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We study the perturbative unitarity of the Lee-Wick models, formulated as nonanalytically Wick rotated
Euclidean theories. The complex energy plane is divided into disconnected regions and the values of a loop
integral in the various regions are related to one another by a nonanalytic procedure. We show that the
one-loop diagrams satisfy the expected, unitary cutting equations in each region: only the physical d.o.f.
propagate through the cuts. The goal can be achieved by working in suitable subsets of each region and
proving that the cutting equations can be analytically continued as a whole. We make explicit calculations
in the cases of the bubble and triangle diagrams and address the generality of our approach. We also show
that the same higher-derivative models violate unitarity if they are formulated directly in Minkowski
spacetime.
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I. INTRODUCTION

The nonrenormalizability of the Hilbert-Einstein
Lagrangian [1] teaches us that, if we want to solve the
problem of quantum gravity, we have to explore new
sectors of quantum field theory and maybe relax some
assumptions we are accustomed to. In this respect, an
interesting subsector of quantum field theory is represented
by the local, higher-derivative theories, because there is
still a possibility that the search for a consistent theory of
quantum gravity might lead there.
However, the formulation of higher-derivative theories

turns out to be less trivial than expected. For example,
when the free propagators have complex poles, the theories
cannot be consistently defined in Minkowski spacetime [2],
in general, because they generate nonlocal, non-Hermitian
divergences, which cannot be subtracted away without
destroying the nature of the theory itself.
The Lee-Wick (LW) models [3] are a special subclass of

local, higher-derivative theories, which have the possibility
of reconciling renormalizability and unitarity. The propa-
gators contain complex conjugate pairs of extra poles,
which we call LW poles, besides the poles corresponding to
the physical d.o.f. and the d.o.f. introduced by the gauge
fixing (which are those propagated by the temporal and the
longitudinal components of the gauge fields, as well as the
Faddeev-Popov ghosts). The Lee-Wick models are claimed
to lead to a perturbatively unitary S matrix [3–5]. Because
of their unusual features, their formulation has been the
object of several investigations. Like all higher-derivative
theories, they violate microcausality. Nakanishi [6] showed
that if the loop space momenta are integrated on their
natural, real values, as Lee initially seemed to suggest [7],

Lorentz invariance is violated. Cutkosky et al. (CLOP)
showed [5] that the S matrix is not analytic when pairs of
LW poles pinch the integration path of the energy. They
proposed to treat such a pinching, which we call LW
pinching, by means of a limiting procedure, known as
CLOP prescription. Among other things, the CLOP pre-
scription removes the problems found by Nakanishi. In
simple diagrams, it gives an unambiguous, Lorentz invari-
ant and unitary result, as confirmed by the calculations of
Grinstein et al. [8]. However, it seems a bit artificial, since it
cannot be incorporated into a Lagrangian and ambiguities
are still present. For a while it was thought that such
ambiguities survived only at high orders diagrams [5], but
recently it has been shown that they are present also at one
loop [9].
These pieces of information need to be clarified and

properly assessed. To answer some of the open questions, a
new formulation of the Lee-Wick models has been recently
proposed [9], by viewing them as nonanalytically Wick
rotated Euclidean higher-derivative theories.
Since the Minkowski formulation is not viable [2], we

have no choice but start from the Euclidean version of the
higher-derivative theories. However, the Wick rotation turns
out to be nonanalytic, because of the LW pinching, to the
extent that the complex energy plane is divided into disjoint
regionsAi of analyticity. The Lorentz violation is avoided by
working in a generic Lorentz frame, with generic external
momenta, and deforming the integration domain of the space
loop momenta to complex values in a suitable way. It turns
out that the models are intrinsically equipped with all that is
necessary to define them properly. There is no need of the
CLOP prescription, or any other prescription, to handle the
pinching of the LW poles. Moreover, the CLOP prescription
leads to physical results that are ambiguous, even in a simple
case such as the bubble diagram with different physical
masses [9]. Therefore, the ad hoc prescriptions should be
dropped.
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Because the Lee-Wick models have been reformulated
anew, and the new formulation leads to predictions that
are quantitatively different from those of the previous
approaches, it is compulsory to investigate perturbative
unitarity in the new formulation. Writing the S matrix as
S ¼ 1þ iT, the unitarity relation SS† ¼ 1 is equivalent to
T − T† ¼ iTT†. This identity can be expressed diagram-
matically by means of the so-called cutting equations [10],
which relate the discontinuity of an amplitude to the sum of
cut diagrams (see also [11] for a recent extension and [12]
for an algebraic reformulation). The cut diagrams are built
with cut propagators and shadowed vertices, in addition to
the usual propagators and vertices. In this paper, we study
the cutting equations in the one-loop bubble and triangle
diagrams explicitly, but the procedure can be extended to
all the one-loop diagrams.
The cutting equations must be derived within the

formulation of the models as nonanalytically Wick rotated
Euclidean theories. To achieve this goal, we show that it is
possible to derive the cutting equations in suitable subsets
Oi of the analytic regionsAi and extend their validity to the
whole Ai by analytic continuation. The analytic continu-
ation of the cut diagrams is something that also requires
some attention, because it is not discussed in the available
literature.
The results we find confirm that the cutting equations of

the LWmodels are consistentwith perturbative unitarity. The
contributions of the poles of each LW pair mutually cancel,
so only the physical d.o.f. propagate through the cuts.
Our findings also suggest that the cancellation mecha-

nism, which is encoded in formula (5.6), is a general
property of all diagrams. While the bubble diagram is too
special to argue in favor of general properties, the deriva-
tion of the cutting equations for the triangle diagram is
sufficiently general to be applied to all the one-loop
diagrams. The generalization to diagrams with more loop
is less direct, but it appears to be mostly a technical matter,
which is why we believe that our results can be the starting
point to derive a proof of perturbative unitarity to all orders.
Finally, to emphasize the importance of the nonanalytic

Wick rotation, we show that the same higher-derivative
models do violate unitarity when they are defined directly
in Minkowski spacetime.
The LW models are important not only theoretically, but

also because they may have phenomenological applica-
tions. Among those that have been considered in the
literature, we mention extensions of QED [4], physics
beyond the standard model [13] and grand unified theories
[14], as well as the search for a consistent theory of
quantum gravity [15,16]. In Ref. [9] it was also noted that
the unusual behaviors of the physical amplitudes, due to the
violations of analyticity, may have important phenomeno-
logical consequences, for example allow us to measure
some key physical constants of the LW models, such as the
scales associated with the higher-derivative terms.

The paper is organized as follows. In Sec. II we recall the
formulation of the models. In Sec. III we study the analytic
continuation of the cut diagrams. In Sec. IV we reconsider
the bubble diagram in standard theories and derive its cutting
equations in a setting that is sufficiently general to ease out
the extension to the LW models. In Sec. V, we derive the
cutting equations of the bubble diagram in the LW models
and show that only the physical d.o.f. propagate through the
cuts. In Sec. VI, we do the same for the triangle diagram.
In Sec. VII, we extend our results to Feynman diagrams with
nontrivial numerators and comment on the validity of our
arguments in arbitrary diagrams. In Sec. VIII, we show that
the higher-derivative theories of the LW class, if defined
directly in Minkowski spacetime, do violate unitarity.
Section IX contains our conclusions.

II. LEE-WICK MODELS AS NONANALYTICALLY
WICK ROTATED EUCLIDEAN THEORIES

In this section we recall how the LW models are
formulated as nonanalytically Wick rotated Euclidean
theories [9]. For concreteness, it may be useful to have a
specific theory in mind, such as the massive Lee-Wick φ4

theory in four dimensions described by the Lagrangian

L ¼ 1

2
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φ4; ð2:1Þ

whose free propagator reads in momentum space

iDðp2; m2; ϵÞ ¼ iM4

ðp2 −m2 þ iϵÞððp2Þ2 þM4Þ : ð2:2Þ

More general propagators and more diverse theories can be
considered, but they do not change the sense of the
discussion that follows. In the limit M → ∞, (2.2) returns
the standard propagator, while at M < ∞ extra poles,
which we call LW poles, are present besides the standard
ones. The LW poles come in complex conjugate pairs,
which we call LW pairs.
The Wick rotation is simple for a single propagator.

When the imaginary axis is rotated to the real one, we get
the integration path of Fig. 1, where the encircled crosses
denote the standard poles and the non encircled crosses
denote the LW poles. In generic Feynman diagrams, where
more propagators are present, theWick rotation is less trivial.
Let us consider, for example, the bubble diagram, Fig. 2.
The loop integral is proportional to

J ðpÞ ¼
Z

dDk
ð2πÞD Dðk2; m2

1; ϵ1ÞDððp − kÞ2; m2
2; ϵ2Þ: ð2:3Þ

For the sake of generality, we take different masses m1, m2

and different infinitesimal widths ϵ1, ϵ2. When we vary the
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external momentum p, the poles of the first propagator are
fixed, while those of the second propagator move on the
complex k0 plane. Assuming for simplicity that the external
space momentum p vanishes and taking p0 real, the Wick
rotation gives the integration path of Fig. 3.
We see that the left LW pair of a propagator is always

above the integration path, while the right LW pair is
always below. This property holds in arbitrary diagrams. A
pinching, which we call LW pinching, occurs when the left
(right) LW pair of the first propagator hits the right (left)
LW pair of the second propagator. The threshold of this
pinching is p2 ¼ 2M2. With complex p0, other types of
LW pinchings occur: the bottom LW pole of the left LW
pair of the first propagator can hit the top LW pole of the
right LW pair of the second propagator, and so on. The
thresholds of these pinchings are p2 ¼ �4iM2. Several
such situations are symmetric to one another, so it suffices
to study a single representative of each symmetric subset.
The threshold associated with a LW pinching will be

called LW threshold. We anticipate that the LW thresholds

are not associated with discontinuities of the amplitudes, in
agreement with unitarity. However, they are associated with
nonanalytic behaviors of the amplitudes.
We focus on the pure LW pinching, which involves two

LW poles, because at one loop it is the only LW pinching
that has thresholds on the real axis. The mixed LW
pinching, which occurs between a LW pole and a standard
pole, needs complex external momenta p and its thresholds
are far away from the real axis.
To evaluate J ðpÞ, we first integrate over the loop energy

k0 by means of the residue theorem, after which we remain
with the integral on the loop spacemomentumk. Atp ¼ 0, if
we keep thek integration domain rigid, i.e. integratek on its
natural, real values, the positions of the LW thresholds and
the LW branch cuts as functions of the external (complex)
energy p0 are those shown in Fig. 4, plus their reflections
with respect to the imaginary axis. In particular, the branch
cut on the real axis is made by the solutions of the pinching
condition

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ iM2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − iM2

p
:

When p0 crosses one of the curves shown there, a pole of
the integrand crosses the k integration domain. The cuts can
be analytically deformed by deforming the k integration
domain before it is crossed by the pole, so as to prevent the
crossing from actually occurring.
Something interesting happens at nonvanishing, real p.

Keeping the k integration domain rigid again, we find that
each cut of Fig. 4 enlarges into the regions ~Ai shown in
Fig. 5. We denote the main region, i.e. the one that contains

FIG. 1. Integration path given by the Wick rotation.

FIG. 2. Bubble diagram.

FIG. 3. Integration path of the bubble diagram.

FIG. 4. LW thresholds and LW branch cuts at p ¼ 0.

FIG. 5. Areas of LW pinching at p ≠ 0.
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the imaginary axis, by ~A0. There, the Wick rotation is
analytic, because no LW pinching occurs. The curve γ is the
boundary of a different region, which we denote by ~AP,
which contains the positive real axis above the threshold
p2 ¼ 2M2, located in the point P. The points of ~AP are the
solutions of the pinching condition

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ iM2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − pÞ2 − iM2

q
: ð2:4Þ

Note that γ does not intersect the real axis in P, but in
another point P0, located below the threshold. Working out
the coordinates of P and P0, we find

P∶ p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2 þ p2

q
≡ EP;

P0∶ p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2Þ2
4

þ 4M4

rs
≡ EP0 ; ð2:5Þ

which satisfy
ffiffiffi
2

p
M < EP0 < EP, EP − EP0 <

ffiffiffi
2

p
M.

Since the location of P0 has no Lorentz invariant
meaning, Lorentz invariance appears to be violated.
Recall that Fig. 5 is derived by keeping the loop space
momentum k real. However, the integration path of Fig. 1
shows that the loop energy is not everywhere real, so
Lorentz invariance implies the loop momentum cannot be
everywhere real. To recover Lorentz invariance, the k
integration domain must be deformed to include complex
values. Moreover, the deformation must turn the surfaces of
Fig. 5 into Lorentz invariant lines (i.e. solutions of Lorentz
invariant conditions), similar to those of Fig. 4. In particu-
lar, it must turn the region ~AP into the half line of the real
axis that goes from the point P toþ∞, which we denote by
OP. Indeed, OP is Lorentz invariant, while any extended
region is not.
It can be argued [9] that the domain deformation just

described restores both Lorentz invariance and analyticity
above the LW threshold. To give more details on this, let us
write the propagator (2.2) in the equivalent form

iD0ðp2; m2; ϵÞ þ iDLWðp2; m2Þ; ð2:6Þ

where

D0ðp2; m2; ϵÞ ¼ M4

M4 þm4

1

p2 −m2 þ iϵ
;

DLWðp2; m2Þ ¼ −
M4

M4 þm4

p2 þm2

ðp2Þ2 þM4
:

We can use this decomposition to separate the contributions
of the physical poles from the ones of the LW poles in every
diagram. Then, we focus on the contributions that involve
LW poles. For example, in the bubble diagram we take

J LWðpÞ ¼
Z

dDk
ð2πÞD DLWðk2; m2

1ÞDLWððk − pÞ2; m2
2Þ:

ð2:7Þ
The functionJ LWðpÞ is analytic and Lorentz invariant in

the main region ~A0, because the Wick rotation is analytic
there. In OP (which means on the real axis above P) the
domain deformation described above leads to the result [9]

J LWðpÞ ¼
1

2
½J 0þ

LWðpÞ þ J 0−
LWðpÞ�; ð2:8Þ

where the functions J 0�
LWðpÞ are obtained by analytically

continuing J LWðpÞ from ~A0 to OP from the half plane
Im½p0� > 0 or from the half plane Im½p0� < 0, respectively,
as illustrated in Fig. 6. The continuations can be stretched
to neighborhoods of OP above P, to eventually cover an
extended region AP such as the one shown in Fig. 7.
In the end, the complex plane is divided into disjoint

regions Ai of analyticity. We call A0 the analytic region
that contains the imaginary axis. The function J LWðpÞ is
analytic in each region, but not on the entire complex plane.
Formula (2.8) relates the value of the function in AP to the
value of the function inA0. In particular, it ensures Lorentz
invariance and analyticity in AP thanks to the Lorentz
invariance and analyticity in ~A0.

FIG. 6. Definitions of J 0þ
LWðpÞ and J 0−

LWðpÞ.

FIG. 7. Analytic regions.
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We stress again that the amplitudes must be evaluated at
generic external momenta and in a generic Lorentz frame,
because special Lorentz frames may squeeze some regions
~Ai into curves Γi. For example, in the center of mass frame
p ¼ 0, the region ~AP of the bubble diagram is squeezed
onto OP. The value of the amplitude in OP is ill defined at
p ¼ 0, but can be worked out at p ≠ 0, where ~AP is
extended, by means of the deformation procedure
explained above. Note that the deformation also squeezes
~AP onto OP, but that happens when the amplitude is
evaluated inside of it, not before.
The integrand of J ðpÞ is singular where the LW

pinching occurs, but the singularity is integrable.
Specifically, focus on the intersection OP between ~AP
and the real axis. The pinching involves the left LW pair of
one propagator and the right LW pair of the other
propagator. For p small the integral around the pinching
of the top LW poles is proportional to [9]

dτdu
τ − iCjpju ; ð2:9Þ

where C is a positive, p-independent constant, u ¼ cos θ, θ
being the angle between the vectors p and k, and τ
parametrizes the fluctuation of jkj around the value it
has at the singularity, which is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp0Þ4 − 4M4

p
=ð2jp0jÞ.

The pinching of the bottom LW poles is described by
flipping the sign in front of iC.
We see that, basically, a nonvanishing jpj provides the

prescription for handling the integral. The limit jpj → 0 can
be evaluated explicitly, because it squeezes ~AP onto OP
bypassing the domain deformation. The result is

dτdu

�
P
1

τ
þ iπsgnðuÞδðτÞ

�
→ dτP

1

τ
; ð2:10Þ

where P denotes the principal value and “sgn” is the sign
function. In the last step we have performed the u
integration, which is trivial because the integrand of
J ðpÞ is u independent at jpj ¼ 0.
Let us describe what happens in more complicated

diagrams. At one loop, the LW pinchings are similar to
those of the bubble diagram. They are still described by
Fig. 3 and occur between the LW poles of any pair of
propagators. As before, the LW thresholds on the real axis

are given by the formula p2 ¼ 2M2, where now p is any
sum of external (incoming) momenta. In Sec. VI the
triangle diagram is studied in detail. With more loops,
the LW thresholds can involve both LW poles and physical
poles. However, apart from minor differences, the argu-
ments and properties outlined above—such as the recovery
of analyticity and Lorentz invariance by means of the
domain deformation, the behavior (2.9) of the integral
around the potential singularity due to the LW pinching, as
well as formula (2.8)—are still expected to hold, because
their essential features are not related to the specific
diagrams we have considered. More details on this can
be found in Sec. VII.

III. ANALYTIC CONTINUATION OF
THE CUT DIAGRAMS

In this section, we explain how to analytically continue
the cutting equations for the study perturbative unitarity.
Due to the domain deformation explained in the previous
section, we have to include complex values of the loop
space momenta k. Nevertheless, the contributions to the
cutting equations due to the poles of the same LW pair still
compensate each other. This result is ensured by the key
formula (5.6). That formula only holds at ϵ ¼ 0, where
standard regions of the complex plane are squeezed to the
real axis (see below). We have to clarify how to work at
nonzero ϵ and when exactly the limit ϵ → 0 must be taken,
if before or after the domain deformation.
We first discuss related issues in standard theories, then

move to the LW models.
When ϵ → 0, the standard pinching takes place.

Consider, for example, the cut version of the standard
bubble diagram of a massive field of mass m. The branch
points are p0 ¼ �2m and the cuts are p0 ≥ 2m and
p0 ≤ −2m, located on the real axis, where p0 denotes
the external energy and p is assumed to vanish. Those cuts
are squeezed regions, one of which is shown in Fig. 8 (c).
At nonvanishing ϵ, each cut splits into two cuts, as shown in
Fig. 8(a), with branch points p0 ¼ �ð2m2 − iϵÞ=m and
p0 ¼ �ð2m2 þ iϵÞ=m. Such cuts do not intersect the real
axis at ϵ ≠ 0, so we are allowed to study the cutting
equation in any interval of the real axis and analytically
continue the result to the whole real axis.
The limit ϵ → 0 divides the complex plane into dis-

connected regions. If we deform the cuts analytically before

(c)(b)(a)

FIG. 8. Analytic regions of the standard bubble diagram.
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the limit, we may obtain Fig. 8(b), the disconnected regions
being A and A0. However, what physics prescribes is
Fig. 8(c), where the region A0 is squeezed to the real axis.
The value of the amplitude on the real axis is obtained by
approaching the real axis from above, while the value of the
complex conjugate amplitude is obtained by approaching
the real axis from below. Let us inquire about the value of
the amplitude in the region A0.
It is easy to show that, in the limit ϵ → 0, the value of the

cut diagram in the intersection A0⊥ between A0 and the real
axis is equal to the discontinuity of the amplitude. Indeed,
consider Fig. 9, which shows the complex energy plane in the
case of (i) the bubble diagram (Fig. 2), (ii) its conjugate and
(iii) minus the sum of the two cut diagrams (Fig. 12),
respectively. The cuts are displaced from the real axis at
ϵ ≠ 0. In what follows we imagine to take ϵ → 0 and just
report the values of the diagrams in this limit. The cutting
equation tells us that the sum ðiÞ þ ðiiÞ is equal to (iii) and that
(iii) vanishes everywhere except in the cuts for ϵ → 0. Let X
denote the value of the bubble diagram above the cut in that
limit and D ¼ −1=ð8πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2=p2Þ

p
the well-known

value of the discontinuity. Then, the value of the bubble
diagram below the cut is X −D. Since the sum ðiÞ þ ðiiÞ
must vanish both above the two cuts and below them, we
infer that the value of the conjugate bubble diagram is −X
above the cut andD − X below the cut. This implies that the
region in between the cuts of figure (iii) must have value D,
which is what we claimed. Thus, the analytic function of the
region A0 shown in Fig. 8(b) is −1=ð8πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2=p2Þ

p
,

while the analytic function of the regionA is identically zero.
We see that a single function that is analytic in a

neighborhood of the real axis at ϵ ≠ 0 breaks into multiple
analytic functions when ϵ tends to zero. Each cut diagram is
analytic throughout the real axis at ϵ ≠ 0. Instead, at ϵ ¼ 0
the real axis is divided into several domains and the cut
diagram is separately analytic in each domain.
These remarks are useful when we move to the Lee-Wick

models. We consider a generic one-loop diagram and
describe how the cutting equations are derived in Secs. V
and VI, focusing on the regions that have intersections with
the real axis. We must combine the discussion about the

analytic regions associated with the LW pinching with the
discussion about the usual pinching. The standard threshold
reads p2 ¼ ðmi þmjÞ2, where mi and mj are the masses of
two particles circulating in the loop and p is a sum of
incoming momenta. The LW threshold on the real axis
is p2 ¼ 2M2.
Assume first that 2M2 > ðmi þmjÞ2 and P0 is located

above Q. The cut diagram leads to a typical situation like
the one of Fig. 10. Above the LW threshold P, we study the
difference iM − iM�, where M ¼ −iλ2J =2 is the ampli-
tude, by working at ϵ ≠ 0 in a subdomain of ~A3, for
example an interval D3 of the real axis. Then, we perform
the domain deformation, which squeezes the region ~A3 to
the real axis, till it becomes the portionA3 ¼ OP of the real
axis from P to infinity. We show that the calculation can be
extended through the domain deformation. Nevertheless,
iM − iM� does not have the expected form compatible
with unitarity, as long as ϵ remains nonzero. At the end, we
take the limit ϵ → 0 and prove that iM − iM� can be
expressed as predicted by the unitary cutting equation,
encoded in the identity iT − iT† ¼ −TT†.
Below the threshold P, the domain deformation is unnec-

essary. We split the calculation in two parts. The limit ϵ → 0
makes two standard poles coincide in Q and divides the
positive real axis below P0 into two portions: one portion is
the domainD1 that goes from the origin toQ, which belongs
to the region ~A1; the other portion is the domainD5 that goes
from Q to P0, which belongs to the region ~A5.
We can prove unitarity inA1 by working in an interval of

D1, integrating rigidly on the loop space momenta, then

FIG. 9. Branch cuts of the cutting equations for the standard bubble diagram.

FIG. 10. Standard pinching and LW pinching.
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taking ϵ → 0 and analytically continuing the cutting
equation to the whole D1 and then A1.
Similarly, we can study iM − iM� in an interval of D5

(where we are allowed to rigidly integrate on the loop space
momenta, since D5 is below γ) and then take the limit
ϵ → 0. After that, we analytically continue the cutting
equation to the interval of the real axis that goes from Q to
P. So doing, we cover the whole region A5, which is the
segment of the real axis going from Q to P, including the
portion where we cannot integrate on the loop space
momenta rigidly. The analytic regions that intersect the
real axis are then those of Fig. 11.
Now, assume that 2M2 > ðmi þmjÞ2, but P0 is located

belowQ. In that case, it seems thatwe cannot treat the portion
of the real axis included from Q to P with the method
explained above.Nevertheless, it is always possible to switch
to a situation like the one of Fig. 10. Indeed, for p ¼ 0, P0
coincides with P and Q is below P0 ¼ P. By continuity, for
nonvanishing, but sufficiently small p, Q is still below P0.
This proves that there exists an open domainO5 ⊂ ~A5 of the
space of the external momenta where the point Q is located
below P0. From O5 we can proceed as explained above and
reach A5 after the analytic continuation.
Finally, when 2M2 < ðmi þmjÞ2 the point Q is located

above P. Then, below Q we can proceed as in the pure LW
case, while above Q we can perform the domain deforma-
tion and let ϵ tend to zero at the end.

IV. THE STANDARD BUBBLE
DIAGRAM REVISITED

In this section, we reconsider the standard bubble
diagram and study its discontinuity. We generalize the
usual derivation [17] in various directions, to prepare the
extension to the Lee-Wick models.
We use the dimensional regularization and work in a

generic Lorentz frame, instead of choosing, say, the external
momentum p ¼ ðp0;pÞ of the form ðp0; 0Þ. One reason is
that this choice is only allowed for timelike external
momenta. More importantly, we have seen that in the LW
models it is crucial to keep the external space momentum p
different from zero, to enlarge the region ~AP of the complex
plane, which is otherwise squeezed on the real axis.
We also take different masses m1, m2, and independent

infinitesimal widths ϵ1, ϵ2, which we keep nonvanishing as
long as we can. As shown in Ref. [12], it is possible to work
out more general versions of the cutting equations at ϵ ≠ 0
in the standard case. We will see in the next sections that
this is no longer true in the LW case.

The loop integral reads

iMðpÞ ¼ λ2

2

Z
dDk
ð2πÞD

1

k2 −m2
1 þ iϵ1

1

ðk − pÞ2 −m2
2 þ iϵ2

;

ð4:1Þ

where MðpÞ is the amplitude. We can equivalently write
(4.1) as

iMðpÞ ¼ λ2

2

Z
dk0dD−1k
ð2πÞD

×
Y2
j¼1

1

ðej − ωj þ iϵjÞðej þ ωj − iϵjÞ
; ð4:2Þ

where e1 ¼ k0, e2 ¼ k0 − p0, ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

1

p
and

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − pÞ2 þm2

2

p
. In going from (4.1) to (4.2), we

have expanded the denominators for ϵ1, ϵ2 small and
rescaled such widths.
We perform the integral on k0 by using the residue

theorem and closing the integration path in the lower half k0

plane. The relevant poles are located at k0 ¼ z1 and
k0 ¼ z2, where

z1 ¼ ω1 − iϵ1; z2 ¼ p0 þ ω2 − iϵ2:

The k0 integral of iM leads to

iMðpÞ ¼ −
iλ2

2

Z
dD−1k
ð2πÞD−1 ½Resðz1Þ þ Resðz2Þ�; ð4:3Þ

where Res(z) denotes the residue of the integrand (exclud-
ing the factor λ2=2) in k0 ¼ z. We find

Resðz1Þ ¼
1

2z1ðz1 − z2Þðz1 þ z2 − 2p0Þ
¼ 1

2ðω1 − iϵ1ÞΔ−ðω1 þ ω2 − p0 − iϵþÞ
≡ r1;

Resðz2Þ ¼ −
1

2ðz2 − p0Þðz1 − z2Þðz1 þ z2Þ
¼ −

1

2ðω2 − iϵ2ÞΔ−ðω1 þ ω2 þ p0 − iϵþÞ
≡ r2;

ð4:4Þ
while

Δ− ¼ z1 − z2 ¼ ω1 − ω2 − p0 − iϵ− ð4:5Þ
and ϵ� ¼ ϵ1 � ϵ2. The denominator Δ− gives ambiguous
distributions, since the sign of ϵ− depends on the order with
which we perform the limits ϵ1 → 0 and ϵ2 → 0. As shown
in Ref. [12], the ambiguity must actually cancel out. Indeed,
it does disappear as soon as we take the sum of the two
residues, which gives

FIG. 11. Intersections of the analytic regions with the real axis.
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Resðz1Þ þ Resðz2Þ

¼ −
1

4z1ðz2 − p0Þ
�

1

z1 þ z2 − 2p0
þ 1

z1 þ z2

�

¼ −
1

4ω1ω2

�
1

ω1 þ ω2 − p0 − iϵþ
þ 1

ω1 þ ω2 þ p0 − iϵþ

�
:

ð4:6Þ

In the last line we sent ϵ1 and ϵ2 to zero in a couple of places
where they are unimportant. For example, the factor 1=z1 can
be replaced by 1=ω1. It is not convenient to make this
replacement directly in formulas (4.4), because of the
presence of the ambiguous denominator (4.5). In the rest
of the paper, we make similar replacements, when they are
allowed, without further notice.
The discontinuity DiscM ¼ 2iImM of the amplitude

can now be evaluated from (4.3) by means of the identity

1

x� iϵ
¼ P

�
1

x

�
∓ iπδðxÞ; ð4:7Þ

where P denotes the principal value. We find DiscM ¼
iλ2ϒ=2, where

ϒðpÞ≡
Z

dD−1k
ð2πÞD−1

2π

ð2ω1Þð2ω2Þ
× ½δðp0 − ω1 − ω2Þ þ δðp0 þ ω1 þ ω2Þ�: ð4:8Þ

If we relabel q1 ¼ k and q2 ¼ p − k and introduce
integrals over q1 and q2, together with delta functions that
impose q0i ¼�ω0

i; whereω
0
i≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
i þm2

i

p
, and p¼q1þq2,

we can view δðp0 � ω1 � ω2Þ as the total energy con-
servation δðp0 − q01 − q02Þ. Then we can write ϒ as

Z
dDq1
ð2πÞD

dDq2
ð2πÞD ð2πÞDδðDÞðp − q1 − q2Þ

×

�
2πδðq01 − ω0

1Þ2πδðq02 − ω0
2Þ

ð2ω0
1Þð2ω0

2Þ

þ 2πδðq01 þ ω0
1Þ2πδðq02 þ ω0

2Þ
ð2ω0

1Þð2ω0
2Þ

�

and finally

Z
dDq1
ð2πÞD

dDq2
ð2πÞD ð2πÞDδðDÞðp − q1 − q2Þ

× ð2πÞδðq21 −m2
1Þð2πÞδðq22 −m2

2Þ
× ½θðq01Þθðq02Þ þ θð−q01Þθð−q02Þ�: ð4:9Þ

We see that DiscM ¼ iλ2ϒ=2 is equal to i times the sum of
the two cut diagrams C1, C2 shown in Fig. 12, i.e.

iM − iM� ¼ −
λ2

2
ϒ ¼ −C1 − C2: ð4:10Þ

The cut diagrams can be computed by replacing the
ordinary propagators with the cut ones,

i
p2 −m2 þ iϵ

→ 2πθð�p0Þδðp2 −m2Þ; ð4:11Þ

and equipping each shadowed vertex with a minus sign.
The sign in front of p0 is determined by the direction of the
energy flow through the cut.
Formula (4.10) is nothing but the relation iT − iT† ¼

−TT† in the particular case we are considering and shows
that the bubble diagram satisfies unitarity.
For completeness, we report the value of the integralϒ in

four dimensions, which is well known:

ϒðpÞ ¼ 1

8πp2
θðp2 − ðm1 þm2Þ2Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 −m2

1 −m2
2Þ2 − 4m2

1m
2
2

q
: ð4:12Þ

A. Comments

The procedure we have used in this section is general
enough to be extended to the LW models. However, before
moving to the LW case, we would like to emphasize the
strategyof thecalculationandcompare itwithother strategies.
The first step has been to integrate on the energy by

means of the residue theorem.Only after that, we have used
the decomposition (4.7). The usage of that decomposition
is extremely delicate, especially in products of distribu-
tions. For example, it is very inconvenient to use it before
applying the residue theorem, directly in formula (4.1). If
we do so (working at p ¼ 0 and in the equal mass case
m1 ¼ m2 ¼ m, for simplicity), we get

DiscM ¼ iλ2
Z

dDk
ð2πÞD

�
π2δðk2 −m2Þδððp − kÞ2 −m2Þ

− P
1

k2 −m2
P

1

ðk − pÞ2 −m2

�
: ð4:13Þ

The first contribution to (4.13), which can be rewritten as

iλ2

4

Z
dDq1
ð2πÞD

dDq2
ð2πÞD ð2πÞDδðDÞðp − q1 − q2Þ

× ð2πÞδðq21 −m2Þð2πÞδðq22 −m2Þ; ð4:14Þ

FIG. 12. Cut bubble diagrams.
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resembles the final result iλ2ϒ=2, with ϒ given by (4.9).
This lead some authors [16] to think that the two are equal
and that the term with the two principal values in (4.13)
does not contribute. Both statements are incorrect.
An apparent difference between iλ2ϒ=2 and (4.14) is

that (4.9) contains the combination of theta functions
Θ≡ θðq01Þθðq02Þ þ θð−q01Þθð−q02Þ, while (4.14) does not.
If we multiply the integrand of (4.14) by 1 ¼ Θþ 1 − Θ,
we can easily check that the difference 1 − Θ, which is
equal to θðq01Þθð−q02Þ þ θðq01Þθð−q02Þ, gives zero. Thus, we
can safely insert Θ in the integral of (4.14) and make it
more similar to iλ2ϒ=2.
A more serious difference, instead, is the multiplying

factor. Formula (4.14) is not really equal to iλ2=2 times
(4.9), contrary to the claim of Ref. [16], because it is
multiplied by an additional factor 1=2. The missing con-
tribution must come from the product of the two principal
values in formula (4.13). We have checked this fact
numerically with a Mathematica program, starting from

−iλ2
Z

dDk
ð2πÞD

k2 −m2

ðk2 −m2Þ2 þ ϵ2
ðp − kÞ2 −m2

ððp − kÞ2 −m2Þ2 þ ϵ2

and taking smaller and smaller values of ϵ. The argument
used in Ref. [16] to claim that this expression vanishes was
to turn it to the Euclidean framework, where it naively
becomes real, while in Minkowski spacetime it is purely
imaginary. The point is that the Wick rotation is nontrivial
in this case, because the integrand has poles in the first and
third quadrants, which must be taken into account. More
details can be found in Ref. [2], where the problems of
these types of Minkowski integrals are studied in depth.

V. THE LEE-WICK BUBBLE DIAGRAM

In this section we study the LW version of the bubble
diagram and show that it satisfies the correct cutting
equation, with no propagation of unphysical d.o.f. through
the cuts. The loop integral is

iM ¼ λ2

2

Z
dDk
ð2πÞD Dðk2; m2

1; ϵ1ÞDððk − pÞ2; m2
2; ϵ2Þ

¼ λ2M8

2

Z
dk0dD−1k
ð2πÞD

Y2
j¼1

1

ðej − νjÞðej þ νjÞðej − ν�jÞðej þ ν�jÞðej − ωj þ iϵjÞðej þ ωj − iϵjÞ
; ð5:1Þ

where ν1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ iM2

p
, ν2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − pÞ2 þ iM2

p
and the

other definitions coincide with those of the previous
section. For the reasons explained in Sec. II, it is important
to work at p ≠ 0.
Making the Wick rotation and closing the k0 integration

path in the lower half plane, Fig. 3 tells us that we need the
poles

z1 ¼ ω1 − iϵ1; z2 ¼ p0 þ ω2 − iϵ2;

w1 ¼ ν1; w2 ¼ p0 þ ν2; ð5:2Þ

together with the conjugates w�
1 and w�

2. We find

iM ¼ −
iλ2

2

Z
dD−1k
ð2πÞD−1 ½Resðz1Þ þ Resðz2Þ þ Resðw1Þ

þ Resðw2Þ þ Resðw�
1Þ þ Resðw�

2Þ�: ð5:3Þ

We perform the domain deformations associated with
the contributions of ResðwiÞ and Resðw�

i Þ in complex
conjugate ways. Then, calling U and U� the deformed
domains, such contributions read

−
iλ2

2

Z
U

dD−1k
ð2πÞD−1 ResðwiÞ −

iλ2

2

Z
U�

dD−1k
ð2πÞD−1 Resðw�

i Þ:

ð5:4Þ

The other contributions, due to ResðziÞ, can be calculated
with the natural real k integration domain.
Now, we can write�Z
U�

dD−1k
ð2πÞD−1 Resðw�

i Þ
��

¼
Z
U

dD−1k
ð2πÞD−1 ½Resðw�

i Þ��; ð5:5Þ

where it is understood that the complex conjugations in
½Resðw�

i Þ�� do not act on k. We prove the identity

½Resðw�
i Þ�� ¼ ResðwiÞ ð5:6Þ

at ϵ1 ¼ ϵ2 ¼ 0, which allows us to turn (5.5) into�Z
U�

dD−1k
ð2πÞD−1 Resðw�

i Þ
��

¼
Z
U

dD−1k
ð2πÞD−1 ResðwiÞ: ð5:7Þ

Formula (5.6) expresses the compensation between the
contributions of the poles of the same LW pair to the cutting
equations. It is the key result to prove that only the physical
d.o.f. propagate through the cuts.
To derive (5.6), observe that when ϵ1 and ϵ2 tend to zero

we have

Resðw1Þ − ½Resðw�
1Þ��

¼ πM6

2ðm2
1 − iM2Þν1

~δððν1 − p0Þ2 − ω2
2Þ

ððν1 − p0Þ2 − ðk − pÞ2Þ2 þM4
;

ð5:8Þ
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where

~δðzÞ≡ lim
ϵ→0

ΔϵðzÞ; ΔϵðzÞ≡ 1

2iπ

�
1

z − iϵ
−

1

zþ iϵ

�
;

is the usual delta distribution extended to complex values,
which means that it is equal to zero anywhere but on the
real axis, where it is the ordinary delta function. The right-
hand side of (5.8) collects the terms where the limits ϵ1,
ϵ2 → 0 are nontrivial, which need to be studied in detail.
Now we show that ~δðzÞ does not contribute to the

integrals (5.4). The pinching condition for both Resðw1Þ
and ½Resðw�

1Þ�� is (2.4), i.e. p0 ¼ ν1 þ ν�2, where, again,
the complex conjugation does not act on k. On the other
hand, the argument of ~δ vanishes for p0 ¼ ν1 � ω2. These
conditions cannot hold at the same time, because p0 ¼
ν1 þ ν�2 ¼ ν1 � ω2 implies −iM2 ¼ m2

2. This fact has
important consequences. When ϵ tends to zero, the con-
tributions to ΔϵðzÞ provide potential singularities ∼1=z,
with z ¼ ðν1 − p0Þ2 − ω2

2. However, such singularities are
actually integrable, because z is complex. Therefore, wehave
two potential singularities, those due to the LW pinching and
those due to 1=z. Both are separately integrable and could
only give trouble if they occurred at the same time. Since this
is impossible, the two contributions toΔϵðzÞmutually cancel
for ϵ → 0 and the right-hand side of (5.8) can be dropped.
Similar arguments can be applied toResðw2Þ−½Resðw�

2Þ��.
We conclude that identity (5.6) holds. Thanks to it, the
second integral of (5.4) is the complex conjugate of the first
integral, so (5.7) holds.
Since formula (5.6) is valid only at ϵ1 ¼ ϵ2 ¼ 0, we have

to explain when such widths must be sent to zero. We work
in the intervals D1, D3 and D5 defined in Sec. III. In D3 we
perform the domain deformation at ϵ1, ϵ2 ≠ 0, for the
contributions due to ResðwiÞ and Resðw�

i Þ. Instead, we keep
the k integration domain rigid for the other contributions, as
well as for the calculations inD1 andD5. Then, by means of
identities like (5.8) and the calculations reported below, we
check that the expected cutting equation separately holds in
D1, D3 and D5, up to corrections of the form ΔϵðzÞ,
which are killed by the limit ϵ → 0. From Sec. III, we
know that the cutting equation can be analytically extended

from D1, D3 and D5 to the regions A1, A3 and A5,
respectively.
Taking the limit ϵ1, ϵ2 → 0 on the contributions of

ResðwiÞ and Resðw�
i Þ to (5.3), but keeping ϵ1, ϵ2 ≠ 0 in

the contributions due to Resðz1Þ and Resðz2Þ, formulas
(5.4) and (5.7) give

iM ¼ −
iλ2

2

Z
dD−1k
ð2πÞD−1 ½Resðz1Þ þ Resðz2Þ�

− iλ2Re
Z
U

dD−1k
ð2πÞD−1 ½Resðw1Þ þ Resðw2Þ�:

The discontinuity of the amplitude is then

DiscM ¼ 2iImM

¼ −iλ2
Z

dD−1k
ð2πÞD−1 Im½Resðz1Þ þ Resðz2Þ�:

This result proves that, as anticipated, the LW poles do not
contribute to the imaginary part of the amplitude.
Now we show that the amplitude obeys the correct

cutting equation. We have

Resðz1Þ ¼ r1hðz1Þ; Resðz2Þ ¼ r2hðz2Þ; ð5:9Þ

where r1 and r2 are defined in formula (4.4) and

hðk0Þ ¼ M4

ðk2Þ2 þM4

M4

ððk − pÞ2Þ2 þM4
:

We understand the dependence of h on the other variables
besides k0, because they are not important for the discussion.
As before, the ill-defined distributions contained in r1

and r2 cancel out in the sum of Resðz1Þ and Resðz2Þ.
We have

Resðz1Þ þ Resðz2Þ ¼ r1hðz1Þ þ r2hðz2Þ
¼ uðz1; z2Þvðz1; z2Þ; ð5:10Þ

where

uðz1; z2Þ ¼
z1ðz2 − p0Þ½hðz1Þ − hðz2Þ� þ z2ðz2 − p0Þhðz1Þ − z1ðz1 − p0Þhðz2Þ

4p0ðz1 − z2Þz1ðz2 − p0Þ ; vðz1; z2Þ ¼
1

z1 þ z2 − 2p0
−

1

z1 þ z2
:

It is clear that uðz1; z2Þ is regular, since the numerator
vanishes when z1 ¼ z2. Note that hðzÞ is real and non-
vanishing for real z. Thus, we can replace uðz1; z2Þ by

uðω1;ω2 þ p0Þ. At this point, we just need to take the
imaginary part of vðz1; z2Þ by means of formula (4.7),
which gives

DiscM ¼ −iπλ2
Z

dD−1k
ð2πÞD−1 uðω1;ω2 þ p0Þ

× ½δðω1 þ ω2 − p0Þ − δðω1 þ ω2 þ p0Þ�

¼ iλ2

2

M8

ðM4 þm4
1ÞðM4 þm4

2Þ
ϒ; ð5:11Þ
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whereϒ is the integral (4.8). The second line is obtained by
noting that the delta functions that appear in the first line of
(5.11) simplify the value of the function u considerably and
allow us to make the replacements

uðω1;ω2 þ p0Þδðω1 þ ω2 � p0Þ →

� 1

4ω1ω2

M8δðω1 þ ω2 � p0Þ
ðM4 þm4

1ÞðM4 þm4
2Þ
:

Following the procedure that we used in the standard
case, we relabel q1 ¼ k and q2 ¼ p − k and obtain that
DiscM is equal to iλ2=2 times

Z
dDq1
ð2πÞD

dDq2
ð2πÞD ð2πÞDδðDÞðp − q1 − q2ÞDcðq21; m2

1Þ

×Dcðq22; m2
2Þ½θðq01Þθðq02Þ þ θð−q01Þθð−q02Þ�;

where

Dcðp2; m2Þ ¼ 2πδðp2 −m2Þ M4

M4 þm4
: ð5:12Þ

So doing, we have shown that (4.10) holds in each
interval D1, D3 and D5 of the real axis, with the cut
propagators θð�p0ÞDcðp2; m2Þ. Then, we analytically
continue (4.10) to the regions A1, A3 and A5. Unitarity
is verified, because the cut propagators θð�p0ÞDcðp2; m2Þ
just propagate the physical d.o.f.

VI. THE LW TRIANGLE DIAGRAM

In this section we prove that the triangle diagram
(Fig. 13) also satisfies the correct cutting equation. The
loop integral reads

iM ¼ λ3
Z

dDk
ð2πÞD Dðk2; m2

1; ϵ1ÞDððk − pÞ2; m2
2; ϵ2ÞDððk − qÞ2; m2

3; ϵ3Þ

¼ λ3M12

Z
dk0dD−1k
ð2πÞD

Y3
j¼1

1

ðej − νjÞðej þ νjÞðej − ν�jÞðej þ ν�jÞðej − ωj þ iϵjÞðej þ ωj − iϵjÞ
;

where e3 ¼ k0 − q0, ω3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

3

p
, ν3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk − qÞ2 þ iM2
p

and the other definitions coincide with
those of the Secs. IV and V.
Closing the q0 integration path in the lower half plane,

we just need the residues of the poles

z1 ¼ ω1 − iϵ1; z2 ¼ p0 þ ω2 − iϵ2;

z3 ¼ q0 þ ω3 − iϵ3; w1 ¼ ν1;

w2 ¼ p0 þ ν2; w3 ¼ q0 þ ν3;

together with w�
1, w

�
2 and w�

3.
The LW thresholds that are located on the real axis are

p2 ¼ 2M2; q2 ¼ 2M2; ðp − qÞ2 ¼ 2M2:

As explained in Sec. II, we must work at ϵ ≠ 0, choosing
generic external momenta p and q in a generic Lorentz
frame. In each region ~Ai of the space of p and q, we choose
one or more subdomains Oi with an accumulation point,
typically intervals of the real axis. We separate the con-
tributions where it is necessary to deform the integration
domain of the loop space momentum k from the contri-
butions where the deformation is unnecessary. It can be
easily checked that an identity of the form (5.8) still holds.
Like before, the right-hand side of (5.8) can be dropped,
because the potential singularities ∼1=z are integrable and
do not occur simultaneously with the LW pinching. This
leads again to the crucial cancellation formula (5.6), which
ensures that only the standard residues contribute to the

imaginary part of M, in the limit ϵ → 0. At the end, we
analytically continue the cutting equation from the sub-
domains Oi to the whole analytic regions Ai.
Some attention must be paid to the ill-defined distribu-

tions, which are more tricky than in the previous case.

A. The ill-defined distributions cancel out again

The method we use here to prove this result is simpler
than the one of the previous section, but we have to take the
limit ϵ → 0 at a slightly earlier stage.
The residue of the integrand (excluding the factor λ3) in

z1 is

M12

2ω1ðm4
1 þM4Þ

1

jðω1 − p0Þ2 − ν22j2jðω1 − q0Þ2 − ν23j2

×
1

ðω1 þ ω2 − p0 − iϵ12þ Þðω1 þ ω3 − q0 − iϵ13þ Þ
×

1

ðω1 − ω2 − p0 − iϵ12− Þðω1 − ω3 − q0 − iϵ13− Þ ; ð6:1Þ

FIG. 13. Triangle diagram.
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where ϵij� ≡ ϵi � ϵj. The last two ratios are ill-defined
distributions. We want to show that their contributions drop
out. When ϵ → 0, the identity

1

ω1 − ω2 − p0 − iϵ12−
¼ P

1

ω1 − ω2 − p0

þ iπsgnðϵ12− Þδðω1 − ω2 − p0Þ;

tells us that the ill-defined part is the one proportional to
sgnðϵ12− Þ. It is easy to check that in the expression (6.1)
sgnðϵ12− Þ multiplies

iπM12

4ω1ω2ðm4
1 þM4Þðm4

2 þM4Þ
1

jðω1 − q0Þ2 − ν23j2

×
1

ðω1 þ ω3 − q0 − iϵ13þ Þ
1

ðω1 − ω3 − q0 − iϵ13− Þ
× δðω1 − ω2 − p0Þ ð6:2Þ

and cancels an analogous contribution coming from
Resðz2Þ, which can be obtained by exchanging the poles
z1 and z2, i.e. ω1 with ω2 þ p0, as well as ϵ1 with ϵ2. Since
(6.2) is invariant under these operations, but sign(ϵ12− ) turns
into its opposite, the total vanishes.
A similar contribution toResðz1Þ, proportional to sgnðϵ13− Þ

cancels a contribution due to Resðz3Þ. Formula (6.1) also
contains a term equal to sgnðϵ12− Þsgnðϵ13− Þ times

−
π2M12δðω1 − ω2 − p0Þδðω1 − ω3 − q0Þ

8ω1ω2ω3ðm4
1 þM4Þðm4

2 þM4Þðm4
3 þM4Þ : ð6:3Þ

Summing the contributions of this type due to the three
standard residues z1, z2, z3, and noting that

sgnðϵ12− Þsgnðϵ13− Þþsgnðϵ23− Þsgnðϵ21− Þþsgnðϵ31− Þsgnðϵ32− Þ¼1;

which is easy to prove by choosing ϵ1 > ϵ2 > ϵ3, the total is
(6.3), which has no imaginary part. We obtain a purely
imaginary contribution to iM (an i factor being brought by
the residue theorem). The contributions of this type drop out
of the cutting equation, whose left-hand side iM–iM� is
manifestly real, if wemanage towrite the right-hand side in a
manifestly real form.

B. Unitarity

Collecting the results found so far, we get

iM − iM� ¼ 2λ3
Z

dD−1k
ð2πÞD−1 Im½Resðz1Þ

þ Resðz2Þ þ Resðz3Þ�: ð6:4Þ

Dropping the ill-defined distributions, Resðz1Þ effectively
simplifies to

M12

2ω1ðm4
1 þM4Þ

1

jðω1 − p0Þ2 − ν22j2jðω1 − q0Þ2 − ν23j2

× P
1

ω1 − ω2 − p0
P

1

ω1 − ω3 − q0

×
1

ðω1 þ ω2 − p0 − iϵ12þ Þðω1 þ ω3 − q0 − iϵ13þ Þ :

Now, observe that all the ratios that appear here are real
except the last one, which has the form

1

a − iϵ
1

b − iϵ0
:

We need to calculate the imaginary part of this expres-
sion, which can be handled by using the identity

Im

�
1

a − iϵ
1

b − iϵ0

�
¼ 1

2i

�
1

a − iϵ
−

1

aþ iϵ

�
1

bþ iϵ0

þ 1

2i

�
1

b − iϵ0
−

1

bþ iϵ0

�
1

a − iϵ

¼ πδðaÞ
bþ iϵ0

þ πδðbÞ
a − iϵ

: ð6:5Þ

The first contribution of the last line leads to

−
πδðω1 þ ω3 − q0Þ

4ω1ω3ðm4
1 þM4Þðm4

3 þM4Þ
M12

jðω1 − p0Þ2 − ν22j2

×
1

ω1 þ ω2 − p0 þ iϵ12þ
P

1

ω1 − ω2 − p0
: ð6:6Þ

Now, observe that if we replace the principal value in this
expression with another prescription, the difference

−
iπ2M12δðω1 þ ω3 − q0Þδðω1 − ω2 − p0Þ
8ω1ω2ω3ðm4

1 þM4Þðm4
2 þM4Þðm4

3 þM4Þ ð6:7Þ

is purely imaginary. Again, the contributions of this type
cancel out from the formula for iM − iM� ¼ iDiscM, as
long as we manage to write it in a manifestly real way. We
proceed by changing the prescription in a convenient way
and check the cancelations in the final result (6.9).
With a new prescription, the contribution of (6.6) to

iM − iM� can be turned into

− λ3
Z

dDk
ð2πÞD θðk0ÞDcðk2; m2

1ÞD�ððk − pÞ2; m2
2; ϵ

12þ Þ

× θðq0 − k0ÞDcððk − qÞ2; m2
3Þ≡ −C1; ð6:8Þ

where C1 is the first cut diagram of Fig. 14, calculated with
the right cut propagators [i.e. θð�p0ÞDcðp2; m2Þ], which
propagate only the physical d.o.f. Similarly, the second
contribution of (6.5) gives −C2, where C2 is the second cut
diagram.

DAMIANO ANSELMI and MARCO PIVA PHYSICAL REVIEW D 96, 045009 (2017)

045009-12



Repeating the same steps for z2 and z3 we find minus the
other four cut diagramsCj, j ¼ 3;…6,which canbeobtained
by permuting the vertices of the cut diagrams shown in
Fig. 14. The total gives the correct cutting equation

iM − iM� ¼ −
X6
j¼1

Cj: ð6:9Þ

Note that the right-hand side of this formula is manifestly
real, as promised. Indeed, its imaginary part is obtained by
replacing the noncut propagators with delta functions, which
gives contributions evaluated on the physical poles of all
three propagators. This makes them equal to analogous
contributions found in the cutting equation of the standard
triangle, times a real constant. Since those contributions
cancel out in the case of the standard triangle, the right-hand
side of (6.9) is also real.
Again, formula (6.9), which is nothing but the identity

iT−iT†¼−TT† in the particular case of the triangle dia-
gram, shows that no unphysical d.o.f. propagate through
the cuts, which confirms the perturbative unitarity of the
LW model.

VII. UNITARITY WITH NONTRIVIAL
NUMERATORS

So far, we have considered only theories with nonde-
rivative vertices. For most applications, such as quantum
gravity and gauge theories, it is necessary to include the
case where vertices carry derivatives, which leads to non-
trivial numerators in the loop integrals. We show that their
presence does not change the previous results. We under-
stand that the dimensional regularization is used, which
makes it possible to apply the residue theorem even when
the integral on the energy is divergent (for details on this,
see the Appendix of Ref. [2]).
We assume that the Lagrangian is Hermitian, because

this is an essential requirement for unitarity. Then the
vertices, which carry an additional factor i, are anti-
Hermitean. Denote a vertex with n legs by Vμ1…μn

α1…αnðp; kÞ,
where p and k denote the external and loop momenta,
respectively, μi are Lorentz indices and αi are any other
indices. We can decompose it as

Vμ1…μn
α1…αnðp; kÞ ¼

X
j

AðjÞ
α1…αnT

μ1…μn
j ðp; kÞ;

where Tμ1…μn
j are real tensor polynomials and AðjÞ

α1…αn are
constant anti-Hermitian tensors. We can focus on loop
integrals with numerators made of products of tensors
Tμ1…μn
j ðp; kÞ.
Unitarity still holds, since the main arguments of the

previous sections are determined by the locations of the
poles, which do not change. For example, let us check
that the ill-defined distributions cancel out. Consider for-
mulas (4.4). If a numerator is present, we can incorporate it
into the functionh that appears in the sumResðz1Þ þ Resðz2Þ
of (5.9), so the total (5.10) is still regular. The argument is
basically the same for the triangle and more complicated
diagrams.Moreover, the crucial identities (5.8) and (5.6) still
hold. The Hermiticity of the Lagrangian ensures (5.6) up to
the effects due to iϵ, which still have the form shown on the
right-hand side of (5.8). Specifically, the limit ϵ → 0 gen-
erates integrable singularities ∼1=z, where z is a complex
function of the integration variables that cannot vanish when
the LW pinching takes place. Then, the two contributions of
~δðzÞ cancel each other. In the end, the residues of the LW
poles simplify in the cutting equations, so the only contri-
butions that survive are those coming from the standard
poles. It is also clear that most of these features are
independent of the particular diagram that we are consider-
ing, so we expect them to hold in every diagram.

VIII. VIOLATIONS OF UNITARITY IN
MINKOWSKI HIGHER-DERIVATIVE

THEORIES

The LW models are defined as nonanalytically Wick
rotated Euclidean higher-derivative theories. In Secs. V
and VI we have made explicit calculations to verify that
they satisfy the unitarity equation.
It is interesting to inquirewhether theMinkowski versions

of the same models satisfy the unitarity equation or not. By
“Minkowski versions” we mean that the integrals on the
energies are not performed along the integration path of
Fig. 1 derived in Sec. II, but along the real k0 axis, as we
would normally do. The integration path splits each LW pair
into a pole above the path and a pole below the path. We
expect that the unitarity equation is violated in this case.
However, the violation is not visible at the tree level, because
no energy integrals are involved: the tree cutting equations of
the Minkowski models are identical to those of the LW
models. Thus, it is necessary to make a one-loop calculation.
In this section we prove that the bubble diagram of the

Minkowski models does not satisfy the expected cutting
equation. The examplewe consider is a particular casewhere
the nonlocal divergences pointed out in Ref. [2] are absent.
The loop integral is still (5.1), but now, when we

integrate on k0 and close the integration path in the lower
half plane, we get contributions from a different set of
residues. We still have the physical poles z1 and z2 of (5.2),
as well as w�

1 and w�
2. However, we have w0

1 ¼ −ν1 and
w0
2 ¼ p0 − ν2 instead of w1 and w2.

FIG. 14. Cut triangle diagrams.
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If the Minkowski theory were unitary, its cut diagrams
would coincide with those of the LW theory, because the
physical d.o.f. are the same. Thus, if we subtract the cutting
equation (4.10) of the LW theory from the one of the
Minkowskian theory, the right-hand side should give zero.
We show that, instead, the discontinuity DiscðMM −MEÞ
of the difference MM −ME between the Minkowski
amplitude MM and the nonanalytically Wick rotated
Euclidean amplitude ME does not vanish.
Specifically, we find

DiscðMM −MEÞ ¼ iλ2
Z

dD−1k
ð2πÞD−1 Im½Resðν1Þ

þ Resðp0 þ ν2Þ − Resð−ν1Þ
− Resðp0 − ν2Þ�:

We can simplify the calculation by choosing p ¼ 0; m1 ¼
m2 ¼ 0. Then we have ν1 ¼ ν2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ iM2

p
, ω1 ¼ ω2 ¼

jkj. Setting M ¼ 1, the behavior of DiscðMM −MEÞ as a

function of p0 is nontrivial. Numerically, we find the plot of
Fig. 15 times iλ2. This proves that the Minkowski theories
violate perturbative unitarity.

IX. CONCLUSIONS

In this paper, we have investigated the perturbative
unitarity of the Lee-Wick models, formulated as non-
analytically Wick rotated Euclidean theories. We have
shown that it is possible to study the cutting equations
in each analytic region Ai of the complex plane, by
deriving them in suitable subdomains Oi and then analyti-
cally extending the equations to the whole regions Ai. The
unitary cutting equations hold in each Ai, with no propa-
gation of unphysical d.o.f. We have made explicit compu-
tations in the cases of the bubble and triangle diagrams, but
the derivations can be extended to all the one-loop
diagrams. Moreover, the basic arguments do not appear
to depend on the specific cases we have dealt with, so we
believe that the conclusions hold for all diagrams.
On the other hand, the Minkowski versions of the same

higher-derivative theories violate unitarity. In a way or
another (violations of the locality of counterterms as shown
in Ref. [2], or violations of unitarity) the Minkowski
higher-derivative theories are not viable. This means that,
in some sense, quantum field theory prefers what we may
call “Wick spacetime”, i.e. the Wick rotated Euclidean
space, to the Minkowski spacetime.
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