ → ∞ in the infrared (i.e., low-energy)
limit a → ∞, which confirms the validity of our expansion
of the Hamiltonian in powers of 1

f. Integrating Eq. (3.22)
from some reference scale a0 in the ultraviolet, at which
f ¼ f0, to the scale a, we find that fðaÞ is given in terms of
f0 as fðaÞ ¼ ð aa0ÞDf0, so that the mass gapm (which is now
independent of a) is given in terms of f0 and the reference
scale a0 by

m ¼ f0
2aD0

ðDþ 1Þ: ð3:23Þ

IV. QUANTIZATION, GROUND STATE WAVE
FUNCTIONAL, AND ENERGY GAP

ON CURVED SPACE

In this section, we repeat the analysis of Secs. II and III
in the case that the spacetime takes the form M ×R,
where R represents the time direction and M is a curved,
D-dimensional manifold representing space (the precise
assumptions on the properties of M were stated in Sec. I
and are repeated below). In particular, we will accomplish
the goal of the paper, which is to prove the three properties
of the NLSM on curved space which are stated in Sec. I.
That is, we prove the uniqueness of the ground state and the
existence of an energy gap in the OðDþ 2Þ NLSM in the
disordered (f → ∞) phase at θ ¼ 2πk, k ∈ Z, on arbitrary
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spatial manifolds M, and we also explicitly construct the
ground state wave functional on M. We find that the wave
functional takes the form of an exponential of a WZ term
for na, just as in the case on flat space [26]. To prove the
uniqueness of the ground state and the existence of an
energy gap in the NLSM on M, we use a triangulation of
the manifold to set up a latticelike regularization of the
NLSM Hamiltonian at large f. Within this regularization
scheme, the demonstration of the uniqueness of the ground
state and the computation of the energy gap can be done in
a way which is very similar to the calculation on flat space
from Sec. III.
The results of this section prove that the OðDþ 2Þ

NLSM, in the parameter regime studied in this paper,
possesses SPT order, but not topological order, and is
therefore a suitable model for SPT phases. One interesting
aspect of the theory on a curved spaceM is that for certain
choices of manifold M the standard construction of the
WZ term fails, and so alternative constructions are needed.
We discuss the standard construction of the WZ term and
one type of alternative construction in some detail in this
section. Then, in Appendix D, we give an explicit example
of a third construction which can be used when the other
two constructions fail. Before we discuss these details,
however, we need to first explain the modifications to
the canonical quantization procedure of Sec. II which are
needed to study the NLSM in the canonical formalism on
the curved space M.

A. Canonical quantization of the NLSM
on a curved space

In this subsection, we discuss the canonical quantization
of theOðDþ 2Þ NLSMwith a theta term on a spacetime of
the formM ×R, whereR represents the time direction and
M is a smooth, closed, connected, oriented,D-dimensional
manifold. We take the metric on spacetime to have the form
(we use a mostly minus signature for the metric)

g ¼ dt ⊗ dt −GijðxÞdxi ⊗ dxj; ð4:1Þ

where i; j ¼ 1;…; D (and a sum over repeated indices is
implied). On flat Minkowski space, we have GijðxÞ ¼ δij,
but in the general case, GijðxÞ are the components of a
Riemannian metric on M. In addition, we have

det½g� ¼ ð−1ÞD det½G�: ð4:2Þ

By a common abuse of notation, we will also use the letters
g and G to denote det½g� and det½G�, respectively, for the
remainder of the paper.
To start, we use the formalism of Appendix C to

understand how to quantize a free scalar field on a curved
space. The key piece of information we need is the
appropriate form of the Poisson bracket for a free scalar
field on a curved space. With this information in hand, we

can then use Dirac’s procedure to quantize the NLSM on
a curved space, since the OðDþ 2Þ NLSM consists of
Dþ 2 scalar fields, but subject to the additional constraint
naðxÞnaðxÞ ¼ 1. At this point, we suggest that the reader
skim through Appendix C to understand our notation for
the symplectic geometry approach to studying field theories
in the Hamiltonian formalism.
First, we outline our general strategy for determining

the correct symplectic form Ω to use to describe a field
theory on a curved space. Suppose that the system we
would like to study on a curved space has a definition in
terms of an action

S ¼
Z

dDþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞDg

q
L ¼

Z
dDþ1x

ffiffiffiffi
G

p
L; ð4:3Þ

where L is the Lagrangian and we assumed a metric on
spacetime of the form of Eq. (4.1). In this case, our strategy
for determining the appropriate symplectic form is to choose
Ω such that the Hamilton equations of motion obtained from
Ω via Eq. (C10) coincide with the Euler-Lagrange equations
of motion obtained from the action for our system on a
curved space. Once we know the correct Ω, we can use it to
find the correct Poisson brackets from Eq. (C9). These
Poisson brackets will then give us the information we need to
find the commutation relations for the fields in the quantum
field theory on the curved space M.
Let us see how this all plays out in the case of a free

scalar field ϕ. In this case, the Lagrangian is

L ¼ 1

2
ð∂μϕÞð∂μϕÞ ¼

1

2
½ð∂tϕÞ2 −Gij∂iϕ∂jϕ�; ð4:4Þ

where in the first line μ ¼ 0; 1;…; D (and x0 ¼ t). In the
second line, we specialized to the case of curved space only
[i.e., a metric of the form shown in Eq. (4.1)], and we used
the tensorGij which satisfies the relationGijGjk ¼ δik. The
momentum conjugate to ϕ is π ¼ ∂L

∂ð∂tϕÞ ¼ ∂tϕ, and the

Hamiltonian is

H ¼
Z

dDx
ffiffiffiffi
G

p
ðπ∂tϕ − LÞ

¼ 1

2

Z
dDx

ffiffiffiffi
G

p
ðπ2 þ Gij∂iϕ∂jϕÞ: ð4:5Þ

Starting from the action S ¼ R
dDþ1

ffiffiffiffi
G

p
L, we can derive

the Euler-Lagrange equation of motion for ϕ,

∂2
tϕ −

1ffiffiffiffi
G

p ∂ið
ffiffiffiffi
G

p
Gij∂jϕÞ ¼ 0: ð4:6Þ

Now that we know the Euler-Lagrange equation of
motion for ϕ, we can look for a choice of Ω so that the
Hamilton equations obtained from it are equivalent to this
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Euler-Lagrange equation. We find that the choice of Ω
which yields the correct equations of motion is

Ω ¼
Z

dDx
ffiffiffiffiffiffiffiffiffiffiffi
GðxÞ

p
δπðxÞ ∧ δϕðxÞ: ð4:7Þ

Indeed, using this form of Ω with Eq. (C10), we find that

∂tϕ ¼ π ð4:8aÞ

∂tπ ¼ 1ffiffiffiffi
G

p ∂ið
ffiffiffiffi
G

p
Gij∂jϕÞ; ð4:8bÞ

which is clearly equivalent to the equation of motion
Eq. (4.6) derived from the action. Using the correct form
of Ω we can now derive the form of the Poisson bracket for
ϕ and π on curved space. First, using Eq. (C8), we find that
the vector fields on the phase space corresponding to the
functionals ϕðxÞ and πðxÞ are

VϕðxÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp δ

δπðxÞ ð4:9aÞ

VπðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp δ

δϕðxÞ : ð4:9bÞ

From these, we find that

fϕðxÞ; πðyÞg ¼ iVϕðxÞiVπðyÞΩ

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp δðDÞðx − yÞ: ð4:10Þ

This then tells us that the correct commutation relation
for the operators ϕ̂ðxÞ and π̂ðyÞ in the quantized theory on
curved space is

½ϕ̂ðxÞ; π̂ðyÞ� ¼ iffiffiffiffiffiffiffiffiffiffiffi
GðxÞp δðDÞðx − yÞ: ð4:11Þ

Given this form of Ω, we can also work out a general
formula for the Poisson bracket of any two functionals F1

and F2 of the phase space variables. To do this, we need to
first solve Eq. (C8) for the vector field VF corresponding to
a given functional F. If we write the vector field VF as

VF ¼
Z

dDx

�
Vϕ
F

δ

δϕðxÞ þ Vπ
F

δ

δπðxÞ
�
; ð4:12Þ

then the solution of Eq. (C8) for the components of VF is

Vϕ
F ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

GðxÞp δF
δπðxÞ ð4:13aÞ

Vπ
F ¼ −

1ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp δF

δϕðxÞ : ð4:13bÞ

Plugging into Eq. (C9), we find that the Poisson bracket of
any two functionals F1 and F2 in the theory of a free scalar
field on a curved space is given by

fF1;F2g¼
Z

dDx
1ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp

�
δF1

δϕðxÞ
δF2

δπðxÞ−
δF1

δπðxÞ
δF2

δϕðxÞ
�
:

ð4:14Þ

The only modification from the usual Poisson bracket on
flat space is the extra factor of 1ffiffiffiffiffiffiffi

GðxÞ
p .

Now, we combine this information with Dirac’s pro-
cedure for dealing with constraints in the Hamiltonian
formalism to derive the commutation relations for the
NLSM with a theta term on the curved space M. The
action for theOðDþ 2Þ NLSMwith a theta term on curved
space is S ¼ R

dDþ1x
ffiffiffiffi
G

p
L with

L ¼ 1

2f
ð∂μnaÞð∂μnaÞ þ

1ffiffiffiffi
G

p θ

ADþ1

Bað∂tnaÞ; ð4:15Þ

where the contraction of greek (spacetime) indices is
now done with the metric gμν from Eq. (4.1) and Ba

was defined in Eq. (2.7). The momentum conjugate to na is
now

πa ¼
∂L

∂ð∂tnaÞ
¼ 1

f
ð∂tnaÞ þ

1ffiffiffiffi
G

p θ

ADþ1

Ba; ð4:16Þ

and the Hamiltonian on curved space takes the form

H ¼
Z

dDx
ffiffiffiffi
G

p �
f
2

�
πa −

1ffiffiffiffi
G

p θ

ADþ1

Ba

�
2

þ 1

2f
Gij∂ina∂jna

�
: ð4:17Þ

Finally, from our discussion above on the canonical
formalism for a single scalar field on curved space, we
know that the correct Poisson bracket for two functionals
F1 and F2 in the NLSM on curved space is

fF1; F2g ¼
Z

dDx
1ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp

�
δF1

δnaðxÞ
δF2

δπaðxÞ

−
δF1

δπaðxÞ
δF2

δnaðxÞ
�
: ð4:18Þ

Using this Poisson bracket, we may now proceed as in
Sec. II and use Dirac’s procedure for handling constraints
to quantize the NLSM on curved space. We skip the
details as they are very similar to those in Sec. II and
just present the results. The NLSM with a theta term on
curved space is again characterized by two second class
constraints,
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ψ1ðxÞ ¼ naðxÞnaðxÞ − 1 ð4:19aÞ

ψ2ðxÞ ¼ naðxÞπaðxÞ: ð4:19bÞ

The Poisson bracket of these constraints, computed using
the Poisson bracket of Eq. (4.18) for the NLSM on curved
space, is fψ IðxÞ;ψJðyÞg ¼ MIJðx; yÞ with

MIJðx; yÞ ¼
2iffiffiffiffiffiffiffiffiffiffiffi
GðxÞp ðσyÞIJr2ðxÞδðDÞðx − yÞ; ð4:20Þ

where r2ðxÞ ¼ naðxÞnaðxÞ. Its inverse, which is needed
to compute the Dirac brackets for the NLSM on curved
space, is

M−1
IJ ðx; yÞ ¼ −

i
2

ffiffiffiffiffiffiffiffiffiffiffi
GðxÞ

p
ðσyÞIJ

1

r2ðxÞ δ
ðDÞðx − yÞ: ð4:21Þ

The components M−1
IJ ðx; yÞ can now be used to construct

the classical Dirac brackets for the NLSM on curved space.
Then, to quantize the NLSM on curved space, we replace
all functions fðxÞ with operators f̂ðxÞ on the Hilbert space,
and we obtain the quantum commutation relations for the
NLSM on curved space by replacing the Dirac brackets
with commutators as in Sec. II for the NLSM on flat space.
In addition, as in Sec. II, we set the operator r̂2ðxÞ ¼ 1,
which is consistent since this operator commutes with all
other operators in the Hilbert space. Therefore, we find that
the commutation relations for the NLSM with a theta term
on curved space are

½n̂aðxÞ; n̂bðyÞ� ¼ 0 ð4:22aÞ

½n̂aðxÞ; π̂bðyÞ� ¼
iffiffiffiffiffiffiffiffiffiffiffi
GðxÞp ðδab − n̂aðxÞn̂bðyÞÞδðDÞðx − yÞ

ð4:22bÞ

½π̂aðxÞ; π̂bðyÞ� ¼
iffiffiffiffiffiffiffiffiffiffiffi
GðxÞp ðπ̂aðxÞn̂bðyÞ − π̂bðyÞn̂aðxÞÞ

× δðDÞðx − yÞ: ð4:22cÞ

Again, the only modification from the case of flat space is
the extra factor of 1ffiffiffiffiffiffiffi

GðxÞ
p . As in the case on flat space, these

commutation relations also admit a functional Schrödinger
representation in which n̂aðxÞ acts as multiplication by
naðxÞ and now π̂aðxÞ acts as the functional derivative
operator

π̂aðxÞ ¼ −
iffiffiffiffiffiffiffiffiffiffiffi
GðxÞp ðδab − naðxÞnbðxÞÞ

δ

δnbðxÞ : ð4:23Þ

In the next subsection, we use this Schrödinger represen-
tation to solve for the ground state wave functional of the

OðDþ 2Þ NLSM in the disordered (f → ∞) phase at
θ ¼ 2πk, k ∈ Z.

B. Ground state wave functional at large f
and θ= 2πk, k ∈ Z

In the large f limit, the Hamiltonian operator for the
OðDþ 2Þ NLSM with a theta term on the curved spaceM
takes the form

Ĥ ¼
Z

dDx
ffiffiffiffi
G

p f
2

�
π̂a −

1ffiffiffiffi
G

p θ

ADþ1

B̂a

�
2

; ð4:24Þ

where we again dropped the potential energy term with
coefficient proportional to 1

f. We now investigate the form
of the ground state wave functional of this theory in the
case where θ ¼ 2πk, k ∈ Z, which is the case where the
NLSM is expected to describe an SPT phase on the curved
space M. As in the case on flat space, the ground state
wave functional is determined by the condition that it be
annihilated by the operators

D̂ðθÞ
a ¼ π̂a −

1ffiffiffiffi
G

p θ

ADþ1

B̂a; a ¼ 1;…; Dþ 2: ð4:25Þ

In the functional Schrödinger representation used in this
paper, this operator takes the form

D̂ðθÞ
a ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

GðxÞp
�
−iðδab − naðxÞnbðxÞÞ

δ

δnbðxÞ

−
θ

ADþ1

BaðxÞ
�
: ð4:26Þ

We see that the dependence of this operator on the metric
of space is only through the overall factor of 1ffiffiffiffiffiffiffi

GðxÞ
p . This a

consequence of the fact that the Dirac brackets for the
NLSM on curved space have an explicit dependence onffiffiffiffiffiffiffiffiffiffiffi
GðxÞp

, while the theta term in the NLSM action is

independent of the metric. This property of D̂ðθÞ
a ðxÞ is

very important. It implies that the ground state wave
functional at large f and θ ¼ 2πk on the curved space
M is independent of the metric on M and can be
constructed in the exact same way as on flat space; i.e.,
the ground state wave functional is the exponential of a WZ
term for the NLSM field, Ψθ¼2πk½n� ¼ e−ikSWZ½n�. As we
mentioned at the beginning of this section, for certain
choices of M, the standard construction of the WZ term
fails, and so alternative constructions are needed. We now
turn to a discussion of this issue.
The crucial property of the WZ term SWZ½n�, which

allows for the construction of a functional annihilated by

D̂ðθ¼2πkÞ
a , is the formula Eq. (3.7) for its variation with

respect to naðxÞ. We now review two different methods for
constructing an action of which the variation is given by
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Eq. (3.7), and then we discuss specific examples of
manifoldsM where both constructions fail. In these cases,
a third construction of the WZ term is available using the
methods outlined in Ref. [51]. In Appendix D, we give an
explicit example of the construction of the WZ term using
the methods of Ref. [51] in the simple case where the
dimension of the space M is D ¼ 1.
The first construction of the WZ term that we discuss is

the standard construction that appears in the literature [50].
This construction uses a higher-dimensional manifold B
which hasM as its boundary. In Sec. III, we discussed this
construction on flat space M ¼ RD, and we now discuss
how it works for a general curved spatial manifold M. For
the standard construction of the WZ term for the NLSM
field, we first look for a (Dþ 1)-dimensional manifold B
which has M as its boundary, ∂B ¼ M. Then, for a given
NLSM field configuration na on M, we construct an
extension ~na of the NLSM field configuration into the bulk
of the manifold B such that ~naj∂B ¼ na. Finally, using the
extended manifold B and the extension ~na of the NLSM
field, the standard construction of the WZ term for n is
given by

SWZ½n� ¼
2π

ADþ1

Z
B
~n�ωDþ1; ð4:27Þ

where ~n�ωDþ1 denotes the pullback of the volume form
ωDþ1 of SDþ1 to the extended space B via the map
~n∶B → SDþ1. Since in this construction the WZ term
depends on the choice of the manifold B and the choice
of extension of the NLSM field ~n, we need to check that the
exponential e−ikSWZ½n� is independent of these choices in
order for the wave functional to be well defined.
The exponential of the WZ term constructed in this way

will be well defined if it is independent of the specific
choices of extended manifold B and field extension ~na.
To check this, suppose we have two different choices
of extended manifold B and B0, with ∂B ¼ ∂B0 ¼ M,
and two different field extensions ~n and ~n0, with
~nj∂B ¼ ~n0j∂B0 ¼ n. Let SWZ½n� and S0WZ½n� be the WZ
terms defined using ðB; ~nÞ and ðB0; ~n0Þ, respectively. Then,
we can write

e−ikSWZ½n� ¼ e−ikðSWZ½n�−S0WZ½n�Þe−ikS0WZ½n�: ð4:28Þ

If follows from this expression that the exponential of the
WZ term will be well defined if the difference SWZ½n� −
S0WZ½n� of the two WZ terms is an integer multiple of 2π
(we assume k ∈ Z), since in that case we have e−ikSWZ½n� ¼
e−ikS

0
WZ½n�. The difference of WZ terms is in turn equivalent

to a single integral

I½ ~n00� ¼ 2π

ADþ1

Z
X
~n00�ωDþ1; ð4:29Þ

where X is a closed (Dþ 1)-dimensional manifold formed
by gluing B to B0 along their common boundary M and
where ~n00 is the NLSM field configuration on the entire
(Dþ 1)-dimensional manifoldX formed in this way ( ~n and
~n0 agree at the boundary where the gluing takes place, and
on the rest ofX , they define the configuration ~n00). Since we
are dealing with orientable manifolds, we must specify the
orientation of the boundaries of B and B0 when we glue
them together to construct X . In the construction of X
discussed here, the manifolds B and B0 are glued together
in a such a way that the orientation of ∂B0 is opposite
to the orientation of ∂B. This choice of orientations is
forced on us because we are considering the difference of
WZ terms.
We see that, in order to determine whether the expo-

nential of the WZ term is well defined, it suffices to check
that the integral in Eq. (4.29) is an integer multiple of 2π
for any closed (Dþ 1)-dimensional manifold X and any
NLSM field configuration ~n00 on X . To see that this is
indeed the case, we note that

Z
X
~n00�ωDþ1 ¼ deg½ ~n00�

Z
SDþ1

ωDþ1; ð4:30Þ

where deg½ ~n00�∈Z is the degree of the map ~n00∶X → SDþ1.
It is an integer which counts how many times the spaceX is
“wrapped” around the sphere SDþ1 by the map ~n00 (see, for
example, Chap. VI of Ref. [52]). Combining this with the
fact that

R
SDþ1 ωDþ1 ¼ ADþ1, we find that

I½ ~n00� ¼ 2π deg½ ~n00�; ð4:31Þ

which proves that the exponential e−ikSWZ½n� of the WZ term
is well defined for integer k.
Besides the standard construction of the WZ term using

the higher-dimensional manifold B, it is also possible
to define SWZ½n� as a functional integral in a theory of
fermions defined on the manifold M. This construction
relies on a result of Abanov and Wiegmann, who con-
structed theories of fermions coupled to an NLSM field n
which produce a WZ term for n after integrating out the
fermions [11]. The coupling of the fermions to the NLSM
field involves a mass parameter M, and the partition
function Z½n� for the theory of fermions coupled to n
can be computed in a gradient expansion in powers of 1

M.
From this partition function, one can define an effective
action for the NLSM field via Seff ½n� ¼ − lnðZ½n�Þ. In
Ref. [11], the authors calculated the variation of Seff ½n�with
respect to naðxÞ, and they showed that the imaginary part of
this variation has exactly the form of Eq. (3.7). Therefore,
the results of Ref. [11] imply that one can define the WZ
term using the partition function Z½n� as

SWZ½n� ¼ −Im½lnðZ½n�Þ�; ð4:32Þ
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where Im½� � �� denotes the imaginary part. We also note
that this definition naturally produces a WZ term with an
integer level k ¼ sgn½M�NF, where NF (a positive integer)
is the number of flavors of fermions that couple to n. In
particular, it does not seem possible to generate a WZ term
with fractional level in this way.
So far, we have presented two different ways of con-

structing the WZ term for the NLSM field n on a curved
spaceM. One interesting aspect of considering the NLSM
on general spacesM is that there are certain choices ofM
where neither of these constructions works. This can be
seen as follows. First, the standard construction of the WZ
term requires that there exists a B such that ∂B ¼ M.
However, there are some manifolds M which cannot be
realized as the boundary of any higher-dimensional mani-
fold. The precise conditions for M to be a boundary are
given by the following theorem (see, for example, Chap. 4
of Ref. [53]).
Theorem (Thom).-–If all of the Stiefel-Whitney numbers

of M are zero, then M can be realized as the boundary of
some smooth compact manifold B.
In dimensions D ¼ 1, 2, and 3, every orientable M is a

boundary. The situation becomes more interesting for
D ≥ 4. In the case that D≡ 0 mod 4, it is easy to construct
simple examples of orientable manifolds M which are not
a boundary by taking products of CP2r for positive integer
r, for example, CP2 in D ¼ 4 and CP2 × CP2 and CP4 in
D ¼ 8. Orientable manifolds which are not a boundary also
exist in dimensionsD ≥ 4whereD is not equivalent to zero
modulo four, for example, in D ¼ 5, 9, 10, and 11 [53].
Thus, we find that for many values of D > 3 there are
choices of M where the standard construction of the WZ
term fails.
The second construction of the WZ term, defined using

a path integral for fermions on M, can fail if the manifold
M does not admit a spin structure. If M does not admit a
spin structure, then it is not possible to formulate a
consistent theory of fermions onM. The technical require-
ment for the existence of a spin structure on M is that
w2 ∈ H2ðM;Z2Þ, the second Stiefel-Whitney class of M,
must vanish [54]. Note that we assume that M is
orientable, and so we also require that the first Stiefel-
Whitney class of M, w1 ∈ H1ðM;Z2Þ, is trivial. In fact, a
spin structure cannot be defined on an unorientable mani-
fold, so this condition is crucial for the second construction
of the WZ term using a path integral over fermions.
In some cases, the first construction can fail, but the

second construction works. One example of such a case can
be found in D ¼ 4 when M is taken to be the Kummer
surface. This four-dimensional manifold is not a boundary
but does admit a spin structure (see, for example, Chap. XI
of Ref. [55]). A particularly interesting example, also in
D ¼ 4, is the choice M ¼ CP2. In this case, both con-
structions fail. Therefore, we find that in general a third
construction of the WZ term is needed. This third

construction should not require M to be a boundary,
and it should also not require M to admit a spin structure.
We refer to such a construction as an “intrinsic construc-
tion” since it does not require an extension B ofM. It turns
out that such a construction does exist. In particular, in
Ref. [51], Alvarez explained how to carry out this con-
struction in detail using the language of Čech cohomology.
In Appendix D, we give an example of this type of
construction in the simple case that D ¼ 1.
To summarize, we find that the ground state wave

functional of the OðDþ 2Þ NLSM at θ ¼ 2πk, k ∈ Z,
in the disordered (f → ∞) phase is

Ψθ¼2πk½n� ¼ e−ikSWZ½n�; ð4:33Þ

where SWZ½n� is a suitably defined WZ term for the NLSM
field n. As we discussed above, the specific construction
of the WZ term will depend on the particular spatial
manifold M, but the WZ term always exists. The ground
state wave functional has several important properties.
First, it is independent of the metric of space, which shows
that the disordered phase of the NLSM at θ ¼ 2πk is a
topological phase. Second, it possesses the full SOðDþ 2Þ
symmetry of the action for the NLSM with a theta term.
These two properties taken together imply that Ψθ¼2πk½n�
can be the ground state wave functional of an SPT phase.
As in Sec. III, we can also understand the ground state
wave functional as arising from a unitary transformation
by the operator ÛðkÞ from Eq. (3.11), which transforms the
Hamiltonian at θ ¼ 2πk into the Hamiltonian at θ ¼ 0 as in
Eq. (3.13). The ground state of the theory at θ ¼ 2πk can
then be obtained by applying ÛðkÞ to the ground state at
θ ¼ 0 as in Eq. (3.14).

C. Uniqueness of the ground state and the energy
gap at large f and θ = 2πk, k ∈ Z

In this section, we study the spectrum of the NLSM on
the curved space M by using a triangulation of the
manifold to implement a latticelike regularization of the
NLSM Hamiltonian on M. Using this regularization, we
demonstrate the uniqueness of the ground state and the
existence of an energy gap in the OðDþ 2Þ NLSM in
the disordered (f → ∞) phase at θ ¼ 0 on M. Since the
NLSM Hamiltonian at θ ¼ 2πk, k ∈ Z, is related to the
Hamiltonian at θ ¼ 0 by a unitary transformation, it will
follow from the results of this section that the ground state
of the NLSM in the disordered phase at θ ¼ 2πk, k ∈ Z, on
M is also unique for all k. Thus, this subsection completes
our proof of the absence of topological order in theOðDþ 2Þ
NLSM in the disordered phase at θ ¼ 2πk, k ∈ Z.
We start by recalling a few basic facts about triangu-

lations of smooth manifolds, following the discussion in
Secs. 3.2 and 5.3.2 of Ref. [56]. Intuitively, a triangulation
of a manifold is an approximation of the manifold by
generalized triangles called simplices. A 0-simplex is a
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point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so on.8 A
simplicial complex K is a set of simplices in Rn such that
(i) all faces of simplices from K belong to K, (ii) the
intersection of any two simplices from K is a face for each
of them, and (iii) any point that belongs to one of the
simplices from K has a neighborhood which intersects only
finitely many simplices from K. For any such simplicial
complex K, the space jKj is the topological space which is
the union of all simplices of K with the topology induced
by Rn. Finally, a triangulation of a manifold M is a
homeomorphism ρ∶M → jKj, where K is a simplicial
complex in Rn for some n (with n greater than or equal to
the dimension of M). Any smooth closed manifold M
admits a triangulation.
Now, let us pick particular triangulation ðρ; jKjÞ of M.

Let α ¼ 1;…; ND label the distinctD-simplices in jKj, and
define Sα ⊂ M to be the inverse image of the D-simplex α
under the map ρ (ρ is a homeomorphism, so it is invertible).
We will also refer to Sα as a D-simplex. For our purposes,
the key property of the triangulation is that it allows for a
decomposition of M as M ¼ PND

α¼1 Sα, where the sum is
the composition of oriented D-chains. To set up a “lattice”
onM, we can then pick an arbitrary point pα in each Sα to
be the points of the lattice. In the lattice regularization on
flat space, each lattice point was associated with a hyper-
cubic unit cell of volume aD, where a was the lattice
spacing. In our regularization on curved space, each point
pα is associated with a D-simplex Sα, and each such
D-simplex has a volume given by

Volα ¼
Z
Sα

VolM; ð4:34Þ

where VolM is the volume form on M determined by its
Riemannian metric. In a system of local coordinates ðU;ϕÞ,
U ⊂ M, ϕ∶U → RD, one has VolM ¼ dDx

ffiffiffiffiffiffiffiffiffiffiffi
GðxÞp

, if
x ∈ RD denotes the image of a point p ∈ U under ϕ.
Using this regularization, integration of a function fðpÞ

over M, weighted by the volume form VolM, can be
discretized as

Z
p∈M

VolMfðpÞ →
XND

α¼1

VolαfðpαÞ: ð4:35Þ

In addition, we can define a Dirac delta function δðp; p0Þ
on M by

Z
p∈M

VolMfðpÞδðp; p0Þ ¼ fðp0Þ: ð4:36Þ

Again, in a system of local coordinates ðU;ϕÞ, one has
δðp; p0Þ ¼ 1ffiffiffiffiffiffiffi

GðxÞ
p δðDÞðx − x0Þ, where x;x0 ∈ RD are the

images of p, p0 under the map ϕ. Then, δðp; p0Þ is
discretized as

δðp; p0Þ → 1

Volα
δαβ ð4:37Þ

if p ¼ pα and p0 ¼ pβ, and δαβ is the ordinary
Kronecker delta.
Throughout this subsection, we considered the NLSM in

a particular coordinate patch of M with local coordinates
x. However, using the Dirac delta function δðp; p0Þ on M,
we can also write the commutation relations for the NLSM
on M as

½n̂aðpÞ; n̂bðp0Þ� ¼ 0 ð4:38aÞ

½n̂aðpÞ; π̂bðp0Þ� ¼ iðδab − n̂aðpÞn̂bðp0ÞÞδðp; p0Þ ð4:38bÞ

½π̂aðpÞ; π̂bðp0Þ� ¼ iðπ̂aðpÞn̂bðp0Þ − π̂bðp0Þn̂aðpÞÞδðp; p0Þ:
ð4:38cÞ

For the lattice regularization of the NLSM using
the triangulation discussed above, we define lattice
variables by

n̂aðpαÞ ¼ n̂aα ð4:39aÞ

π̂aðpαÞ ¼
1

Volα
π̂a;α ð4:39bÞ

for all points pα in the lattice constructed from the
triangulation. The lattice variables obey the commutation
relations

½n̂aα; n̂bβ� ¼ 0 ð4:40aÞ

½n̂aα; π̂b;β� ¼ iðδab − n̂aαn̂b;βÞδαβ ð4:40bÞ

½π̂a;α; π̂b;β� ¼ iðπ̂a;αn̂b;β − π̂b;βn̂a;αÞδαβ; ð4:40cÞ

and the regularized Hamiltonian takes the form

Ĥðρ; jKjÞ ¼ f
2

XND

α¼1

1

Volα
π̂a;απ̂

a
α: ð4:41Þ

Here, we have written Ĥðρ; jKjÞ to indicate the dependence
of the regularized Hamiltonian on the choice of a triangu-
lation ðρ; jKjÞ of M.
Just as in the case on flat space in Sec. III, the

regularized Hamiltonian breaks up into a sum of decoupled
Hamiltonians for an OðDþ 2Þ NLSM in one spacetime

8The standard n-simplex is the region Δn ⊂ Rnþ1 defined by
Δn ¼ fPnþ1

i¼1 yi ¼ 1; yi ≥ 0∀ ig.
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dimension. Therefore, we can again apply the results
of Appendix A to deduce that the ground state of the
OðDþ 2Þ NLSM in the disordered (f → ∞) phase on M
is unique and corresponds to the state where π̂a;απ̂

a
α ¼

0∀ α. Unlike the case of flat space, however, there is now a
different energy cost to creating an excitation on the
different sites pα in the lattice. This is due the presence
of the factor ðVolαÞ−1 in the summand in Eq. (4.41)
[compare to Eq. (3.18) on flat space, which just contains
an overall factor of a−D]. It follows that the energy gap for
the regularized OðDþ 2Þ NLSM on M is given by

mðρ; jKjÞ ¼ f
2

ðDþ 1Þ
V̄olðρ; jKjÞ ; ð4:42Þ

where we defined V̄olðρ; jKjÞ to be the volume of the
largest D-chain Sα in the triangulation ðρ; jKjÞ of M,

V̄olðρ; jKjÞ ¼ maxfVolαjα ∈ f1;…; NDgg: ð4:43Þ

Thus, we have proven the uniqueness of the ground
state and the existence of an energy gap in the OðDþ 2Þ
NLSM in the disordered phase at θ ¼ 0. From the previous
subsection, we know that the Hamiltonian for theOðDþ2Þ
NLSM at θ ¼ 2πk, k ∈ Z, is related to the Hamiltonian
at θ ¼ 0 by a unitary transformation, so the result in this
section then implies uniqueness of the ground state and the
existence of an energy gap in the OðDþ 2Þ NLSM in the
disordered phase at θ ¼ 2πk, k ∈ Z, for all k. This result
completes the demonstration that the OðDþ 2Þ NLSM in
the disordered phase at θ ¼ 2πk is a suitable model for
SPT phases of bosons.

V. CONCLUSION

In this paper, we performed an explicit study of the
OðDþ 2Þ NLSM with a theta term, in its disordered phase
and with theta angle θ ¼ 2πk, k ∈ Z, on arbitrary smooth,
closed, connected, oriented D-dimensional spatial mani-
folds M. We showed that in this parameter regime the
ground state of the NLSM on M is unique, and there is a
finite energy gap to the lowest lying excited states. In
addition, we showed that the ground state wave functional
of the NLSM onM is independent of the metric onM and
takes the form of an exponential of a WZ term for the
NLSM field n, just like in the case on flat space [26]. These
results taken together imply that the OðDþ 2Þ NLSM, in
the disordered phase with θ ¼ 2πk, k ∈ Z, is a suitable
model for an SPT phase of bosons. In particular, our results
show that this model does not possess topological order.
Thus, our work places the NLSM approach to SPT phases
of Ref. [14] on solid ground.
We close the paper with some additional comments and

suggestions for future work. First, we mention one puzzle
associated with the NLSM description of SPT phases. In
several recent works [57–60], it was shown that important

information about the classification of SPT phases with
time-reversal symmetry ZT

2 can be extracted from the
partition functions of these phases on unorientable
Euclidean spacetime manifolds. For example, in two space-
time dimensions, there is a single nontrivial bosonic SPT
phase protected only by ZT

2 , and in Ref. [57], it was shown
that this SPT phase can be detected by its partition function
ZRP2 ¼ −1 on the spacetime RP2. An NLSM description of
this SPT phase is available (see Sec. IV. B of Ref. [14]), but it
seems problematic to calculate the partition function of the
NLSM on RP2. Mathematically, the issue is that the theta
term for the OðDþ 2Þ NLSM involves the pullback to
spacetime of the volume form on SDþ1, and this pullback
does not seem to make sense when the spacetime is not
orientable. Therefore, it would be interesting to see if there is
some way to make sense of the NLSM description of SPT
phases on unorientable spacetime manifolds.
A second possible direction for future work would be

to extend the analysis of this paper to the case of the
OðDþ 2Þ NLSM in the disordered limit when the theta
angle θ is an oddmultiple of π. In Ref. [13], the authors used
a qualitative argument to map out the phase diagram of the
Oð4Þ NLSM in D ¼ 2 spatial dimensions with a theta term
and coefficient θ ¼ π. They proposed two possible phases
for this theory when the coupling constant f is large: (i) a
gapless phase realized at some finite but large value of f
and (ii) a gapped phase which is realized in the extreme
disordered limit of f → ∞. In addition, the authors of
Ref. [13] argued that the ground state in the gapped phase
should be doubly degenerate (see also Ref. [12] on this
point). It would be interesting to investigate the f → ∞
phase directly within the canonical formalism, with the goal
of proving that in this limit the spectrum is indeed gapped
and that the ground state is doubly degenerate. It would also
be interesting to investigate the dependence of the ground
state degeneracy on the topology of the spatial manifold.
This problem is quite interesting for the following reason.
Typically, the boundary theory of an SPT phase is expected
to preserve the symmetry of the SPT phase and be gapless, or
to spontaneously break the symmetry in some way (which
may lead to a gapped boundary theory). However, at the
(2þ 1)-dimensional boundary of a (3þ 1)-dimensional SPT
phase (and presumably also in higher dimensions), there is a
third possibility: the boundary theory can be gapped and
symmetric, but it must also possess intrinsic topological
order [61,62]. It is likely that the Oð4Þ NLSM, in the
disordered phase and at θ ¼ π, can describe such a gapped,
symmetry-preserving, and topologically ordered surface
state of the bosonic topological insulator phase in 3þ 1
dimensions [61]. Therefore, it would be interesting to give a
proof that the Oð4Þ NLSM in this parameter regime really
does possess intrinsic topological order. As we discussed
in Sec. III, the unitary transformation which removes the
theta angle from the Hamiltonian can only be performed
when θ is a multiple of 2π, which means that completely
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new methods will be needed to solve the problem of the
NLSM in the disordered phase at θ ¼ π.
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APPENDIX A: CANONICAL QUANTIZATION OF
THE OðNÞ NLSM IN 0+ 1 DIMENSIONS

In this Appendix, we review the solution of the OðNÞ
NLSM in one spacetime dimension using the commutation
relations of Eqs. (2.29) and the Schrödinger representation
in Eq. (2.30). We use this solution in Secs. III and IV to
compute the energy gap in regularized versions of the
OðDþ 2Þ NLSM in the disordered (f → ∞) limit and with
θ ¼ 2πk, k ∈ Z, on flat and curved space, respectively. The
OðNÞ NLSM in one spacetime dimension is equivalent to
the quantum mechanics problem of a free particle in N
spatial dimensions but confined to the surface of the unit
sphere SN−1. This is a famous problem in the quantization
of constrained systems and has been studied by many
authors [41–49]. One finds that the quantum mechanical
Hamiltonian is proportional to the Laplace-Beltrami oper-

ator ΔðN−1Þ
LB on the sphere SN−1, so that the energy spectrum

is given in terms of the eigenvalues of ΔðN−1Þ
LB . However,

there is some controversy in the literature about whether
an additional constant term, depending only on N, should
appear in the quantum Hamiltonian for this problem. This
constant term is irrelevant for the application to our
discussion in the context of Secs. III and IV, in which
we are interested only in the difference between the energy
of the ground state and first excited state. Therefore, in this
Appendix, we give a straightforward analysis of the OðNÞ
NLSM in one spacetime dimension, without worrying
about subtleties (e.g., Weyl ordering of operators to define
the quantum Hamiltonian [41,44,46]) which could lead
to an extra constant shift in the energy spectrum. Readers
interested in the subtleties associated with this constant
term should consult the references cited in this paragraph.

1. Hamiltonian, commutation relations,
and the energy spectrum

Weconsider theOðNÞNLSMin one spacetime dimension.
For generalN, this system does not admit a theta term (a theta
term is possible at N ¼ 2 ¼ Dþ 2 since D ¼ 0 here).
However, in this Appendix, we are only interested in
discussing the quantization of the theory without a theta
term, and sowe consider the case of a generalN with no theta
term. Let n ¼ ðn1;…; nNÞ be the NLSM field. Again, the

NLSM field is subject to the constraint n · n ¼ nana ¼ 1.
The Lagrangian in one spacetime dimension is

L ¼ 1

2f
ð∂tnaÞð∂tnaÞ: ðA1Þ

The canonical momentum conjugate to na is πa ¼ ∂L
∂ð∂tnaÞ ¼

1
f ð∂tnaÞ, and the Hamiltonian takes the form

H ¼ f
2
πaπa: ðA2Þ

In one spacetime dimension, the analysis of constrained
Hamiltonian systems from Sec. II leads to the commutation
relations

½n̂a; n̂b� ¼ 0 ðA3aÞ

½n̂a; π̂b� ¼ i

�
δab −

n̂an̂b
r̂2

�
ðA3bÞ

½π̂a; π̂b� ¼
i
r̂2
ðπ̂an̂b − π̂bn̂aÞ; ðA3cÞ

where r̂2 ¼ n̂an̂a. The operator r̂2 commutes with all other
operators by construction, and so it can be set equal to 1 at
this point, exactly as in Sec. II. However, we find it more
convenient for the exposition in this Appendix to leave
this operator in place and only set it to 1 at the end of the
analysis.
The Schrödinger representation used in this paper for the

NLSM commutation relations can be adapted to the case
where the operator r̂2 is kept in the commutation relations.
In this case, the operator n̂a again acts as multiplication
by the coordinate na, but the momentum operator π̂a now
takes the form

π̂a ¼ −i
�
δa

b −
nanb

r2

� ∂
∂nb : ðA4Þ

In this representation, the quantity π̂aπ̂a appearing in the
Hamiltonian takes the explicit form

π̂aπ̂a ¼ −
��

δab −
nanb

r2

� ∂2

∂na∂nb −
ðN − 1Þ

r2
na

∂
∂na

�
;

ðA5Þ

so that the Hamiltonian operator is

Ĥ ¼ −
f
2

��
δab −

nanb

r2

� ∂2

∂na∂nb −
ðN − 1Þ

r2
na

∂
∂na

�
:

ðA6Þ

CANONICAL QUANTIZATION OF NONLINEAR SIGMA … PHYSICAL REVIEW D 96, 045010 (2017)

045010-17



To diagonalize the Hamiltonian, we now prove the follow-
ing statement.
Claim.—In the Schrödinger representation, the squared

sum of canonical momenta is related to ΔðN−1Þ
LB , the

Laplace-Beltrami operator on the unit sphere SN−1, by
the equation

π̂aπ̂a ¼ −
1

r2
ΔðN−1Þ

LB : ðA7Þ

Proof.—Before imposing the NLSM constraint, the
components na of the NLSM field are coordinates on
RN . The ordinary Laplacian on RN is given in terms of

the Laplace-Beltrami operator ΔðN−1Þ
LB on SN−1 by (see,

e.g., Sec. II.4 of Ref. [63])

∂2

∂na∂na ¼
∂2

∂r2 þ
ðN − 1Þ

r
∂
∂rþ

1

r2
ΔðN−1Þ

LB : ðA8Þ

Now, using ∂
∂r ¼ na

r
∂
∂na and the relation

∂2

∂r2 ¼
nanb

r2
∂2

∂na∂nb ; ðA9Þ

we find that

−π̂aπ̂a ¼
� ∂2

∂na∂na −
� ∂2

∂r2 þ
ðN − 1Þ

r
∂
∂r

��

¼ 1

r2
ΔðN−1Þ

LB : ðA10Þ

This completes the proof. ▪
As we discussed earlier in this section, since the operator

r̂2 commutes with all other operators, the NLSM constraint
r̂2 ¼ 1 can be enforced at any time in the correctly
quantized theory. At this point, we can then set r2 ¼ 1
to obtain the final form for the Hamiltonian of the OðNÞ
NLSM,

Ĥ ¼ −
f
2
ΔðN−1Þ

LB : ðA11Þ

We note here that in more careful approaches to the
quantization of this model, the Hamiltonian operator

takes the form Ĥ ¼ f
2
ð−ΔðN−1Þ

LB þ ĒðNÞÞ, where ĒðNÞ is
a constant shift of the energy depending only on N
[although in the literature there is still some disagreement
about the correct value of ĒðNÞ]. In the straightforward
approach used in this Appendix, this shift is not present.

The spectrum ofΔðN−1Þ
LB , as well as its eigenfunctions and

their multiplicities, can be found in standard references on
Riemannian geometry, for example, Ref. [63]. Using these
standard results, we find that the eigenvalues of Ĥ are
labeled by a positive integer l and given explicitly by

El ¼ f
2
lðlþ N − 2Þ; l ∈ N; ðA12Þ

in agreement with previous results on the spectrum of
this model. The ground state of this theory has energy zero
[or f

2
ĒðNÞ for a nonzero shift in the energies], and the

difference between the energy of the ground state and first
excited state is given by

m≡ E1 − E0 ¼
f
2
ðN − 1Þ: ðA13Þ

To get a complete understanding of theOðNÞNLSM in one
spacetime dimension, we now give a full analysis of the
symmetries of this system.

2. Symmetry analysis

Consider the Lie algebra soðNÞ of the Lie group SOðNÞ.
In the fundamental (i.e., N × N) representation, one pos-
sible basis of the Lie algebra consists of the antisymmetric
N × N matrices Eij which contain a 1 in the ði; jÞ entry, a
−1 in the ðj; iÞ entry, and zero in all other entries. Since
Eij ¼ −Eji, and since i and j must be distinct for this to
make sense, we arrive at the correct number NðN − 1Þ=2 of
generators of soðNÞ. It is also convenient to define the
matrices Eii for any i to be equal to the matrix with all
entries equal to zero. The matrix elements of Eij are

ðEijÞab ¼ δiaδjb − δjaδib: ðA14Þ

This definition also works when i ¼ j and yields the zero
matrix in that case.
The Lagrangian of Eq. (A1) has an SOðNÞ global

symmetry which is reflected in the fact that it is invariant
under the transformation na → Ra

bnb for any OðNÞ matrix
R. The infinitesimal form of this transformation is
na → na þ δna with δna ¼ ϵðEijÞabnb, for a small constant
ϵ. By making ϵ time dependent, we derive the conserved
currents of this model,

Jab ¼
1

f
ð∂tnanb − ∂tnbnaÞ: ðA15Þ

Since we are in 0þ 1 dimensions, the conserved charge
operators are obtained from this current simply by replac-
ing ∂tna with π̂a, so the conserved charge operators are
(note that we have chosen a particular operator ordering
here)

Q̂ab ¼ π̂an̂b − π̂bn̂a: ðA16Þ

The commutator of two momenta from Eq. (A3) can be
rewritten (at this point, we set r̂2 ¼ 1 in the commutators)
in terms of these charge operators as
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½π̂a; π̂b� ¼ iQ̂ab: ðA17Þ

In the Schrödinger representation (with r2 ¼ 1), the
charges Q̂ab take the simple form

Q̂ab ¼ i

�
na

∂
∂nb − nb

∂
∂na

�
: ðA18Þ

When acting on functions of na, these derivative operators
obey the Lie algebra of soðNÞ,

½Q̂ab;Q̂cd�¼δacQ̂bd−δadQ̂bcþδbdQ̂ac−δbcQ̂ad: ðA19Þ

We now show that the Hamiltonian Eq. (A2) of this
system is proportional to the quadratic Casimir of soðNÞ.
It then follows that the problem of diagonalizing the
Hamiltonian of the OðNÞ NLSM reduces to a study of
the representation theory of soðNÞ, which is already well
known. The quadratic Casimir of soðNÞ is given by the sum
of the squares of all the generators Q̂ab. We know that half
of these are redundant since Q̂ab ¼ −Q̂ba, but we can
exploit this fact and the fact that Q̂aa ¼ 0 to write the
Casimir as simply

Ĉ ¼ 1

2
Q̂abQ̂

ab; ðA20Þ

where we have summed over all values of a and b with no
restrictions. By explicit computation, one can show that
Ĉ ¼ π̂aπ̂a [when we set r2 ¼ 1 in Eq. (A5)], and so the
Hamiltonian can be rewritten as

Ĥ ¼ f
2
Ĉ: ðA21Þ

In this form, one can clearly see the relationship between
the Hamiltonian and the SOðNÞ symmetry of this model.

APPENDIX B: REGULARIZATION OF THE
NLSM HAMILTONIAN

In Sec. III, we studied the energy gap of the NLSM in
the disordered (f → ∞) limit and at θ ¼ 0 using a lattice
regularization. We briefly indicated there that some kind of
regularization scheme was necessary to study the excited
states of the NLSM, and then we immediately implemented
the lattice regularization. In this Appendix, we explain in
detail why it is necessary to regularize the NLSM
Hamiltonian to study the excited states, and we also discuss
an alternative regularization for the theory on flat space
which does not use a lattice. We show that this alternative
regularization gives results for the energy gap of the theory
which are consistent with the result coming from the lattice
regularization. Based on this evidence, we expect that any
sensible regularization scheme will give a result for the
energy gap of the NLSM which agrees with our result

computed using the lattice regularization. In this Appendix,
we focus on the NLSM Hamiltonian at θ ¼ 0. As we
explained in Sec. III, the NLSM Hamiltonian at θ ¼ 2πk,
k ∈ Z, is related to the NLSM Hamiltonian at θ ¼ 0 by a
unitary transformation. Therefore, any result on the spec-
trum of this theory at θ ¼ 0 will also hold for the theory at
θ ¼ 2πk for integer k.
We start by explaining why the NLSMHamiltonian must

be regularized before excited states can be constructed.
Recall that in the limit of large coupling f the Hamiltonian
for theOðNÞ NLSM inD spatial dimensions takes the form

Ĥ ¼ f
2

Z
dDxπ̂aðxÞπ̂aðxÞ; ðB1Þ

where π̂aðxÞ takes the form shown in Eq. (2.30) in the
Schrödinger representation used in this paper. The ground
state of this Hamiltonian has zero energy and is charac-
terized by the property that it is annihilated by π̂aðxÞ for
each a. Therefore, to construct the ground state, we only
have to consider the action of a single operator π̂aðxÞ on
functionals of the NLSM field. On the other hand, to
construct excited states, we need to act with the product
π̂aðxÞπ̂aðxÞ. This operator is not well defined in the NLSM
field theory, as we now show.
To see the problem with the operator π̂aðxÞπ̂aðxÞ, we

look at the action of π̂aðxÞπ̂aðyÞ on some functional F of
the NLSM field. A short calculation shows that

π̂aðxÞπ̂aðyÞF ¼ ðN − 1ÞδðDÞðx − yÞnaðxÞ δF
δnaðxÞ

þ naðyÞnbðyÞ δ2F
δnaðxÞδnbðyÞ

− naðxÞnbðxÞnaðyÞncðyÞ
δ2F

δnbðxÞδncðyÞ :

ðB2Þ

We see that the operator π̂aðxÞπ̂aðyÞ will diverge as y
approaches x because of the presence of the delta function
in the first term of this expression. This contact divergence
implies that the product π̂aðxÞπ̂aðxÞ of momentum oper-
ators at the same point x in space is ill defined, and this is
the basic reason why some regularization scheme is needed
to construct excited states in this field theory.
Since the divergence in the operator π̂aðxÞπ̂aðxÞ is due to

the fact that both factors of π̂aðxÞ are evaluated at the same
point, i.e., the problem is associated with short distances,
one way to regulate the operator is to discretize space by
introducing a lattice. This is exactly the approach we took
in Sec. III. However, other regularization schemes are also
possible and should give expressions for the energy gap
which agree with the answers obtained from the lattice
regularization. To show this, we now discuss one alter-
native regularization scheme, in which we still consider the
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theory on a continuous space, but we introduce some
nonlocality to regulate the product π̂aðxÞπ̂aðxÞ. In this
regularization scheme, we first rewrite the Hamiltonian as

Ĥ ¼ f
2

Z
dDxdDyπ̂aðxÞπ̂aðyÞδðDÞðx − yÞ ðB3Þ

and then replace the delta function δðDÞðx − yÞ with any
known regularized expression for a delta function,

δðDÞðx − yÞ → ηðDÞ
ϵ ðx − yÞ: ðB4Þ

Here, ηðDÞ
ϵ ðx − yÞ is some function of x − y which has the

property that

lim
ϵ→0

Z
dDxfðxÞηðDÞ

ϵ ðx − yÞ ¼ fðyÞ; ðB5Þ

for any test function fðxÞ. The parameter ϵ has units of
length, and it is this small parameter which serves as a
regulator for the theory in this regularization scheme.
We consider a concrete example of a such a function

ηðDÞ
ϵ ðx − yÞ later in this Appendix. In terms of this function,
the regularized Hamiltonian takes the form

ĤðϵÞ ¼ f
2

Z
dDxdDyπ̂aðxÞπ̂aðyÞηðDÞ

ϵ ðx − yÞ: ðB6Þ

This regularization scheme clearly introduces some non-
locality into the theory, since the regularized Hamiltonian
(with nonzero ϵ) contains terms which involve the fields π̂a
at two different points in space.
Within this alternative regularization scheme, we can

also compute the energy gap between the ground state of
the system and the first excited state. The vacuum state of
the NLSM in the large f limit (and at θ ¼ 0) is the constant
wave functional Ψ½n� ¼ 1, which transforms in the trivial
representation of SOðNÞ. Experience with the lattice
regularization of this theory, and intuition about the role
of the SOðNÞ symmetry in this problem, suggests that the
lowest-energy states should transform in the vector repre-
sentation of SOðNÞ. The simplest such states are given by
functionals of the form

Fa½n� ¼
Z

dDxnaðxÞFðxÞ; ðB7Þ

where FðxÞ is some arbitrary function of space. For
example, we can construct a localized excitation by
choosing FðxÞ to be localized in some region of space.
Applying the regularized Hamiltonian to this state gives

ĤðϵÞFa½n� ¼ mðϵÞFa½n�; ðB8Þ

where the energy mðϵÞ in this regularization is given by

mðϵÞ ¼ f
2
ðN − 1ÞηðDÞ

ϵ ð0Þ: ðB9Þ

At this point, it is instructive to make a particular choice
of regularization of the delta function. We choose the
Poisson kernel,

ηðDÞ
ϵ ðx − yÞ ¼

YD
j¼1

1

π

ϵ

ϵ2 þ ðxj − yjÞ2 ; ðB10Þ

but other choices are also possible (e.g., a heat kernel, etc.).
If we also set N ¼ Dþ 2, which is the case of interest
in this paper for constructing NLSMs with a theta term in
Dþ 1 spacetime dimensions, then we find that the mass
gap in this regularization is

mðϵÞ ¼ f
2

Dþ 1

ðπϵÞD : ðB11Þ

This answer is clearly consistent with the expression
Eq. (3.21) obtained from the lattice regularization, and
the two expressions coincide if we choose the lattice
spacing a to be related to the parameter ϵ via a ¼ πϵ.
Therefore, we expect that any sensible regularization of the
NLSM Hamiltonian will give results consistent with those
that we derived in Sec. III using the lattice regularization.

APPENDIX C: SYMPLECTIC GEOMETRY
APPROACH TO HAMILTONIAN FORMALISM

FOR FIELD THEORIES

In this Appendix, we review the symplectic geometry
approach to the Hamiltonian dynamics of a classical field
theory. This is essentially a “functional” version of what
one does in the symplectic geometry approach to a classical
dynamical system with finitely many degrees of freedom
(a review of the latter for physicists is given in Chap. 11 of
Ref. [64]). We apply this formalism in Sec. IV to determine
the correct form of the Poisson bracket in the theory of a
free scalar field on a D-dimensional curved space M
with some Riemannian metric Gij, and then we use this
information to quantize the OðDþ 2Þ NLSM with a theta
term on the curved space M. One of the main advantages
of the symplectic geometry approach is that it provides a
formalism on which one can rely to understand the classical
dynamics, and in particular the correct form of the Poisson
bracket, in systems which cannot be analyzed by conven-
tional methods more familiar to physicists. The correct
form of the Poisson brackets is essential for quantization,
and so this method is useful for the proper quantization of
an unfamiliar system. This material is standard in the field
theory literature. Therefore, in this section, we simply give
a summary of this material in the infinite-dimensional
setting in exact analogy to the development on a finite-
dimensional phase space as found, for example, in
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Ref. [64]. In addition, we note here that a very similar
infinite-dimensional symplectic geometry approach is used
in establishing the equivariant localization formulas for
phase space path integrals in quantum mechanics (see, for
example, Sec. 4.3 of Ref. [65]).
To start, consider a field theory on the D-dimensional

spaceM, and let fΦaðxÞgx∈M (for some range of the index
a) denote the coordinates on the infinite-dimensional phase
space for the system under consideration. In the example of
a free scalar field ϕðxÞ, we could choose Φ1ðxÞ ¼ ϕðxÞ,
Φ2ðxÞ ¼ πðxÞ, where πðxÞ is the momentum conjugate to
ϕðxÞ, but in general (as in the finite-dimensional case),
it is not necessary to have a definite decomposition into
“coordinates” and “momenta.” In fact, in many cases, it is
impossible to find a definition of coordinates and momenta
which is valid on the entire phase space. We use the
notation Φ⃗ðxÞ ¼ ðΦ1ðxÞ;Φ2ðxÞ;…Þ to denote the collec-
tion of all field variables ΦaðxÞ at the single point x. The
functional derivatives δ

δΦaðxÞ with respect to the phase space

coordinates form a basis of the tangent space at a point in
this phase space. We also introduce the coordinate differ-
entials δΦaðxÞ, which form a basis for the cotangent space
at a point in phase space. We have the natural pairing
between the basis elements of the tangent and cotangent
spaces,

δΦaðxÞ
�

δ

δΦbðyÞ
�

¼ δabδ
ðDÞðx − yÞ: ðC1Þ

On phase space, we also introduce an exterior derivative δ
which acts on any functional F of the phase space
coordinates as

δF ¼
Z

dDx
δF

δΦaðxÞ δΦ
aðxÞ: ðC2Þ

The wedge product of differentials δΦaðxÞ is defined in the
usual way by

δΦaðxÞ∧ δΦbðyÞ¼ δΦaðxÞ⊗δΦbðyÞ−δΦbðyÞ⊗ δΦaðxÞ:
ðC3Þ

A general p-form α on phase space has the form

α ¼ 1

p!

Z �Yp
j¼1

dDxj

�
αa1���ap ½Φ⃗ðx1Þ;…; Φ⃗ðxpÞ;

x1;…;xp�δΦa1ðx1Þ ∧ � � � ∧ δΦapðxpÞ; ðC4Þ

where αa1���ap ½Φ⃗ðx1Þ;…; Φ⃗ðxpÞ;x1;…;xp� are the compo-
nents of α. The notation is meant to indicate that the
components of α can depend on the fields ΦaðxjÞ at the
coordinates xj, and they can also depend explicitly on
the coordinates xj. The action of the exterior derivative δ

on p-forms is defined by the usual axioms: (i) δ2F ¼ 0
for any functional F on phase space and (ii) δðα ∧ βÞ ¼
δα ∧ β þ ð−1Þpα ∧ δβ for any p-form α and any q-form β
(i.e., δ is an antiderivation). A general vector field V on the
phase space has the form

V ¼
Z

dDxVa½Φ⃗ðxÞ;x� δ

δΦaðxÞ ; ðC5Þ

where Va½Φ⃗ðxÞ;x� are the components of V. The interior
multiplication of a form α by a vector V, denoted iVα, is
given by

iVα ¼ 1

ðp − 1Þ!
Z �Yp

j¼1

dDxj

�
Vaαaa2���apδΦ

a2ðx2Þ

∧ � � � ∧ δΦapðxpÞ; ðC6Þ

where we suppressed the arguments of αaa2���ap and Va for
brevity.
After these preliminaries, we are now ready to develop

the canonical formalism on this infinite-dimensional phase
space in exact analogy to the development on a finite-
dimensional phase space (see, for example, Chap. 11 of
Ref. [64]). First, we introduce a symplectic form Ω on
phase space, the components of which are defined by

Ω¼1

2

Z
dDx1dDx2Ωab½Φ⃗ðxÞ;Φ⃗ðyÞ;x;y�δΦaðxÞ∧ δΦbðyÞ:

ðC7Þ

As usual, we require that Ω is closed, δΩ ¼ 0. Note also
that in this infinite-dimensional case the components
Ωab½Φ⃗ðxÞ; Φ⃗ðyÞ;x; y� of Ω only need to be antisymmetric
under the simultaneous exchange a ↔ b and x ↔ y. Next,
for any functional F on phase space, we define a vector
field VF by the relation

δF ¼ −iVF
Ω: ðC8Þ

The reason for defining these vector fields in this way is
that they allow for a coordinate-independent definition of
the Poisson bracket of two functionals F1 and F2 on the
phase space. The Poisson bracket for F1 and F2 is given in
terms of the corresponding vector fields VF1

and VF2
by9

fF1; F2g ¼ iVF1
iVF2

Ω: ðC9Þ

Finally, Hamilton’s equations are equivalent to the single
equation

9We use an opposite sign in this equation as compared with
Ref. [64].
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δH ¼ −iVH
Ω; ðC10Þ

where VH is the vector field of which the components are
the time derivatives of phase space coordinates,

VH ¼
Z

dDx _ΦaðxÞ δ

δΦaðxÞ ; ðC11Þ

and where the dot represents a time derivative, _ð Þ ≔ d
dt ð Þ.

APPENDIX D: INTRINSIC CONSTRUCTION OF
THE WESS-ZUMINO TERM FOR D= 1

In this Appendix, we explain in detail a simple example
of the intrinsic construction of the WZ term which we
mentioned in Sec. IV. This intrinsic construction is the
method of choice for constructing the WZ term when other
standard constructions fail, for example, in the case where
the spatial manifold M does not admit a spin structure
and also cannot be realized as the boundary of any higher-
dimensional manifold B. The details of the intrinsic
construction are, however, more complicated than the more
standard constructions. For this reason, we only present the
simplest example of the construction, which is the case
where M has dimension D ¼ 1, but this intrinsic con-
struction is available in all dimensions. The ideas behind
this construction date back to work of Wu and Yang in
Ref. [66] and were formalized by Alvarez in Ref. [51] using
the language of Čech cohomology. The basic idea is to
write the WZ term as a sum of integrals over the space M
of forms which are defined only locally in certain coor-
dinate patches on the target manifold T of the NLSM. This
sum of integrals over M is then supplemented with
additional terms which account for the transition functions
which are needed to go between coordinate patches on the
target manifold. We also mention here that the methods
of Ref. [51] were used in Ref. [67] to give an intrinsic
definition of the Abelian Chern-Simons term on a three-
dimensional manifold.
We now present the intrinsic construction of theWZ term

for the case where the spatial manifold M has dimension
D ¼ 1. Our discussion in this Appendix applies only to
the specific case where the target manifold of the NLSM is
the sphere S2. Other two-dimensional target spaces may
require more coordinate patches to be covered properly. As
we discussed in the main sections of this paper, we assume
that M is closed, oriented, and connected. For the case
D ¼ 1, this implies thatM is diffeomorphic to a circle. We
take x1 ∈ ½a; bÞ to be the coordinate on this circle, and the
NLSM field is taken to obey periodic boundary conditions
nðaÞ ¼ nðbÞ. For D ¼ 1, we have an Oð3Þ NLSM, and for
the purpose of constructing the WZ term, it will be
convenient to parametrize the field variables na, a ¼ 1,
2, 3, using spherical coordinates Φ and Θ as

n1 ¼ cosðΦÞ sinðΘÞ ðD1aÞ

n2 ¼ sinðΦÞ cosðΘÞ ðD1bÞ

n3 ¼ cosðΘÞ: ðD1cÞ

In these coordinates, the volume form on S2 (the target
manifold of the NLSM) takes the form

ω2 ¼ sinðΘÞdΘ ∧ dΦ: ðD2Þ

The sphere S2 can be covered by two coordinate patches
UN and US, defined in spherical coordinates as UN ¼
fðΦ;ΘÞjΦ∈ ½0;2πÞ;Θ∈ ½0;π−Θ0Þg and US¼fðΦ;ΘÞjΦ∈
½0;2πÞ;Θ∈ ðΘ0;π�g, for some fixed (perhaps small) angle
Θ0. The patch UN contains the north pole but not the south
pole, and the patch US contains the south pole but not
the north pole. On each patch, the volume form can be
expressed as a total derivative ω2 ¼ dϑN or ω2 ¼ dϑS, with

ϑN ¼ ð1 − cosðΘÞÞdΦ ðD3aÞ

ϑS ¼ −ð1þ cosðΘÞÞdΦ: ðD3bÞ

On the intersectionUS ∩ UN of the two coordinate patches,
we have ϑS − ϑN ¼ dψSN , where (up to an arbitrary
constant)

ψSN ¼ −2Φ: ðD4Þ

At this point, we recall that the ordinary construction
of the WZ term for the NLSM on M uses an extended
manifold B with ∂B ¼ M and an extension ~n of the NLSM
field into B such that ~nj∂B ¼ n. In this case, the standard
construction for the WZ term is

SWZ½n� ¼
2πk
A2

Z
B
~n�ω2: ðD5Þ

Using the spherical coordinates Θ and Φ, we find that
the variation of the WZ term obtained from this standard
construction is

δSWZ½n� ¼
2πk
A2

Z
b

a
dx1 sinðΘÞðδΘ∂1Φ − δΦ∂1ΘÞ; ðD6Þ

where ∂1 ≡ ∂
∂x1. We now present the intrinsic construction

of the WZ term, which yields an expression for SWZ½n�
involving only integrations over the physical space M and
gives the same formula for the variation with respect to the
NLSM field.
The intrinsic construction takes as its starting point a

geometric interpretation of the WZ term. The NLSM field
n is a map from M to S2, and the image of M under this
map is a closed curve l on S2. The curve l inherits an
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orientation from the orientation of M. On S2, there exist
regions C and C0 ¼ S2nC such that ∂C ¼ l and ∂C0 ¼ l̄,
where l̄ is the curve l with the opposite orientation.
Using this information, we define the WZ term for the
field configuration n using the signed area of the regions C
or C0 as

SWZ½n� ¼
2πk
A2

Area½C�; ðD7Þ

or

S0WZ½n� ¼ −
2πk
A2

Area½C0�: ðD8Þ

The minus sign in the second equation is there to keep track
of the fact that the boundary of C0 is l̄, which has the
opposite orientation of l ¼ ∂C. The reason for defining the
WZ term in this way is that with this definition we have

eiSWZ½n� ¼ eiðSWZ½n�−S0WZ½n�ÞeiS0WZ½n� ¼ ei2πkeiS
0
WZ½n�: ðD9Þ

Therefore, we see that the exponential of the WZ term will
be independent of the choice of SWZ½n� or S0WZ½n� as long
as the level k of the WZ term is quantized, k ∈ Z, which is
the usual result. In what follows, we work with the first
formula, Eq. (D7).
The formula (D7) instructs us to integrate the volume

form ω2 over the region C ⊂ S2. In the case where the curve
l is contained only in the coordinate patch US on S2, we
have ω2 ¼ dϑS, and so the WZ term takes the simple form

SWZ½n� ¼
2πk
A2

Z
l
ϑs ¼

2πk
A2

Z
M

n�ϑS

¼ −
2πk
A2

Z
b

a
dx1ð1þ cosðΘÞÞ∂1Φ; ðD10Þ

where we used the expression for ϑS from Eqs. (D3). If
instead the curve l is contained only in UN , then we have a
similar expression for SWZ½n� with ϑS replaced with ϑN .
Finally, there is the possibility that the curve l crosses
through both coordinate patches on S2. In this case, the
expression for SWZ½n� obtained from the formula Eq. (D7)
is more complicated.
To construct the WZ term in the case where the curve l

passes through both coordinate patches on S2, we do
the following. First, we pick two points s1 and s2 on the
interval ½a; bÞ such that n1 ≡ nðs1Þ and n2 ≡ nðs2Þ lie on
opposite sides of the curve l in the region US ∩ UN . Next,
we divide the curve l into two pieces l1 and l2 such that
l ¼ l1 þ l2, where the sum is the composition of oriented
1-chains. Finally, we add a third curve l3 which connects
the points n1 and n2 by cutting through the region
US ∩ UN , and we choose the orientation of this curve
such that it is directed toward n2. The curve l3 also divides

the region C into two portions C1 and C2. We choose the
points s1 and s2 and also the curve l3, so that C1 lies
entirely in US and C2 lies entirely in UN . This situation is
illustrated in Fig. 1. In this case, we can compute Area½C� as

Area½C� ¼ Area½C1� þ Area½C2�

¼
Z
l1þl3

ϑS þ
Z
l2−l3

ϑN

¼
Z
l1

ϑS þ
Z
l2

ϑN þ
Z
l3

ðϑS − ϑNÞ

¼
Z
l1

ϑS þ
Z
l2

ϑN þ ψSNðn2Þ − ψSNðn1Þ; ðD11Þ

where in the last step we used the equation ϑS − ϑN ¼
dψSN on US ∩ UN . The integrals in this expression can
be pulled back to M to give a final expression for the WZ
term in the form

SWZ½n� ¼
2πk
A2

�Z
n−1ðl1Þ

n�ϑS þ
Z
n−1ðl2Þ

n�ϑN

þ ψSNðnðs2ÞÞ − ψSNðnðs1ÞÞ
�
; ðD12Þ

where n−1ðl1Þ denotes the inverse image of the curve l1

under the map n∶M → S2, and likewise for n−1ðl2Þ.
This form for the WZ term has the advantage that it

only involves integrals over the physical spaceM and does
not require an extended space B or an extension ~n of the
field configuration (it also does not require a spin structure

US  UN

CC'

C1

C2

1

2

3
n1n2

(a) (b)

(c)

FIG. 1. (a) The shaded region shows the intersection US ∩ UN
of the two coordinate patches needed to cover the entire sphere
S2. (b) The curve l and the regions C and C0 of which the union
is the entire sphere S2. The curve l does not lie in a single
coordinate patch US or UN, as can be seen from the dotted lines
indicating the boundary of the intersection US ∩ UN . (c) A
partition of the region C into two parts C1 and C2 using an
additional curve l3 which starts at the point n1 and ends at the
point n2. The part C1 lies entirely in US, while the part C2 lies
entirely in UN .
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on M). Therefore, we refer to this construction of the WZ
term as an intrinsic construction. In addition, a short
calculation shows that, upon varying this expression with
respect to the NLSM field and using the explicit expression
for ψSN from Eq. (D4), the contributions from the points s1
and s2 cancel out. The end result for the variation of this
form of the WZ term then turns out to be identical to
Eq. (D6). Therefore, we have succeeded in our original
goal, which was to provide a construction of the WZ term

for the NLSM theory on the manifold M which does not
require a higher-dimensional manifold B with ∂B ¼ M.
Also, we note here that adding an arbitrary constant to the
transition function ψSN , which still gives a solution to the
equation ϑS − ϑN ¼ dψSN , will not change the final
expression (D12) for the WZ term since ψSN appears in
the WZ term in the combination ψSNðnðs2ÞÞ − ψSNðnðs1ÞÞ.
Finally, we must discuss what one must do in the case

that the curve l on S2 has self-intersections. The map
n∶M → S2 is not required to be an embedding of M (i.e.,
n is not required to be injective), so in general, the curve l
can have self-intersections. In this case, we again define the
WZ term using the signed area of the regions enclosed by l.
For example, for the situation shown in Fig. 2, we define

SWZ½n� ¼
2πk
A2

ðArea½C1� − Area½C2�Þ: ðD13Þ

The reason for defining the WZ term in this way is that we
ultimately want SWZ½n� to reduce to a line integral of ϑS or
ϑN along the curve l, modulo the addition of suitable
constant terms in the intersection US ∩ UN as discussed
above. Since in the example in Fig. 2 the curve l wraps
around the regions C1 and C2 in opposite directions, we
attach opposite signs to the areas of these two regions in the
definition of the WZ term so that SWZ½n� reduces to a line
integral of ϑS or ϑN along l.
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