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This is the second paper on the semiclassical approach based on the density matrix given by the
Euclidean time path integral with fixed coinciding end points. The classical path, interpolating between this
point and the classical vacuum (called a “flucton”), as well as systematic one- and two-loop corrections
were calculated in the first paper [M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 93,
105039 (2016)] for a double-well potential. Here, we extend them for a number of quantum-mechanical
problems, such as an anharmonic oscillator and the sine-Gordon potential. The method is based on a
systematic expansion in Feynman diagrams and thus can be extended to quantum field theories (QFTs). We
show that the loop expansion in quantum mechanics resembles the leading-log approximations in QFT. In
this sequel, we present a complete set of results obtained using this method in a unified way. Alternatively,
starting from the Schrödinger equation we derive a generalized Bloch equation whose semiclassical-like,
iterative solution generates the loop expansion. We rederive the two-loop expansions for all three of the
above potentials and extend them to three loops, which has not yet been done via Feynman diagrams. All
results for both methods are fully consistent with each other. An asymmetric (tilted) double-well potential
(nondegenerate minima) is also studied using the second method.
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I. INTRODUCTION

Semiclassical approximations are well known tools, both
in quantum mechanics and quantum field theory. Standard
textbooks of quantum mechanics usually start with the
Bohr-Sommerfeld quantization conditions and the semi-
classical WKB approximation for the wave function.
Unfortunately, extending such methods beyond the first
correction for the one-dimensional case or those with
separable variables, or to a multidimensional case, proved
to be difficult. In mathematical physics, general construc-
tions for multidimensional complexified saddle points are
related to their extrema and the network of the so-called
Lefschetz thimbles (solutions of the gradient flow equa-
tions) connecting them. Applications of such a theory in the
path-integral context have been investigated by Witten [1],
which inspired a number of subsequent studies. However,
most of the paths considered below are real, and we will
only turn to complexified paths at the end of the paper in
Sec. V B. We will not discuss thimble solutions.
Semiclassical methods that start with Feynman path

integrals, on the other hand, are applicable not only for

many dimensions or many-body applications, but even for
quantum field theories. The early applications of these
methods included, e.g., the paper by Rossi and Testa [2]
who used an expansion around classical paths.
The so-called instanton calculus has been developed for

gauge theories and other models. Instantons are indeed
responsible for many important phenomena in quantum
field theories (QFTs), which we cannot discuss here. From
a technical point of view, however, so far the calculations
have not progressed beyond one loop in any of these QFT
applications.
In our previous paper [3] (which we hereafter refer to

as I), we discussed a different version of the semiclassical
approach, based on Feynman’s path-integral representation
of the density matrix [4,5] analytically continued to
imaginary (Euclidean) time. It corresponds to a transition
from quantum mechanics to statistical mechanics: if the
time is defined as a periodic variable with period β ¼ ℏ=T,
the density matrix corresponds to a quantum ensemble at
nonzero temperature T. Thus, the paths (both classical and
quantum) to be considered in this setting need to have the
same periodicity. However, in this paper we will only focus
on the zero-temperature limit, in which the period becomes
infinite.
At the classical level, the theory is based on a classical

(minimal action) periodic path, which extends from some
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arbitrary point x0 to the “classical vacuum” (the minimum
of the potentia) and returns. This path was introduced in
Ref. [6] and was named the “flucton.” We only recently
learned that essentially the same construction was proposed
later on in Ref. [7].
A general advantage of this approach is that the path

integrals lead to systematic perturbative series, in the form
of Feynman diagrams, with clear rules for each order.
Textbook perturbative approaches for the wave functions
do not have this feature, and basically are never used
beyond, say, the first and second orders.
Of course, the higher level of generality comes with a

heavy price. While the classical part is relatively simple, for
the quantum part at the one-loop level one already needs
to calculate determinants of certain differential operators.
At two and more loops, Feynman diagrams need to be
evaluated on top of spacetime-dependent backgrounds;
therefore, those should be evaluated in the spacetime
representation rather than in the energy-momentum one
used most often in QFTapplications. Most of the content of
the first part of this paper is the explicit demonstration of
how one can accomplish all of this, in analytic form, for
three classical examples—quartic anharmonic and double-
well, and sine-Gordon (Mathieu) potentials. Their quantum
Hamiltonian is of the standard form

H ¼ −
1

2m
∂2
x þ VðxÞ; ∂x ¼

d
dx

; ð1Þ

where we use the units ℏ ¼ 1 and m ¼ 1 without loss of
generality.
Since our ultimate aim is a generalization of the semi-

classical theory to QFTs, our quantum-mechanical exam-
ples should be represented in a certain specific form of an
anharmonic perturbation of the harmonic oscillator,

VðxÞ ¼
~VðgxÞ
g2

¼ 1

2
x2 þ a3gx3 þ a4g2x4 þ…; ð2Þ

where ~V has a minimum at x ¼ 0 and always starts from
quadratic terms, the frequency of the small oscillation near
the minimum is set equal to one (ω ¼ 1), and g is the
coupling constant. The classical (vacuum) energy is always
taken to be zero, Vð0Þ ¼ 0, and a2;3;… are parameters. We
call ðgxÞ the classical coordinate (see below). Both the
classical coordinate and the Hamiltonian (1) are invariant
with respect to the simultaneous change

x → −x; g → −g:

This implies that the energy is a function of g2,

E ¼ Eðg2Þ: ð3Þ
The semiclassical expansion is done in powers of the small
coupling g, in a way that is similar to perturbation theory
which is also expanded in powers of the small coupling g.

Let us indicate the potentials we are going to study in the
form (2):

(i) Quartic anharmonic oscillator (AHO),

V ¼ 1

2
x2ð1þ g2x4Þ: ð4Þ

(ii) Quartic double-well potential (DWP),

V ¼ 1

2
x2ð1 − gxÞ2: ð5Þ

(iii) Sine-Gordon (Mathieu) potential (SGP),

V ¼ ð1 − cos gxÞ
g2

: ð6Þ

(iv) Quartic asymmetric (tilted) double-well potential
(ADWP),

V ¼ 1

2
x2ð1þ 2tgxþ g2x2Þ: ð7Þ

Here the parameter t “measures” the asymmetry of wells;
for t ¼ �1 the wells are symmetric and we arrive at the
DWP, while for t ¼ 0 we arrive at the AHO.
In our previous paper [3] we used Feynman diagrams to

calculate one- and two-loop corrections to the classical
flucton action for the DWP potential. For the other two
famous quantum-mechanical problems—the AHO and
SGP—we had only presented the derivation of the
Green functions and the (one-loop) determinants. For
completeness, here we also add the results for the two-
loop corrections for those two problems, calculated from
the same set of Feynman diagrams. Like for the DWP case,
the complete set of results looks surprisingly simple and
compact. Remarkably, it does not contain any transcen-
dental functions, logs, or polylogs, which appear for
individual diagrams. Furthermore, the classical (flucton)
action is always the WKB action

R
pdq, but evaluated at

zero energy; this general observation was missed before.
To clarify the meaning of the loop expansion, we will be
able to derive a certain Bloch-type Riccati equation, the
iteration solution of which exactly generates the loop
expansion. This equation will be called the generalized
Bloch equation.

II. FLUCTUATION CORRECTIONS FROM THE
FEYNMAN DIAGRAMS

The method has been extensively described in I and there
is no need to repeat it here in detail. Its main idea is that
quantum fluctuations around the classical flucton path
xfluction can be described by a standard expansion of the
action in powers of ðx − xfluctionÞ, with the quadratic term
given by the Green function, while the higher-order terms
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produce vertices of the Feynman diagrams. We briefly
review the main definitions.

A. Generality

By definition, the Feynman path integral gives the
density matrix in quantum mechanics [4],

ρðxi; xf; ttotÞ ¼ N
Z

xðttotÞ¼xf

xð0Þ¼xi

DxðtÞeiS½xðtÞ�=ℏ: ð8Þ

Here N is a normalization factor and S is the usual classical
action of the problem,

S ¼
Z

ttot

0

dt

�
m
2

�
dx
dt

�
2

− VðxÞ
�
;

for a particle of mass m in a static potential VðxÞ; it
provides the weight of the paths in Eq. (8).
As it is well known (see, e.g., Ref. [5]), one can also

apply these expressions in statistical mechanics. For this,
one needs to change time into its Euclidean version τ ¼ it
defined on a circle with circumference β ¼ τtot. Such a
periodic time is known as the Matsubara time, and the
density matrix of a quantum system is related to the
probability for a thermal system with temperature

T ¼ ℏ=β: ð9Þ

At T → 0 the ground state of the quantum system is
naturally recovered. The periodicity of the path implies
that there is only one end point: xi ¼ xf ¼ x0.
The main object of our study is the diagonal matrix

element of the density matrix, which gives the probability
for the specific coordinate value x0 [or a particular field
configuration ϕ0ðx⃗Þ in QFT] in this ensemble,

Pðx0; βÞ ¼ N
Z

xðβÞ¼x0

xð0Þ¼x0

DxðτÞe−SE½xðτÞ�=ℏ: ð10Þ

So, we take into account all (closed) trajectories starting
and ending at x0. Here the weight is defined via the
Euclidean action

SE ¼
Z

β

0

dτ

�
m
2

�
dx
dτ

�
2

þ VðxÞ
�
:

Using the standard definition of the density matrix in terms
of stationary states jni with energy En, the sum over states
becomes a set of decreasing exponentials,

Pðx0; βÞ ¼
X
n

jψnðx0Þj2e−Enβ: ð11Þ

In the limit of large β or low temperature T, in Eq. (11) the
dominant term

Pðx0; β → ∞Þ ∼ jψ0ðx0Þj2e−E0β ð12Þ

describes the ground state, which is the main state we are
interested in.

B. The classical path: Flucton

We assume for simplicity that the potential (2) has a
global minimum at x ¼ 0,

VðxÞ ≥ 0 and
d
dx

Vjx¼0 ¼ 0:

Thus, the exponent in Eq. (11) is non-negative, SE ≥ 0.
In Euclidean time τ the kinetic energy changes sign,

which is effectively equivalent to flipping the sign of the
potential, VðxÞ → −VðxÞ, turning a minimum into a maxi-
mum.Now,we ask if there exists a real path, starting at some
arbitrary point x0 at τ ¼ 0 and returning to it after the
required time duration, at the Matsubara time τ ¼ β. The
lowest-action path of this kind is the classical path, whichwe
call the flucton. Its energy is defined by its period.
Since in this work we deal only with the quantum-

mechanical limit of vanishing temperature T → 0, the
Matsubara time goes to infinity. It is clear then that the
particle should spend a divergently long time near the turning
point, which is the case when xt → 0, the location of the
maximumof−V (see Fig. 1). Evidently, such a classical path
with an infinite period is theonewith zero energy,E ¼ 0. The
basic idea is that such a classical pathwith zero energyE ¼ 0
“climbs up the hill” to its maximum at x ¼ 0.
Let us find the flucton paths explicitly. They of course

satisfy the second-order classical equation of motion
(EOM), but in the one-dimensional case it is much easier
to use the energy conservation at E ¼ 0,

d
dτ

xðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2VðxÞ

p
: ð13Þ

The circular trajectory emerging in Eq. (13)—which starts
and ends at x0 and passes through x ¼ 0 at time β—is
called a flucton [6],

FIG. 1. The sketch of the inverted potential −V versus the
coordinate x. The flucton is the classical trajectory starting and
ending at the same initial point x0. At nonzero temperature it goes
through the turning point xt (see text). At zero temperature xt
coincides with the location of the maximum, xt ¼ 0.
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xfluctonð0Þ ¼ xfluctonðβÞ ¼ x0;

xflucton ¼ xfluctonðτ; x0; βÞ:

It enables us to evaluate the transition amplitude Pðx0; βÞ
(10). Putting

ϕðx0; βÞ≡ − log½Pðx0; βÞ�

in Eq. (12) and expanding the classical action around the
flucton, we obtain

ϕðx0;βÞ¼ Sfluctonþ
1

2
logðN−2detðOfluctonÞÞþ loops; ð14Þ

where Sflucton ≡ SE½xflucton� and

Oflucton ≡ −
d2

d2τ
þ ∂2

∂x2 VðxÞjx¼xfluctonðτ;x0;βÞ ð15Þ

is a Schrödinger-type operator in the variable τwith x0, β as
parameters.
In order to construct the loop expansion (14), three

building blocks are used.
(i) The action Sflucton of the flucton: In the limit β → ∞,

the action Sflucton provides the dominant term of the
phase of the ground-state function [see Eq. (12)] and
exactly reproduces the WKB result (obtained from
the Riccati-Bloch equation for the phase).

(ii) The determinant of Oflucton [Eq. (15)] describes the
quadratic quantum fluctuations.

(iii) The loop corrections: These are true quantum
corrections decreasing at large distances, and in
the present formalism they are given by explicit
Feynman diagrams in the flucton background.

While the computation of Sflucton [Eq. (14)] is relatively
simple, the evaluation of detOflucton already involves the
diagonalization of a certain nontrivial second-order differ-
ential operator. Usually, it is a highly nontrivial calculation
which is enormously simplified by the generalized Riccati-
Bloch equation (see below).
While in our paper I we discussed several quantum-

mechanical problems to some extent, the calculations were
done to two loops only for the DWP. It is clear now that the
formalism can be applied for any perturbed-harmonic-
oscillator-type potential [Eq. (2)]. Therefore, without
explanations, we now simply list the full set of results
for the AHO, DWP, and SGP and also for the ADWP. The
units used assume a particle mass m ¼ 1 and the Planck
constant ℏ ¼ 1.

1. Relating the determinant and the Green function

In this section we calculate the quadratic-order quantum
oscillations around a classical (flucton) path, namely, the
determinant (14). For the harmonic oscillator, the potential

∂2VðxÞ=∂x2jx¼xflucton in Eq. (15) is just a constant, so in this
case the fluctuations do not depend on the classical
path, and direct diagonalization of the operator (15) [8]
shows that

N−2DetðOfluctonÞ ¼ 2π sinh β:

In general, a direct diagonalization of Eq. (15) is highly
nontrivial and analytical results for it are extremely rare.
In 1978, Brown and Creamer [9] invented the a way to

relate the determinant and the Green function, reducing it to
a calculation of a symbolic one-loop Feynman diagram.
One can apply their procedure to quantum mechanics.
When the potential Vflucton ≡ Vðxfluctonðτ; x0; βÞÞ depends
on some parameter, it can be varied. To this end, we rewrite
the potential as

Vflucton ¼ 1þWðτ;X; βÞ;

where X ¼ Xðx0Þ. Its variation, which results in an extra
potential

δVflucton ¼
∂W
∂X δX; ð16Þ

is a perturbation: its effect can be evaluated by the Feynman
diagram

∂ logDetðOfluctonÞ
∂X ¼

Z
dτGðτ; τÞ ∂VfluctonðτÞ

∂X ð17Þ

which contains a derivative of the potential as a vertex and
the “loop” Green function Gðτ; τÞ,

OfluctonGðτ1; τ2Þ ¼ δðτ1 − τ2Þ; ð18Þ

at the same point τ1 ¼ τ2 ¼ τ (see Fig. 2). For simplicity,
the dependence of Gðτ1; τ2Þ on x0 and β is omitted.
Equation (17) relates the determinant and the Green
function: if the rhs can be calculated, the derivative over
X can be integrated back. Hence, if the Green function is
known, one can calculate the determinant.

FIG. 2. Symbolic one-loop diagram, including variation of the
fluctuation potential δV and the simplified “single-loop” Green
function Gðτ; τÞ (see Ref. [3]).
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2. Two-loop-correction: Feynman diagrams

The loop expansion for Pðx0; βÞ can be written in the
form

loops ¼ 1þ g2B1 þ g4B2 þ � � � ; ð19Þ

where Bn ¼ Bnðx0Þ is the ðnþ 1Þ-loop contribution.
Equivalently, in Eq. (14) the loop expansion is of the form

loops ¼ g2B1 þ g4 ~B2 þ � � � ; ð20Þ

where ~Bn ¼ ~Bnðx0Þ; n > 1 is made out of loop contribu-
tions Bn, e.g., ~B2 ¼ −B2

1=2þ B2 etc.
In general, for any potential of the form (2) the two-loop

correction B1 is given by the sum of three Feynman
diagrams (see Fig. 3).
In Fig. 3, diagram a is given by a one-dimensional

integral, while diagrams b1 and b2 correspond to two-
dimensional integrals. Explicitly,

a≡ −
1

8

Z
∞

0

½v4ðτÞG2ðτ; τÞ − v4;0G2
0ðτ; τÞ�dτ;

b1 ≡ 1

12

Z
∞

0

Z
∞

0

½v3ðτ1Þv3ðτ2ÞG3ðτ1; τ2Þ

− v3;0v3;0G3
0ðτ1; τ2Þ�dτ1dτ2;

b2 ≡ 1

8

Z
∞

0

Z
∞

0

½v3ðτ1Þv3ðτ2ÞGðτ1; τ1ÞGðτ1; τ2ÞGðτ2; τ2Þ

− v3;0v3;0G0ðτ1; τ1ÞG0ðτ1; τ2ÞG0ðτ2; τ2Þ�dτ1dτ2;
ð21Þ

where

vkðτÞ ¼
∂k

∂xk VðxÞjx¼xflucton ; k ¼ 3; 4

are the vertices on the flucton background,

vk;0 ¼
∂k

∂xk VðxÞjx¼0; k ¼ 3; 4

denote the “vacuum vertices,” the Green function Gðτ1; τ2Þ
is defined in Eq. (18), and

G0 ¼
e−jτ1−τ2j

2
−
e−τ1−τ2

2
; ð22Þ

is the “harmonic propagator.” Its presence is related to the
necessity to subtract (spacetime-divergent) anharmonic
effects, and is unrelated to the fluctons.

In the case of the three-loop contribution for the general
potential (2), there exist 15 diagrams which contribute (see,
e.g., Ref. [10]), while for the DWP the number of diagrams
drops to 12 (see, e.g., Ref. [11]). Like in instanton calculus,
we do not hope that all of these diagrams can be calculated
analytically.

C. AHO

This section contains the expansion (14) up to two loops
for the AHO.
The AHO is defined by the potential (4),

VðxÞ ¼ 1

2
x2ð1þ g2x2Þ ¼ 1

2g2
u2ð1þ u2Þ; u ¼ gx;

at zero temperature, T ¼ 0. The classical flucton path
solution with energy E ¼ 0 of Eq. (13) is

xfluctonðτÞ ¼
gx0

coshðjτjÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2x20

p
sinhðjτjÞ :

The corresponding classical action is given by

SE½xflucton� ¼
2

3

ð1þ g2x20Þ
3
2 − 1

g2
:

In the limit g → 0 we recover the classical action for the
harmonic oscillator, and at x0 → ∞ we obtain the expan-
sion

SE½xflucton� ¼
2

3
gx30 þ

1

g
x0 þ lower-order terms: ð23Þ

It is convenient to introduce a new variable,

XAHOðxÞ ¼ ð1þ g2x2Þ12 ¼ ð1þ u2Þ12; u ¼ gx: ð24Þ

For the anharmonic oscillator, the Green function of the
operator Oflucton [Eq. (15)] is given by

FIG. 3. Diagrams contributing to the two-loop correction
B1 ¼ aþ b1 þ b2. The signs of the contributions and symmetry
factors are indicated.
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Gðτ1; τ2;XAHOÞ ¼
sech½1

2
ð−jτ−j þ τþÞ�ðXAHO cosh½1

2
ðjτ−j þ τþÞ� þ sinh½1

2
ðjτ−j þ τþÞ�Þ

4XAHOðcosh½12 ðjτ−j þ τþÞ� þ XAHO sinh½1
2
ðjτ−j þ τþÞ�Þ2ð1þ XAHO tanh½1

2
ð−jτ−j þ τþÞ�Þ2

×

�
XAHO cosh½jτ−j − τþ�

�
1þ 3X2

AHO þ XAHOð3þ X2
AHOÞ tanh

�
1

2
ð−jτ−j þ τþÞ

��

þ ð1 − X2
AHOÞð4 − 5X2

AHO − 3XAHOðjτ−j − τþÞÞ tanh
�
1

2
ð−jτ−j þ τþÞ

�

− XAHOð1þ 3XAHOðXAHO þ ð1 − X2
AHOÞðjτ−j − τþÞÞÞ

�
; ð25Þ

where τ− ¼ τ2 − τ1 and τþ ¼ τ1 þ τ2.
Taking the above Green function and the “vertex”

∂VfluctonðτÞ
∂XAHO

¼ 12ðsinhðτÞ þ XAHO coshðτÞÞ
ðcoshðτÞ þ XAHO sinhðτÞÞ3 ; ð26Þ

ðτ > 0Þ to evaluate Eq. (17), we obtain analytically

logDetðOfluctonÞ ¼ 2 log½XAHOð1þ XAHOÞ�: ð27Þ

As for the next term—the two-loop correction B1—the results for all three two-loop Feynman diagrams shown in Fig. 3
can be found analytically:

a ¼ −
3ð32þ 96X þ 29X2 − 74X3 − 35X4Þ

560X2ð1þ XÞ2

−
9ð2ð2 − 3X2Þ logð2Þ − 2ð2 − 3X2Þ log½1þ X� − 3Xð1 − X2ÞPolyLog½2; X−1

1þX�Þ
70Xð1 − X2Þ ;

b1 ¼ −
140þ 184X þ 272X2 þ 193X3 − 478X4 − 455X5

840X3ð1þ XÞ2

þ 3ð2ð2 − 3X2Þ logð2Þ − 2ð2 − 3X2Þ log½1þ X� − 3Xð1 − X2ÞPolyLog½2; X−1
1þX�Þ

35Xð1 − X2Þ ;

b2 ¼ −
140þ 528X þ 464X2 − 169X3 − 626X4 − 385X5

560X3ð1þ XÞ2

þ 3ð2ð2 − 3X2Þ logð2Þ − 2ð2 − 3X2Þ log½1þ X� − 3Xð1 − X2ÞPolyLog½2; X−1
1þX�Þ

70Xð1 − X2Þ ; ð28Þ

where X ≡ XAHO and PolyLog½n; z� ¼ P∞
k¼1 z

k=kn is the polylogarithm. Each diagram provides a contribution in the form
of a sum of rational (meromorphic) functions and a transcendental function. Functionally, both functions are similar in each
diagram. Eventually, after summing all three diagrams a; b1, and b2, the two-loop correction B1 takes an amazingly simple
form:

BðAHOÞ
1 ¼ ð1 − XAHOÞð5þ 16XAHO þ 25X2

AHO þ 17X3
AHOÞ

12X3
AHOð1þ XAHOÞ

; ð29Þ

where all transcendental contributions are canceled out and the answer turns out to be the meromorphic function of XAHO
only. We will observe similar cancellations for the DWP and SGP below.
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D. DWP

The double-well potential is defined as in Eq. (5),

V ¼ 1

2
x2ð1 − gxÞ2 ¼ 1

2g2
u2ð1 − uÞ2; u ¼ gx:

Its two degenerate minima are situated at x ¼ 0 and
x ¼ 1=g, respectively. In the zero-temperature limit
T ¼ 1=β ¼ 0, the flucton trajectory is given by [3]

xfluctonðτÞ ¼
x0ðcoshðjτjÞ − sinhðjτjÞÞ

1þ gx0ð1 − coshðjτjÞ þ sinhðjτjÞÞ ;

and the corresponding classical action reads

SE½xflucton� ¼ x20

�
1þ 2gx0

3

�
:

For this case it is convenient to introduce the variable

XDWPðxÞ≡ u ¼ gx; ð30Þ

cf. Eq. (24). In this variable the corresponding Green
function takes the form

Gðτ1; τ2Þ ¼
e−jτ1−τ2j

2ðeτ1ð1þ XÞ − XÞ2ðeτ2ð1þ XÞ − XÞ2 ½8e
1
2
ðτ1þτ2þ3jτ1−τ2jÞX3ð1þ XÞ − 8e

1
2
ð3τ1þ3τ2þjτ1−τ2jÞXð1þ XÞ3

þ e2ðτ1þτ2Þð1þ XÞ4 − 6eðτ1þτ2þjτ1−τ2jÞX2ð1þ XÞ2jτ1 − τ2j þ eðτ1þτ2þjτ1−τ2jÞð6X4ðτ1 þ τ2Þ
þ 12X3ð1þ τ1 þ τ2Þ þ 6X2ð3þ τ1 þ τ2Þ þ 4X − 1Þ − e2jτ1−τ2jX4�; ð31Þ

for τ1, τ2 > 0, where X ¼ XDWP.
Substituting Eq. (31) and the “vertex”

∂VfluctonðτÞ
∂XDWP

¼ 6eτðXDWP þ eτð1þ XDWPÞÞ
ðeτð1þ XDWPÞ − XDWPÞ3

ð32Þ

into the rhs Eq. (17) gives

∂ logDetðOfluctonÞ
∂XDWP

¼ 4

1þ XDWP
; ð33Þ

cf. Eq. (27).
The results for all three two-loop Feynman diagrams

shown in Fig. 3 can be found analytically:

a ¼ 3

560X2ð1þ XÞ4 ×
�
24X − 60X2 − 520X3 − 1024X4 − 832X5 − 245X6

− 24ð1þ XÞ2ð1 − 4X − 18X2 − 12X3Þ log½1þ X� þ 288X2ð1þ XÞ4PolyLog
�
2;

X
1þ X

��
;

b1 ¼ −
1

280X2ð1þ XÞ4 ×
�
24X − 60X2 − 520X3 − 1024X4 − 832X5 − 245X6

− 24ð1þ XÞ2ð1 − 4X − 18X2 − 12X3Þ log½1þ X� þ 288X2ð1þ XÞ4PolyLog
�
2;

X
1þ X

��
;

b2 ¼ −
1

560X2ð1þ XÞ4 ×
�
24X − 60X2 þ 1720X3 þ 5136X4 þ 4768X5 þ 1435X6

− 24ð1þ XÞ2ð1 − 4X − 18X2 − 12X3Þ log½1þ X� þ 288X2ð1þ XÞ4PolyLog
�
2;

X
1þ X

��
; ð34Þ

where X ¼ XDWP.
Again, the full two-loop correction takes an amazingly

simple form:

BðDWPÞ
1 ¼ −XDWP

ð4þ 3XDWPÞ
ð1þ XDWPÞ2

; ð35Þ

cf. Eq. (29). All transcendental contributions are again
canceled out, and the answer is the meromorphic function
of XDWP only [3].

E. SGP

In this section we consider the sine-Gordon potential (6),

V ¼ 1

g2
ð1 − cosðgxÞÞ ¼ 1

g2
ð1 − cos uÞ; u ¼ gx;

with an infinite number of degenerate vacua situated
periodically in x.
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For this potential, the flucton at T ¼ 0 takes the form

xfluctonðτÞ ¼
4arccot½ðcosh τ − sinh τÞ cotðgx0

4
Þ�

g
:

The classical flucton action gives

SE½xflucton� ¼
16sin2ðgx0

4
Þ

g2
:

For the SGP, we introduce the variable

XSGPðxÞ ¼
gx
4

¼ u
4
; u ¼ gx; ð36Þ

cf. Eqs. (24) and (30).
The standard construction yields the following Green

function:

Gðτ1; τ2Þ ¼
1

8ðcoshðτ1Þ þ cosð2XÞ sinhðτ1ÞÞ
×

1

ðcoshðτ2Þ þ cosð2X3Þ sinhðτ2ÞÞ

×
�
2ðτ1 þ τ2 − jτ2 − τ1jÞsin2ð2XÞ þ 8 cosð2XÞsinh2

�
1

2
ðτ1 þ τ2 − jτ2 − τ1jÞ

�

þ ð3þ cosð4XÞÞ sinhðτ1 þ τ2 − jτ2 − τ1jÞ
�
; ð37Þ

for τ1, τ2 > 0, where X ¼ XSGP.
In this case, the “vertex”

∂VfluctonðτÞ
∂XSGP

¼ −
16e2τ sec ðXSGPÞ2 tanðXSGPÞðe2τ − tan ðXSGPÞ2Þ

ðe2τ þ tan ðXSGPÞ2Þ3

and direct evaluation of Eq. (17) leads to the amazingly
simply expression

∂ logDetðOfluctonÞ
∂XSGP

¼ 4 tan½XSGP�; ð38Þ

cf. Eqs. (27) and (33).
As for the three two-loop Feynman diagrams shown in

Fig. 3, we are only able to analytically calculate diagram a,

a ¼ −Re
�

1

640
ð5 − 2 sec2ðXSGPÞ þ sec4ðXSGPÞ

− 8PolyLog½2;−tan2ðXSGPÞ�

þ 8½csc2ðXSGPÞ − sec2ðXSGPÞ� log½cosðXSGPÞ�Þ
�
;

ð39Þ

where Re½x� denotes the real part of x. Irrational contribu-
tions appear again [see the second line of Eq. (39)] as in the

AHO [Eq. (28)] and DWP cases [Eq. (34)]. We were
not able to analytically calculate b1;2 contributions.
However, we can calculate these two-dimensional
Feynman integrals numerically. We make two assump-
tions: (i) all irrational contributions cancel in the sum
B1 ¼ aþ b1 þ b2 [see the second line of Eq. (39)], and
(ii) the sum B1 ¼ aþ b1 þ b2 is given by a polynomial
in sec2ðXÞ of degree two,

A −Dsec2ðXÞ þ Csec4ðXÞ;

[cf. the first line of Eq. (39)] with the coefficients A, D,
and C. Based on these assumptions, we fit the numerical
data of B1 and find that the coefficients A, D, and C can
be calculated explicitly. It leads to a very simple
expression for the two-loop correction:

BðSGPÞ
1 ¼ −

g2

16
tan2ðXSGPÞ: ð40Þ

Eventually, this expression will be verified numerically.
Later on, this result will be derived in quantum
mechanics using the generalized Bloch equation.

F. The results summarized

The combined results from Secs. III C, III D, and III E
show that the expansion (14) of the phase of the ground-
state function for the AHO, DWP, and SGP is given
explicitly by
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2ϕðAHOÞðg; xÞ ¼ 2

3

ð1þ g2x2Þ32 − 1

g2
þ log

�ð1þ g2x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2x2

p
Þ

2

�

þ g2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2x2

p
Þð5þ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2x2

p
þ 25ð1þ g2x2Þ þ 17ð1þ g2x2Þ32Þ

12ð1þ g2x2Þ32ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2x2

p
Þ

þ � � � ;

2ϕðDWPÞðg; xÞ ¼ 1

g2

�
ðgxÞ2 þ 2ðgxÞ3

3

�
þ 2 logð1þ gxÞ − g2

ðgxÞð4þ 3gxÞ
ð1þ gxÞ2 þ � � � ;

2ϕðSGPÞðg; xÞ ¼ 16

g2
sin2

�
gx
4

�
þ 2 log

�
cos

�
gx
4

��
−
g2

16
tan2

�
gx
4

�
þ…; ð41Þ

which is the Laurent expansion in powers of g2 if the
variable u ¼ gx is introduced.

III. REDERIVATION OF THE LOOP EXPANSION
FROM THE SCHRÖDINGER EQUATION

Our ultimate aim remains a generalization of the
semiclassical theory to QFTs; thus, all of our quantum-
mechanical examples should be written as anharmonic
perturbations of the harmonic oscillator,

V ¼
~VðgxÞ
g2

[see Eq. (2)], where ~V has a minimum at x ¼ 0 and it
always starts from quadratic terms. The classical vacuum
energy is always taken to be zero, Vð0Þ ¼ 0. Note that ℏ
was put to one, as is traditionally done in QFTs. The
semiclassical expansion is done in powers of the small
coupling g instead of powers of ℏ. It should be in
agreement with the so-called nonperturbative normaliza-
tion of the non-Abelian gauge theory, where the coupling
appears only in front of the action.
However, in a quantum-mechanical setting traditional

units are different, and in the next subsection we show how
one can reformulate these results as an expansion in powers
of the Planck constant ℏ.

A. Quantum-mechanical meaning of the loop
expansion: Generalized Bloch equation

In order to clarify the meaning of the semiclassical loop
expansion in quantummechanics, it is convenient to change
notation as follows. Taking the AHO potential (4) as an
example, we recall the units used. The mass of the particle
m ¼ 1, the frequency of the near-minimum oscillations
ω ¼ 1, and the Planck constant ℏ ¼ 1 are all put to unity.
Now we want to restore ℏ in the exponent of the quantum
(statistical) weight expð−SE=ℏÞ, and make a shift to the
“classical coordinate” u ¼ gx. Now the Euclidean action is

SE ¼ 1

ℏg2

Z
dτ

�
_u2

2
þ u2ð1þ u2Þ

2

�
: ð42Þ

In other words, we have selected different unit of length,
thereby eliminating the parameter in the nonlinear, quartic
term. The coupling constant now appears only together with
the Planck constant. So, one can put it to one, g ¼ 1, using
only ℏ as a parameter of the loop semiclassical expansion.
The classical equation of motion does not depend on it, and
thus neither does the flucton solution itself. Furthermore, the
Green function—which inverts the operator of quantum
fluctuations around the flucton—depends on the classical
coordinate u ¼ gx but does not depend on ℏ. A similar
consideration can be made for a general potential (2) and we
arrive at the Euclidean action

SE ¼ 1

ℏg2

Z
dτ
�
_u2

2
þ ~VðuÞ

�
: ð43Þ

The parameters of the problem can thus be defined as
(i) the quantumparameterℏg2 (or justℏ for the g ¼ 1 choice)
and (ii) the classical coordinate location u0 ¼ gx0 under
consideration. The loop expansion of the semiclassical
theory we discuss is therefore redefined as just the
Laurent expansion in powers of ℏg2, starting from the
classical term Oð1=ℏg2Þ, the determinant Oððℏg2Þ0Þ,
the two-loop diagrams Oððℏg2Þ1Þ, and so on. For g ¼ 1
the loop expansion appears as a Laurent expansion in ℏ.
Naturally, its validity is expected when Sflucton=ðℏg2Þ ≫ 1,
and thus at small ℏ ≪ 1 and/or sufficiently large u0. Below
we quantify the accuracy of this expansion in detail.

B. Iterative solution of the Schrödinger equation

In this section we rederive first three terms of the loop
expansion (14), and derive one more term, based on
quantum mechanics, employing the usual Schrödinger
equation for the wave function. Let us stress that this is
the only part of our program which cannot be straightfor-
wardly generalized to QFT, at least so far. It allows us to
cross-check the results obtained in the loop expansion.
The first step is standard; we proceed from the

Schrödinger equation of the wave function to that of its
logarithmic derivative, which eliminates the overall nor-
malization constant. In the second step we extract one
power of the coordinate from the function,
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xzðgxÞ ¼ −
ψ 0ðxÞ
ψðxÞ : ð44Þ

This reflects the fact that since it is assumed that the
original potential (2) has a minimum at x ¼ 0, the loga-
rithmic derivative of the wave function (the derivative of
the phase) has to vanish at x ¼ 0. By substituting it into the
Schrödinger equation

�
−
1

2

d2

dx2
þ VðxÞ

�
ψðxÞ ¼ EψðxÞ;

where the Planck constant ℏ ¼ 1, one gets the following
equation for zðgxÞ:

gxz0ðgxÞ þ zðgxÞ − x2zðgxÞ2 ¼ 2E −
2

g2
~VðgxÞ: ð45Þ

Nowwe redefine the coordinate u ¼ gx and obtain the form
of the equation we will be solving,

g2uz0ðuÞ þ g2zðuÞ − u2zðuÞ2 ¼ 2g2E − 2 ~VðuÞ: ð46Þ

We call this equation the generalized Bloch equation. Here
zðuÞ represents the reduced logarithmic derivative. Now we
proceed to solve Eq. (46).

C. Weak coupling expansions

1. Riccati-type equation

Let us now reintroduce the logarithmic derivation

yðxÞ ¼ −
ψ 0ðxÞ
ψðxÞ

and write a standard Riccati equation for the potential (2),

y0 − y2 ¼ 2E − x2 − 2a3gx3 − 2a4g2x4 −… ð47Þ

[cf. Eq. (45)], instead of the Schrödinger equation, as in the
nonlinearization procedure [12,13]. Now we develop a
perturbation theory in powers of g,

E ¼
X∞
0

emgm; yðxÞ ¼
X∞
0

ymðxÞgm:

It is evident that all em with odd m should vanish [see
Eq. (3)], e2kþ1 ¼ 0; k ¼ 0; 1; 2;… The unperturbed solu-
tion of Eq. (47) at g ¼ 0 is equal to E0 ¼ e0 ¼ 1

2

and y0 ¼ x.
The equation for the correction of the order g reads

y01 − 2xy1 ¼ −2a3x3;

with the solution

y1 ¼ a3x2 þ a3; e1 ¼ 0:

The equation for the correction of the order g2 is

y02 − 2xy2 ¼ e2 − 2a4x4 þ y21

¼ e2 þ a23 − ð2a4 − a23Þx4 þ 2a23x
2;

with the solution

−y2 ¼ ða4 − a23=2Þx3 þ a3x2 þ axþ a; e1 ¼ 0:

In general, the equation for the mth correction has the
form

y0m − 2y0ym ¼ em −Qm − amxm;

where Qm ¼ −
P

m−1
p¼1 ypym−p for m > 1 plays the role of

an effective perturbation potential: it is made from previous
iterations. It can be easily demonstrated that the correction
ymðxÞ is a finite-order polynomial in x and, in principle, it
can be found by algebraic means,

ymðxÞ ¼ AðmÞ
m−1x

m−1 þ � � � þ AðmÞ
k xk þ � � � þ AðmÞ

0 : ð48Þ

A straightforward analysis leads to the remarkable property

AðmÞ
k ∼

m!

k!

(see Ref. [12]). In general, AðmÞ
k look like generalized

Catalan numbers. Hence, the coefficient AðmÞ
k at fixed k ∼m

defines the convergent series in m, while at small fixed k
the series is usually divergent. In particular,

AðmÞ
1 ¼ em:

Let us change the variable in Eq. (48),

AðmÞ
k → AðmÞ

m−k; k ¼ 1; 2;…ðm − 1Þ:

It is natural to introduce the generating function

~ykðx; fagÞ ¼
X∞
m¼k

gmAðmÞ
m−kðfagÞxm−k:

If the potential (2) is a polynomial, several leading
generating functions can be found explicitly, at k¼
1;2;3;… E.g., for the AHO (a3 ¼ 0, a4 ¼ 1 and
ak ¼ 0; k ¼ 5; 6;…),

~y0 ¼
X∞
m¼0

gmAðmÞ
m xm ¼ xð1þ g2x2Þ1=2
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(see Ref. [12]), cf. Eq. (41). It can be immediately
recognized as the classical momentum at zero energy!
Hence, the sum of leading terms of the corrections
ymðxÞ; m ¼ 0; 1; 2 � � � at x → ∞ is the classical momentum
at zero energy: it is similar to the leading log approxi-
mation in QFT. In the same way, one can calculate the sum
of next-to-leading terms of the corrections ymðxÞ; m ¼
1; 2 � � � at x → ∞,

~y1 ¼
X∞
m¼1

gmAðmÞ
m−1x

m−1 ¼ g2x
1þ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
1þg2x2

p

ð1þ g2x2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2x2

p
Þ
;

(see Ref. [12]), cf. Eq. (41), which is the logarithmic
derivative of the determinant! Hence, the sum of sublead-
ing (next-to-leading) terms of the corrections ymðxÞ,
m ¼ 0; 1; 2 � � � at x → ∞ is the logarithmic derivative of
the determinant: it is similar to the next-to-leading-log
approximation in QFT. We can move even further and
calculate next-to-next-to-leading terms in the corrections
ymðxÞ, m ¼ 1; 2 � � � at x → ∞ and then sum them up and
discover that

~y2 ¼
X∞
m¼2

gmAðmÞ
m−2x

m−2 ¼ dB1

dx

(see Ref. [12]), cf. Eq. (41). Thus, the result occurs as a
derivative of the two-loop contribution (19) [see Eq. (29)],
where x ¼ XAHO. It can be checked (see below) that ~y3 is
the first derivative of the three-loop contribution (19).
The property that the first three generating functions

~y0;1;2 are first derivatives of the first three terms in the loop
expansion holds for the DWP. In general, the expansion in
such generating functions,

y ¼ ~y0 þ ~y1 þ ~y2 þ…;

is a new semiclassical expansion, resembling, e.g., the
logarithmic approximations of QFT.

2. Generalized Bloch equation case

Calculations of the loop expansion for the ground-state
wave function phase performed earlier for the AHO, DWP,
and SGP show that this expansion looks like a perturbation
series in g2 (starting from the 1=g2 term) if the classical
coordinate u ¼ gx is introduced. It is natural to construct
this perturbation theory for the phase in the generalized
Bloch equation (46) and compare it with the loop
calculation.
Solving Eq. (46) iteratively, we generate the flucton loop

expansion. Let us define the series

zðuÞ ¼
X
n¼0

g2nznðuÞ; ð49Þ

which corresponds to the perturbative solution of this
equation in powers of g2 with

E ¼
X
n¼0

g2nEn

given by standard perturbation theory in g2.
At the zeroth order, in which all terms proportional to the

coupling are ignored, the equation is very simple,

−u2z0ðuÞ2 ¼ −2 ~VðuÞ; ð50Þ

leading to

z0ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~VðuÞ

q
u

: ð51Þ

This result ðuz0Þ is, in fact, the classical momentum at zero
energy, and therefore, as one returns to the wave function,
the zeroth-order term gives the well-known semiclassical
action. So, at this stage, the result is the well-known ψ ∼
expð− R

x pðx0Þdx0Þ but at zero energy. It can be immedi-
ately checked that the classical flucton action for the AHO,
DWP, and SGP [see Eq. (41)] is nothing but the semi-
classical action at zero energy,

R
uz0ðuÞduwith z0ðuÞ given

by Eq. (51).
Moving to the next term of the expansion, one finds the

following Oðg2Þ equation:

uz00ðuÞ þ z0ðuÞ − 2u2z0ðuÞz1ðuÞ ¼ 2E0: ð52Þ

Note that here the equation involves the known function z0
of the previous order, and z1 just appears linearly. A similar
feature takes place at all orders!
An important point of the correct procedure is that the

energy needs to be used in the form of the perturbative
expansion in powers of g2 as well but for the original
potential (2),

E ¼
X
n¼0

g2nEn: ð53Þ

The zeroth-order potential is for the harmonic oscillator, so
2E0 ¼ 1. Hence, the first correction is

z1ðuÞ ¼
uz00ðuÞ þ z0ðuÞ − 1

2u2z0ðuÞ
: ð54Þ

It can be immediately checked that the logarithm of the
determinant logDetðOfluctonÞ [Eq. (17)] for all three poten-
tials AHO, DWP, and SGP [see Eq. (41)] is nothing butR
uz1ðuÞdu with z1ðuÞ given by Eq. (54). Thus, in a very

simple way we calculated determinant logDetðOfluctonÞ
explicitly in closed analytic form for the general potential
VðxÞ [Eq. (2)]. Or, in other words, we explicitly calculated
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the one-loop diagram of Fig. 2. This result, written in terms
of the classical flucton action and its derivatives, is one of
the central results of this paper.
Moving to the next term of the expansion, one finds the

following Oðg4Þ equation:

uz01ðuÞ þ z1ðuÞ − u2z21ðuÞ − 2u2z0ðuÞz2ðuÞ ¼ 2E1: ð55Þ

Note that here the equation involves the known functions of
the previous orders z0;1 nontrivially, but the new function z2
appears only linearly. This feature is generic and is repeated
at each order, so there is no difficulty in finding new
corrections.
The perturbative coefficient E1 is the perturbative cor-

rection ∼g2 to the ground-state energy in the quartic part of
the original potential (2),

VðxÞ ¼ 1

2
x2 þ a3gx3 þ a4g2x4;

which explicitly can be easily found, e.g., in the non-
linearization procedure [12],

2E1 ¼
3

2
a4 −

11

4
a23:

Solving Eq. (55), we find the second correction

z2ðuÞ ¼
uz01ðuÞ þ z1ðuÞ − u2z21ðuÞ − 2E1

2u2z0ðuÞ
; ð56Þ

which defines the two-loop contribution B1. It can be
immediately checked that for the AHO, DWP, and SGP
[see Eq. (41)] it is nothing but

R
uz2ðuÞdu with z2ðuÞ given

by Eq. (56). Thus, in a very simple way we calculated the
two-loop contribution explicitly in closed analytic form for
the general potential VðxÞ [Eq. (2)]. Or, in other words, we
explicitly calculated the sum of the three two-loop dia-
grams in Fig. 3, weighted with symmetry factors. For the
AHO, DWP, and SGP this sum

R
uz2ðuÞdu with z2ðuÞ does

not contain transcendental contributions. It must be empha-
sized again that it was difficult to guess that such a result
could exist in general.
Moving to the next term of the expansion, one finds the

following Oðg6Þ equation:

uz02ðuÞ þ z2ðuÞ − 2u2z1ðuÞz2ðuÞ − 2u2z0ðuÞz3ðuÞ ¼ 2E2:

ð57Þ

Note that here the equation involves the known functions of
the previous orders z0;1;2, and again z3 appears linearly. The
perturbative coefficient E2 is the perturbative correction
∼g4 to the ground-state energy in the sextic part,

VðxÞ ¼ 1

2
x2 þ a3gx3 þ a4g2x4 þ a5gx5 þ a6g2x6;

of the general potential (2), which can be straightforwardly
found, e.g., in the nonlinearization procedure [12]. Eventually,
the third correction

z3ðuÞ ¼
uz02ðuÞ þ z2ðuÞ − 2u2z1ðuÞz2ðuÞ − 2E2

2u2z0ðuÞ
ð58Þ

defines the three-loop contribution B2 analytically. In the
Feynman diagram technique (the flucton formalism) it corre-
sponds in general to a sum of the 15 three-loop diagrams in
Fig. 2 in Ref. [10], weighted with symmetry factors. So far we
have been unable to analytically calculate any diagrams for
AHO, DWP, and SGP potentials. It is needless to say that the
next iterations will provide higher-loop contributions in the
same straightforward way.

D. AHO: Three-loop correction

Starting from the two-loop correction z2ðuÞ, the details
of the specific example become relevant since one needs a
concrete value for E1. So, from this point on, we present
one more term for the AHO case (4), i.e., the three-loop
correction. In order to do this, we repeat the consideration
of the previous section in brief for the case of the AHO.
For convenience, we introduce a new variable s ¼ u2.

Then, the generalized Bloch equation (46) takes the form

2g2sz0ðsÞ þ g2zðsÞ − szðsÞ2 ¼ 2Eg2 − sð1þ sÞ; ð59Þ

where s ∈ ½0;∞Þ. At zeroth order ðg2Þ0 we have the
equation

z0ðsÞ2 ¼ ð1þ sÞ; ð60Þ

cf. Eq. (51). Then, for the normalizability of the wave
function it is required to take the positive solution
z0ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p
. The equation to the next order g2 is

given by

2sz00ðsÞ þ z0ðsÞð1 − 2sz1ðsÞÞ ¼ 2E0; ð61Þ

from which it follows that

z1ðsÞ ¼
1þ 2s − 2E0

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p

2sð1þ sÞ ; 2E0 ¼ 1:

Note that the condition that the function z1ðsÞ is not
singular at the origin (s ¼ 0) also implies 2E0 ¼ 1.
Now, the vanishing of the coefficient in Eq. (59) of order
g4 leads to the equation for the second correction z2ðsÞ,
which is equal to
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z2ðsÞ ¼
−E1 þ z1 − sz21 þ 2sz01

2sz0
¼ 4ð−1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ s
p Þ þ sð−7 − 8sþ 8

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p Þ − 4sð1þ sÞ2E1

8s2ð1þ sÞ5=2 ; ð62Þ

where z1ðsÞ is already known and E1 ¼ 3
4
is the well-known

first energy correction to the AHO ground state. At small
s → 0 we obtain

z2ðsÞ ≈
3 − 4E1

8s
þ 1

4
ð−6þ E1Þ −

3

64
sð−63þ 4E1Þ þ…

ð63Þ

The value E1 ¼ 3
4
leads to the disappearance of the first

(singular) term in this expansion. Similarly, we obtain

z3ðsÞ ¼
1

32σ8ð1þ σÞ3 ½60þ 230σ þ 346σ2 þ 270σ3

þ 150σ4 þ 108σ5 þ 84σ6 þ 63σ7 þ 21σ8�; ð64Þ

where E2 ¼ − 21
16
, and σ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1þ s
p

. Of course, in the
variable σ [which is nothing but z0ðsÞ in Eq. (60)] it can
be easily seen that all corrections znðsÞ are meromorphic
functions, and no transcendental terms occur. From
Eq. (44) we immediately make the identifications

z0ðsÞ ¼ g2∂sSflucton;

z1ðsÞ ¼ ∂s

�
1

2
logDetðfluctonÞ

�
;

z2ðsÞ ¼ g−2∂sðtwo-loopÞ;
znðsÞ ¼ g−2ðn−1Þ∂sðn-loopÞ: ð65Þ

E. ADWP: Classical action and one-, two-, and
three-loop corrections

Finally, within the iteration method for the generalized
Bloch equation (46), we consider the ADWP [see Eq. (7)],

V ¼ 1

2
x2ð1þ 2tgxþ g2x2Þ; t ∈ ½0; 1�;

which is, in fact, a general quartic potential.
In this case, one potential minimum is situated at x ¼ 0

and Vð0Þ ¼ 0, while the second minimum (when it exists)
is situated to the left of x ¼ 0 and VðxminÞ ≥ 0, see Fig. 4.
The generalized Bloch equation (46) takes the form

g2uz0ðuÞ þ g2zðuÞ − u2zðuÞ2 − 2Eg2

þ u2ð1þ 2tuþ u2Þ ¼ 0: ð66Þ

After a straightforward calculation (see, e.g., Ref. [12]),
we find explicitly the first three coefficients of the pertur-
bative expansion in g2 of the energy (53),

E0 ¼ 1;

E1 ¼
1

4
ð3 − 11t2Þ;

E2 ¼ −
3

16
ð7 − 114t2 þ 155t4Þ: ð67Þ

These coefficients will be needed to find the one-, two-,
and three-loop contributions in the iteration method applied
for Eq. (66).
The zero iteration of Eq. (66) gives the classical

momentum at zero energy.

z0 ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2tuþ u2

p
¼ gx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2tgxþ g2x2

q

≡ ðgxÞXðADWPÞ;

where for convenience we will denote hereafter XðADWPÞ≡
X4, while the classical flucton action ∼

R
uz0ðuÞ reads

Sflucton ¼
−2þ 3t2 þ 3tð1 − t2ÞðLog½1þ t� − Log½F þ X4�Þ − 3FtX4 þ 2X3

4

3g2
; ð68Þ

where F≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ t2 þ X2

4

p
. As for the determinant, logDetðOfluctonÞ is equal to

1

2
logDetðfluctonÞ ¼ Log

�
X4

2

�
þ Log½1þ ðF − tÞtþ X4�: ð69Þ

It can be immediately checked that by taking Eqs. (68) and (69) at t ¼ 0we recover the results for the AHO and at t ¼ �1
those of the DWP. As for the two-loop correction B1, it takes the form
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BðADWPÞ
1 ¼ 1

12ðF − tÞ2ð−1þ t2ÞX3
4

ð5ð1þ Ft − 2t2 − Ft3 þ t4Þ þ 6ð1 − t2ÞX4 − 2ð1þ Ft − t2ÞX2
4

þ ð−17 − 34Ftþ 134t2 þ 200Ft3 − 285t4 − 170Ft5 þ 170t6ÞX3
4 þ ð−9þ 31Ft − 20t2 − 33Ft3 þ 33t4ÞX4

4

þ ð17 − 100t2 þ 85t4ÞX5
4Þ:

In the limits t ¼ �1 and t ¼ 0, it coincides with the two-loop correction B1 for the DWP and AHO, respectively.
The three-loop correction B2—which in the path-integral formalism is given by the sum of 15 weighted Feynman

integrals (running from one-dimensional up to six-dimensional integrals, weighted with symmetry factors)—in the iterative
approach to the generalized Bloch equation (46) can be easily calculated:

BðADWPÞ
2 ¼ 1

64ðF − tÞ4
�
40ð1þ 2Ft − 2t2Þð−1þ t2Þ

X6
4

−
40ð1þ Ft − t2Þ

X5
4

þ 8ð8þ 8Ft − 13t2Þ
X4
4

þ 64

X3
4

−
8ð5 − 6Ftþ 17t2 þ 22Ft3 − 22t4Þ

X2
4

þ 8ð−5þ 11Ft − 11t2Þ
X4

þ ðð207 − 3598t2 þ 5639t4ÞðF − tÞ4 þ 8ð−3þ 11t2ÞÞ þ 4ð35þ 426t2 − 1833t4 þ 1860t6

− 3Ftð69 − 301t2 þ 620t4ÞÞX4 − 4ð21þ 406t2 − 1395t4 þ Ftð−187þ 465t2ÞÞX3
4

�
: ð70Þ

It is rather surprising that BðADWPÞ
2 is given by such a compact expression. In particular,

BðAHOÞ
2 ¼ −

40þ 120XAHO þ 136X2
AHO þ 88X3

AHO þ 80X4
AHO þ 112X5

AHO − 39X6
AHO − 330X7

AHO − 207X8
AHO

64X6
AHOð1þ XAHOÞ2

;

BðDWPÞ
2 ¼ XDWPð128þ 300XDWP þ 248X2

DWP þ 71X3
DWPÞ

4ð1þ XDWPÞ4
: ð71Þ

For completeness we present the three-loop correction
for the SGP:

BðSGPÞ
2 ¼ 7 − ð6þ cosðXSGPÞÞsec4ðXSGPÞ

1024
: ð72Þ

We note that is has an amazingly simple form.

F. Strong coupling expansion

So far we have studied the weak coupling expansion for
the generalized Bloch equation (46),

zðuÞ ¼
X
n¼0

g2nznðuÞ; E ¼
X
n¼0

g2nEn;

which corresponds to perturbation theory in g2. Now we
will study the strong coupling expansion in 1=g. It is
convenient to consider a particular potential to break the
idea of generality. We present here the results for the AHO
case (4),

V ¼ 1

2
x2ð1þ g2x4Þ:

First we will introduce the classical coordinate u ¼ gx, and
then introduce the new variable s ¼ u2. Then the gener-
alized Bloch equation (46) takes the form (59),

2g2sz0ðsÞ þ g2zðsÞ − szðsÞ2 ¼ 2Eg2 − sð1þ sÞ;

where s ∈ ½0;∞Þ. Since we know (functionally) the strong
coupling expansion for energy (see, e.g., Ref. [14]), we can
develop the perturbation theory,

E ¼ g2=3
X

bng−
4n
3 ; z ¼ g2=3

X
FnðsÞg−4n

3 ; ð73Þ

where bn, n ¼ 0; 1; 2… are strong coupling coefficients for
energy, a few of which have been found numerically with

FIG. 4. The ADWP for t ¼ 0 (long dashed, grey, anharmonic
oscillator case), 0.8 (short dashed, red), 0.95 (solid blue), and 1
(solid black, double well case) at the coupling g ¼ 2.
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high accuracy. The equation for finding the zeroth-order
Oðg2þ2

3Þ is of the form

2sF0
0 þ F0 ¼ b0;

which does not depend on the potential explicitly, and

F0 ¼ b0: ð74Þ

The equation for the first-order correction Oðg2−2
3Þ is

2sF0
1 þ F1 − sF2

0 ¼ b1;

which also does not depend on the potential explicitly, and

F1 ¼
b20
3
sþ b1: ð75Þ

It can be easily shown that the nth correction is a
polynomial of degree n,

Fn ¼ α0ðbÞsn þ α1ðbÞsn−1 þ � � � þ bn:

IV. THE ACCURACY OF THE PERTURBATIVE
AND SEMICLASSICAL LOOP EXPANSIONS

In this section we address the issues of convergence and
accuracy of the expressions derived above, comparing the
terms of the expansion to each other and to the wave
functions obtained numerically. In particular, this compari-
son will quantify the meaning of the “large classical
coordinate” y ¼ gx and “small coupling” g. For definite-
ness,we discuss these issues for the case of theAHOsystem.
Let us first address the issue of convergence of the

perturbative series in g at weak coupling. In Fig. 5 we plot
four subsequent terms of the expansion of the wave-function

phase and their sum, for “small” (g2 ¼ 1=3) and “large”
(g2 ¼ 2) couplings. In all cases there is a clear dominance of
the classical Oðg−2Þ term at large values of the coordinates,
x ≫ 1. This happens because only the classical term grows
with x. But if one excludes the leading term and compares
the subsequent loop corrections themselves, the series seem
to converge at all x rather well.
We now proceed to the case of strong coupling, g > 1,

and ask whether the semiclassical theory is still applicable
in this domain, at large values of the coordinate. In Fig. 6
we compare four terms of the loop expansion with the
extremely accurate variational wave function derived pre-
viously by one of us [15], for rather strong coupling g2 ¼ 2.
Two observations come from this plot. The first is that at

strong coupling the convergence at small x < 1 is gone.
However, the second is that in the semiclassical domain
x > 1 one can see that higher-loop corrections do in fact
improve the classical result. In fact, for x > 1.5 the
difference between the flucton series (up to the fourth
term) and the variational curve is smaller than the width of
the line!
The last issue we discuss in this section is that of the

overall normalization constant. The flucton method, by
construction, is designed to give the relative probability to
find a particle at different locations. Rather arbitrarily, in
the discussion above we have selected the “normalization
point” to be located at the potential minimum. Indeed, our
flucton and its action are both zero, for a particle located
there. So the same value (taken to be one) is used for all
wave functions at the maximum x ¼ 0.
The left panel of Fig. 7 shows a comparison of the

semiclassical density matrix (the sum of three terms)
with the exact (numerically calculated at energy E0 ¼
0.69617575) wave function squared, for g ¼ 1. While such
normalization is natural for the semiclassical approach used,
it is in fact inadequate in the following sense. As it is clear
from the left panel of Fig. 7, this normalization does not
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FIG. 5. The (double) phase of the wave function 2ϕ for the
anharmonic oscillator versus the coordinate x, for the coupling
g2 ¼ 1=3. The (lower) thin black solid line is the leading term,
corresponding to the classical flucton action. The red dashed,
blue dotted, and brown dot-dashed lines show the magnitude of
the one-, two-, and three-loop corrections. Their sum is shown by
the (upper) thick black solid line.
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FIG. 6. The comparison between the variational wave function
squared [15] (thick black solid line) with the flucton loop
expansion, at zero to three loops, at the coupling g2 ¼ 2. The
red dashed, blue dotted, green long-dashed, brown dot-dashed,
and thin solid black lines are for the classical action, the one-,
two-, and three-loop contributions, and their sum, respectively.
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provide a good description at large x, which is the semi-
classical domain.
Such an outcome is of course not unexpected. Our

derivation from the Schrödinger equation in Sec. III B is
based on the logarithmic derivative of the wave function
(44), which does not depend on the normalization constant.
Therefore, a more meaningful comparison between the
semiclassical expansion and the exact wave function can be
provided by the plot of the corresponding logarithmic
derivatives. Such a comparison is shown in the right panel
of Fig. 7: now the agreement between the two curves is
observed for x > 1, in the semiclassical domain. Outside it,
at x < 1, the agreement is not expected, but it is not too bad
either. (Note that this figure corresponds to a coupling that
is not small, g2 ¼ 1).

V. THE SEMICLASSICAL EXPANSION FOR
POTENTIALS WITH MULTIPLE MINIMA

In general, one may also think of potentials with N
minima, and ask how the flucton-based approximation for
the path integral we develop should be applied in this case.
In our first case all minima are degenerate, correspond-

ing to the same energy (which then can always be put to
zero). Since in this case all of the minima can be used for
the “long-time relaxation” of the flucton paths, one can
think of a N × N matrix of fluctons xfijðτÞ, starting at τ →
−∞ in the ith vacuum and ending at τ → ∞ in the jth one.
Of course, for a given “observation point” x0 one only
needs to consider those paths which pass through it. The
DWP is an example of such a degenerate situation, to be
discussed in Sec. VA.
However the problems with the nondegenerateminima,

such as in the ADWP case, obviously cannot be treated in
this way. There are no nondiagonal paths i ≠ j between
different maxima which can “relax” at both ends, as those
have different energies. Long-time “relaxation” is obvi-
ously only possible at the global minima. This situation,
which we discuss in Sec. V B, requires complexified
classical paths.

A. The density between the minima for the
symmetric double well

So far, we have only discussed the “outer region” jx0j >
xmin ¼ 1=g outside its two minima. Now let us discuss the
intermediate region, around the middle point x ∼ 0. For
sufficiently small g—and thus well-separated minima—it
should also be amenable to a semiclassical treatment.
Following the discussion above, the double-well prob-

lem should have four flucton paths. We have discussed the
fluctons xf11ðτÞ and xf22ðτÞ associated with, say, the left and
the right potential minima. Their contributions generate
two familiar maxima in the ground-state wave function.
In the outer region jx0j > xmin the xf12ðτÞ and xf21ðτÞ

fluctons are a combination of the xf11ðτÞ and xf22ðτÞ fluctons,
plus the instanton or anti-instanton paths. So the actions
are just

Sf12 ¼ Sf11ðx0Þ þ Sinstanton: ð76Þ

This means that the density matrix due to the flucton (11) is
just corrected by an exponentially small and x0-indepen-
dent term,

ψ2
0ðx0Þ ∼ expð−Sf11ðx0ÞÞð1þOðe−SinstantonÞÞ: ð77Þ

If jx0j < xmin, in the inner region the xf12ðτÞ and xf21ðτÞ
fluctons are nothing other than the instanton and anti-
instanton paths. Their timing can be selected so that at
τ ¼ 0 their value, as for all other fluctons, should be x0.
Furthermore, their classical actions

Sf12 ¼ Sf21 ¼
Z

x0

−xmin

pðx0Þdx0 þ
Z

xmin

x0

pðx0Þ

dx0 ¼
Z

xmin

−xmin

pðx0Þdx0 ð78Þ

do not depend on the x0. Therefore, their contribution to the
density matrix in the inner region is (somewhat surpris-
ingly) independent of the observation point x0.

FIG. 7. The comparisons for the anharmonic oscillator with the coupling g2 ¼ 1 of the numerically calculated wave function (black
solid lines), with the flucton expansion (zero, one, and two loops summed) shown by the red dashed lines. The left and right panels show
the density in the ground state and its logarithmic derivative versus the coordinate x, respectively.
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It may appear strange that the flucton theory has such
unusual contributions in the inner region, since in the
familiar WKB-like semiclassical theory one does not have
those. Note, however, that the WKB method is applied to
the wave function, while the flucton theory is applied to the
density matrix, or its square ψ2

0: the instanton terms thus
come from the product of the two semiclassical contribu-
tions in the WKB-like approaches.
To demonstrate its validity, we will use the Turbiner trial

function coshðAÞ (see Ref. [15]),

cosh2ðAÞ ¼ ð1=2Þðcoshð2AÞ þ 2Þ ð79Þ

B. The density for the asymmetric double well:
Complex fluctons

As we already noted at the beginning of this section,
when the minima of the potential are nondegenerate there
are no classical solutions going from one maximum to the
other of the potential in Euclidian time and “relaxing” at both
ends, simply because for that one needs two conflicting
values of the energy. In particular, there are no “instanton”
and “anti-instanton” solutions available.
It was argued in Refs. [16,17] that by complexification of

the coordinate xðtÞ → zðtÞ ¼ xðtÞ þ i · yðtÞ, and thus by
generalizing equations of motion to the so-called holo-
morphic Newton’s equation (still for inverted potential)

d2z
dt2

¼ þ ∂V
∂z ; ð80Þ

one can find a complex generalization of those. Specifically,
in those works the contribution of a periodic path with a
finite action was discussed, called the “complexified bion”
(CB), which is an extension to the instanton–anti-instanton
pair solutions for the symmetric potential.
For continuity of notation, let us use the following

(Euclidean time) Lagrangian:

LADWP ¼
1

2
_xðτÞ2 þ 1

2
ðxðτÞ2 − 1Þ2 þ pgxðτÞ; ð81Þ

with the asymmetry parameter p. If p is nonzero but small,
the left and right maxima located at xþ and x− have
different heights, Eþ ¼ VðxþÞ ≠ E− ¼ Vðx−Þ [18].
Like for the symmetric case discussed before, for a

generic point x0 in between the two maxima xþ < x0 < x−
there are two flucton solutions, also denoted by �, which
start at x0 and “relax” for an infinitely long time near either
xþ or x−. But now there is no symmetry x → −x; thus, these
two fluctons have different energy and the issue of the
relative normalization of their contributions is rather
nontrivial.
The flucton path fþðτÞ, starting from xþ, can reach any

point we discuss. But, an additional problem indicating
troubles with such an approach is that the flucton path

f− cannot reach all points x0 in the interval xþ < x0 < x−
since it has insufficient energy E− to “climb” all the way to
xþ. This path can only reach the turning point and get
reflected back. A periodic path starting and ending at x− is
known as a “bounce” solution.
A complexification of the paths opens many new

options. Let us start with the generalization of the flucton
path fþðτÞ, starting from xþ with energy Eþ. The initial
velocity at the top is zero, but—as for a skier at the top of a
mountain—there is freedom to slide in any direction.
Where would one like to go? Along the real axis no

other point is as high as the inverted potential, so the real
flucton path fþ can reach any x0 inside or outside of the
interval indicated. The classical action Sþ ¼ R

x0
xþ
dxpðxÞ is

a monotonous function since pðxÞ > 0; therefore, the
corresponding amplitude expð−Sþðx0ÞÞ decreases monoto-
nously in both directions from xþ. This contribution must
be included in the density Pðx0Þ, but it cannot be the
only one.
Going in an arbitrary direction from the global maximum

leads to a family of paths, two of which are shown in Fig. 8.
They get reflected at (or in the vicinity of) two turning
points back to the maximum xþ. Since at the top “relax-
ation” takes a long time, such paths could be periodic, with
an infinite period but finite action.

FIG. 8. Two examples of solutions to the holomorphic New-
ton’s equation (80). Both start at zero velocity and are slightly
displaced from the maximum of −V located at xþ. The one going
upward has a displacement phase tuned so that it goes to the
turning point z1 and is reflected back on the same path, so that one
see a single curve. This is the “complex bion” of Ref. [16]. The
one going downward, from a slightly different location, traces an
infinite path going around both turning paths z1;2.
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Let us find the two turning points. In the particular case
of the ADWP the potential is the fourth-order polynomial
in the coordinate, and thus it must have four roots. Hence, it
can be rewritten in a convenient form for motion with the
maximal energy Eþ ¼ VðxþÞ as

V − Eþ ∼ ðz − xþÞ2ðz − z1Þðz − z2Þ: ð82Þ
Note that xþ must be a double zero, and the two others
should be the complex-conjugate z�1 ¼ z2 pair of two
turning points. (In our concrete example their location is
at z1;2 ¼ 1.02412� 0.312482i.) At these turning points the
velocity on the path vanishes, but since it is a not a
maximum (a double zero) no long-time “relaxation” is
possible, and the “complexified bion” path bounces back.
One such periodic path with a finite action was pointed

out in Refs. [16,17] and named the “complex bion.” The
complex action of these paths contributes the factors
expð−ReSðzCBÞÞ cosðImSðzCBÞÞ to the amplitude, produc-
ing the cosine of certain nontrivial phases.
These phases violate the positivity of the amplitudes

present for any real paths, and produce interesting oscilla-
tions/cancellations. Some known puzzles associated with the
energy spectra of quasi-exactly-solvable [19] and/or super-
symmetric examples have been explained in these works.
Our aim is to find “complex fluctons,”, i.e., classical

paths connecting a generic point x0 on the real axis with the
global maximum at xþ. However, the paths belonging to
the family just described cross the real axis only at xþ.
In general, starting with the real axis, one see that the

kinetic energy K¼E−Vðx0Þ is real. Therefore ImðKÞ ¼
_x _y ¼ 0, which means that one of the factors must vanish.
Thus there are two sets of paths: they either go along the real
axis, or they are normal to it. The answer obviously is defined
by the sign of the kinetic energy 2K ¼ _x2 − _y2. Taking a
generic initial point on the real axis as a starting point
xðt ¼ 0Þ ¼ x0 and various initial values of _yðt ¼ 0Þ, one can
obtain families of solutions to the holomorphic EOM.
In Fig. 9 we show only one of them (red dotted line, for

x0 ¼ 0.5) tuned to be touching the “complex bion” path of

Unsal et al. (blue solid line). We propose to use a combi-
nation of two segments of those two curves, before and after
the touching point zcross, as a “complex flucton,” leading from
a generic point x0 to the globalmaximum xþ. Note, however,
that while both curves at the touching point zcross have the
same directions of the velocities, its magnitude needs to
jump, as the two curves correspond to two different energies.
For a generic paths one can think of them as classical

ones, solving the EOM with an appropriate external force
term zðτÞfðτÞ added to the Lagrangian and to the EOM.
The advantage of the complex flucton path just introduced
is that in this case the force should only be applied at only
the crossing-time moment fðτÞ ∼ δðτ − τcrossÞ, as an instan-
taneous kick adjusting the total energy. There is a finite
(although small in the example considered) contribution of
this kick to the action, which should not be omitted.
To summarize the construction, there are two paths, both

of which go from x0 to the maximum xþ: the original real
flucton and the complex one. The corresponding contri-
butions to the density at x0 are now both normalized in the
same way, and their sum has the form

Pðx0Þ ∼ 2 expð−Sreal flÞ
þ exp½−ReðScomplex flÞ�2 cosðImðScomplex flÞ; ð83Þ

where we have added the complex-conjugate part of
the path in the lower hemisphere ImðzÞ < 0. Like for the
complex bion contribution to the ground-state energy, the
contribution of the complex flucton may be positive or
negative, depending on the particular value of the imagi-
nary part of its action.

VI. CONCLUSIONS

In our previous paper I we outlined a new flucton-based
semiclassical theory, based on the path-integral represen-
tation of the density matrix. Corrections to leading semi-
classical results take the form of Feynman diagrams, which
are well defined to any order by standard Feynman rules.
As examples of its applications, we calculated one- and
two-loop corrections for the ground-state density (square of
the wave function) of the AHO.
In this second paper we describe the foundations

of the method in more details, and also presented a number
of new results. At the start of the paper, we summarize the
completed one- and two-loop calculations based on
Feynman diagrams, for all three physically important
examples: the AHO, DWP, and SGP [see Eq. (41)].
We showed that in the case of polynomial potentials

the perturbation corrections to the imaginary phase of the
wave function ϕðxÞ are finite-degree polynomials. We
demonstrated that generating functions of their leading
degrees coincide with corresponding terms in a loop
expansion. Eventually, we found the Taylor expansion at
small distances,

FIG. 9. Two solutions to the holomorphic Newton’s equa-
tion (80). The blue solid line is the same “complex bion” of
Ref. [16] as in the previous figure. The red dashed line starts at
some generic point on the real axis, in this case x0 ¼ 0.5, with a
velocity tuned so that it touches the “complex bion.”
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ϕðxÞ ¼ A0x2 þ A1x3 þ � � � ;

while the loop expansion is nothing but the expansion at
large x. It is sufficiently straightforward to attempt to
interpolate between these two regimes. For the AHO, the
interpolating trial function

ϕintðxÞ ¼
Aþ Bx2 þ Cg2x4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dþ g2x2
p þ 1

2
logDetðOfluctonÞ

(with parameters A, B,C, andD) gives extremely high local
accuracy for all x, in practice solving the problem,
cf. Ref. [15]. Similar approximants, interpolating between
the small-x series and our loop expansion, can be made for
other quantum-mechanical problems.
We also were able to relate these results to the iterative

solution of Eq. (46) for the reduced logarithmic derivative
of the wave function. As we showed explicitly, all our
results from the Feynman diagrams are reproduced exactly!
Among other insights, this way of deriving it explains why
all irrational functions (such as logs and polylogs) which
appeared in expressions for an individual Feynman diagram
are always canceled in their sum. This method of calcu-
lation allows us to go to higher orders; in particular, we
calculated one more term of the expansion, corresponding
to the sum of the 15 three-loop Feynman diagrams, none of
which have analytically evaluated so far. (Needless to say,
this method of calculation—starting from the Schrödinger
equation—is not generalizable to QFT applications, at least
at present.)
We have studied the issues of convergence and the

accuracy of this version of the semiclassical theory. It was
shown that in the case of weak coupling, the series for the
density are well convergent. Even if the coupling is not
small, in the semiclassical domain it seems to be convergent
to the exact answer (provided one uses the logarithmic
derivative of the wave function, removing sensitivity to the
normalization constant.)
Finally, we discussed the generalization of the flucton

theory to the case of more than one minimum of the
potential using the example of the DWP problem. In the

case when two minima are degenerate, the density in
between them is defined via a sum of four contributions:
the left- and right-side fluctons, and the instanton and anti-
instanton solutions. Interestingly, the latter produce a
constant (x-independent) contribution to the density matrix
in this region.
The case of (slightly) nondegenerate minima is much

more involved. The authors of Refs. [16,17], in which the
ground-state energy of the asymmetric double-well poten-
tial was studied, proposed complexifying the coordinate
xðτÞ → zðτÞ ¼ xðτÞ þ iyðτÞ and including contributions of
a certain finite action solution to the holomorphic EOM
(80). We studied such paths and found large families of
such solutions, starting from the maximum of the inverted
potential. We also showed how “complexified fluctons”—
leading from a generic point to the global maximum of the
(inverted) potential—can be constructed using (segments
of) two such paths. While quantitative studies of these
“complex fluctons” are deferred to future works, the main
qualitative point is made here: since one of them has a
complex action, its contribution to the density matrix has a
nontrivial phase. It can be either positive or negative,
depending on the magnitude of the imaginary part of their
action, which in turn depends on the asymmetry parameter.
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